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Summary 

Malaria, a deadly tropical disease transmitted by infected mosquitos, is caused by 

Plasmodium parasites. Plasmodium falciparum is the most pathogenic form, responsible for 

>95% of mortality. Continual development of therapeutic drug resistance necessitates the search 

for novel antimalarial therapeutics.   

In an aim to find novel anti-malarial therapeutics, the five small-molecule compounds 

were screened for their ability to kill P. falciparum parasites. The compounds were purified from 

Cinnamosma fragnans, a plant endemic to Madagascar commonly used as an antimalaria 

treatment. A 72-hour dose response assay was performed with the asexual stages of the parasite, 

and the percent inhibition of each drug was determined relative to the negative DMSO-control. 

CMOS was the most potent with an IC50 of 0.4148 micromolar, followed by CM18 with an IC50 

of 0.9858 micromolar.  

In a target-based approach, this second part of the project focuses on characterizing the 

biochemical properties of P. falciparum hexokinase (PfHk) and studying how its properties 

change through the intra-erythrocytic life stages of P. falciparum. The parasite’s single 

hexokinase enzyme is solely responsible for the conversion of glucose to glucose-6-phosphate, 

the necessary substrate for production of ATP via glycolysis or generation of reducing 

equivalents (NADPH) and ribose-5-phosphate via the pentose phosphate pathway. Glycolytic 

flux in the parasite has been shown to be regulated during the parasite’s pathogenic, erythrocytic 

stages, with PfHK activity being suggested as the rate-limiting step. We are exploring the idea 

that regulated post-translational modification of PfHK and/or turnover is responsible for its 

catalytic activity. To test this hypothesis, polyclonal antisera was generated, which specifically 



recognizes PfHK. Western blotting of P. falciparum whole-cell lysate, under reducing 

conditions, recognizes a single band of ~55 kDa as is predicted. However, under native 

conditions, a single band of ~220 kDa is detected, suggestive of PfHK forming a homotetramer 

in vivo, which has not been described for other eukaryotic HKs. Recently published structural 

studies of recombinant PvHK in the Morris lab supports this observation (1). Furthermore, using 

our PfHK antisera we have successfully immunopurified the protein from the parasite and are in 

process of identifying post-translational modifications and possible binding partners.  

Immunofluorescence assays (IFA) were also performed to determine the location and 

expression of PfHk in the different life stages. Results from the IFA support previous hypotheses 

that the enzyme is cytosolic and is expressed in all stages. Additionally, SeaHorse XF and kinetic 

assays were performed to determine how the glycolytic flux and the activity of PfHk changes 

through the life cycle of the parasite, respectively. The results from the kinetic experiments show 

that trophozoites have the highest HK content with the lowest turnover rate; whereas the 

gametocytes had unmeasurable PfHk activity. The SeaHorse XF assays also showed that the 

asexual stages had measurable glycolytic flux relative to the sexual stages, which had a very low 

glycolytic flux. Thus, even though HK is expressed in the matured sexual stages, it is not active. 

Therefore, unraveling the mechanism by which PfHk activity is regulated in sexual stages is a 

promising next step to understanding how PfHk could be targeted in novel antimalarial 

therapeutics.   
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Chapter 1: Background 

1.1 Introduction 

Malaria is a deadly infectious disease caused by the Plasmodium parasites and transmitted by the 

female Anopheles mosquito. In 2018, there were 228 million cases worldwide, with 213 million 

affecting Africa, and it was responsible for 405,000 deaths (2). Thus, malaria continues to be a 

major burden to the countries affected.  

There are five species in the Plasmodium genus, P. falciparum, P. vivax, P. malariae, P. 

ovale, and P. knowlesii, responsible for human malaria. P. falciparum and P. vivax are the two 

most common, with P. falciparum being the most virulent species responsible for >95% 

mortality (2). 

 

1.2 Life cycle of P. falciparum 

 P. falciparum has multiple life stages within the human host: primarily the asexual blood 

stages, sexual blood stages, and sporozoites. The asexual blood stages cause the symptoms of the 

disease, and they are divided into the ring, trophozoite, and schizont stages. The sexual stages, or 

gametocytes, are responsible for the transmission of the disease from a human to a mosquito, and 

the sporozoites facilitate transmission from a mosquito to a human host.  

Infection of malaria begins with a female Anopheles mosquito bite, which transmits 

sporozoites to the human’s blood, through its saliva. The sporozoites then travel to the liver, 

where they infect hepatocytes to begin the exo-erythrocytic cycle (fig. 1). Completion of this 

stage results in the release of merozoites which then infect erythrocytes, thus initiating the 

erythrocytic phase of their development (fig. 1). When the merozoites invade an erythrocyte, 

they enter the ring stage, and within 24 hours, they develop into trophozoites (fig. 2). 



Approximately 36 hours post-invasion, the matured trophozoites then undergo several nuclear 

divisions within the same cell, which is referred to a schizont. The schizonts burst open to release 

up to 32 merozoites, following the completion of the life cycle at 44 hours. The merozoites then 

invade new red blood cells to repeat the cycle.   

A small percentage of the asexual stages branch out to produce the sexual stages of the 

parasite. Previous studies have estimated the ratio of sexual to asexual stages to be less than 1:10 

(3). This ratio is largely influenced by the environment of the host, specifically the pH, 

temperature, and parasitemia. Despite the small percentage of the sexual stages, they play a 

pivotal role in the high success rate of P. falciparum, as they undergo drastic changes during 

their development to maximize their chances of survival in the mosquito (4). 

The mechanism by which sexual stages are formed, referred to as gametocytogenesis, 

remains unclear, but previous studies have shown that schizonts are committed to producing 

either the sexual or asexual stages (5) and that the sexual stages from a single schizonts are either 

all males or females (6). After the initiation of gametocytogenesis, the parasites develop into 

microgametocytes (male) and macrogametocytes (females). The production of 

macrogametocytes is much higher than that of microgametes to account for exflagellation in the 

microgametocytes, which produces eight microgametes (4). 

 

1.3 Malaria drug resistance 

Artemisinin-based combination therapy (ACT), which uses artemisinin (short-acting) 

with a one or more long-acting, complementary compounds, has been the main form of treatment 

for malaria, with an estimated 3 billion treatment courses used from 2010 to 2018 (2). However, 

in recent years, there has been a surge in P. falciparum resistance to ACT, which has amplified 



the impact of multi-drug resistance in the affected countries (7). If the spread of resistance 

surpasses the development of new therapeutics, then the advances that have been to eliminate the 

disease would be nullified. This necessitates the need for specific and selective drug targets and 

novel antimalarial therapeutics. Therefore, this study utilizes a dual approach to address 

resistance by finding small-molecule compounds with curative properties and understanding how 

PfHk could serve as a selective and specific therapeutic target.  

 

Figure 1: Life cycle of the P. falciparum parasite in the female Anopheles mosquito and humans. Image from and 

produced by CDC — DPDx/Alexander J. da Silva, Melanie Moser (8). 



 
Figure 2: Life cycle of P. falciparum parasite that shows the different stages of the asexual form of the parasite, 

post-invasion (9). 

 

Chapter 2: Investigating the antimalarial properties of compounds purified from 

Cinnamosma fragnans 

2.1 Introduction  

2.1.1 Origin and properties of C. fragnans 

Three species belong to the genus Cinnamosma (Cinnamosma fragnans, C. macrocarpa, C. 

madagascariensis) and they are commonly used in traditional medicine as a cure for malaria, 

fatigue, and muscle aches (10). The bark of C. fragnans is rich in drimane sesquiterpenes, which 

contributes to its antimalarial properties (11). Cinnamodial (CDIAL), the main compound in the 

bark, and cinnamosmolide (CMOS) are toxic to cancer cells, have antifungal properties, and can 

inhibit glucosidase activity. CDIAL was isolated from the dichloromethane extracts of C. 

fragnans, and CMOS is a derivative of CDIAL with the aldehyde group substituted with a γ-

lactone ring. CM18, CM18OX, UGDL are other compounds extracted from C. fragnans, with 

different modifications, that were also studied in this project.  

 



2.1.2 Therapeutic Development  

Since the 1820s, several anti-malarial therapeutics have been developed. The first chemically 

purified compound used to treat malaria was quinine, followed by mepacrine during the Second 

World War, and then chloroquine in the 1940s (12). However, due to malaria drug resistance, 

quinine and chloroquine are no longer used. Mepacrine use has also been stopped due to its 

toxicity. According to the WHO Model List that was posted in 2019, there are currently fourteen 

therapeutics used to cure malaria and four used as prophylaxis in patients (13). The most 

successful anti-malarial therapeutics are artemisinin-based combinations (12), as they have been 

shown to be the most effective against the multi-drug resistant forms of P. falciparum. Despite 

their success, there is still a rising concern for the development of new drug resistance in P. 

falciparum, which necessitates the search for selective and specific inhibitors of novel drug 

targets.  

 

Drug Description (year of discovery, mechanism of 

action, current use and resistance) 

Prophylactic or 

curative 

Origin 

Quinine Discovered in 1820. Interferes with 

hemoglobin digestion. Resistance was first 

reported in 1980s. It is no longer used as the 

main form of treatment. Typically used in 

combination with antibiotics. 

Curative Bark of 

cinchona tree 

Chloroquine First use for malaria was in the 1940s. It 

interferes with hemozoin formation and 

inhibits DNA and RNA biosynthesis. 

Resistance was reported in 1950s. Now it is 

only used for P. vivax in regions with no 

known resistance. 

Prophylactic 

and Curative 

Analog of 

quinine 

Mefloquine Developed in 1970. It disrupts hemoglobin 

digestion, and it is used in combination with a 

complementary drug. It is less commonly use 

due to potential effects on the Central Nervous 

System and drug resistance.  

Prophylactic 

and curative 

Developed 

by US Army 



Artemisinin First discovered in 1971, it is the major form 

of treatment in artemisinin-combination 

therapy (ACT). Some cases of resistance have 

been recorded. It increases reactive oxidative 

species and decreases parasite development. 

Artesunate, artemether, and arteether are 

common derivatives. 

Curative Artemisia 

annua, a herb 

used in 

Chinese 

traditional 

medicine 

 

Pyrimethamine 

& Sulfadoxine 

Pyrimethamine and Sulfadoxine were 

developed in the 1950s and 1960s, 

respectively. Both drugs ae used as 

combination therapy and they target the folate 

biosynthesis pathway.  

Curative Synthesized 

by different 

entities 

Mepacrine It is derivative of methylene blue, a potent 

anti-malarial. No longer used due to its side 

effects, like toxic psychosis.  

Prophylactic Derivative of 

methylene 

blue 

      

 

Table 1: A list of common past and current anti-malaria treatment, their discovery, and 

mechanism of action. (12) 

 

2.2 Materials and methods 

2.2.1 In vitro parasite culture 

P. falciparum 3D7 parasites were grown in O-positive blood at 2% hematocrit and RPMI media. 

The media contained 0.5% AlbuMAX (Albx), 0.37 mM hypoxanthine, 27 mM NaHCO3, 11 mM 

glucose, and 10 μg/ml gentamicin. All cultures were incubated at 37oC in 5% CO2, 5% O2, and 

90% N2 (14). The health of the parasites was analyzed using blood smears and the parasitemia was 

determined using flow-cytometry. The acridine orange used in flowcytometry stains the nucleic acid, 

and the flow-cytometry detects the percentage of red blood cells with staining. The media and blood 

were changed regularly, and a new batch of packed red blood cells and media were prepared every 

four weeks.  

Gametocytogenesis Induction 



Gametocytes were obtained from the P. falciparum 3D7 strains following the protocol used by 

Fiveman et. al with some modifications (15).  On day 0, asexual MR4 at 2 % parasitemia were 

synchronized using 5% D-Sorbitol to isolate the desired ring and late-stage schizont parasites. 

The hematocrit was increased from the regular 2% to 3%. On day 2, the hematocrit was reduced 

to 2% by increasing the volume of media. From day 8-11, 50 mM N-acetyl glucosamine were 

added to the cultures to kill the asexual stages in the culture. Blood smears were made daily to 

observe the quality of the culture and the parasitemia. On day 12, the gametocytes were 

harvested using a 0.025% saponin, and the parasites were stored in Potassium-buffered saline 

(PBS) with protease inhibitors at -80o. 

 

2.2.2 In vitro anti-asexual assays 

The effect of five compounds on the asexual stages of P. falciparum 3D7 was 

investigated. The compounds were extracted from C. fragnans. The five compounds tested were 

CMOS, CDIAL, UGDL, CM18, and CM18OX. All compounds were dissolved in DMSO to 

make stock concentration for the experiments. Chloroquine served as the positive control.  

MR4 3D7 parasites were cultured using the protocol above (2.2.1), and the parasites were 

used for the 72-hour dose response assays. On the day of the assay, the parasitemia of healthy 

asynchronized cultures were determined. 100 µL of media, containing the compounds, was 

added to each well, and this was followed by a 10-fold serial dilution. 100 µL of cell culture (2% 

hematocrit and 1% parasitemia) was added to each well to bring the final volume to 200 µL (1% 

hematocrit and 0.5% parasitemia). The plates were then incubated at 37oC for 72 hours. After 72 

hours, if the parasitemia of the negative DMSO control wells were high enough (at least 7%), the 

parasitemia of the all groups were then determined via flowcytometry. Thin blood smears were 



also made to access the health of the parasites. The percent inhibition of the compounds was 

calculated relative to the negative DMSO-control wells.  

2.3 Results 

Cinnamosma fragnans: asexual dose response assays  

A 72-hour dose response assay was performed to determine the antimalarial properties of five 

compounds extracted C. fragnans. The percent inhibition of the compounds was determined by 

comparing the parasitemia of the treated wells with the DMSO negative control. A nonlinear 

regression curve was generated using Prism 8 (graph pad) to determine the IC50 concentration, 

the half maximal inhibitory concentration. CMOS was found to be the most potent with an IC50 

of 0.4148 micromolar, followed by CM18 and CDIAL with IC50 concentrations of 0.9858 

micromolar and 1.235 micromolar, respectively (table 2 and fig 3). Chloroquine, which was used 

as the positive control, had an IC50 of 14.02 nanomolar, which is consistent with previously 

reported values.   

 

Compounds IC50 (µM) Structure 

CDIAL 1.235 +/- 0.135 

 



CM18OX 5.016 +/- 0.372 

 

CMOS 0.4148 +/- 0.038 

 

UGDL 44.39 +/- 6.71 

 

CM18 0.9858 +/- 0.110 

 



CQ 14.02 * 10-3 +/- 0.66  

 

 

Table 2: IC50 and structures of compounds purified from C. fragnans. CQ, chloroquine, was used as the positive 

control. Data represent mean ± SD (n = 3), and one representative analysis of three bio replicates is shown. 

 

 



Figure 3: Non-linear regression curve fit from the 72-hour dose response assays. The percent inhibition was 

calculated relative to the DMSO controls. Chloroquine was used as the positive control.  The IC50 values are also 

displayed. Data represent mean ± SD (n = 3), and one representative analysis of three bio replicates is shown. Prism 

8 (GraphPad) was used to create the graphs.  

 

2.4 Discussion 

The emergence and spread of P. falciparum resistance to Artemisinin-based treatment 

necessities the search for novel therapeutics. In the past, a cell-based approach has been used in 

the discovery of novel therapeutics. Some of the most successful therapeutics are compounds 

that were purified from natural sources (table 1), artemisinin and quinine are popular examples. 

Thus, testing the antimalarial properties of compounds purified from natural sources is a 

promising field in the development of novel therapeutics.  

In this study, five compounds purified from the Madagascan plant, C. fragnans. CDIAL, 

CMOS, UGDL, CM180X, and CM18 were screened for their ability to kill the asexual stages of 

the parasite. In order to achieve this, 72-hour drug assays were performed on a 96-well plate, and 

their effects were determined using flowcytometry. The percent inhibition of the drugs was 

calculated relative to the negative DMSO control wells, and a non-linear regression plot was 

used to determine the IC50. CMOS had the highest potency with an IC50 of 0.4148 µM, followed 

by CM18 with an IC50 0.958 µM. UGDL was the least potent among the compounds tested, with 

an IC50 of 44.39 µM. Though the potency of these compounds is lower relative to the positive 

control, chloroquine, they are still a promising natural source for antimalarial therapeutics. This 

data supports previous hypothesis that C. fragnans has curative properties. However, these 

results are not indicative of - and cannot be used to infer – the effects these compounds will have 

in humans. There are many variables in humans that is not accounted for by this assay.  



 In the future, an in vivo model could be used, and more compounds could be purified 

from the bark of the plant. In addition to this, the transmission-blocking properties could be 

studied by determining their effect on the development and maturation of the sexual stages of P. 

falciparum  

 

 

Chapter 3: Validating PfHk as a potential therapeutic target 

 

3.1 Introduction 

3.1.1 Biochemistry of the Hexokinases  

 PfHk is the enzyme responsible for the conversion of glucose to glucose-6-phosphate, which is 

consumed in glycolysis and the Pentose Phosphate Pathway (fig 4). Previous studies have shown 

that there is a 100-fold increase in glucose consumption in infected erythrocytes, compared to the 

uninfected cells (16, 17). The parasite’s dependency on glycolysis as the predominant source for 

ATP production makes hexokinase a great target. In addition to this, even though the parasites 

share some identity to human hexokinase, previous studies have shown that there is a 26% 

identity in the amino acid sequence between PfHK and mammalian equivalent HK (18) (fig 5). 

This means that PfHK could be selectively inhibited without impacting mammalian hexokinase.  

In mammals, the pathway that consumes the G6-P has been predicted to be affected by 

the expression of the different hexokinase isomers. There are four isoenzymes of Hexokinase in 

humans: type I, type II, type III, and type IV (glucokinase); whereas PfHk only has one 

isoenzyme. Type I, II, III are 100 kDa in size and glucokinase is 50 kDa (19).  The four 

mammalian HK isozomic forms have different expression patterns which is influential in 

determining differences in glucose metabolism in different cells and conditions (19). 

 



 

 

Figure 4: The fate of glucose 6-phosphate formed from the phosphorylation of glucose, via hexokinase using Mg2+ 

as cofactor (19). 

   

3.1.2 Glucose Metabolism in P. falciparum  

Glucose is essential for the survival of P. falciparum, as it is needed for ATP production, nucleic 

acid synthesis, and NADPH production. Metabolism of the asexual stages of the parasite is quite 

different from that of humans, since the parasites gets most of their ATP from glycolysis and 

they have a dormant TCA cycle (20, 21). Specifically, P. falciparum uses 60-70% of the glucose 

supplied for glucose fermentation (22). The glucose is also used in the Pentose Phosphate 

Pathway (PPP) for the synthesis of ribose and NADPH. Because of the parasites rapid growth 

and high proliferation rates, there is a high reactive oxidative stress (ROS) in intraerythrocytic 

parasites (23). However, P. falciparum parasites have a thioredoxin system and GSH, both of 

which are NADPH-dependent and are used to maintain the redox equilibrium (24). Thus, the 

PPP plays a prominent role in the regulation of oxidative stress, since it is the only way the 

parasite produces NADPH.  

   



 

 

Figure 5: Alignments of MR4 3D7 PfHK, PvHK, and human glucokinase. Clustal Omega multiple sequence 

alignment was used. The “*” notation represents conserved amino acids. There is a 26% identity in the amino acid 

sequence. The amino acids highlighted are the conserved catalytic aspartate in hexokinase (Asp 241) and two 

cysteines that serve as a redox switch (Cys 236 and 237). 

 

3.1.3 Life stages of the parasite and their metabolic properties  

The asexual stages of the parasites rely on glycolysis for ATP production, and they have a 

mitochondrion with a poorly folded crista (25) that is involved in pyrimidine biosynthesis and 

aids the re-oxidation of membrane dehydrogenases (26). The TCA cycle is not needed for growth in 

the intra-erythrocytic stages of the parasite (27-29). Like the erythrocytic-asexual stages of the 

parasite, glycolytic enzymes are present in the sexual stages. However, they are not as 



metabolically active as their asexual counterpart. There are speculations that the matured sexual 

stages have a more active TCA cycle, through which they get their energy (4). In addition to this, 

an active TCA cycle is crucial for gametocyte maturation. Other studies have shown that the 

mosquito stages of the parasite are more dependent on its developed TCA cycle (27-29). 

Since the asexual stages of the parasite rely on glycolysis for survival and the PfHk-

catalyzed reaction is hypothesized to be the rate-determining step of glycolysis, this enzyme is a 

promising target for future antimalarial therapeutics.  

 

3.1.4 Post-translational modifications in PfHK 

 Post-translational modifications (PTM) results in the modification of pre-existing 

proteins in the cell, which play an important role in cell signaling, regulation, altering protein 

function, etc. Determining the PTMs in PfHk is of key interest as it may be used to explain the 

changes in glycolytic flux through the parasite cycle and how PfHk could be targeted in the 

synthesis of novel anti-malarial therapeutics.  

Previous studies have shown that PfHK undergoes S-glutathionylation (S-Glut), a post-

translational modification (PTM) that adds glutathione to cysteine residues (30). There are 

hypotheses that S-Glut reduces the enzyme’s activity and is responsive to oxidative stress. This 

suggest that S-Glut could be important in maintaining the ATP-ADP ratio, as the parasite’s 

demands for ATP changes.   

Other PTMs are yet to be determined and their effects could provide more insights into 

why – and how – the activity of PfHk changes from the asexual to sexual stage.  

 

 



3.2 Materials and Methods 

 

 

 

 
Figure 6: An overview of all the experiments conducted from MR4 3D7, cultured in O+ blood.   

 

3.2.1 Synchronization, harvest, and lysate preparation 

Synchronization 

Most of the experiments conducted required a synchronized harvest for analysis. 5% D-Sorbitol was 

used to isolate the desired ring stage and late-stage schizont parasites. The culture was 

centrifuged at 3000 rpm for 5 minutes to isolate the red blood cells from the media. 10 mL of 5% 

D-Sorbitol was then added for every 12 mL culture, and it was incubated at room temperature for 

5 minutes before centrifuging at 3000 rpm. The synchronized parasites were washed with RPMI, 

and it was plated with fresh RPMI + Albx with 40 µL blood.  

Parasite release  

0.025% saponin was used to harvest the parasites from the red blood cells. The culture was 

chilled to 0oC, and it was centrifuged at 3000 rpm for 5 minutes. For every 12 mL culture that 

was centrifuged, 10 mL of 0.025% saponin was added, incubated for 5 minutes till RBC lysis 



was evident, and it was centrifuged at 3000 rpm to isolate the parasites. The parasites were then 

washed with PBS and were stored at -80oC in PBS containing protease inhibitors.  

Lysate Preparation 

Harvested parasites that were stored at -80oC were lysed, via a series of freeze-thaw cycles. For 

each lysis, the parasites went through three freeze-thaw cycles, before they were centrifuged at 

20,817 RCF at 4oC for 20 minutes to isolate the fractionate the insoluble cell content from the 

soluble content. The supernatant, containing the PfHK protein was isolated, and it was used for 

all experiments.  

 

3.2.2 PfHK antiserum production and purification 

Rabbit polyclonal antibodies were raised using recombinant PvHK (ref) kindly supplied by the 

Morris Lab, Clemson University, SC. All procedures of raising antibody and collecting rabbit 

antisera was done by Thermo Scientific. The polyclonal antibodies were affinity purified 

using AminoLink antibody purification kit (Thermo Scientific), and its efficacy was tested using 

recombinant P. vivax hexokinase and parasite lysates.  

 

3.2.3 Recombinant Pv-HK Generation  

Plasmodium vivax hexokinase (Uniprot ID: A5K274) was generated by expressing it in 

Escherichia coliBL21. A codon-optimized open reading frame cloned into a pQE30 expression 

vector (Qiagen, Valencia, CA) was used. The protein was purified as described by Davis et. al.  

 

3.2.4 SeaHorse XF glycolytic rate assay  



The Agilent SeaHorse XF measures glycolytic rate by measuring real-time proton efflux, the 

extracellular acidification rate (ECAR). The instructions on the XF kit was used, in combination 

with the protocol described by Sakata-Kato et. al. (31). The cartridge was hydrated overnight at 

37oC in XF Calibrant solution. The injections were loaded onto the cartridge after doing a media 

change. On the day of the assay, the infected RBC were isolated from uninfected RBC using a 

MACS separation column by Miltenyi Biotec. The number of cells were counted, and it was 

adjusted accordingly for the assays. In most cases 10 – 12 million parasites/ 100 µL were used. 

The synchronized parasites were then harvested, centrifuged, and resuspended in the assay 

medium. 100 µL of the parasites were loaded to each well and it was centrifuged at 52 rcf for 5 

minutes, followed by the addition of 350 µL of the assay medium (31). Following the plating 

procedure, the temperature was increased to 37oC before determining the ECAR.  

 

3.2.5 Kinetic Assays  

The “Kinetic Assay NADPH path check” protocol on the SoftMax Pro software was used for all 

kinetic assay that was performed in this experiment. All kinetic experiments were performed on 

the SpectraMax i3x at 340 nm, 37oC for 30 minutes at 45 seconds interval. The assay was set-up 

in a clear bottom 96-well plate. The total reaction volume was 100 µL. 78 µL of the “master 

mix” was added, followed by 20 µL of lysate or PvHK in PBS plus protease inhibitors, and then 

2 µL of 1M glucose. The master mix was made up of TAE buffer (pH 7.4), MgCl2, NADP, 

Glucose-6-phosphate dehydrogenase, and ATP. The final reaction contained 50 mM TAE buffer, 

3.3 mM MgCl2, 0.75 mM NADP, Glucose-6-phosphate dehydrogenase, and 5.25 mM ATP. 

 

Mechanism of Kinetic Assay  



The activity of PfHK was determined by measuring the absorbance of NADP+ at 340 nm. The 

absorbance value was then used to determine the amount of G-6-P produced by hexokinase, 

which is a measurement of the enzyme’s activity (fig 6). The SoftMax Pro software was 

programmed to perform these calculations, so it converted the raw data files to the velocity of 

PfHK at different timepoints. 

 

 

 

Figure 7: NADP+ coupled enzymatic assay. The activity of PfHK was determined by measuring the absorbance of 

NADP+ at 340 nm. 

 

ATP and glucose kinetic assays 

For the ATP-dependent and glucose-dependent kinetic reactions, the maximum concentration of 

ATP and glucose were set at 20 mM and the a five-fold dilution was performed. The same 

amount of parasite was used for both reactions.   

Time-point kinetic assays  

Synchronized P. falciparum 3D7 parasites were expanded to 14 plates and were allowed to grow 

to approximately 7% parasitemia. On day 0, all cultures were synchronized and six, 30 mL 

cultures were produced. A plate was harvested at 0, 13, 24, 30, 37, and 42 hours, with each time 

point corresponding to a specific asexual life stage (fig 2). These samples were stored at -80oC 



and were used to determine how the activity of HK changes through the life stages of the 

parasite. Fresh whole cell lysates were prepared on the day of the assay, and same volume of 

lysate was added to each well. The recombinant PvHk was used as the positive control. The 

remainder of the samples were analyzed on an SDS-PAGE gel to confirm the presence of PfHk 

and to estimate its concentration.  

 

3.2.6 Western Blots 

SDS-PAGE gels 

All samples were added to 4x loading dye to produce a 1x solution. The 1x solution was heated 

at 95oC for 5 minutes, before the samples were loaded on a Mini-PROTEAN® TGX Stain-Free™ 

Precast Gels. Precision Plus Protein™ Dual Color Standards marker was used, and the gel was 

run at 180 V for approximately an hour in 1x running SDS-buffer. The gel was equilibrated for 

10 minutes in wet-transfer buffer, before transferring the protein to a PVDF membrane at 100 

volts for 30 – 45 minutes. The membrane was blocked in 5% TBST-milk (non-fat) for 30 

minutes at room temperature, before incubating in primary overnight (1:500) at 4oC. The 

membrane was then incubated in secondary Goat-antirabbit (GAR, 1:2000), and the western blot 

signal was detected using SuperSignal West Pico PLUS chemiluminescent substrate kit (Thermo 

Scientific). 

Non-reducing conditions 

Regular conditions were used for non-reducing conditions with a few changes. The 4x loading 

buffer used did not contain any 2-mercaptoethanol. The running buffer and wet-transfer buffer 

used for reducing conditions were used in non-reducing as well.  

Native conditions 



Regular conditions were used for native conditions with a few changes. The running buffer and 

wet-transfer buffer that were used did not contain any SDS. In addition to this, 4x native loading 

buffer used and the samples were heated for a minute at 95oC.  

 

3.2.7 Estimating protein concentration 

BCA assay  

The Thermo Scientific™ Pierce™ BCA Protein Assay Kit was used to determine for the 

quantification and coulometric detection of protein present in the samples. The BSA albumin 

standards were prepared using the protocol in the user guide. The BCA working reagent was 

created by mixing 50 parts of BCA reagent A and 1 part of BCA reagent B. 25 µL of the 

unknown and standard were plated on a 96-well clear microplate, followed by 200 µL of the 

working reagent. The plate was incubated at 37oC for 30 minutes, after which the absorbances 

were recorded at 562nm on the SpectraMax i3x.  

Determining concentration of PfHk in stage-specific harvests 

The protein concentration of PfHK was estimated using Image J. The concentration of 

recombinant Pv-HK was determined using BCA assay. A two-field serial dilution of PvHk and 

the stage-specific PfHk harvest was run under reducing conditions. The western blots were 

scanned using an Epson V600 scanner. A professional, 16-bit gray scale, 4600 dpi image was 

produced which was saved as a .tiff raw file. The “rectangle” feature on ImageJ was used to 

create a frame of known area, and this frame was used to measure the intensities of the region of 

interests. The intensities of the region below and above each band were determined, which 

served as the background for the calculations. The PvHk intensity values were used to create a 

standard graph, which was used to estimate the concentration of PfHK.  



 

3.2.8 Immunoprecipitation and proteomic analysis 

Immunoprecipitation 

Cultured MR4 3D7 were harvested using 0.025% saponin, followed by a series of freeze-thaw 

cycles to lyse the parasites. The PierceR Crosslink Immunoprecipitation Kit was used for the 

immunoprecipitation of PfHK and the standard instructions were used. The lysate was pre-

cleared using coupling buffer. 50 µL of the slurry protein A/G and 50 µL of the HK primary 

antibody were incubated on a rocking platform for an hour to allow the antibody to bind to the 

beads. The beads were then washed, and the lysate was added to it. This was followed by an 

overnight incubation at 4oC. The beads were then washed with lysis buffer, followed by an 

elution buffer. Successful completion of immunoprecipitation was confirmed by silver staining 

and western blotting.   

Proteomic Analysis 

The immunopurified PfHK beads were analyzed via silver staining and Coomassie blue staining 

to confirm presence of the protein. The beads were then submitted to proteomics to search for 

any modifications and to determine the exact mass of the protein.   

 

3.2.9 Immunofluorescence assay  

Blood smears were made from asynchronous parasites, followed by immersing the slides in an 

Acetone-Methanol mix (50:50) and incubating in -20oC for 10 minutes.  The smears were 

washed with 1X PBS, blocked in 1% BSA in 1X PBT for one hour, and were incubated 

overnight with rabbit anti- PfHK antibody at 4oC.  Slides were washed with 1X PBS to remove 

unbound antibody and incubated with fluorescence tagged Goat anti-rabbit secondary antibody 



(Life Technologies) for one hour at room temperature.  Afterwards, slides were once again 

washed with 1X PBS and covered with a coverslip using Prolong Diamond Antifade 1 (Life 

Technologies) with DAPI mounting medium.  The slides were scanned using the FV300 

Olympus Confocal Laser Scanning Microscope at a 60X magnification. Invitrogen Alexa Fluor® 

488, with an excitation at 488 nm, and Thermo Scientific Pierce DAPI Nuclear Counterstains 

were used.   

 

3.3 Results 

3.3.1 Matured sexual stages are glycolytically inactive 

Following the isolation of purified parasites, the SeaHorse XF analyzer was used to determine 

the glycolytic flux on MR4 3D7 parasites. The starting extracellular acidification rate (ECAR) of 

a million parasite for the asexual stages was 100 mpH/min, compared to 5 mpH/min for the 

matured sexual stages (fig 8). As expected, the uninfected red blood cell had an insignificant 

change in ECAR. At 20 minutes, 500 µM of 2-deoxyglucose (2DG) was added which resulted in 

a sharp decrease in ECAR for the asexual stages of the MR4. However, the sexual stages did not 

experience a notable change in the ECAR post-injection. In both the asexual and sexual stages, 

there was a decline in the ECAR overtime. 

 



Figure 8: Extracellular acidification rate (ECAR) of synchronized asexual schizont stages MR4 3D7 and matured 

gametocytes were measured on the SeaHorse XF Analyzer. Approximately, one million cells were present in each 

well. The ECAR was measured before and after the addition of 500 µM of 2-deoxyglucose at 20 minutes. B shows 

the activity of the sexual stages and the red blood cells. 

 

3.3.2 Expression and cellular localization of PfHK  

IFAs were performed to determine the expression of PfHK in the different stages of P. 

falciparum and to determine the cellular localization of PfHK in the cell. In the field chosen for 

the asexual stages, there is an invading merozoite, a ring, trophozoite, and a schizont. For the 

matured gametocytes, there is a matured male and female gametocyte present in the selected 

field. PfHk was expressed in the cytosol in all the human life-stages of the parasite (fig 9 and fig 

10). 

 

Figure 9: IFA assays for the asexual MR4 3D7 parasites. 8a (merge 1): Composite image of PfHk, DNA, and light 

microscopy. 8b (DNA): Nuclei were stained with DAPI. 8c (PfHk): PfHk stained green with Alexa Fluor® 488. 8d 



(merge 2): Composite image of DNA and PfHk. The enlarged image shows a merozoite preparing to invade a red 

blood cell to form a ring.  

 

 

Figure 10: IFA assays for the matured sexual MR4 3D7 parasites. 9a (DNA): Nuclei were stained with DAPI. 9b 

(PfHk): PfHk stained green with Alexa Fluor® 488. 9c (merge): Composite image of DNA and PfHk. The smaller 

panels are an enlarged view of a matured gametocyte.  

 

3.3.3 Biochemical properties of PfHk and copies of PfHk in a parasite   

The BCA assay was used to determine the total protein concentration in the rings, 

trophozoites, and schizonts stages. The schizonts had the highest total protein content, followed 

by the trophozoites, then the ring stages. The trophozoites had the highest percentage (2.30%) of 

hexokinase per total protein in the parasite; whereas the rings and schizonts were comparable 

(0.2%) (table 3). In addition to this, the number of PfHK molecules in a parasite was estimated 

using the total parasite and the estimated protein concentration from the PvHk pixel intensity 



analysis. The trophozoites had the highest HK molecules per parasite, with an estimated value of 

6.8*106, followed by schizonts at 7.7*105, and the rings stages at 2.8*105 (table 3).  

The kinetic parameters of PfHK were determined using the glucose 6-phosphate 

dehydrogenase coupled assay. The absorbances were used to determine the maximum rate of 

reaction (Vmax), Michaelis constant (Km), and the catalytic efficiency (kcat), using varying 

concentrations of glucose and ATP in the rings, trophozoites, schizonts, and matured gametocyte 

stages. Sufficient activity was not detected for the sexual stages, so these values were not 

reported. A substrate curve and a double-reciprocal plot were used to represent data (fig 12). 

PfHk’s affinity for glucose and ATP were similar for the rings, trophozoites, and schizonts, with 

the trophozoites showing the highest affinity for glucose (0.095 mM) and the rings showing the 

highest affinity for ATP (0.186 mM). The trophozoites had the lowest turnover rate, Kcat, for 

both ATP and glucose; whereas the rings and schizonts had a higher Kcat (table 3).  

 

Figure 11:  Protein content for rings, trophozoites, schizonts. The total protein amount in a parasite was determined 

using the BCA assay. The estimated amount of PfHk was determined a series of western blot analysis. Data 

represent mean ± SD (n = 3). 

Table 3: The percentage of PfHk relative to the total mass of protein in the different stages of the parasite. Data 

represent mean ± SD (n = 3).  



 

  Glucose ATP  

 Km (mM) kcat (min-1) Km (mM) kcat (min-1) HK molecules per parasite 

Rings 0.131 18.3 * 106 0.186 17.5 * 106 2.78 * 105 

Trophozoites 0.0954 4.63 * 106 0.257 5.07 * 106 6.83 * 106 

Schizonts 0.136 23.6 * 106 0.250 25.8 * 106 7.70 * 105 

Gametocytes No activity detected  

 

Table 4: Km and Kcat of PfHK during its different life stages. The number of HK molecules per parasite are also 

shown, estimated using the amount of PfHk in the lysates.  

 

 

 

Figure 12: The substrate curve and double-reciprocal (Lineweaver-Burk) plots for the stage-specific harvest kinetic 

assays for glucose and ATP. Data represent mean ± SD (n = 3). One of two bio-replicates is shown.  



Time point kinetic assay 

Synchronized asexual P. falciparum were harvested at different time points, and their lysates 

were used to determine the activity of PfHk through the intra-erythrocytic life cycle of the 

parasite. Five different time points, corresponding to the major development stages in the asexual 

parasite were used (fig 2). Equal volume of lysates was used for each time point, and the 

absorbances were measured using NADP+-coupled enzymatic assay. During the first half of the 

life cycle, the Vmax observed increased till it reached its peak 24 hours post-invasion, which 

corresponds to the trophozoite stages (fig 13). After the 24 hours, there is a rapid decline of the 

Vmax at a similar rate to the first 24 hours.  

 

 

 

Figure 13: The activity of PfHk in the asexual stages, during its 44-hour life cycle, measured using the in vitro 

kinetic assays. The Vmax at different time-points post-invasion are shown. Data represent mean ± SD (n = 3). One of 

two bio replicates is shown.  

 

3.3.4 PfHK is a tetramer in vivo 



PfHK and recombinant PvHK were analyzed using western blots in both reducing and native 

conditions. In native conditions, PfHK 3D7 was a tetramer at ~220kD; whereas in reducing 

conditions, it was a monomer at ~55kD (Fig. 14). PfHk was expressed in the sexual stages, and 

the expressed protein similar results to those in the asexual stages.  

 

 

Figure 14: Western blots of native PfHK and recombinant Pv-HK. (A) SDS-PAGE of asynchronized asexual stages. 

(B) NATIVE-PAGE of asynchronized asexual stages. (C) SDS-PAGE of matured sexual stages. (D) NATIVE-

PAGE of matured sexual stages. Two dilutions of PvHK were used in (a) and (d), which are depicted as PvHk-1 and 

PvHk-2. Two dilutions of PfHk were used in (d), depicted as PfHk-1 and PfHk-2.  



3.3.5 Immunoprecipitation 

PfHk was immunopurified for proteomic analysis using the Pierce™ Classic IP Kit. Western blot 

and silver staining were used to confirm successful isolation of the protein and to determine the 

relative amount present in the elution and mock, respectively. The mock IP served as a negative 

control in the experiment to ensure that the protein bands on the western were due to the 

expression of PfHk and not protein A/G. PfHk was successfully isolated in elution 1 (fig 15). 

The samples were sent to proteomics, where the post-translational modifications would be 

determined and analyzed.  

 

 

Figure 15: Immunoprecipitations of PfHK. (A) SDS PAGE of immunopurified PfHK (E1) and mock IP beads. (B) 

Silver staining of immunopurified PfHK (E1, E2, E3) and mock IP beads. PfHk-IP is the immunopurified protein 

and the mock IP is protein A/G beads. E represents the elution and the number signifies the order of elution, such 

that E1 is the first elution.   

 



3.4 Discussion 

The intraerythrocytic life stages of P. falciparum relies on the activity of PfHk for 

survival since it produces glucose 6-phosphate, a substrate for ATP generation in glycolysis and 

oxidative stress regulation in the pentose phosphate pathway (PPP). Previous studies have shown 

that inhibition of glycolysis, via small-molecule compounds that block hexose transport, results 

in potent antimalarial activity (32). Thus, PfHk could serve as a potential target in the parasite.  

In this study, PfHk was characterized through different approaches. A polyclonal PfHk 

antibody was generated which was used to determine the biochemical properties, expression, and 

localization of the enzyme. In addition to this, a series of assays were performed to determine the 

glycolytic flux of the asexual and sexual stages of the parasite. The characterization of PfHk 

revealed that it shares similar properties with mammalian hexokinase, including the cytosolic 

expression of the enzyme in both the asexual and sexual stages a (fig 9 and 10). Taking 

advantage of the generated poly-clonal antibody, western blots analysis was used to support 

previous hypothesis that the enzyme is a tetramer in vivo. Western blotting of P. falciparum 

whole-cell lysate under reducing and native conditions recognized bands at ~55kDa and ~220 

kDa (fig. 14), which are suggestive that the enzyme is a homotetramer in vivo. These results are 

also supported by recently published structural studies of recombinant PvHk by a collaborating 

lab (1). 

Data from the SeaHorse XF assays show that the asexual stages of the parasites exhibit a 

lot of glycolytic activity and are inhibited by 2-deoxyglucose, a competitive inhibitor of Hk. For 

the sexual stages, on the other hand, similar amount of parasite resulted in a twenty-fold 

reduction in glycolytic activity. These results support previous hypothesis that the sexual stages 

are glycolytically dormant (4). Interestingly, images from the IFAs show that PfHK is expressed 



in both the sexual and asexual stages of the parasite. Even though this assay does not provide 

information on the integrity or form of the parasite, it is reasonable to hypothesize that Hk is 

undergoing modifications that decrease its activity as the parasite develops into a matured sexual 

stage and switches to a more active TCA cycle. Thus, if PfHk is indeed the rate-limiting step of 

glycolysis then it could have an influential role in the initiation and development of gametocytes.   

In order to learn more about how the amount and activity of PfHK changes through the 

life cycle of the parasite, in vitro kinetic assays were performed with lysates of the asexual and 

sexual stages. These assays showed that the enzyme’s affinity for glucose and ATP were similar 

across the different stages, however their catalytic efficiencies were different. Specifically, the 

trophozoites had the lowest catalytic efficiency, followed by the rings, and then the schizonts. 

These results are interesting since the trophozoites would be expected to have the highest 

turnover rate due to their high metabolic activity. However, the loss in efficiency is made up for 

by the number of Hk molecules in a parasite. A trophozoite has approximately 7 million copies 

of Hk, which is 25 times the Hk molecules in a ring and 10 times the HK molecules in a schizont 

(table 4). In addition to this, results from the BCA assay show that the trophozoites have a higher 

ratio of Hk to total protein in the parasite. The huge amount of Hk copies and protein mass 

compensate for the needs of a growing trophozoite. The loss in catalytic efficiency from a ring to 

a trophozoite might be due to modifications associated with increased oxidative stress in the 

parasite. Therefore, determining possible modifications could be helpful in understanding the 

enzyme’s regulation.  

There are several observations that validate why PfHk could serve as a potential 

antimalarial target. First, the enzyme is needed for glycolysis and PPP, because it catalyzes the 

first step in both processes. Thus, without this enzyme, sufficient ATP cannot be generated in the 



asexual stages of the parasite and there would be no regulation of oxidative stress. Second, PfHk 

shares only 26% (fig 5) of its identity with the mammalian hexokinase, which makes it possible 

for PfHk to be specifically targeted (33). The third reason is that the SeaHorse XF assays data 

(fig 8) showed that when a glucose substrate analog, 2-deoxyglucose, was used the glycolytic 

rate decreased almost immediately, which is suggestive of the idea that there are no alternative 

pathways for the parasite without the action of PfHk. Finally, the results from the 

immunofluorescence assays (fig 9) and western blots (fig 14) showed that PfHk is expressed in 

the sexual stages, however there no PfHk activity was detected in the kinetic assays (table 4). 

This means that PfHk undergoes changes during gametocytogenesis that decreases its activity. 

Though the reasons for this are yet to be determined, unravelling the mechanisms/ processes that 

occur could provide more knowledge on how PfHk could be targeted.   

Future directions include identifying post-translational modifications in the specific 

stages of the parasite and determining the role they play in PfHk expression and activity.  
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