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People perceive emotions via multiple cues, predominantly speech and visual cues, and

a number of emotion recognition systems utilize both audio and visual cues. Moreover,

the perception of static aspects of emotion (speaker’s arousal level is high/low) and the

dynamic aspects of emotion (speaker is becoming more aroused) might be perceived via

different expressive cues and these two aspects are integrated to provide a unified sense

of emotion state. However, existing multimodal systems only focus on single aspect of

emotion perception and the contributions of different modalities toward modeling static

and dynamic emotion aspects are not well explored. In this paper, we investigate the

relative salience of audio and video modalities to emotion state prediction and emotion

change prediction using a Multimodal Markovian affect model. Experiments conducted

in the RECOLA database showed that audio modality is better at modeling the emotion

state of arousal and video for emotion state of valence, whereas audio shows superior

advantages over video in modeling emotion changes for both arousal and valence.

Keywords: emotion recognition, multimodal, emotion dynamics, ordinal data, machine learning

1. INTRODUCTION

Emotion plays an important role in daily life communications and social interactions (Picard,
2000), and the ability to recognize a person’s emotional state is a critical requirement for achieving
a more natural human-computer interaction (Cowie et al., 2001). When interacting with each
other, people use a range of cues, such as speech patterns, facial expressions, etc. to communicate
and recognize emotions. Analogously, Automatic Emotion Recognition (AER) systems based on
a myriad of modalities such as speech, text, facial expression, body languages, etc. have been
developed (Wu et al., 2014; Avots et al., 2019; Yalamanchili et al., 2021). Among these modalities,
audio and visual cues have been most widely studied, which is unsurprising considering that facial
and vocal expressions are the most direct and natural modalities by which people communicate
emotions (Wu et al., 2014).

The Brunswik’s functional lens model may be used to explicitly depict the various elements
involved in the communication of emotional states (Zhang and Provost, 2019). As shown in
Figure 1, when someone expresses an emotion, this information is carried via multiple modalities
(speech and visual expression most commonly). An observer receives all modalities and integrates
the information carried in them. While different modalities may contribute differently to the
perception of different aspects of emotional state (such as perceiving that the speaker is becoming
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FIGURE 1 | The Brunswik’s functional lens model of the emotion expression and perception. The perception of two different aspects of emotion is depicted with the

blue dots representing the absolute state at a point in time and the red arrow indicating the change in emotional state from one instance to the next (red equal sign

indicates no change in emotion).

more aroused vs. perceiving arousal level is high), they are all
ultimately combined to provide a unified sense of the ‘recognised’
emotional state (Brunswik, 1955; Banse and Scherer, 1996; Zhang
and Provost, 2019). The assumption inherent in the previous
statement that different aspects of emotions are perceived via
differing mechanisms is supported by the observation that when
a group of people are all asked to label the evolving emotional
state of the same speaker engaged in a conversation, the level of
disagreement amongst the raters about change in the emotional
state is significantly lower than the level of disagreement about
the actual emotion label (Yannakakis et al., 2018).

Additionally, there is growing interest in the representation
and prediction of only the dynamical aspects of emotional state,
such as emotion change (Huang and Epps, 2016) and the purely
relative labels of emotional state on an ordinal scale (Martinez
et al., 2014; Parthasarathy et al., 2017). Despite the recent
successes in predicting the emotion states (Kim and Clements,
2015; Han et al., 2020) and emotion changes (Liang et al., 2018)
from multiple modalities, these systems either focus on one or
another but not both. Subsequently, to the best of the authors’
knowledge, till date there has been no analyses of any potential
differences in the contributions of different modalities (audio,
video, etc.) to the perception of the different aspects of emotional
state (state vs. change).

Generally, such emotional states can be described with
categorical labels (e.g., happy, sad, angry, etc.), or using a
dimensional representations (e.g., arousal, valence, etc.) (Russell,
1980; Grimm et al., 2007). A large body of recent literature has
focused on using dimensional representations (Akçay and Oğuz,
2020), since they are able to better describe the complexity of
emotions such as blended emotions, emotion transitions, etc.
(Gunes and Schuller, 2013; Akçay and Oğuz, 2020). Dimensional
representations in turn can employ either numerical or ordinal
labels along each dimension and there has been growing interest
in the use of ordinal labels in recent years (Yannakakis et al.,
2018). Research in psychology suggests that ordinal labels
are better aligned with human perceptions (Stewart et al.,
2005). Subsequent studies in affective computing have also
demonstrated that the use of ordinal labels leads to greater

agreement among a group of raters when they are asked to label
their perception of the emotional states of a speaker (Martinez
et al., 2014; Makantasis, 2021). In the work reported in this
manuscript, we focus on ordinal labels within a dimensional
emotion representation framework; whereby labels are given as
points on ordinal scales corresponding to affect dimensions such
as arousal (activate vs. deactivated) and valence (positive vs.
negative) (Russell, 1980; Grimm et al., 2007).

Both the static and dynamic aspects of emotion can
be associated with the ordinal emotion labels on affective
dimensions (Yannakakis et al., 2018). In a recent study we
introduced the terminology absolute ordinal label (AOL) and
relative ordinal label (ROL), to distinguish between these two
aspects of emotion in ordinal scale (Wu et al., 2021). Wherein,
AOLs are assigned from a given set of points on the ordinal
scale (e.g., low arousal, medium arousal, high arousal); and ROLs
represent relative comparisons between pairs of labels on the
ordinal scale (e.g., the ranking from the lowest arousal to the
highest arousal). Each type of ordinal label represents different
and complementary aspects of emotions as depicted in Figure 2.
AOLs denoted by the positions of the blue circles represent the
absolute arousal (or valence) level, the static emotion state at
a given point of time, whereas ROLs denoted by the numbers
insides the circles provide a relative level of the emotion state at
each time with respect to other times, thus the change of ROLs
(i.e., 1 in Figure 2) indicates emotion changes (e.g., arousal
increases) with time (orange arrows).

There have been a number of recent advances in both AOL
(Metallinou et al., 2012; Kim and Clements, 2015; Han et al.,
2020), and ROL (Parthasarathy et al., 2017; Melhart et al.,
2020; Makantasis, 2021). However, these have focused only
on either absolute or relative ordinal labels and not the joint
modeling of both the static and dynamic aspects. The work
reported in this paper explores if different modalities contribute
to varying degrees to the recognition of static and dynamic
aspects of emotions. Specifically, we extend the Dynamic Ordinal
Markov Model (DOMM), previously introduced to integrate
absolute and relative ordinal information (Wu et al., 2021), to
incorporate multimodal inputs and exploit the distinct AOL and
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FIGURE 2 | A graphical representation of the complementary characteristics of AOLs and ROLs over 6 time steps within a 100-frame utterances. The position of the

blue circles represents AOLs at different time steps with ROLs indicated by the number insides the circles, and the arrows depicting ROL changes between

consecutive time steps.

ROL prediction subsystems to investigate differences in their
contributions. All evaluations are carried out using the widely
used RECOLA database (Ringeval et al., 2013).

2. RELATED WORK

Multimodal emotion recognition systems have been benefited
from a number of advances in different techniques to fuse
the multiple expressive cues (Yalamanchili et al., 2021). These
methods can be broadly categorized as either feature level
fusion or decision level fusion (Wu et al., 2014). The former
is generally carried out by concatenating feature vectors from
different modalities (Metallinou et al., 2012; Kim and Clements,
2015), while the latter involves developing indepedent unimodal
predictive models and then aggregating the predictions from
each modality (Ringeval et al., 2014; Sahoo and Routray, 2016).
A combination of both is also possible, for instance Metallinou
et al. (2012) first adopts feature level fusion with different weights
assigned to audio and video modalities followed by model level
fusion to learn a joint representation from multiple modalities.
Similarly, Schoneveld et al. (2021) implements LSTM based
fusion networks that is trained together with the pre-trained
audio and video features. However, these multimodal fusion
techniques do not allow for differences in the relative salience of
the different modalities toward the static and dynamic aspects of
emotion.

Additionally, literature in psychology has also reported on
the role of audio and visual cues toward inferring different
emotions (Banse and Scherer, 1996). These studies have primarily
focused on the relationship between modalities and specific
emotions. For instance, facial expressions provide information
about the occurrence of pleasant emotional states (Ekman and
Oster, 1979), and acoustic features of the speech signals are
strongly associated with the speaker’s arousal state (Bachorowski,
1999; Russell et al., 2003). Some of these observations of human
emotion perception have also been found to have analogues in the
automatic emotion recognition system developed by the affective

computing community (Tzirakis et al., 2019; Schoneveld et al.,
2021).

While there are no studies that directly investigates the
relationship between expressive cues and the static and dynamic
aspects of emotions, evidence from psychology suggests that
people may seek to control their facial expressions when
experiencing certain emotions (Crivelli and Fridlund, 2018).
Similarly, fine nuances in emotions, that might otherwise be
missed, may be perceptible from vocal expression (Simon-
Thomas et al., 2009). These observations motivate the work
reported in this paper, on exploring the varying contributions of
speech and video modalities toward the prediction of emotion
state and emotion change.

3. DYNAMIC ORDINAL MARKOV MODEL

The Dynamic Ordinal Markov Model (DOMM) is a Markovian
framework originally proposed for speech based emotion
prediction system that integrates both static and dynamic aspects
of ordinal emotion labels (Wu et al., 2021). A high level
representation of the DOMM framework is depicted in Figure 3.
The emotion state (static aspect) represented by AOLs, and
emotion change (dynamic aspect) represented by ROLs, are
separately modeled by the AOL and ROL prediction systems.
These two subsystems are implemented using an Ordinal Multi-
class Support Vector Machine (OMSVM) (Kim and Ahn, 2012)
and a RankSVM (Joachims, 2002), respectively. The predictions
from both subsystems dynamically update the parameters of a
Markov model which is used to make the final predictions.

Within the DOMM framework, the AOLs are represented
as the states of a Markov model with ROLs reflecting state
transitions. The predicted emotion labels are then given as:

β̂1 :T = argmax
β1 :T

P(β1 :T |x1 :T) (1)

where x1 :T = {x1, x2, ..., xT} denotes the sequence of input
features, with xt denoting the feature at time t; and β1 :T =
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FIGURE 3 | Overview of the DOMM system architecture. In the depicted state diagrams, the blue circles indicate the state (i.e., AOL) with low (L), medium (M) and

high (H) and red arrows denote the state transitions. The state posterior probability corresponding to the blue dots are calculated from AOL Prediction subsystem for

each state L,M,H at each time step. Similarly, the state transition probability is obtained from the ROL prediction subsystem for all possible state transitions. The

predicted emotion state sequence is then obtained using Viterbi decoding based on the time-varying state and transition probabilities. The x axis represents the time

step from t1 to tT . The y axis represents the AOLs with low (L), medium (M) and high (H) states. Red line indicates the “best path” after Viterbi tracking which gives the

final predicted AOL sequence.

{β1,β2, ...,βT} denotes the sequence of DOMM states, with βt

denoting the state at time t.
Finally, we note that βt ∈ A ∀t where A represents the set

of possible AOLs, for e.g., when the possible AOLs are low (L),
medium (M), and high (H), A = {L,M,H}. This framework
was developed on the assumption that AOLs are more readily
interpretable and consequently predictions should be AOLs,
while also recognizing that ROLs are better aligned with the types
of judgements humans are better at making and should inform
the predictions.

To determine β̂1 :T we employ Viterbi decoding, making use
of the Markovian property of the DOMM framework by tracking
the most probable state sequence (Forney, 1973). This in turn
requires an estimate of initial state probability at time t0, and
state probabilities, P(βt), and the state transition probabilities,
P(βt|βt−1), at each time frame t. The term ’dynamic’ in DOMM
refers to the fact that both state and state transition probabilities
are time-varying quantities and inferred from the input signal.
Within the DOMM framework, both these quantities are
estimated by the AOL and ROL prediction subsystems. Given a
set of AOLs, A, the AOL prediction subsystem is implemented
as a machine learning model that maps input features to

state posteriors, fA :X → {P(λ) | ∀λ ∈ A}), where X

denotes the input feature space. Similarly, the ROL prediction
subsystem is implemented as a machine learning model that
maps input features to the state transition probabilities, fR :X →

{P(λ1|λ2) | ∀λ1, λ2 ∈ A × A}. In the realization of the
DOMM employed in the experiments reported in this paper, fA
is implemented as an Ordinal Multiclass SVM (OMSVM) model
(Kim and Ahn, 2012) and fR is implemented using a RankSVM
model (Joachims, 2002).

The OMSVM is a variation of the conventional Multi-class
SVM that utilizes the ordinal pairwise partition algorithm to
group the AOLs and models each group of AOLs with a series of
SVMs which enables it to capture the ordinal nature of the labels
(Kim and Ahn, 2012). The state posterior probabilities, P(βt),
is computed by applying a sigmoid function to the OMSVM
outputs as suggested in Platt (1999):

P(βt = λ) ,
1

1+ exp
(

aHλ(xt)+ b
) , ∀λ ∈ A (2)

where Hλ(xt) denotes the OMSVM output corresponding to the
AOL λ, given an input feature vector xt ; a and b denote constant
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sigmoid function parameters which are determined duringmodel
training.

The ROL prediction subsystem employed in this work
employs a RankSVM model trained to predict the relative rank,
αt of the arousal/valence labels within an utterance. The state
transition probabilities, P(βt−1 → βt), are then estimated from
the change in relative rank between consecutive frames, 1αt =

αt − αt−1, as follows:

P(βt−1 → βt) , P(βt|βt−1,1αt) =
P(1αt|βt−1,βt)P(βt|βt−1)

P(1αt|βt−1)
(3)

where αt = G(xt), with G(xt) denoting the RankSVM output
given the input feature vector xt . The conditional probabilities on
the right-hand side of Equation (3) are all estimated frommodels
obtained from the labeled training data.

Specifically, a model of P(1αt|βt−1 = λ) is inferred using
the Kernel Density Estimation (KDE) (Platt, 1999) based on the
set of relative rank differences obtained from all training data
points where the preceding point corresponded to the AOL, λ.
The set of these models obtained for possible AOLs, λ ∈ A, can
then be used to determine any desired P(1αt|βt−1). Similarly,
P(1αt|βt−1 = λ1,βt = λ2) is estimated from the set of training
points labeled as λ2, where the previous point was labeled as
λ1. Again, from the set of models corresponding to all pairwise
combinations of λ1 and λ2, any desired P(1αt|βt−1,βt) can be
determined. Finally, the set of prior probabilities, P(βt|βt−1), can
be estimated as:

P(βt = λ2|βt−1 = λ1) =
Nλ1→λ2

Nλ1

(4)

where λ1, λ2 ∈ A, Nλ1 denotes the number of training points
labeled as λ1, and Nλ1→λ2 denotes the number of occurrences of
pairs of training data points with a point labeled λ1 followed by a
point labeled λ2 in the training sets.

The initial probability P(β0) is directly estimated from
training data as:

P(β0 = λ) =
Nλ

N
(5)

where Nλ denotes the number of training points labeled as λ and
N denotes the total number of data points in the training sets.

4. PROPOSED METHODOLOGY

The structure of the DOMM framework makes it an appropriate
choice to investigate the varying degrees of salience of different
modalities toward inferring the static and dynamic aspects
of emotion. Specifically, since the AOL prediction and ROL
prediction subsystems are independently trained and explicitly
cater to the static and dynamic aspects of emotion labels,
respectively, we can study if cues from different modalities are
particularly well suited for one or another. In the investigations
reported in this paper, we train and compare a range of DOMM
systems where the AOL and ROL prediction subsystems are
trained to use either audio (A), or video (V), or a combination

of audio and video (AV) features as inputs. This allows us
to compare every possible combination of audio and video
modalities to model and predict the static and dynamic aspects
of emotion as outlined in Figure 4.

Specifically, we train three versions of the AOL prediction
system:

P(βt = λ|8) , σ

(

Hλ

(

x
(8)
t

))

, ∀λ ∈ A, 8 ∈ {A,V ,AV}

(6)
where, σ (·) denotes the sigmoid function, 8 denotes the

modality, and the feature vector x
(AV)
t is obtained by

concatenating x
(A)
t and x

(V)
t and three versions of the ROL

prediction system given as:

P(βt−1 → βt|8) , P(βt|βt−1,1α8
t )

=
P(1α8

t |βt−1,βt)P(βt|βt−1)

P(1α8
t |βt−1)

, 8 ∈ {A,V ,AV} (7)

where, similar to Equation (3), α8
t = G

(

x8
t

)

, with G(·)

representing a RankSVM, and 1α8
t = α8

t − α8
t−1.

These sets of AOL and ROL prediction subsystems lead to
9 possible combinations as depicted in Figure 4. The emotion
state prediction accuracies of all combinations are estimated
and compared to ascertain the relative salience of the speech
and video modality toward the modeling of emotion state and
emotion change. For instance, looking down the first column
of the table prediction accuracies in Figure 4, the entries SA∗
represent the scenario where the RankSVM models emotion
change based on audio cues, denoted by the superscript A,
while the OMSVM predicts emotion state from one of the three
possible input feature vectors, as denoted by the subscript.

Similarly, the second and third columns represent the
configurations where the RankSVM takes either video (V) or
audiovisual (AV) features as input. If audio was significantly
more salient for the prediction of emotion state compared to
video features then we should expect the entries in the first row to
be consistently higher than those in the second row. Additionally,
if video features carried little useful information about emotion
state then the entries in the third row would be similar to those
in the first row. Likewise, comparing columns allows us to make
inferences about the relative salience of the audio and video
feature to emotion change modeling. Finally, we note that even
though the predictions made by DOMM systems are AOLs and
the performance measures are accuracies of predictions of AOLs,
the predictions are obtained via Viterbi decoding of a Markov
model and incorrect estimates of the transition probabilities will
lead to incorrect predictions of the state sequence.

5. EXPERIMENT SETTINGS

5.1. Database Description
No publicly corpora that can be used to train emotion
prediction systems come with absolute and relative ordinal labels.
Consequently, in this work we use the well-established Remote
Collaborative and Affective Interactions (RECOLA) database
(Ringeval et al., 2013) and convert the interval labels to AOLs
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FIGURE 4 | An overview of the proposed analyses to determine relative salience of audio and video modalities toward the perception of emotion state and emotion

change. The 9 possible DOMM systems corresponding to different combinations modalities used for estimating state and transition probabilities are all evaluated on

the same test data. A table of these measures of prediction accuracy, as illustrated, allows for the identification of broad trends around the relative salience of each

modality toward the prediction of emotion state and emotion change.

and ROLs. The RECOLA dataset (Ringeval et al., 2013) is a
widely used multimodal corpus containing both audio and video
modalities. It consists of 9.5 h of audiovisual recordings spanning
23 dyadic interactions among 46 participants. The experiments
reported in this paper were conducted with the data provided
for the AVEC 2016 challenge which included 9 utterances of 5
min duration each in both the training and development sets
(Valstar et al., 2016). The challenge development set is employed
as the test set in this experiment since the labels of the test
set are not public. Each utterance is annotated by 6 raters
with continuous arousal and valence ratings between –1 and 1,
sampled at intervals of 40 ms.

Delay compensation is applied to compensate for human
perception delays in the labels as suggested by Huang et al. (2015)
with a delay of 4 s for arousal and 2 s for valence. Finally, the

ratings are aggregated over a 2 s window, as per Parthasarathy
and Busso (2016) who suggest that a window size between 1 and
3 s is appropriate for retaining salient trends in the ratings while
reducing noise.

The AOLs are converted from interval labels individually for
each annotator and the final consensus AOLs are inferred via
majority vote among the 6 individual AOLs (one per annotator).
The conversion scheme is carried out by setting thresholds to
divide the interval labels into three levels of arousal (valence)
state: [low, medium, high]. Specifically, if yt denotes the average
arousal/valence intensity at window t and θ1 and θ2 denotes two
thresholds. The AOLs are obtained as: βt = Low for yt ≤ θ1;
βt = Medium for θ1 < yt ≤ θ2; βt = High for yt > θ2. For
arousal labels, the thresholds were chosen as θ1 = −0.14 and
θ2 = 0.14 and for valence these were set as θ1 = 0 and θ2 = 0.17.
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TABLE 1 | Absolute ordinal labels distribution on RECOLA dataset with

thresholds: θa1 = −θa2 = 0.14 for arousal and θv1 = 0 and θv2 = 0.17 for valence.

Low Medium High

Training set Arousal 363 443 526

Valence 462 463 416

Test set Arousal 578 348 406

Valence 545 432 364

In both cases the thresholds were chosen to provide an even
distribution across the low, medium and high states as outlined in
Wu et al. (2021). The resultant distribution of absolute states are
given in Table 1. Additionally, we repeated out analyses on two
other sets of thresholds for both arousal and valence. The results
can be found in the Supplementary Tables S7–S10.

Likewise, the ROLs for each annotator are first converted by
performing pairwise comparisons across each 2 s window based
on the mean arousal (valence) intensity. The global ROLs are
computed by adopting the Qualitative Agreement (QA) method
(Parthasarathy and Busso, 2018). Within each utterance, a matrix
of pairwise comparisons amongst all windows for each individual
annotator is first collected as shown in Figure 5. For instance, the
valence rating within the third window is less than that within
the second window, leading to a down-arrow in the cell located
at the second row and third column. A consensus matrix is then
obtained via majority vote among matrices from all annotators
and the final rank sequence of ROLs is obtained from this
consensus matrix.

5.2. Features
5.2.1. Audio Features

Two sets of widely used audio features, the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben et al.,
2015) and the Bag-of-Audio-Words (BoAW) (Schmitt et al.,
2016) were employed in the experiments reported in this paper.
The 88-dimension extended Geneva Minimalistic Acoustic
Parameter Set (eGeMAPS) was chosen since it is a standard
feature set used in affective computing to simplify benchmarking
and provided by the AVEC 2016 challenge (Valstar et al., 2016).
It comprises of arithmetic mean and coefficient of variation
functionals applied to 18 low-level descriptors (LLDs) extracted
from the minimalistic acoustic parameter set along with another
8 functionals applied to pitch and loudness. Additional 7
LLDs are extracted from the extension parameter set with 4
statistics over the unvoiced segments, 6 temporal features, and
26 additional cepstral parameters and dynamic parameter (Eyben
et al., 2015). The features were extracted using the OpenSMILE
toolkit (Eyben et al., 2010) and for additional details about
eGeMAPS, readers are referred to Eyben et al. (2015).

The Bag-of-Audio-Words (BoAW) features were extracted
by first computing 20 dimensional MFCCs and their deltas. The
’audio words’ were determined as clusters in this space (Schmitt
et al., 2016). The BoAW features employed in our experiments
were generated using 100 clusters, leading to a 100-dimensional
BoAW representations. The extraction was implemented

using OpenXbow (Schmitt and Schuller, 2017). Principal
Component Analysis (PCA) was then employed for dimensional
reduction resulting in 40 dimensional features. Their first-order
derivatives were then computed and concatenated with the 40
principal components, leading to an 80-dimensional feature
representation.

5.2.2. Video Features

The video features utilized in the experiments reported in this
paper comprise of two standard features sets provided in the
AVEC 2016 challenge, the appearance features and geometry
features (Valstar et al., 2016). The video appearance feature
is computed using Local Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP) by first convolving the input
video frames with a bank of Gabor Filters to obtain Gabor
magnitude response images. The LBP operator is applied to the
resulted image slices along 3 orthogonal plans (x-y, x-t, y-t),
resulting in three LBP histograms per Gabor response. Finally,
all the histograms are then concatenated into a single LGBP-
TOP histogram across all video frames. PCA is then applied for
feature reduction and an 84-dimensional feature set was obtained
(Valstar et al., 2016).

The geometry features are extracted by first tracking the 49
facial landmarks and aligning them with a mean shape from
stable points located around nose and eyes. Then the coordinate
differences between them are computed, together with their
deltas leading to 196 features. The landmarks are split into
groups with (i) left eye and eyebrow; (ii) right eye and eyebrow;
and (iii) the mouth. The Euclidean distances and angles between
the points are computed within each group. A final Euclidean
distance is computed between the mean of stable landmarks and
aligned landmarks in the video frame. The extraction process
resulting in 316 dimensional features. Details refer to Valstar
et al. (2016). Finally, for the audio-visual front-end we employed
feature level fusion by directly concatenating the individual
audio and video features extracted using the above methods.

5.3. Backend Implementation
The OMSVM subsystem for AOL prediction is implemented
using ClassificationECOCMATLAB toolbox (an error correction
output code multi-class classifier) (Escalera et al., 2009). The
state posterior probabilities were then computed using the
FitPosterior function (Platt, 1999). The RankSVM model used
in the ROL prediction subsystem was implemented using the
toolkit referred to in Chapelle and Keerthi (2010). Both the
OMSVM and RankSVMmodels employs linear kernels and both
used c = 1 × 10−4 as suggested in Fan et al. (2008) and
Kim and Clements (2015).

5.4. Evaluation Metrics
Two measures of AOL prediction accuracy are adopted in the
experiments reported in this paper. Firstly, Unweighted Average
Recall (UAR), which is a commonly employed evaluation metric
in nominal classification tasks in AER literature (Metallinou et al.,
2012; Zhang et al., 2016), and has also been utilized for evaluation
in AOL prediction systems (Kim and Ahn, 2012). UAR (%)
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FIGURE 5 | Illustration of QA method (Parthasarathy and Busso, 2018). (A) Individual comparison matrix obtained from interval labels for one rater. Up-arrow indicates

an increase; down-arrow indicates a decrease and equal denotes tie. (B) Consensus matrix obtained by aggregating individual matrix collected from multiple raters

using majority votes.

ranges between 0 and 100% with 33.3% indicating a chance level
prediction in this three class prediction task (balanced classes).
However, UAR does not taken into account the ordinality in
the labels. For instance, incorrectly predicting “Low arousal” as
“Medium arousal” or “High arousal” carries the same penalty in
UAR, although the latter is obviously a more significant error.
Consequently, the weighted Cohen,s Kappa coefficient (Cohen,
1968), kw which is used to measure the consistency between two
AOL sequences is also reported since it takes the ordinal nature
of AOLs into consideration. The coefficient kw indicates the level
of agreement between two different AOL sequences (predictions
vs. ground truth) as given by Equation 8, with kw = 1 indicating
perfect agreement and kw = 0 indicating only chance agreement
(Cohen, 1968).

kw =

3
∑

i = 1

3
∑

j = 1
wijpij −

3
∑

i = 1

3
∑

j = 1
wijpi·q·j

1−
3

∑

i = 1

3
∑

j = 1
wijpi·q·j

(8)

where, i, j ∈ [1, 2, 3] denote possible AOLs (1-low, 2-medium,
3-high); pij is the entry located at the ith row and jth column of
the confusion matrix denoting the proportion of test instances
corresponding the AOL i being predicted as AOL j; pi· denotes
the fraction of all groundtruth AOLs that correspond to the
label i; q·j denotes the fraction of instances where the AOLs are

correctly predicted as j; and wij is the element at ith row and jth

column of matrixW =





1 0.5 0
0.5 1 0.5
0 0.5 1



.

Finally, Kendall’s Tau (τ ) (Kendall, 1938) is used to evaluate
the performance of ROL predictions, which is a typical evaluation
metric that measures the consistency between two ranks and
has been used in several AER works (Lotfian and Busso, 2016;
Parthasarathy et al., 2017). It can vary between –1 and 1

indicating the range from complete antithesis to perfect match
(Kendall, 1938), as shown in Equation (9):

τ =
C − D

T
(9)

where T refers to total number of comparisons given by T =
n(n−1)

2 , with n referring to the highest rank index. C denotes
the number of concordant pairs and D denotes the number of
discordant pairs.

6. RESULTS AND DISCUSSION

The two subsystems that model emotion state (AOL prediction
subsystem) and emotion change (ROL prediction subsystem)
are first evaluated with different modalities. Following this, we
use the DOMM framework to analyse the relative contributions
of speech and video modalities toward inferring static and
dynamic aspects of emotion. The code used to implement these
experiments and demo scripts can be accessed at: https://github.
com/JingyaoWU66/Multimodal_DOMM.git.

6.1. Validating Subsystems
The performance achieved with each single modality of OMSVM
in terms of UAR (%) and kw, and RankSVM in terms of τ are
reported in Tables 2, 3. The best results obtained with audio-
visual feature across all combinations of different feature sets of
each modality are also reported. For arousal, this was achieved
by the combination of eGemaps (audio) and appearance (video);
and for valence, the combination of BoAW (audio) and geometric
(video) features. When it comes to AOL prediction with the
OMSVM, it can be seen that the audio modality outperforms
video modality for arousal prediction for all feature sets in
terms of both UAR and kw. The converse is true when it
comes to valence predictions with video outperforming audio.
This is in line with previously reported observations that audio
features are more salient for arousal recognition, whereas valence
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TABLE 2 | OMSVM evaluation with different modalities in terms of unweighted

average recall UAR (%) and weighted kappa kw (reported inside parenthesis).

Arousal Valence

Audio (eGemaps) 58.8 (0.476) 34.8 (0.033)

Audio (BoAW) 51.6(0.374) 38.3 (0.106)

Video (Appearance) 35.4 (0.105) 40.0 (0.127)

Video (Geometric) 35.6 (0.056) 45.4 (0.223)

Audio-Visual (Best) 48.8 (0.308) 49.7 (0.288)

The best performance among different modalities is indicated in bold.

TABLE 3 | RankSVM evaluation with different modalities in terms of Kendall’s

tau (τ ).

Arousal Valence

Audio (eGemaps) 0.554 0.136

Audio (BoAW) 0.482 0.181

Video (Appearance) 0.243 0.233

Video (Geometric) 0.072 0.193

Audio-Visual (Best) 0.524 0.238

The best performance is indicated in bold.

recognition is more accurate with visual features (Schoneveld
et al., 2021). The feature level fusion of audio and video modality
outperforms video only for valence prediction, suggesting that
audio-visual features contains more useful information; whereas
this is not observed for arousal predictions. This suggests that the
more salient audio modality carries the necessary information
for arousal prediction. More importantly, it also indicates that
simple feature level fusion may not be the optimal approach for
leveraging multimodal inputs.

With respect to ROL prediction with the RankSVM, audio
modality achieves the highest τ among all three feature sets
for arousal, suggesting that as in the case with emotion state
prediction, audio features are also well suited for predicting
change in arousal state, especially when compared to video
features. For valence prediction, video features outperforms
audio, but the best τ is achieved when both audio and
video features are fused, suggesting both modalities contain
complementary information about change in valence.

6.2. Salience of Audio and Video Modalities
for Modeling Emotion State
As outlined in section 4, there are nine possible combinations
of emotion state and emotion change prediction based on audio
and/or video features (refer to table depicted in Figure 4) within
the DOMM framework. To ascertain the relative salience of the
modalities toward emotion state prediction, we would compare
the performance metrics within each column (with each row
denoting a different modality for emotion state modeling). In
all the results tables reported in this section, in addition to the
nine combinations, we also report the means across each row
which would give an indication of the “average” salience of each
modality for emotion state modeling. For instance, to determine

the salience of audio modality for emotion state prediction, we
first compute S∗A = mean(SAA, S

V
A , S

AV
A ), where the performances

due to the three different RankSVM subsystems are averaged. The
higher the value of S∗A is, the more salient audio modality is, for
emotion state prediction. Four different combinations of audio
and video feature sets are evaluated, with Tables 4, 5 showing the
results obtained using eGemaps (audio) and appearance (video),
andTables 6, 7 showing the results obtained using BoAW (audio)
and geometric (video). These two combinations led to more
accurate predictions when compared to the other two possible
combinations of audio and video features. These are reported in
the Supplementary Tables S1–S4.

As can be seen from Table 4, the best average UAR for
arousal state prediction is 58.6% and best kw is achieved as
0.491, achieved by audio input S∗A (which also outperforms

S∗AV ), suggesting that audio modality contributes most to the
static arousal prediction. Furthermore, within each column,
the audio modality is consistently superior to video modality
and audio-visual modality, indicating that OMSVM consistently
predicts arousal state most accurately from audio regardless
of the input modality to the RankSVM subsystem. Similar
trends are also observed in Table 6 and the tables included
in the Supplementary Material where different feature sets
are utilized.

From the valence prediction accuracies reported in Tables 5,
7, it can be seen that S∗AV is higher than both S∗V and S∗A, both

in terms of UAR and kw. Additionally, S
∗
V is better performed

than S∗A, both results indicating that video is more salient than
audio when it comes to predicting valence state. Similar trends
are also observed within each column, with S∗AV performing the
best amongst the three different systems, when the RankSVM
input is either video or audio-visual. For the outliers when the
RankSVM input is audio (first column of Table 5), S∗AV does not
correspond to the best performance, but this configuration does
not lead to the best overall performance and it may be that the
gains of audio-visual input to the OMSVM is offset by the audio
based RankSVM resulting in less accurate ROL prediction (refer
Table 3).

6.3. Salience of Audio and Video Modalities
for Modeling Emotion Change
To investigate the salience of different modalities for predicting
change in emotions, the impact of varying the input modality
to RankSVM based ROL prediction subsystem can be studied.
Specifically, this can be done by comparing the prediction
accuracy across rows in Tables 4–7. Additionally, the average
performance for each modality obtained by computing the mean
over all input modalities for the OMSVM (i.e., means of the

columns) are also reported, such as SA∗ = mean(SAA, S
A
V , S

A
AV ),

representing the average accuracy when using audio for
predicting emotion change.

From Tables 4, 6 it can be seen that SA∗ corresponds to

the highest prediction accuracy, followed by SAV∗ and then

SV∗ in terms of both UAR and kw. This suggests that audio
is, on average, the most salient modality for the purposes
of modeling change in arousal. Furthermore, it can also be
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TABLE 4 | Performance of Arousal prediction in terms of Unweighted Average Recall (UAR %) and weighted kappa kw (reported inside parenthesis).

RankSVM Mean

Audio Video Audio-Visual

OMSVM Audio 61.1(0.532) 55.7(0.441) 59.0(0.501) S∗

A
= 58.6(0.491)

Video 44.3(0.215) 40.8(0.169) 42.4(0.192) S∗
V = 42.5(0.192)

Audio-Visual 51.6(0.383) 47.7(0.319) 52.7(0.405) S∗
AV = 50.7(0.369)

Mean SA
∗

= 52.3(0.377) SV∗ = 48.1(0.309) SAV∗ = 51.4(0.366) -

Audio feature: eGemaps; Video feature: Appearance. The best performance across the mean values is indicated in bold.

TABLE 5 | Performance of Valence prediction in terms of Unweighted Average Recall (UAR %) and weighted kappa kw (reported inside parenthesis).

RankSVM Mean

Audio Video Audio-Visual

OMSVM Audio 41.8(0.164) 38.8(0.113) 40.2(0.160) S∗
A = 40.1(0.146)

Video 41.2(0.146) 40.8(0.153) 43.7(0.196) S∗
V = 41.9(0.165)

Audio-Visual 40.3(0.140) 43.1(0.186) 44.7(0.227) S∗

AV
= 42.7(0.184)

Mean SA∗ = 41.1(0.150) SV∗ = 40.7(0.150) SAV
∗

= 42.9(0.191) -

Audio feature: eGemaps; Video feature: Appearance. The best performance across the mean values is indicated in bold.

TABLE 6 | Performance of Arousal prediction in terms of Unweighted Average Recall (UAR %) and weighted kappa kw (reported inside parenthesis).

RankSVM Mean

Audio Video Audio-Visual

OMSVM Audio 55.9(0.462) 52.8(0.381) 55.7(0.457) S∗

A
= 54.8(0.433)

Video 37.8(0.106) 36.9(0.071) 38.6(0.106) S∗
V = 37.8(0.094)

Audio-Visual 49.1(0.329) 46.6(0.256) 49.3(0.325) S∗
AV = 48.3(0.303)

Mean SA
∗

= 47.6(0.299) SV∗ = 45.4(0.236) SAV
∗

= 47.9(0.296) -

Audio feature: BoAW; Video feature: Geometric. The best performance across the mean values is indicated in bold.

TABLE 7 | Performance of Valence prediction in terms of Unweighted Average Recall (UAR %) and weighted kappa kw (reported inside parenthesis).

RankSVM Mean

Audio Video Audio-Visual

OMSVM Audio 42.6(0.193) 43.2(0.193) 45.0(0.215) S∗
A = 43.6(0.200)

Video 47.0(0.253) 47.3(0.246) 46.7(0.243) S∗
V = 47.0(0.247)

Audio-Visual 51.8(0.328) 49.1(0.288) 49.7(0.295) S∗

AV
= 50.2(0.304)

Mean SA
∗

= 47.1(0.258) SV∗ = 46.5(0.242) SAV
∗

= 47.1(0.251) -

Audio feature: BoAW; Video feature: Geometric. The best performance across the mean values is indicated in bold.

seen that within each row, the performance when using audio
for RankSVM always outperforms video modality, further
validating the observation that audio is more salient for modeling
emotion change.

Looking across the rows of the valence prediction accuracies

reported in Tables 5, 7, it can be observed that SAV∗ achieves
the highest prediction accuracy (in terms of both UAR and kw),
suggesting that both audio and video modalities are salient when

it comes to predicting changes in valence. Interestingly, SA∗ is

higher than SV∗ . Particularly, in Table 7, SA∗ achieves the similar

performance with SAV∗ in terms of UAR, but even performs

better when incorporates ordinality in kw evaluation. This

appears to run counter to the conventional wisdom that video

is more salient than audio for valence prediction (Metallinou

et al., 2012; Schoneveld et al., 2021). However, it is worth

noting that valence state prediction results do conform to those

expectations and the valence change prediction results might

be suggesting that fine nuances related to valence changes in

audio modality can be better perceived when compared to
video.
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7. CONCLUSION

There is a large body of literature devoted to recognizing
speakers, static emotion state (e.g., arousal level at a point in
time), and a growing interest in the prediction of dynamic
changes in emotion (e.g., change of arousal level between
consecutive time steps). In this manuscript, we consider a unified
model that integrates both static and dynamic aspects of emotion
perception. In particular, the differences in relative salience of
audio and video modalities toward modeling the static and
dynamic aspects of emotions are investigated.

Using the Dynamic Ordinal Markov Model (DOMM)
framework, extensive analyses were carried out by varying the
input modalities to the OMSVM (modeling static aspects) and
the RankSVM (modeling dynamic aspects) subsystems, covering
all possible combinations of different feature sets of audio and
video inputs. The DOMM framework is particularly well suited
for this analyses because it is able to separately model the static
and dynamic aspects of emotion with different input modalities,
prior to integrating them for ordinal emotion prediction. The
experimental comparisons were carried out on the widely used
RECOLA dataset, and prediction accuracy was quantified in
terms of both UAR and weighted Kappa. Results obtained from
a range of different system configurations consistently show
that audio modality achieves superior advantages in modeling
emotion state on arousal and video modality is more salient for
modeling emotion state on valence.

Additionally, our results also show that emotion changes
for both arousal and valence are better captured by audio

modality, either by itself or when fused with video input. This
is consistently observed across the rows in Tables 4–7, where the
highest prediction accuracy is achieved with audio input to the
RankSVM regardless of the input modalities for the OMSVM.
This also aligns with the findings in psychology that people
might convey their intention rather than the true emotions via
facial expressions, while their vocal expressions allow for better
discrimination between emotional state even if the differences are
only fine nuances.
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