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Abstract
We study variational regularisation methods for inverse problems with imper-
fect forward operators whose errors can be modelled by order intervals in a
partial order of a Banach lattice. We carry out analysis with respect to existence
and convex duality for general data fidelity terms and regularisation functionals.
Both for a priori and a posteriori parameter choice rules, we obtain convergence
rates of the regularised solutions in terms of Bregman distances. Our results
apply to fidelity terms such as Wasserstein distances, ϕ-divergences, norms, as
well as sums and infimal convolutions of those.

Keywords: imperfect forward models, f -divergences, Kullback–Leibler diver-
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1. Introduction

We consider linear inverse problems

Au = f̄ , (1.1)

where A : X →Y is a linear bounded operator (referred to as the forward operator or the for-
ward model) acting between two Banach spacesX andY . The exact measurement f̄ is typically
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not available and only a noisy version of it fδ is known along with an estimate of the noise
level δ. Since the inversion of (1.1) is often unstable with respect to noise and hence ill-posed,
it requires regularisation. Variational regularisation replaces solving (1.1) by the following
optimisation problem

min
u∈X

1
α
H(Au| fδ) + J (u), (1.2)

where H(·| f ) is a so-called data fidelity function that models statistical properties of the noise
in f and J (·) is a regularisation functional that stabilises the inversion. The regularisation
parameter α > 0 balances the influence of the data fidelity and the regularisation. The amount
of noise δ in the measurement fδ is assumed to be such that

H( f̄ | fδ) � δ. (1.3)

The fidelity function often depends only on the difference of the arguments, i.e.
H(v| f ) = h(v − f ) for some function h. The most common example is H(v| f ) = 1

2‖v − f ‖2.
There are, however, cases when the fidelity function depends on its arguments in a more com-
plicated manner; an example is the Kullback–Leibler divergence that is used to model Poisson
noise [1], whereH(v| f ) =

∫
(v log v

f − (v − f )) dx (see also the review paper [2]). Problems
with general fidelity functions were analysed in [3, 4].

To guarantee convergence of the minimisers of (1.2) to a solution of (1.1) as the noise level δ
decreases, the regularisation parameter α needs to be chosen as a function of the measurement
noise α = α(δ) (a priori parameter choices) or of the measurement itself and of measurement
noise α = α( fδ, δ) (a posteriori parameter choices). For a priori parameter choice rules, con-
vergence rates for solutions of (1.2) in different scenarios have been obtained, e.g., in [5–9].
A classical a posteriori parameter choice rule is the so-called discrepancy principle, originally
introduced in [10] and later studied in, e.g., [11–13]. Roughly speaking, it consists in choosing
α = α( fδ, δ) such that the following equation is satisfied

H(Auα| fδ) = δ,

where uα is the solution of (1.2) corresponding to the regularisation parameter α.
In many applications, not only the measurement fδ is noisy, but also the forward operator A

that generated the data is not precisely known. Errors in the operator may come from the uncer-
tainty in some model-related parameters such as the point-spread function of a microscope,
simplified model geometry and/or discretisation. A classical approach to modelling errors in
the forward operator assumes an error estimate in the operator norm, i.e.

‖Ah − A‖L(X ,Y) � h, (1.4)

where Ah : X →Y is a linear bounded operator that we have numerical access to and h � 0
describes the approximation error (e.g., [14–17]). To guarantee convergence in this setting,
the parameter α needs to be chosen as the function of δ and h (a priori choice rules) or of δ,
h, fδ and Ah (a posteriori choice rules). Generalisations of the discrepancy principle to this
setting are available [18–20], but they usually rely on a triangle inequality that H(·| f ) needs to
satisfy.

An alternative approach to modelling operator errors using order intervals in Banach lattices
was proposed in [21–23]. It assumes that the spaces X and Y have a lattice structure [24] and,
instead of (1.4), lower and upper bounds for the operator are available

Al � A � Au, (1.5)
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where the inequalities are understood in the sense of a partial order for linear operators, i.e.

Alu � Au � Auu for all u � 0. (1.6)

The inequalities in (1.6) are understood in an abstract sense of a Banach lattice; which for Lp

spaces means inequality almost everywhere. In order for the partial order bounds (1.5) to be
well-defined, we assume that A : X →Y is a regular operator [24], i.e. that it can be written as a
difference of two positive operators, A = A1 − A2, where for any u � 0 it holds that A1,2u � 0.
Some examples of regular operators will be given later.

The approach (1.6) to describing errors in the forward operator was studied in the context
of the residual method in the case Y = L∞ when the data fidelity is a characteristic function
of a norm ball

H(·| fδ) = χ‖·− f ‖∞�δ. (1.7)

In this case, one solves the following problem

min
u

J (u) s.t. Alu � f u, Auu � f l, (1.8)

where f l := fδ − δ𝟙 and f u := fδ + δ𝟙 are pointwise (a.e.) lower and upper bounds for the
exact data f̄ in (1.1) such that f l � f̄ � f u and 𝟙 is the constant one-function. For comparison,
with the data term (1.7) and without an operator error, (1.2) translates into

min
u

J (u) s.t. f l � Au � f u, (1.9)

where the constraint is equivalent to ‖Au − fδ‖∞ � δ. (In [25], a connection is made between
the lower and upper bounds f l, f u and confidence intervals.)

One can show that the partial order based condition (1.5) implies the norm based condition
(1.4). Indeed, given Al, Au as in (1.5), one defines

Ah :=
Au + Al

2
, h :=

‖Au − Al‖
2

.

It can be readily verified that the so defined Ah satisfies (1.4). The opposite implication is, in
general, wrong. Hence, if an estimate (1.5) is available, it allows one to describe the operator
error more precisely and one may expect better reconstructions. Indeed, it was found in [23]
that solving (1.2) with H(Au| fδ) = ‖Au − fδ‖∞ and α chosen according to a generalised dis-
crepancy principle [18] based on (1.4) produces overregularised solutions compared to (1.8),
i.e. the generalised discrepancy principle tends to overestimate the regularisation parameter.
One of the reasons for this is the use of the triangle inequality to account for (1.4), which
makes the estimates not sharp, in general.

The motivation for this paper is two-fold. First, we want to extend the approach (1.5) and
(1.8) to a broader class of fidelity terms than the characteristic function of a ball and more
general data spaces than L∞. We also aim at a unified analysis of problems with fidelities that
do not satisfy a triangle-type inequality, which is interesting in its own right. Our proofs mostly
rely on convex analysis and duality.
Setup. We consider the inverse problem (1.1), where X = U∗ and Y = V∗ are duals of Banach
lattices U and V , respectively. We assume that the partial order on Y is induced by the
partial order in V as follows: y � 0 ⇐⇒ 〈y, v〉 � 0 ∀ v ∈ V , v � 0 (cf lemma A.4 in the
appendix).
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Furthermore, we assume that (1.1) possesses a non-negativeJ -minimising solution u†
J , i.e.

Au†
J = f̄ , u†

J � 0 and J (u†
J ) � J (u) for all u such that Au = f̄ . (1.10)

We propose the following extension of (1.2) to the case when the forward operator is known
only up to the order interval given in (1.5)

min
u∈X
v∈Y

1
α
H(v| fδ) + J (u) s.t. Alu � v � Auu, (1.11)

where J : X → R+ and H(·| f ) : Y → R+ (as a function of its first argument) are assumed
proper, convex and weakly-∗ lower semicontinuous (cf assumption 1).
Main contribution. In this work we study convergence of solutions of (1.11) to a J -
minimising solution of (1.1) as the noise in data and operators decreases, and obtain con-
vergence rates in one-sided Bregman distances with respect to J . We also give conditions
when (1.11) admits strong duality, in which case the convergence rates translate to symmetric
Bregman distances. Furthermore, we analyse an a posteriori parameter choice rule based on a
discrepancy principle for (1.11).

Our results apply inter alia to general ϕ-divergences, as for instance the Kullback–Leibler
divergence, and coercive fidelities such as powers of norms or Wasserstein distances from opti-
mal transport. In addition, we also obtain rates for sums and infimal convolutions of different
fidelities, as used for instance in mixed-noise removal. Even for exact operators, our analy-
sis goes beyond the state of the art in problems with fidelity terms that lack a triangle-type
inequality.
Structure of the paper. In section 2 we study existence of solutions of the problem (1.11) and
its dual and establish sufficient conditions for strong duality. In section 3 we derive convergence
rates for a priori parameter choice rules. In section 4 we formulate a discrepancy principle for
the problem (1.11) and also obtain convergence rates. For readers’ convenience, we present
some background material on Banach lattices in the appendix.

1.1. Examples of regular operators

Below, we give some examples of regular operators and discuss how lower and upper bounds
in the sense of (1.5)–(1.6) can be obtained.

Example 1.1. If Y is an abstract maximum space (a generalisation of L∞) or if X is an
abstract Lebesgue space (a generalisation of L1) then all linear bounded operators are regular,
i.e. they can be written as a difference of two positive operators. More details can be found in
the appendix.

Example 1.2 (Integral operators—perturbations of the kernel). Let A : Lp(Ω) →
Lq(Ω) (Ω ⊂ R

d bounded, p, q � 1) be an integral operator with a (p, q)-bounded kernel k [26],

Au(x) :=
∫
Ω

k(x, ξ)u(ξ) dξ. (1.12)

The operator A can be written as

A = A+ − A−, A± :=
∫
Ω

k(x, ξ)±u(ξ) dξ,

where k+ and k− are the positive and the negative parts of k (in the a.e. sense inΩ× Ω). Clearly,
A± are positive and A is regular.
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Suppose that the kernel is corrupted by an unknown (p, q)-bounded perturbation such that
we only know pointwise lower and upper bounds for k,

kl(x, ξ) � k(x, ξ) � ku(x, ξ) a.e. in Ω× Ω. (1.13)

Then lower and upper operators in the sense of (1.5) are given by

Alu(x) :=
∫
Ω

kl(x, ξ)u(ξ) dξ, Auu(x) :=
∫
Ω

ku(x, ξ)u(ξ) dξ.

It should be noted that the bounds (1.13) are of a deterministic nature. They could arise, for
example, if the kernel depends on additional parameters θ ∈ Θ, i.e. k(x, ξ) = kθ(x, ξ). If recon-
structing the unknown parameter θ is not of independent interest, the dependence on it can be
eliminated by defining

kl(x, ξ) := inf
θ∈Θ

kθ(x, ξ), ku(x, ξ) := sup
θ∈Θ

kθ(x, ξ),

provided the suprema and infima are finite for a.e. x, ξ and kl,u are (p, q)-bounded.

Example 1.3 (Integral operators—discretisation). Let the operator A be as defined
in example 1.2 on an interval Ω ⊂ R and consider its approximation by Riemann sums. In
particular, let S l

n(x) and S u
n(x) denote the lower and upper Riemann sums in (1.12) obtained

using an n-point discretisation. Then these sums define lower and upper operators in the sense
of (1.5),

Al
nu(x) := S l

n(x), Au
nu(x) := S u

n(x).

As we refine the discretisation (i.e. n →∞), these bounds converge pointwise to Au(x).

Example 1.4 (Integration with respect to a vector-valued measure). Example 1.2
can be generalised as follows. Let μ ∈ M(Ω; Y) be a vector-valued Radon measure [27], where
Ω is a compact metric space and Y is a Banach lattice with the Radon–Nikodým property.
Define partial order on M(Ω; Y) as follows

μ �M, 0 ⇐⇒ μ(E) �Y0 for all μ− measurable subsets E ⊂ Ω. (1.14)

Let A : C(Ω) → Y be defined as follows

Au :=
∫
Ω

u dμ.

Since Y is a lattice, it is clear that A is regular. Lower and upper bounds μl�M,μ,�M,μu in
the sense of (1.14) define lower and upper operators Al,u in the sense of (1.5).

Example 1.5 (1D source identification). We consider the operator A : M([0, 1]) →
C([0, 1]), A: u → ϕ, where ϕ solves⎧⎪⎪⎨

⎪⎪⎩
−(aϕ′)′ = u, on (0, 1),

ϕ(0) = 0,

ϕ′(0) = 0.
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Here a : [0, 1] → R is a continuous function which meets a � a0 > 0 on [0, 1] and u ∈
M([0, 1]) is a Radon measure with integrable antiderivative U(x) :=

∫ x
0 du. Integrating the

equation yields

Au(x) = ϕ(x) = −
∫ x

0

U(y)
a(y)

dy.

Clearly, A � 0 and hence regular. Hence, if a, a : [0, 1] → R are continuous functions such that
a � a � a on [0, 1] and a � a0 > 0 on [0, 1], we can define operators

Alu(x) = −
∫ x

0

U(y)
a(y)

dy,

Auu(x) = −
∫ x

0

U(y)
a(y)

dy,

which meet Alu � Au � Auu for u � 0 (and hence U � 0). If ‖a − a‖C → 0, then Al,u converge
to A in the operator norm.

If one defines the operator A on L1((0, 1)) instead of M([0, 1]), the antiderivative U is con-
tinuous and one can approximate the integrals in Al and Au with lower and upper Riemann
sums, respectively. This gives rise to operators Al

n and Au
n such that Al

n � Al � A � Au � Au
n.

If then additionally n →∞, the operators Al,u
n converge to A.

Note that a similar approach can be used for estimating the diffusivity a for a given source
term. In this case, however, the forward operator A becomes non-linear. This would require an
extension of our theory.

Example 1.6 (Conditional expectations). Let Ω be a separable metric space and
(Ω,Σ, μ) be a probability space. Let B ⊂ Σ be a sub-σ-algebra of Σ and let {Ei}∞i=1 be its
minimal generator (which exists, since Ω is separable). The conditional expectation operator
A : Lp

μ(Ω) → Lp
μ(Ω) is defined as follows

Au :=
∞∑

i=1

∫
Ei

u dμ

μ(Ei)
χEi ,

under the convention 0/0 = 0. Clearly, A � 0 and hence regular.
If we allow μ to be a finite signed measure, then we can generalise the definition as follows

Au :=
∞∑

i=1

∫
Ei

u dμ

|μ| (Ei)
χEi ,

where |μ| is the total variation of μ. Clearly,

A = A+ − A−, A±u :=
∞∑

i=1

∫
Ei

u dμ±

|μ| (Ei)
χEi

and A± � 0, hence A is regular. In contrast to example 1.4, partial order bounds on μ in the
sense of (1.14) do not translate into lower and upper bounds (1.6) for A since A is not an integral
operator (in particular, it is not linear in μ).
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2. Primal and dual problems

In this section we establish existence of solutions to (1.11) using the direct method, where
standard assumptions on the forward operators, the regularisation, and fidelity function will
guarantee coercivity and lower semicontinuity. Subsequently, we derive the dual maximisation
problem and prove existence and strong duality under the additional assumption that the data
space Y is an abstract maximum space.

2.1. Existence of a primal solution

We make the following standard assumptions on the regularisation functional J, the fidelity
function H, and the operators Al,u.

Assumption 1. The regularisation functional J : X → R+ is

• Proper, convex and weakly-∗ lower semicontinuous;
• Its non-empty sublevel sets {u ∈ X : J (u) � C} are weakly-∗ sequentially compact.

The fidelity function H(·|·) : Y × Y → R+ is

• Proper, convex in its first argument and weakly-∗ lower semicontinuous jointly in both
arguments;

• H(v| f ) = 0 if and only if v = f.

Assumption 2. The operators A, Al,u : X →Y are weak-∗ to weak-∗ continuous.

A sufficient condition for assumption 2 to hold is given in lemma A.5 in the appendix.

Theorem 2.1. Suppose that assumptions 1 and 2 hold true. Then (1.11) has a solution.

Proof. Consider a minimising sequence (uk, vk). Due to assumption 1 there exists a conver-
gent subsequence uk (that we don’t relabel) such that

uk,⇀∗,u∞.

Then assumption 2 yields

Al,uuk,⇀∗,Al,uu∞.

From (1.11) we get that for all k

0 � vk − Aluk � (Au − Al)uk,

hence

‖vk − Aluk‖ � ‖(Au − Al)uk‖

and

‖vk‖ � ‖Aluk‖+ ‖(Au − Al)uk‖ � C,

since weakly-∗ convergent sequences are bounded.
SinceY is a dual of a separable Banach space V , by the sequential Banach–Alaoglu theorem

the sequence vk contains a weakly-∗ convergent subsequence vk (that we do not relabel) such
that

vk,⇀∗,v∞.

7
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Since both Al,uuk and vk converge weakly-∗ and order intervals in Y are weakly-∗ closed due
to lemma A.4, we obtain that

Alu∞ � v∞ � Auu∞.

Hence (u∞, v∞) is feasible for (1.11). Furthermore, since J (·) and H(·| f ) are weakly-∗ lower
semicontinuous, we get that

1
α
H(v∞| f ) + J (u∞) � lim inf

k→∞

1
α
H(vk| f ) + J (uk)

= inf
u∈X
v∈Y

Alu�v�Auu

1
α
H(v| f ) + J (u).

Therefore, (u∞, v∞) is a solution of (1.11). �

2.2. Dual problem

To simplify our notation, we introduce an operator B : X →Y × Y

Bu =

(
Alu
−Auu

)
(2.1)

and an operator E : Y → Y × Y

Ev =

(
v
−v

)
. (2.2)

With this notation we can rewrite (1.11) as follows

min
u∈X
v∈Y
Bu�Ev

1
α
H(v| f ) + J (u). (2.3)

Proposition 2.2. The (Lagrangian) dual problem of (2.3) is given by

sup
μ∈Y∗×Y∗
μ�0

− 1
α
H∗(αE∗μ| f ) − J ∗(−B∗μ). (2.4)

Proof. The Lagrangian of (2.3) is given by

L(u, v,μ) =
1
α
H(v| f ) + J (u) + 〈μ, Bu − Ev〉,

where μ ∈ Y∗ × Y∗, μ � 0. Minimising the Lagrangian in u and v, we obtain

inf
u,v

L(u, v,μ) = inf
u,v

1
α
H(v| f ) + J (u) + 〈μ, Bu − Ev〉

= inf
u

[
J (u) − 〈−B∗μ, u〉

]
+

1
α

inf
v

[
H(v| f ) − 〈αE∗μ, v〉

]
= −J ∗(−B∗μ) − 1

α
H∗(αE∗μ| f ).
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Taking a supremum over μ � 0 gives (2.4). �
It is well known (e.g., [28]) that

inf
u∈X
v∈Y
Bu�Ev

1
α
H(v| f ) + J (u) � sup

μ∈Y∗×Y∗
μ�0

− 1
α
H∗(αE∗μ| f ) − J ∗(−B∗μ),

which is referred to as weak duality.

Remark 2.3. If the fidelity function depends only on the difference of its arguments, i.e.
H(·| f ) = h(· − f ), then

H∗(αE∗μ| f ) = h∗(αE∗μ) + (αE∗μ, f )

and problem (2.4) becomes

sup
μ�0

− 1
α

h∗(αE∗μ) − (αE∗μ, f ) − J ∗(−B∗μ). (2.5)

If h(·) = 1
2‖ · ‖2

Y , we have h∗(·) = 1
2‖ · ‖2

Y∗ and hence we obtain the standard form (e.g., [29])

sup
μ�0

− α

2
‖E∗μ‖2

Y∗ − (E∗μ, f ) − J ∗(−B∗μ)

= − inf
μ�0

α

2
‖E∗μ‖2

Y∗ + (E∗μ, f ) + J ∗(−B∗μ).

2.3. Existence of a dual solution and strong duality

The goal of this section is to study the relationship between the primal problem (2.3) and
its dual (2.4), establishing strong duality and existence of a dual solution, and obtaining
complementarity conditions for Lagrange multipliers associated with constraints in (2.3).

We will need the following result from [28, theorem 2.165].

Theorem 2.4 ([28]). Consider the following optimisation problem

inf
x∈X

g(x) s.t. Lx ∈ K, (P)

and its dual

sup
y∗∈Y∗

− χ∗
K(y∗) − g∗(−L∗y∗), (D)

where X and Y are Banach spaces, L : X → Y is a linear bounded operator, L∗ its adjoint,
K ⊂ Y a closed convex set, and g : X → R a proper convex lower semicontinuous function
with convex conjugate g∗ : X∗ → R. The characteristic function of K is denoted byχK(·) and its
convex conjugate (i.e. the support function of K) byχ∗

K(·). Suppose that the following regularity
condition is satisfied

0 ∈ int(L(dom g) − K). (2.6)

Then there is no duality gap between problems (P) and (D). If the optimal value of (P) is
finite, then the dual problem (D) has at least one solution ȳ∗ ∈ Y∗.

9
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The regularity condition (2.6) is due to Robinson [30] and plays an important role in the
stability of optimisation problems under perturbations of the feasible set [28].

To ensure that (2.6) is satisfied in the primal problem (2.3), we will need to assume that
the positive cone in Y has a non-empty interior. This naturally leads to the concept of abstract
maximum spaces [24] which are a generalisation of L∞(Ω).

Definition 2.5. A Banach lattice Y with norm ‖ · ‖ is called an AM-space (abstract
maximum space) if

‖x ∨ y‖ = ‖x‖ ∨ ‖y‖, ∀ x, y � 0.

An element 𝟙 ∈ Y which meets

𝟙 � 0, ‖𝟙‖ = 1, ‖x‖ � 1 =⇒ |x| � 𝟙,

is called unit of Y . Here x ∨ y and |x| denote the usual supremum and absolute value of
elements in a Banach lattice (cf appendix).

Theorem 2.6. Let Y be an AM-space with unit 𝟙 and suppose that there exist u0 ∈ dom(J )
and v0 ∈ dom(H(·| f )) such that

Alu0 + ε𝟙 � v0 � Auu0 − ε𝟙,

where ε > 0 is a constant. Then Robinson’s condition (2.6) is satisfied in the primal problem.

Proof. In the notation of theorem 2.4, we have X = X × Y , g(u, v) := 1
αH(v| f ) + J (u),

L := (B,−E) and K = Y− × Y− (where Y− denotes the negative cone in Y).
Take an arbitrary y = (y1, y2) ∈ Y × Y with ‖y‖ � ε. Without loss of generality we can

choose the norm on Y × Y to be ‖y‖ = max(‖y1‖, ‖y2‖). Hence, the definition of the unit
implies

−ε𝟙 � y1,2 � ε𝟙.

To show Robinson regularity, we need to write y as

y = Bu − Ev − z (2.7)

for some u ∈ dom(J ), v ∈ dom(H(·| f )) and z = (z1, z2) ∈ Y × Y , z1,2 � 0. Writing this in
terms of Al and Au, we get

y1 = Alu − v − z1, y2 = v − Auu − z2.

Take u = u0 and v = v0. Then

z1 = Alu0 − v0 − y1 � −ε𝟙− y1 � 0,

z2 = v0 − Auu0 − y2 � −ε𝟙− y2 � 0,

and we can take z1,2 as above to represent y as in (2.7). Hence, the Robinson condition (2.6) is
satisfied. �
Corollary 2.7. Since the optimal value of the primal problem (2.3) is finite, using theorem
2.4 we conclude that there exists a solution μ of the dual problem (2.4) and there is no duality
gap, i.e.

1
α
H(v| f ) + J (u) = − 1

α
H∗(αE∗μ| f ) − J ∗(−B∗μ), (2.8)

10
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where (u, v) is a primal optimal solution. Moreover, from [28, theorem 3.6] we conclude that μ
is a Lagrange multiplier for the constraint Bu � Ev in (2.3) and the following complementarity
condition holds

〈μ, Bu − Ev〉 = 0. (2.9)

Theorem 2.8. Let μ be an optimal solution of (2.4) and (u, v) be an optimal solution of
(2.3). Then under the assumptions of theorem 2.6 we have the following relations

−B∗μ ∈ ∂J (u), αE∗μ ∈ ∂H(v| f ).

Proof. Using the Fenchel–Young inequality, strong duality (2.8) and the feasibility of (u, v),
we obtain

〈−B∗μ, u〉 � J (u) + J ∗(−B∗μ)

= − 1
α
H∗(αE∗μ| f ) − 1

α
H(v| f )

= − 1
α

[
H∗(αE∗μ| f ) +H(v| f )

]
� − 1

α
〈αE∗μ, v〉

= −〈μ, Ev〉
� −〈μ, Bu〉

= 〈−B∗μ, u〉.

Hence, equality holds everywhere and we get that −B∗μ ∈ ∂J (u) and αE∗μ
∈ ∂H(v| f ). �

3. Convergence analysis

Having investigated well-posedness of the primal and dual problems, we can now prove con-
vergence rates of solutions as the noise in the data and the operator tends to zero. To this end
we consider sequences

Al
n, Au

n: Al
n � A � Au

n ∀ n, (3.1a)

‖Au
n − Al

n‖ � ηn → 0 as n →∞, (3.1b)

fn, δn: H( f̄ | fn) � δn ∀ n, (3.1c)

δn → 0 as n →∞, (3.1d)

αn: αn → 0 as n →∞, (3.1e)

and corresponding sequences (un, vn) andμn which solve problems (2.3) and (2.4), respectively.
We are interested in studying the behaviour of (un, vn) as n →∞ and would like to prove
that un converges to a J -minimizing solution u†

J (cf (1.10)) whereas vn approaches the exact
data f̄ .

Remark 3.1. If the fidelity function depends on the difference of the arguments, i.e.
H( f̄ | fn) = h( f̄ − fn), then it does not matter if we choose H( f̄ | fn) or H( fn| f̄ ) in (3.1c). For

11
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asymmetric fidelities such as the Kullback–Leibler divergence it does. If we think of the Kull-
back–Leibler divergence DKL(p|q) as the amount of information lost by using q instead of p
(see [31]), then it actually makes sense to choose H( f̄ | fn) in (3.1c), i.e. to measure the amount
of information lost by using the noisy measurement fn instead of the exact one f̄ .

We start with results that do not require the existence of a dual solution and are valid under
general assumptions (cf theorem 2.1).

3.1. Convergence of primal solutions

We consider a sequence of primal problems (2.3)

min
u,v
Bnu�Ev

1
αn

H(v| fn) + J (u),

where Bn : X →Y × Y is defined as follows

Bn :=

(
Al

n

−Au
n

)
.

Under assumptions 1 and 2, we obtain the following standard result.

Theorem 3.2. Suppose that the regularisation functional J and the fidelity function H
satisfy assumption 1 and the operators A, Al,u

n : X →Y satisfy assumption 2. Suppose also
that the regularisation parameter αn is chosen such that

αn → 0 and
δn

αn
→ 0 as n →∞.

Then any solution un of the primal problem (2.3) converges weakly-∗ to a J -minimising
solution of (1.1)

un,⇀∗,u†
J ,

and vn converges weakly-∗ to the exact data in (1.1)

vn,⇀∗, f̄ = Au†
J .

Proof. Comparing the value of the objective function at the optimum (un, vn) and (u†
J , f̄ )

(which is a feasible point for all n), we get

1
αn

H(vn| fn) + J (un) � 1
αn

H( f̄ | fn) + J (u†
J ) (3.2)

and

J (un) � J (u†
J ) +

1
αn

H( f̄ | fn) � J (u†
J ) +

δn

αn
. (3.3)

Since δn
αn

→ 0, the value on the right-hand side is bounded uniformly in n. Hence, since sublevel
sets of J are weakly-∗ sequentially compact, un contains a weakly-∗ convergent subsequence
(that we do not relabel) that converges to some u∞ ∈ X

un,⇀∗,u∞.

12
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Since A is weak-∗ to weak-∗ continuous by assumption and ‖Al,u
n − A‖→ 0, we get that

Al
nun,⇀∗,Au∞ and Au

nun,⇀∗,Au∞.

Since (un, vn) is feasible in (2.3) for all n, it holds

Al
nun � vn � Au

nun.

Using weak-∗ closedness of order intervals (cf lemma A.4), we infer

vn,⇀∗,Au∞. (3.4)

From (3.2) we get that

H(vn| fn) � H( f̄ | fn) + αnJ (u†
J ) � δn + αnJ (u†

J ) → 0.

Since H(·|·) is lower semicontinuous jointly in both arguments, we obtain

H(Au∞| f̄ ) � lim inf
n→∞

H(vn| fn) = 0

and hence

Au∞ = f̄ .

Therefore, by (3.4) we have

vn,⇀∗, f̄ .

Since J is lower semicontinuous, (3.3) implies that

J (u∞) � lim inf
n→∞

J (un) � J (u†
J ),

hence u∞ is a J -minimising solution. �

3.2. Convergence rates

In modern variational regularisation, (generalised) Bregman distances are typically used to
study convergence of approximate solutions [32].

Definition 3.3. For a proper convex functionalJ the generalised Bregman distance between
u,w ∈ X corresponding to the subgradient p ∈ ∂J (w) is defined as follows

Dp
J (u,w) :=J (u) − J (w) − 〈p, u − w〉,

where ∂J (w) denotes the subdifferential of J at w ∈ X . The symmetric Bregman distance
between u and w corresponding to q ∈ ∂J (u) and p ∈ ∂J (w) is defined as follows

Dsymm
J (u,w) :=Dp

J (u,w) + Dq
J (w, u) = 〈q − p, u − w〉.

Bregman distances do not define a metric since they do not satisfy the triangle inequality
and Dsymm

J (u,w) = 0 does not imply u = w.
To obtain convergencerates, we will need to make an additional assumption on the regularity

of the J -minimising solution u†
J called the source condition. There are several variants of the

13
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source condition (e.g., [6, 33, 34]); we will use the variant from [6], which in our notation can
be written as follows

Assumption 3 (Source condition). There exists μ† ∈ Y∗ × Y∗, μ† � 0, such that

−B∗μ† ∈ ∂J (u†
J ). (3.5)

Remark 3.4. The source condition (3.5) is equivalent to the standard one

A∗ω ∈ ∂J (u†
J ), ω ∈ Y∗. (3.6)

Indeed, since B =

(
A
−A

)
and μ† = (μ†

1,μ†
2) with μ†

1,2 ∈ Y∗
+, we get that

−B∗μ† = A∗(μ†
2 − μ†

1),

which implies (3.6) with ω :=μ†
2 − μ†

2. For the converse implication we note that since Y∗ is a
lattice, we can write an arbitrary ω ∈ Y∗ as follows

ω = ω+ − ω−,

where ω± ∈ Y∗
+. Hence, (3.6) implies (3.5) with μ† := (ω−,ω+).

3.2.1. Convergence rates in a one-sided Bregman distance. We start with a convergence rate

in a one-sided Bregman distance Dp†
J , where p† := − B∗μ† is the subgradient from the source

condition (3.5).

Theorem 3.5. Let assumptions of theorem 2.1 and assumption 3 be satisfied and (3.1) hold.
Then the following estimate holds

Dp†
J (un, u†

J ) � δn

αn
+

1
αn

[H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉] + Cηn, (3.7)

where p† = −B∗μ† is the subgradient from assumption 3.

Proof. We start with the following estimate

Dp†
J (un, u†

J ) = J (un) − J (u†
J ) − 〈−B∗μ†, un − u†

J 〉

= J (un) − J (u†
J ) + 〈μ†, Bun〉 − 〈μ†, Bu†

J 〉

= J (un) − J (u†
J ) + 〈μ†, Bnun〉 − 〈μ†, Bu†

J 〉+ 〈μ†, (B − Bn)un〉

� J (un) − J (u†
J ) + 〈μ†, Bnun〉 − 〈μ†, Bu†

J 〉+ Cηn

� J (un) − J (u†
J ) + 〈μ†, Evn〉 − 〈μ†, Bu†

J 〉+ Cηn, (3.8)

where ηn is as defined in (3.1b) and we used the fact that Bnun � Evn. Since (un, vn) is primal
optimal and (u†

J , f̄ ) is feasible, we get that

1
αn

H(vn| fn) + J (un) � 1
αn

H( f̄ | fn) + J (u†
J ) � δn

αn
+ J (u†

J )

14
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and therefore

Dp†
J (un, u†

J ) � δn

αn
− 1

αn
H(vn| fn) + 〈μ†, Evn〉 − 〈μ†, Bu†

J 〉+ Cηn

=
δn

αn
− 1

αn
H(vn| fn) + 〈μ†, Evn〉 − 〈μ†, E f̄ 〉+ Cηn

=
δn

αn
+

1
αn

[
〈αnE∗μ†, vn〉 − H(vn| fn)

]
− 〈E∗μ†, f̄ 〉+ Cηn.

By the Fenchel–Young inequality, the term in the brackets is bounded by H∗(αnE∗μ†| fn),
hence

Dp†
J (un, u†

J ) � δn

αn
+

1
αn

H∗(αnE∗μ†| fn) − 〈E∗μ†, f̄ 〉+ Cηn

=
δn

αn
+

1
αn

[
H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉

]
+ Cηn.

�

3.2.2. Convergence rates in a symmetric Bregman distance. Under a stronger assumption
that Y is an AM-space (cf theorem 2.6), we can obtain an estimate in a symmetric Bregman
distance.

Theorem 3.6. Let assumptions of theorem 2.6 and assumption 3 be satisfied and (3.1) hold.
Then the following estimate holds

Dsymm
J (un, u†

J ) � δn

αn
+

1
αn

[
H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉

]
+ Cηn, (3.9)

where the symmetric Bregman distance corresponds to the subgradients p† := − B∗μ† ∈
∂J (u†

J ) from assumption 3 and pn := − B∗
nμn ∈ ∂J (un).

Proof. The symmetric Bregman distance between un and u†
J is given by

Dsymm
J (un, u†

J ) = 〈−B∗μ† + B∗
nμn, u†

J − un〉

= 〈μn, Bnu†
J − Bnun〉 − 〈μ†, Bu†

J − Bun〉.

Since the pair (u†
J , f̄ ) is feasible for all n, we get that Bnu†

J � E f̄ . It is also evident that Bu†
J =

E f̄ . Combining this with the complementarity condition (2.9), we obtain

Dsymm
J (un, u†

J ) = 〈μn, E f̄ − Evn〉+ 〈μ†, Bun − E f̄ 〉

= 〈μn, E f̄ − Evn〉+ 〈μ†, Bnun − E f̄ 〉+ 〈μ†, (B − Bn)un〉.

Since the pair (un, vn) is also feasible, we get that Bnun � Evn and hence

Dsymm
J (un, u†

J ) � 〈μn, E f̄ − Evn〉+ 〈μ†, Evn − E f̄ 〉+ 〈μ†, (B − Bn)un〉

� 〈E∗μn, f̄ − vn〉 − 〈E∗μ†, f̄ − vn〉+ ‖μ†‖‖un‖‖B − Bn‖

� 〈E∗μn, f̄ − vn〉 − 〈E∗μ†, f̄ − vn〉+ Cηn,
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where ‖un‖ is bounded due to theorem 3.2. From the Fenchel–Young inequality and theorem
2.8 we get that

〈αnE∗μn, f̄ 〉 � H( f̄ | fn) +H∗(αnE∗μn| fn), (3.10a)

〈αnE∗μn, vn〉 = H(vn| fn) +H∗(αnE∗μn| fn), (3.10b)

〈αnE∗μ†, vn〉 � H(vn| fn) +H∗(αnE∗μ†| fn), (3.10c)

hence

αnDsymm
J (un, u†

J ) � H( f̄ | fn) −H(vn| fn) − 〈αnE∗μ†, f̄ − vn〉+ αnCηn

� δn −H(vn| fn) − 〈αnE∗μ†, f̄ − vn〉+ αnCηn

� δn +H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉+ αnCηn,

which yields the desired estimate upon dividing by αn. �

3.3. Applications to different fidelity terms

To apply theorems 3.5 or 3.6, we need to study the term H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉
separately for each fidelity term.

3.3.1. ϕ-divergences. Letϕ : (0,∞) → R be a convex function. For two probability measures
ρ, ν on Ω with ρ � ν the ϕ-divergence (often called f-divergence) is defined as follows

dϕ(ρ|ν) :=
∫
Ω

ϕ

(
dρ
dν

)
dν, (3.11)

where ϕ(1) = 0. We refer to [35] for many examples and fundamental properties of ϕ-
divergences. Since ρ and ν have unit mass, function ϕ is only determined up to the additive
term c(x − 1) for c ∈ R. In particular, since ϕ is convex and meets ϕ(1) = 0, it is straightfor-
ward to see that one can always find a suitable c ∈ R such that ϕ(x) + c(x − 1) � 0 for all
x > 0. Hence, we will without loss of generality assume that ϕ � 0.

We take Y = M(Ω) to be space of Radon measures on Ω equipped with the total variation
norm and consider

H(v| f ) :=

{
dϕ(v| f ), if v ∈ P(Ω), v � f ,

∞, else,
(3.12)

where P(Ω) ⊂ M(Ω) is the set of probability measures and f ∈ P(Ω).
We estimate the convex conjugate of H(ρ|ν) as follows:

H∗(h|ν) = sup
ρ�ν

〈h, ρ〉 − H(ρ|ν)

= sup
ρ�ν

∫
Ω

(
h

dρ
dν

− ϕ

(
dρ
dν

))
dν

= sup
f ∈L1

+(Ω)

∫
Ω

(h(x) f (x) − ϕ ( f (x))) dν(x)

�
∫
Ω

sup
y>0

[h(x)y − ϕ (y)] dν(x)

16
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=

∫
Ω

ϕ∗(h) dν

= 〈ϕ∗(h), ν〉, (3.13)

for any h ∈ C(Ω).
Since ϕ(1) = 0 and ϕ � 0, we know that ϕ∗(0) = 0 and ϕ∗(x) � x. Indeed, we have

ϕ∗(0) = supx − ϕ(x) = −infxϕ(x) = 0 and, by the Fenchel–Young inequality, ϕ∗(x) � x −
ϕ(1) = x. This motivates us to assume

ϕ∗(x) = x + r(x), (3.14)

where r(x)/x → 0 as x → 0. This is satisfied in many cases (examples will be provided later
on).

Theorem 3.7. Let H(·|·) be as defined in (3.12) and let the assumptions of theorem 3.5 be
satisfied. Suppose that E∗μ† ∈ C(Ω), where μ† is the source element from assumption 3, and
that (3.14) holds. Then the following convergence rate holds

Dp†
J (un, u†

J ) = O

(
δn

αn
+

r(αn)
αn

+ ηn

)
, (3.15)

where p† = −B∗μ† is the subgradient from assumption 3.
Under the additional assumption that A, Al,u are bounded from as operatorsX → L∞(Ω) ⊂

M(Ω), we get the same rate for the symmetric Bregman distance Dsymm
J (un, u†

J ) (cf theorem
3.6).

Proof. Taking h = αnE∗μ† and ν = fn in (3.13), and using (3.14), we get

H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉 = 〈ϕ∗(αnE∗μ†), fn〉 − 〈αnE∗μ†, f̄ 〉

= 〈ϕ∗(αnE∗μ†) + ϕ∗(−αnE∗μ†), fn〉

+ 〈−αnE∗μ†, f̄ 〉 − 〈ϕ∗(−αnE∗μ†), fn〉

� 〈ϕ∗(αnE∗μ†) + ϕ∗(−αnE∗μ†), fn〉
+ dϕ( f̄ , fn)

� 〈ϕ∗(αnE∗μ†) + ϕ∗(−αnE∗μ†), fn〉+ δn

= 〈r(αnE∗μ†) + r(−αnE∗μ†), fn〉+ δn,

and in combination with (3.7) this yields the assertion. �
KL-divergence. Here ϕ(x) = x, log(x) − (x − 1), ϕ∗(x) = ex − 1 = x + r(x) with
r(x) = x2/2 + x3/6 . . . and we get that

Dp†
J (un, u†

J ) = O

(
δn

αn
+ αn + ηn

)
. (3.16)

which coincides with [4] in the case of an exact operator. For αn ∼ (δn)
1
2 we get the optimal

rate

Dp†
J (un, u†

J ) = O
(

(δn)
1
2 + ηn

)
. (3.17)
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χ2-divergence. Here ϕ(x) = (x − 1)2 and ϕ∗(x) = x + x2

4 . Again,

Dp†
J (un, u†

J ) = O

(
δn

αn
+ αn + ηn

)
(3.18)

and the optimal rate coincides with (3.17).
Squared Hellinger distance. Here ϕ(x) = (

√
x − 1)2, ϕ∗(x) = x

x−1 ≈ x + x2 + · · · and we
get

Dp†
J (un, u†

J ) = O

(
δn

αn
+ αn + ηn

)
(3.19)

and the optimal rate coincides with (3.17).
Total variation. For the total variation (of measures) we have ϕ(x) = 1

2 |x − 1| and

ϕ∗(x) =

⎧⎨
⎩x, |x| � 1

2
,

∞, otherwise.

Then for any αn = const such that ‖αnE∗μ†‖∞ � 1
2 we get that

Dp†
J (un, u†

J ) = O (δn + ηn) . (3.20)

Remark 3.8 (Poisson noise). The main motivation for the use of the Kullback–Leibler
divergence as a fidelity term is the modelling of Poisson noise [1]. If t denotes the exposure
time, the measured data can be assumed to be generated by a Poisson process with intensity
t f̄ . In this case, the upper bound on the error in the Kullback–Leilbler divergence is given by
[36]

H( f̄ | fn) � 1√
tn
.

While in the deterministic setting, this estimate is sufficient to obtain convergence rates, the
statistical setting requires further assumptions, in particular some concentration inequalities
[2, 36, 37].

3.3.2. Strongly coercive fidelity terms.

Theorem 3.9. Suppose that the fidelity function H is coercive in the following sense

C
λ
‖v − f ‖λY � H(v| f ) (3.21)

for all v, f ∈ Y , where λ � 1 and C > 0 are constants (we will assume with loss of generality
that C = 1). Then under the assumptions of theorem 3.5 the following convergence rates hold

Dp†
J (un, u†

J ) =

⎧⎪⎪⎨
⎪⎪⎩

O

(
δn

αn
+ α

1
λ−1
n + δ

1
λ
n + ηn

)
, λ > 1,

O

(
δn

αn
+ δn + ηn

)
, λ = 1,
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where p† = −B∗μ† is the subgradient from assumption 3. Ifαn is chosen such thatαn ∼ (δn)
λ−1
λ

if λ > 1 and αn = const � 1
‖E∗μ†‖ if λ = 1, we get the optimal rate

Dp†
J (un, u†

J ) = O

(
δ

1
λ
n + ηn

)
.

If Y is an AM-space (cf theorem 3.6), the same rate holds for the symmetric Bregman distance
Dsymm

J (un, u†
J ).

Proof. Since convex conjugation is order-reversing, from (3.21) we obtain that for any q ∈
Y∗ (we will drop the subscripts Y and Y∗ after the norms to simplify notation)

H∗(q| f ) �
(

1
λ
‖ · − f ‖λ

)∗
(q) =

(
1
λ
‖ · ‖λ

)∗
(q) + 〈 f , q〉

=

⎧⎨
⎩

1
λ∗ ‖q‖λ∗ + 〈 f , q〉 λ > 1,

χ‖·‖�1(q) + 〈 f , q〉 λ = 1,

where λ∗ = λ
λ−1 . We will consider the cases λ > 1 and λ = 1 separately.

Let λ > 1. Then from theorem 3.5 we obtain

Dp†
J (un, u†

J ) � δn

αn
+

1
αn

(
1
λ∗ ‖αnE∗μ†‖λ∗ + 〈αnE∗μ†, fn〉 − 〈αnE∗μ†, f̄ 〉

)
+ Cηn

=
δn

αn
+

1
αn

(
αλ∗

n

λ∗ ‖E∗μ†‖λ∗ + αn〈E∗μ†, fn − f̄ 〉
)
+ Cηn

=
δn

αn
+

αλ∗−1
n

λ∗ ‖E∗μ†‖λ∗ + 〈E∗μ†, fn − f̄ 〉+ Cηn.

Condition (3.21) implies that ‖ fn − f̄ ‖ � Cδ
1
λ
n . Hence, using the Cauchy-Schwarz inequality,

we obtain

Dp†
J (un, u†

J ) � δn

αn
+ C

αλ∗−1
n

λ∗ ‖E∗μ†‖λ∗ + ‖E∗μ†‖‖ fn − f̄ ‖+ Cηn

� δn

αn
+ C

αλ∗−1
n

λ∗ ‖E∗μ†‖λ∗ + ‖E∗μ†‖δ
1
λ
n + Cηn

= O

(
δn

αn
+ α

1
λ−1
n + δ

1
λ
n + ηn

)
.

Let now λ = 1. Then for sufficiently small αn � 1
‖E∗μ†‖ we obtain from theorem 3.5

Dp†
J (un, u†

J ) � δn

αn
+ 〈E∗μ†, fn − f̄ 〉+ Cηn

� δn

αn
+ ‖E∗μ†‖‖ fn − f̄ ‖+ Cηn

� δn

αn
+ Cδn + Cηn.

19



Inverse Problems 36 (2020) 125014 L Bungert et al

For a sufficiently small but fixed αn we get that

Dp†
J (un, u†

J ) = O (δn + ηn) .

�

Remark 3.10. The value 1
‖E∗μ†‖ matches the exact penalisation parameter in regularisation

with one-homogeneous fidelity terms (e.g. [4, 6, 38]). Exact penalisation means that the reg-
ularisation parameters αn do not have to be sent to zero in order to obtain convergence in the
Bregman distance. It is observed if the subdifferential ∂H(·| f̄ )| f̄ is no singleton.

Example 3.11 (Powers of norms). Theorem 3.9 obviously applies if the fidelity function
is given by a power of the norm, i.e.

H(v| f ) =
1
λ
‖v − f ‖λ, λ � 1.

This covers important cases such as the squared L2 norm fidelity which is used to model
Gaussian noise and the L1 norm fidelity which is often used to model salt-and-pepper noise
[39].

Example 3.12 (Wasserstein distances). For any p � 1, the p-Wasserstein distance
between two probability measures ρ, ν ∈ P(Ω) is defined as follows (cf [40])

Wp(ρ, ν) :=

(
inf

γ∈Π(ρ,ν)

∫
Ω

∫
Ω

|x − y|p dγ(x, y)

) 1
p

,

where Π(ρ, ν) is the space of probability measures on Ω× Ω with marginals ρ and ν.
Let the data space Y = KR(Ω) be the closure of the space of Radon measures M(Ω) with

respect to the Kantorovich–Rubinstein norm

‖μ‖KR := sup

{∫
g dμ : Lip(g) � 1, ‖g‖∞ � 1

}
,

where Lip denotes the Lipschitz constant [41]. Obviously it holds ‖μ‖KR � |μ| (Ω) for all μ ∈
M(Ω) and ‖μ‖KR � |μ| (Ω) if μ � 0 by choosing g ≡ 1 (it is known that the positive cone
M+(Ω), and hence also the set of probability measures P(Ω), is closed in the KR norm [41,
theorem 8.9.4]). For any v ∈ Y and a probability measure f ∈ P(Ω) we let

H(v| f ) :=

{
W p

p(v| f ), if v ∈ P(Ω),

∞, else.
(3.22)

It is well known that for any two probability measures ρ, ν ∈ P(Ω)

W1(ρ, ν) = ‖ρ− ν‖KR.

It is also known that for any q � p and any two probability measures ρ, ν ∈ P(Ω), the following
relation holds [40]

Wq(ρ, ν) � Wp(ρ, ν).

Hence, the data term defined in (3.22) satisfies

‖v − f ‖p
KR � H(v| f ),
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i.e. it is strongly coercive on KR(Ω). Note that it is not strongly coercive on M(Ω) equipped
with the total variation norm.

Hence, using theorem 3.9 we get the following optimal rate

Dp†
J (un, u†

J ) = O

(
δ

1
p

n + ηn

)
.

3.3.3. Characteristic function of a norm ball. Let the fidelity function be as follows

H(v| f ) = χ‖·‖�δ(v − f ). (3.23)

This type of fidelity functions corresponds to the so-called residual method [15, 42] and allows
one to explicitly use the noise level δ in the reconstruction (another way of doing so is the
discrepancy principle, see section 4). It is clear that

H(v| f ) � δ ⇐⇒ ‖v − f ‖ � δ.

With this particular fidelity function the parameter α does not have any effect on the solutions
of (2.3), hence with no loss of generality we will assume αn = const for all n.

The coercivity assumption (3.21) is not satisfied for this fidelity function (it is only weakly
coercive, i.e. ‖v − f‖ →∞ implies H(v| f ) →∞) and theorem 3.9 does not apply.

Theorem 3.13. Let the fidelity function be as defined in (3.23). Then under the assumptions
of theorem 3.5 the following convergence rate holds

Dp†
J (un, u†

J ) = O (δn + ηn) , (3.24)

where p† = −B∗μ† is the subgradient from assumption 3.
If Y is an AM-space (cf theorem 3.6), the same rate holds for the symmetric Bregman

distance Dsymm
J (un, u†

J ).

Proof. Taking the convex conjugate of H(·| f ) defined in (3.23), we get

H∗(q| f ) = sup
v:‖v− f ‖�δ

〈q, v〉 = sup
v:‖v− f ‖�δ

〈q, v − f 〉+ 〈q, f 〉

� sup
v:‖v− f ‖�δ

‖q‖‖v− f ‖+ 〈q, f 〉 � δ‖q‖+ 〈q, f 〉.

Hence,

H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉 � δnαn‖E∗μ†‖+ 〈αnE∗μ†, fn − f̄ 〉

� 2δnαn‖E∗μ†‖

since ‖ fn − f̄ ‖ � δn. Plugging this into the estimate in theorem 3.5 (resp. theorem 3.6) and
remembering that αn = const for all n, we get the assertion. �

3.3.4. Sum of fidelities. Having studied a plethora of explicit examples of fidelity functions,
we now turn to combinations of several fidelities, each of which can be studied as above. Let
us assume that H is the sum of two other fidelity functions H1 and H2, i.e.,

H(v| f ) = H1(v| f ) +H2(v| f ). (3.25)
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Such fidelities were studied e.g. in [43] and allow to simultaneously handle data from different
modalities. Furthermore, in [44–46] fidelites of L1 + L2-type were analysed and used for image
restoration in the presence of mixed Gaussian and impulse noise.

If H1 and H2 are proper, it holds

H∗(q| f ) � inf
r∈Y∗

{
H∗

1(r| f ) +H∗
2(q − r| f )

}
=:

(
H∗

1(·| f )�H∗
2(·| f )

)
(q), (3.26)

where the term on the right-hand side is the so-called infimal convolution of H1 and H2. Let
us assume that we have estimates of the form

H∗
i (αnE∗μ†| fn) − 〈αnE∗μ†| f̄ ) � Ri(αn,Hi( f̄ | fn)), i = 1, 2, (3.27)

for each of the fidelities. The functions Ri are assumed to be non-decreasing in both arguments
and we set Ri(α, ·) = ∞ for α < 0. Combining (3.26) and (3.27) we obtain

H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉

= inf
w∈Y

{
H∗

1(w| fn) +H∗
2(αnE∗μ† − w| fn)

}
− 〈αnE∗μ†, f̄ 〉

� inf
λ∈[0,1]

H∗
1(λαnE∗μ†| fn) − 〈λαnE∗μ†, f̄ 〉

+H∗
2((1 − λ)αnE∗μ†| fn) − 〈(1 − λ)αnE∗μ†, f̄ 〉

� inf
λ∈[0,1]

R1(λαn,H1( f̄ | fn)) + R2((1 − λ)αn,H2( f̄ | fn))

� inf
λ∈[0,1]

R1(λαn, δn) + R2((1 − λ)αn, δn)

= (R1(·, δn)�R2(·, δn)) (αn),

where we used the monotonicity properties of Ri in the last two steps. This shows that the
convergence rate for H can be estimated by the infimal convolution of the rates associated to
H1 and H2, i.e.

Dp†
J (un, u†

J ) = O [(R1(·, δn)�R2(·, δn)) (αn) + ηn] . (3.28)

If Y is an AM-space (cf theorem 3.6), the same rate holds for the symmetric Bregman distance
Dsymm

J (un, u†
J ).

3.3.5. Infimal convolution of fidelities. Let us consider the case that H is given by the infimal
convolution of two other fidelities H1 and H2

H(v| f ) = inf
w∈Y

H1(w|0) +H2(v − w| f ) = (H1(·|0)�H2(·| f ))(v) (3.29)

Such fidelities are also chosen for the removal of mixed noise in image restoration (see e.g.
[47] for an application to hyperspectral unmixing and [48] and the references therein for image
denoising with mixtures of Gaussian, impulse, and Poisson noise). Since the infimal convolu-
tion optimally decomposes v into a noise part w, which is small in H1, and a residual v − w,
which is close to the data f inH2, such fidelities are more suitable for this purpose than the plain
sum of fidelities, studied in the previous section. By standard calculus for infimal convolutions,
if H1 and H2 are proper, it holds

H∗(q| f ) = H∗
1(q|0) +H∗

2(q| f ). (3.30)
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Furthermore, under the hypothesis that H1 is coercive, H2 is bounded from below, and both
are weakly-∗ lower semicontinuous convex functions, it holds that H is weakly-∗ lower semi-
continuous, proper, and exact (see [49] for the statement and [50] for a proof on Hilbert spaces
which generalises to Banach spaces). The latter means that the infimum in the definition of H
is attained. In particular, there are ḡ, h̄ ∈ Y such that f̄ = ḡ + h̄ and

δn = H( f̄ , fn) = H1(ḡ|0) +H2(h̄| fn). (3.31)

Furthermore, from (3.30) we get

H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉

= H∗
1(αnE∗μ†|0) +H∗

2(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉

=
(
H∗

1(αnE∗μ†|0) − 〈αnE∗μ†, ḡ〉
)
+
(
H∗

2(αnE∗μ†| fn) − 〈αnE∗μ†, h̄〉
)
.

Consequently, we have to estimate the two terms in brackets which only depend on the individ-
ual fidelites H1 and H2. In all the examples studied above, such estimates are available. Using
the functions Ri defined in (3.27) above together with (3.31), we can estimate

H∗(αnE∗μ†| fn) − 〈αnE∗μ†, f̄ 〉 � R1(αn,H1(ḡ|0)) + R2(αn,H2(h̄| fn))

� R1(αn, δn) + R2(αn, δn).

Hence, we get the statement that the rate of convergence of a infimal convolution of fidelities
can be estimated by the sum of the individual rates associated to H1 and H2, i.e.

Dp†
J (un, u†

J ) = O (R1(αn, δn) + R2(αn, δn) + ηn) . (3.32)

This is in contrast to the rate of a sum of fidelities being given by the infimal convolution of
the rates, as shown in the previous section.

If Y is an AM-space (cf theorem 3.6), the same rate holds for the symmetric Bregman
distance Dsymm

J (un, u†
J ).

4. Discrepancy principle

When the operator is known exactly, Morozov’s discrepancy principle [10, 33] can be used
to select the regularisation parameter αn. In the case of a squared norm fidelity H(v| f ) =
‖v − f ‖2 this amounts to selecting αn such that

αn = sup {α > 0 : ‖Auαn
n − fn‖2 � τδn}, (4.1)

where uαn
n is the regularised solution corresponding the regularisation parameter αn and τ > 1

is a parameter. Here we assume that ‖ f̄ − fn‖2 � δn (and not ‖ f̄ − fn‖2 � δ2
n) to be con-

sistent with our earlier notation. Convergence rates for this choice of αn in the case of an
exact operator and an arbitrary convex regularisation functional were obtained in [11]. For the
data fidelity given by the Kullback–Leibler divergence, the discrepancy principle is studied
in [13].

In the case of an imperfect operator, the discrepancy principle needs to be modified. When
the operator error is measured using the operator norm, i.e. one assumes that an approximate
operator Ah is available such that

‖A − Ahn‖L(X ,Y) � hn,
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one can choose αn as follows [15] (in the case of a squared norm fidelity in the Hilbert space
setting)

αn = sup {α > 0 : ‖Auαn
n − fn‖2 = (

√
δn + hn‖uαn

n ‖)2}. (4.2)

If the fidelity term is not based on a norm and does not satisfy the triangle inequality, such a
generalisation is not available.

Since in our case the operator error is explicitly accounted for through the constraints in
(2.3), we can use the discrepancy principle in its original form (4.1) with an arbitrary fidelity
term. We will choose αn such that

αn = sup {α > 0 : H(vαn | fn) � τδn}, (4.3)

where vαn
n solves (2.3) with the regularisation parameter αn and τ > 1 is a parameter.

Remark 4.1. If the solution vαn
n is unique, then we have

H(vαn
n | fn) = τδn. (4.4)

In case of non-uniqueness, we can always choose a solution vαn
n such that (4.4) is satisfied, fol-

lowing the argument in [12, proposition 3.5–remark 3.8] and using convexity of the objective
function in (2.3).

4.1. Existence

In this section we study well-posedness of the discrepancy principle, meaning that there is a
regularisation parameterαn which meets (4.3). Let (uα, vα) be a solution of (2.3) corresponding
to the parameter α > 0. Define the following functions:

h(α) :=H(vα| fn), j(α) :=J (uα). (4.5)

Lemma 4.2. The function j(α) is monotone non-increasing and h(α) is monotone non-
decreasing in α.

Proof. The proof is similar to [51]. �

Remark 4.3. If either H(·| fn) or J (·) is strictly convex, then h(α) and j(α) are indeed
uniquely defined (the argument is similar to [38]). Otherwise the lemma applies to H(vα| fn)
and J (uα) for any solution (uα, vα) of (2.3).

Remark 4.4. Since j and h are monotone functions, they are in particular continuous for
almost all values of α > 0.

Lemma 4.5. Functions h and j defined in (4.5) are lower semicontinuous.

Proof. We just sketch the proof. Letting αk → α, one can easily see that the corresponding
solutions (vk, uk) converge (up to a subsequence) weakly-∗ to (v, u) which solve the problem
for α. Hence, by the lower semicontinuity of H and J the assertion follows. �
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Theorem 4.6. Suppose that for all n

Cδn � lim inf
α→∞

H(vα| fn)

for some constant C > 1, which does not depend on n.
Then the discrepancy principle (4.3) is well-posed for all τ ∈ (1, C), i.e. there exists αn > 0

and a solution (uαn , vαn) of (2.3) corresponding toα = αn and f = fn such that (4.3) is satisfied.

Proof. For every α > 0 because of the feasibility of (u†
J , f̄ ) we get

H(vα| fn) + αJ (uα) � H( f̄ | fn) + αJ (u†
J )

and in particular

h(α) = H(vα| fn) � δn + αJ (u†
J ),

for almost all α > 0. Letting α ↓ 0 we obtain using the monotonicity of h that

h(0+) � δn. (4.6)

On the other hand, by assumption it holds

Cδn � lim inf
α→∞

H(vα| fn). (4.7)

Hence, in light of (4.6) and (4.7), and the monotonicity of h, there exists αn > 0 such that

h(α) � τδn, ∀ 0 < α < αn,

and τ can be chosen in (1, C). Since h is lower semicontinuous according to lemma 4.5, we get
that

sup
α<αn

h(α) � τδn

which proves the assertion. �

Remark 4.7. The assumption of theorem 4.6 is rather weak. For instance, if H(0| fn) < ∞,
one can show that vα ⇀∗ 0 as α→∞. Hence, one can relax the assumption to Cδn � H(0| fn)
which, for δn sufficiently small, is fulfilled in many applications.

4.2. Convergence rates

Our goal in this section is to obtain convergence rates similar to those in theorem 3.5
(respectively theorem 3.6) for the parameter choice rule (4.3).

Lemma 4.8. Let αn be chosen according to (4.3). Then the following inequality holds for
all n

J (uαn
n ) � J (u†

J ). (4.8)

If conditions of theorem 2.6 are satisfied, then also the following inequality holds

〈E∗μαn
n , f̄ − vαn

n 〉 � 0. (4.9)
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Proof. Comparing the value of the objective function in (2.3) at the optimal solution
(uαn

n , vαn
n ) and (u†

J , f̄ ) and using (4.3), we get that

τδn + αnJ (uαn
n ) = H(vαn

n | fn) + αnJ (uαn
n )

� H( f̄ | fn) + αnJ (u†
J ) � δn + αnJ (u†

J ).

Since τ > 1, this yields the first inequality.
For the second one we use the Fenchel–Young inequality. Subtracting (3.10b) from (3.10a)

we obtain

〈αnE∗μαn
n , f̄ − vαn

n 〉 � H( f̄ | fn) +H∗(αnE∗μαn
n | fn) −H(vαn

n | fn)

−H∗(αnE∗μαn
n | fn)

� δn − τδn � 0,

which completes the proof. �

Theorem 4.9. Under assumptions of theorem 3.2 and with αn chosen according to (4.3),
uαn

n converges weakly-∗ to a J -minimising solution of (1.1), i.e.

uαn
n ,⇀∗,u†

J .

Proof. Since J (uαn
n ) is bounded uniformly in n and H(vαn

n | fn) = τδn → 0, we immediately
get the desired result following the proof of theorem 3.2. �

Theorem 4.10. Let αn be chosen according to (4.3). Then, under the assumptions of
theorem 3.5, the following estimate holds for the one-sided Bregman distance between uαn

n

and u†
J

Dp†
J (uαn

n , u†
J ) � 〈E∗μ†, vαn

n − f̄ 〉+ Cηn,

where p† = −B∗μ† is the subgradient from assumption 3. Under the assumptions of theorem
3.6 the same estimate holds for the symmetric Bregman distance.

Proof. We start with the estimate (3.8). Using lemma 4.8, we obtain

Dp†
J (uαn

n , u†
J ) � J (u†

J ) + 〈E∗μ†, vαn
n 〉+ Cηn

= 〈−B∗μ†, u†
J 〉+ 〈E∗μ†, vαn

n 〉+ Cηn

= 〈−μ†, E f̄ 〉+ 〈E∗μ†, vαn
n 〉+ Cηn

= 〈E∗μ†, vαn
n − f̄ 〉+ Cηn,

which yields the first assertion. For the second assertion, we use (3.10) and lemma 4.8 and
obtain

Dsymm
J (un, u†

J ) � 〈E∗μn, f̄ − vαn
n 〉 − 〈E∗μ†, f̄ − vαn

n 〉+ Cηn

� 〈E∗μ†, vαn
n − f̄ 〉+ Cηn.

�
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Table 1. Summary of convergence rates for different fidelities in terms of the data error
δ, the operator error η and the regularisation parameter α. Whenever α is absent in the
a priori rate, exact penalisation occurs and the rate is independent of α as long as it is
smaller than a fixed constant. Optimal rates correspond to an optimal choice of α in the
a priori rate.

Fidelity A priori rate Optimal rate Discr. principle

KL- and χ2-divergences, O
(
δ
α + α+ η

)
O(

√
δ + η) O(

√
δ + η)

sq. Hellinger distance

Total variation O(δ + η) O(δ + η) O(δ + η)

Wasserstein-p distance O
(

δ
α + α

1
p−1 + δ

1
p + η

)
, p > 1 O(δ

1
p + η) O(δ

1
p + η)

O(δ + η),p = 1

Characteristic function of a O(δ + η) O(δ + η) O(δ + η)
norm ball

λ-strongly coercive fidelities O
(

δ
α + α

1
λ−1 + δ

1
λ + η

)
, λ > 1 O(δ

1
λ + η) O(δ

1
λ + η)

O(δ + η),λ = 1

Strongly coercive fidelities. For a strongly coercive fidelity terms such that (3.21) holds, we
immediately get, using the Cauchy-Schwarz inequality, that

Dp†
J (uαn

n , u†
J ) � ‖E∗μ†‖‖vαn

n − f̄ ‖+ Cηn

� ‖E∗μ†‖(‖vαn
n − fn‖+ ‖ fn − f̄ ‖) + Cηn

� ‖E∗μ†‖(H(vαn
n | fn) +H( f̄ | fn))

1
λ + Cηn

and therefore we get the following rate

Dp†
J (uαn

n , u†
J ) = O

(
δ

1
λ
n + ηn

)
,

which coincides with the optimal rate in theorem 3.9.
ϕ-divergences. For any ϕ-divergence that satisfies Pinsker’s inequality [52] with
exponent λ

‖v − f ‖λ � CH(v| f ),

where v, f ∈ P(Ω), we have the same situation as above. In particular, for the Kull-
back–Leibler divergence, the χ2-divergence an the squared Hellinger distance λ = 2 and

Dp†
J (uαn

n , u†
J ) = O(

√
δn + ηn),

which coincides with the optimal rate (3.17).
We summarise all convergence rates for obtained in this paper in table 1.

5. Conclusions

In this work we have proven convergence rates in Bregman distances for variational regular-
isation in Banach lattices for problems with imperfect forward operators and general fidelity
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functions. Our results apply to many classes of fidelity functions and recover known conver-
gence rates for norm-type fidelities and the Kullback–Leibler divergence in the case of exact
operators. In addition, we have derived convergence rates for sums and infimal convolutions of
fidelity functions, as used for mixed-noise removal. Furthermore, we have analysed an exten-
sion of Morozov’s discrepancy principle to problems with operator errors in the Banach lattice
setting, which does not rely on the triangle inequality and hence applies to a broader class of
fidelity functions.
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Appendix. Banach lattices and duality

The following definitions and results can be found, e.g., in [24].
Let U be a vector space and ‘�’ be a partial order relation on U (i.e. a reflexive, antisym-

metric and transitive binary relation). For all x, y ∈ U we write x � y if y � x. The pair (U ,�)
is called an ordered vector space if the following conditions hold

x � y =⇒ x + z � y + z ∀ z ∈ U ,

x � y =⇒ ax � ay ∀ a ∈ R+.

An ordered vector space (U ,�) is called a vector lattice (or a Riesz space) if any two ele-
ments x, y ∈ U have a unique supremum x ∨ y and infimum x ∧ y. For any x ∈ U we define

x+ := x ∨ 0, x− := (−x)+, |x| := x+ + x−.

For any x ∈ U it holds that

x = x+ − x−.

Let ‖ · ‖ be a norm on U . The triple (U ,�, ‖ · ‖) is called a Banach lattice if (U ,�) is a
vector lattice, (U , ‖ · ‖) is a Banach space (i.e. it is norm complete) and for all x, y ∈ U

|x| � |y| =⇒ ‖x‖ � ‖y‖,

or equivalently that ‖x‖ � ‖y‖ for any x � y � 0.
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A linear operator T acting between two vector lattices U1, U2 is called positive, and we
write T � 0, if u � 0 implies Tu � 0 (the inequalities are understood in the sense of partial
orders in U1 and U2, respectively). A linear operator T is called regular if it can be written
as a difference of two positive operators, T = T1 − T2 with T1,2 � 0. The space of all regular
operators U1 →U2 is itself an ordered vector space with the following partial order

T1 � T2 ⇐⇒ T1 − T2 � 0.

Proposition A.1 ([24, proposition 1.3.5]). Let U1, U2 be Banach lattices. Then every
regular operator U1 →U2 is (norm) continuous.

The converse is in general false, i.e. not every continuous operator is regular. However, in
some settings this is true. We repeat definition 2.5 for readers’ convenience.

Definition A.2. A Banach lattice Y with norm ‖ · ‖ is called an AM-space (abstract
maximum space) if

‖x ∨ y‖ = ‖x‖ ∨ ‖y‖, ∀ x, y � 0.

An element 𝟙 ∈ Y which meets

𝟙 � 0, ‖𝟙‖ = 1, ‖x‖ � 1 =⇒ |x| � 𝟙,

is called unit of Y .

Definition A.3. A Banach latticeY with norm ‖ · ‖ is called an AL-space (abstract Lebesgue
space) if

‖x ∨ y‖ = ‖x‖+ ‖y‖, ∀x, y � 0.

If eitherY is an AM-space with an order unit orX is an AL-space, then every linear bounded
operator is regular (under some additional conditions, see [24, theorem 1.5.11] for a precise
statement).

We need the following result.

Lemma A.4 (Partial order on the dual). Let U be a Banach space and U∗ be its dual. If
(U ,�, ‖ · ‖) is a Banach lattice, then so is U∗, equipped with the dual norm and the following
partial order

ϕ � 0: ⇐⇒ ϕ(x) � 0, ∀ x ∈ U , x � 0, (A.1a)

ϕ � ψ: ⇐⇒ ϕ− ψ � 0. (A.1b)

Furthermore, order intervals in U∗ are weakly-∗ closed.

Proof. We need to check that ϕ � ψ � 0 implies ‖ϕ‖U∗ � ‖ψ‖U∗ . Splitting x ∈ U into pos-
itive and negative part as x = x+ − x− with x± � 0, we obtain by linearity and non-negativity
that

χ(x) = χ(x+) − χ(x−) � χ(x+), χ ∈ {ϕ,ψ}.

This implies

‖χ‖U∗ = sup
‖x‖U=1

χ(x) = sup
‖x‖U=1
x�0

χ(x), χ ∈ {ϕ,ψ}.
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Hence, we obtain

‖ϕ‖U∗ = sup
‖x‖U=1
x�0

ϕ(x) � sup
‖x‖U=1
x�0

ψ(x) = ‖ψ‖U∗ ,

which proves that U∗ is a Banach lattice. Now we prove weak-∗ closedness of order intervals.
Here it is sufficient to show that whenever (ϕk) ⊂ U∗ converges weakly∗ to some ϕ ∈ U∗ and
meets ϕk � 0 for all k ∈ N it holds ϕ � 0. Using the assumptions we get

0 � lim
k→∞

ϕk(x) = ϕ(x), ∀ x ∈ U , x � 0,

which according to (A.1) means ϕ � 0. �
We also need the following result unrelated to Banach lattices.

Lemma A.5. Let A : U∗ → V∗ be a bounded linear operator mapping between the duals of
two Banach spaces U and V , and let JU and JV be the canonical embeddings of U and V into
U∗∗ and V∗∗. If A∗JV (V) ⊂ JU (U), then A is weak-∗ to weak-∗ continuous.

Proof. Let (ηk) ⊂ U∗ converge weakly-∗ to η ∈ U∗. Using that for any y ∈ V it holds
A∗JV (y) = JU (x) for some x ∈ U , we obtain

〈Aη, y〉V∗,V = 〈JV (y), Aη〉V∗∗,V∗ = 〈A∗JV (y), η〉U∗∗,U∗ = 〈JU (x), η〉U∗∗,U∗

= 〈η, x〉U∗,U = lim
k→∞

〈ηk, x〉U∗,U = lim
k→∞

〈JU (x), ηk〉U∗∗,U∗

= lim
k→∞

〈A∗JV (y), ηk〉U∗∗,U∗ = lim
k→∞

〈JV (y), Aηk〉V∗∗,V∗

= lim
k→∞

〈Aηk, y〉V∗,V ,

which means that (Aηk) converges weakly-∗ to Aη. �
Remark A.6. A sufficient condition for A∗JV(V) ⊂ JU (U) in lemma A.5 is that A = B∗ for a
bounded linear operator B : V → U . In this case A∗ = B∗∗ : V∗∗ → U∗∗ and it is easy to see that
B∗∗JV (y) = JU (By) for every y ∈ V which means A∗JV (V) = B∗∗JV (V) = JU (BV) ⊂ JU (U).
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30

https://orcid.org/0000-0002-6554-9892
https://orcid.org/0000-0002-6554-9892
https://orcid.org/0000-0003-2619-2912
https://orcid.org/0000-0003-2619-2912
https://orcid.org/0000-0002-6339-652X
https://orcid.org/0000-0002-6339-652X
https://doi.org/10.1007/s10851-007-0652-y
https://doi.org/10.1007/s10851-007-0652-y
https://doi.org/10.1007/s10851-007-0652-y
https://doi.org/10.1007/s10851-007-0652-y
https://doi.org/10.1088/0266-5611/32/9/093001
https://doi.org/10.1088/0266-5611/32/9/093001


Inverse Problems 36 (2020) 125014 L Bungert et al

[4] Benning M and Burger M 2011 Error estimates for general fidelities Electron. Trans. Numer. Anal.
38 –68

[5] Engl H W, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularisation of
non-linear ill-posed problems Inverse Problems 5 523

[6] Burger M and Osher S 2004 Convergence rates of convex variational regularization Inverse
Problems 20 1411

[7] Resmerita E 2005 Regularization of ill-posed problems in Banach spaces: convergence rates Inverse
Problems 21 1303

[8] Hofmann B, Kaltenbacher B, Pöschl C and Scherzer O 2007 A convergence rates result for Tikhonov
regularization in Banach spaces with non-smooth operators Inverse Problems 23 987

[9] Grasmair M 2011 Linear convergence rates for Tikhonov regularization with positively homoge-
neous functionals Inverse Problems 27 075014

[10] Morozov V A 1966 On the solution of functional equations by the method of regularisation Dokl.
Akad. Nauk SSSR 167 –

[11] Bonesky T 2008 Morozov’s discrepancy principle and Tikhonov-type functionals Inverse Problems
25 015015

[12] Anzengruber S W and Ramlau R 2009 Morozov’s discrepancy principle for Tikhonov-type
functionals with nonlinear operators Inverse Problems 26 025001

[13] Sixou B, Hohweiller T and Ducros N 2018 Morozov principle for Kullback–Leibler residual term
and Poisson noise Inverse Problems Imaging 12 607–34

[14] Neubauer A and Scherzer O 1990 Finite-dimensional approximation of Tikhonov regularized
solutions of nonlinear ill-posed problems Inverse Problems 11 85–99

[15] Tikhonov A N, Goncharsky A V, Stepanov V V and Yagola A G 1995 Numerical Methods for the
Solution of Ill-Posed Problems (Dordrecht: Kluwer)

[16] Pöschl C, Resmerita E and Scherzer O 2010 Discretization of variational regularization in Banach
spaces Inverse Problems 26 105017

[17] Bleyer I R and Ramlau R 2013 A double regularization approach for inverse problems with noisy
data and inexact operator Inverse Problems 29 025004

[18] Goncharskii A V, Leonov A S and Yagola A G 1973 A generalized discrepancy principle USSR
Comput. Math. Math. Phys. 13 25–37

[19] Hofmann B 1986 Optimization aspects of the generalized discrepancy principle in regularization
Optimization 17 305–16

[20] Lu S, Pereverzev S V, Shao Y and Tautenhahn U 2010 On the generalized discrepancy principle for
Tikhonov regularization in Hilbert scales J. Integr. Equ. Appl. 22 483–517

[21] Korolev Y and Yagola A 2013 Making use of a partial order in solving inverse problems Inverse
Problems 29 095012

[22] Korolev Y 2014 Making use of a partial order in solving inverse problems: II Inverse Problems 30
085003

[23] Burger M, Korolev Y and Rasch J 2019 Convergence rates and structure of solutions of inverse
problems with imperfect forward models Inverse Problems 35 024006

[24] Meyer-Nieberg P 1991 Banach Lattices (Berlin: Springer)
[25] Gorokh A, Korolev Y and Valkonen T 2016 Diffusion tensor imaging with deterministic error

bounds J. Math. Imaging Vis. 56 137–57
[26] Schachermayer W 1981 Integral operators on Lp spaces, part I Indiana Univ. Math. J. 30 123–40
[27] Diestel J and Uhl J J 1977 Vector Measures (Providence, RI: Americal Mathematial Society)
[28] Bonnans J and Shapiro A 2000 Perturbation Analysis of Optimization Problems (Berlin: Springer)
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