
Efficient iterative Hi‑C scaffolder based
on N‑best neighbors
Dengfeng Guan1,2,4, Shane A. McCarthy2,3, Zemin Ning3, Guohua Wang1*, Yadong Wang1* and
Richard Durbin2,3* 

Background
Genome assembly is still one of the most essential problems in bioinformatics. For
eukaryotic genomes, which are typically hundreds to thousands of Mb long, the only
way to obtain their sequences is through assembling from millions of much shorter
fragments. Recent development of sequencing technologies, including next generation
sequencing (NGS) and single molecule long read sequencing, has enabled thousands of
novel species to be sequenced [1–4].

The inexpensive and high throughput NGS technologies boosted the rate of de novo
genome sequencing. Numerous important species were sequenced by using NGS. For

Abstract 

Background:  Efficient and effective genome scaffolding tools are still in high demand
for generating reference-quality assemblies. While long read data itself is unlikely to
create a chromosome-scale assembly for most eukaryotic species, the inexpensive Hi-C
sequencing technology, capable of capturing the chromosomal profile of a genome,
is now widely used to complete the task. However, the existing Hi-C based scaffolding
tools either require a priori chromosome number as input, or lack the ability to build
highly continuous scaffolds.

Results:  We design and develop a novel Hi-C based scaffolding tool, pin_hic, which
takes advantage of contact information from Hi-C reads to construct a scaffolding
graph iteratively based on N-best neighbors of contigs. Subsequent to scaffolding, it
identifies potential misjoins and breaks them to keep the scaffolding accuracy. Through
our tests on three long read based de novo assemblies from three different species, we
demonstrate that pin_hic is more efficient than current standard state-of-art tools, and
it can generate much more continuous scaffolds, while achieving a higher or compara-
ble accuracy.

Conclusions:  Pin_hic is an efficient Hi-C based scaffolding tool, which can be useful
for building chromosome-scale assemblies. As many sequencing projects have been
launched in the recent years, we believe pin_hic has potential to be applied in these
projects and makes a meaningful contribution.

Keywords:  Hi-C, Scaffolding

Open Access

© The Author(s) 2021, corrected publication 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Guan et al. BMC Bioinformatics 2021, 22(1):569
https://doi.org/10.1186/s12859-021-04453-5 BMC Bioinformatics

*Correspondence:
ghwang@hit.edu.cn;
ydwang@hit.edu.cn;
rd109@cam.ac.uk
1 Center for Bioinformatics,
Harbin Institute
of Technology,
Harbin 150001, China
2 Department of Genetics,
University of Cambridge,
Cambridge CB2 3EH, UK
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04453-5&domain=pdf

Page 2 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

example, the first giant panda genome was sequenced and assembled using NGS data
with various insert sizes by the SOAPDenovo [5] assembler in 2010 [6], which achieved
a 40 kb contig N50 and an assembly size of 2.25 Gb, covering 94% of the real genome.
However due to the complexity of the sequence and the limited read size, NGS assembly
usually yields highly fragmented contigs, which impedes further genomic studies.

The advent of long read sequencing technologies, such as PacBio Single Molecule
Real-Time (SMRT) sequencing technology and Oxford Nanopore Technologies (ONT),
is now revolutionizing genome assembly studies. These technologies, which give read
length two orders of magnitude or much longer than NGS, are leading to unprecedent-
edly complete and continuous genome assemblies. Chin et al. published a PacBio long
read based de novo assembler “Falcon-unzip” for generating haplotype-phased assem-
blies [1] in 2016, where they described how the assembler could produce an Arabidopsis
thaliana primary assembly with 8 Mb contig N50, which is about 8000 times larger than
that of the SOAPDenovo assembly based on NGS reads.

Even though a long read based assembly itself can usually reach a megabase scale
contig N50 [7], this is still far from routinely assembling to chromosome scale. Large
genome assembly projects, such as Vertebrate Genomes Project (VGP), strategically
combine multiple long range sequencing data, such as PacBio sequencing data, linked
reads data [8], optical mapping data [9] and Hi-C data to construct reliably chromo-
some-scale assemblies. Hi-C in particular is empowered to build chromosome-scale
assemblies [10, 11].

Hi-C sequencing technology is based on Chromosome Confirmation Capture technol-
ogy, where fragments of DNA that are physically close are ligated with a labelled nucle-
otide at the ligation junction, enabling selective purification of chimeric DNA ligation
junctions followed by deep sequencing [12, 13]. Since sequences on the same chromo-
some tend to be in proximity, Hi-C interactions provide informative evidence for order-
ing and orienting contigs, making use of two properties: (1) the intra-chromosomal
interaction frequency is significantly higher than the inter-chromosomal interaction fre-
quency; (2) the intra-chromosomal interaction frequency decays with genomic distance
[10].

Several tools have been developed to achieve chromosome scale scaffolds based on
Hi-C data in the last few years. DNATri [14] and LACHESIS [13] are perhaps the ear-
liest tools using Hi-C reads for scaffolding. DNATri utilizes an average-linkage hier-
archical clustering algorithm on a distance matrix derived from the contact matrix, to
cluster and assemble the contigs. LACHESIS builds scaffolds through three steps: (1)
Contig clustering: it tallies the number of links between contig pairs, and merges con-
tigs using hierarchical agglomerative clustering until the cluster number is the same
as a user-specified chromosome number; (2) contig ordering: it constructs a graph for
each cluster, whose vertices are composed of the contigs and the edge weight is repre-
sented by the normalized link numbers. It then finds a “trunk” in the minimum span-
ning tree (MST) of this graph and adds vertices not belonging to the “trunk” back to
it; (3) contig orienting: it builds a weighted directed acyclic graph (WDAG) for each
direction of a contig, and determines the contig orientations by seeking the maximum
weighted path in the WDAG. 3D-DNA [11], SALSA1 [15] and SALSA2 [16] are three
more recent tools. All these tools correct the input draft assembly before scaffolding.

Page 3 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

3D-DNA applies the best neighbor strategy to assemble the contigs into one “megas-
caffold” and then breaks it into a number of chromosomes. SALSA1 collects the link
numbers between contig pairs and normalizes them by a count of enzyme cutting
sites; it then orders and orients the contigs through building a directed acyclic graph
(DAG) by processing the maximum weighted links iteratively. SALSA2 is an upgrade
from SALSA1 that can process an input assembly graph. SALSA2 also uses the best
neighbor strategy to select the best joining candidates and reduce inversion errors,
and it can stop scaffolding iteration automatically.

Here, we present another Hi-C scaffolding approach and provide an implemen-
tation in the pin_hic software. Pin_hic uses N-best neighbor strategy to order and
orient contigs and an iterative weighted linking approach to further elongate them,
which we show can obtain chromosome-scale scaffolds without requiring to know the
chromosome number. It also applies a robust method to diagnose misjoins regardless
of scaffold length, which improves the scaffolding accuracy. Furthermore, to maintain
the information of the scaffolding graph, we also proposed a new format “SAT”. In our
experiments on three draft assemblies from three different species, pin_hic outper-
forms the state-of-art tool SALSA2 by up to 1.4 times in continuity while achieving
higher or comparable accuracy, and up to 1.7 times in speed.

Implementation
Overview

Given raw Hi-C reads, a draft assembly and a number of iterations, we generate chro-
mosome-scale scaffolds with the following steps:

Step 1. Map the Hi-C read pairs to the draft assembly independently.
Step 2. Build a contact matrix counting the number of linking read pairs between
contig ends based on the bam files, and the SAT file if it exists.
Step 3. Construct a scaffolding graph based on N-best neighbors of contigs with
the contact matrix, make joins, and output the results in “SAT” format.
Step 4. Check if all iterations are finished, if so, go to Step 5, otherwise repeat Step 2
to 4 using the alignment files and the new SAT file output in the last step as inputs.
Step 5. Search for misjoins in the final SAT file, break at any detected mis-joins,
and output the final scaffold sequences.

The whole pipeline is illustrated in Additional file 1: Fig. S1. Major steps are
described in details in the following sections.

Contact matrix calculation

Given raw Hi-C reads and a draft assembly, we first map the reads to the draft assembly
with “bwa mem” using settings of “-SP” to skip read pairing and mate pair rescue [17],
and a relatively large mismatch penalty 10 to seek more consistent target sequences.

Given the resulting alignment bam files and the current contigs (scaffolds in the
next iteration), we then calculate the contact matrix with the following steps:

Page 4 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

Step 1. Each contig i is split into three equal parts, the middle part is ignored in cal-
culation, and the first and third part denoted as contig ih and contig it represents 5’
and 3’ ends of the contig respectively.
Step 2. A list of tuples t (jy, cix,jy) is initialised for each contig ix to record the number
of linking read pairs (contact number) with contig jy , while jy is the contig index and
cix,jy is the contact number.
Step 3. All the read pairs in the bam files are evaluated, with a read pair contributing
to the counts only if it satisfies the following three conditions:

•	 Both 5′ ends of a read pair are mapped to different contigs unambiguously without
soft or hard clippings.

•	 Mapping qualities are no less than q (default: 10).
•	 Not a duplicated read pair.

Step 4. All qualified read paris are tallied for contig ix and contig jy , and the tuples
are output as a contact matrix.

Here, pin_hic splits contigs into three equal parts, to reduce misjoins. This is different
from other tools like SALSA2, LACHESIS, which split contigs into two halves and accu-
mulate their arrangement evidence. Since in a regular case, more contacts will occur at
the ends of the contigs, the unexpected contacts occurring in the middle of the contigs
can lead to misjoins. Besides, unlike SALSA2 which generates an intermediate bed file
during each iteration, pin_hic always uses the original bam file(s) as inputs which allows
it to use much less disk space.

Normally, to produce more continuous scaffolds, users may need to perform this con-
tact matrix calculation multiple times, they may expect to know the scaffolding graphs
in each iteration as well. In such a case, pin_hic uses its own SAT format to record the
scaffolding graph. Details of the SAT format, which is derived from the widely used
“graph fragment assembly” (GFA) format [18] and was designed to carry more details of
the graph than the traditional “AGP” format, are described in the “SAT format” section.
In each iteration, if the SAT file is used as an input, the paths (scaffolds) will be construct
first and each original contig in the draft assembly will keep a record of its correspond-
ing scaffold and their start positions on that scaffold, so that target positions in the bam
files can be converted into positions in the scaffolds internally by pin_hic.

Contact matrix normalization

After we obtain the contact matrix M , we normalize it with Eq. 1 to remove the effects
of noisy hits in long contigs.

where li and lj are the length of contig i and contig j respectively. We also ignore con-
tig pairs with contact number less than w to avoid short contigs having fairly large nor-
malized contact numbers. For a contig ix , we choose contig jy with top N normalized
contact numbers as its N-best neighbors. Here, we use summation of contig lengths to

(1)nc =
cix,jy

li/3+ lj/3

Page 5 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

reduce noises from long contigs, some other methods like LACHESIS also use multi-
plication of contig lengths as the denominator in Eq. 1 for normalization. Based on our
experiments, we showed that the former is more useful to decrease misjoins.

Scaffolding graph construction

After normalization, we then construct a scaffolding graph through our N-best neighbor
algorithm. The time complexity of the algorithm is O(|V | + |E|) , where |V | represents
the number of vertices, |E| is the number of edges in the graph. The steps of the algo-
rithm (Algorithm 1) are described as followed:

Step 1. Define SG = (V ,E) as an undirected graph, whose vertices are composed of
the 5′ and 3′ ends of the contigs mentioned in the last section (Fig. 1a): one contig i
generates two vertices Vih and Vit , where Vih represents the 5′ of the contig and Vit the
3′.
Step 2. Create edges E based on the matrix M . An edge exists between Via and Vjb ,
if and only if Vi is among the N-best neighbors (default: 3) of Vj and vice versa.

Fig. 1  Scaffolding graph and SAT format example. a A scaffolding graph. The graph containing 22 vertices
and 9 edges is formed by 11 contigs, each contig is split into two vertices, the text below each hexagon is the
contig name. Numbers along with the edges are normalized weights, and the grey edges are removed by
the pruning process. b A SAT example. All the contigs are represented as sequences (‘S’) in the SAT file, edges
are defined as links and tagged as ‘L’, three scaffolds obtained from a are labelled as paths (‘P’) and three
scaffolds are gathered in the assembly set tagged as ‘A’, and current assembly is tagged as ‘C’

Page 6 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

Step 3. Perform a pruning process so that there is at most one edge per vertex, by
only keeping the edge with unique maximum weight. If two or more edges have
the same maximum weight, all edges linked to the vertex are removed.
Step 4. Add edges between the 5’ and 3’ vertex of each contig, and traverse the
graph to find all the components, which are scaffolds. If there is a loop in the scaf-
folding graph, we choose an arbitrary vertex as the beginning and its predecessor
as the end. At last, we output all the vertices, edges, paths and other information
about the scaffolding graph, such as the weight between a contig pair, into a SAT
file.

Figure 1 gives an example in which there are 22 vertices and 9 edges in the graph. After
pruning, all the grey edges are deleted and only five red edges remain. There are 6 paths
in the graph, 3 of them formed by a single contig, 1 cyclic path is built by contig 11F, 13F
and 19F, two acyclic paths are formed by contig 01F, 04F, 06F and 03F, 07F respectively.

Misjoin detection

Even though we normalize edge weights by contig lengths, a large scaffold, especially
a complete chromosome, based on our observations, is prone to be misjoined with
other chromosomes (Fig. 4a). To resolve this problem, we employ an extra step after
scaffolding to make breaks at the potential misjoins.

Page 7 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

During the procedure, we take the bam files and the final scaffolding SAT file as
inputs, and obtain scaffolds and their corresponding contigs from the SAT file. We
gather read pairs which meet the following requirements:

•	 Both 5’ ends of a read pair are mapped to the same contig or adjacent contigs in
the same scaffold unambiguously without soft or hard clippings.

•	 Mapping qualities are no less than q (default: 10).
•	 Not a duplicated read pair.

We then use these read pairs to calculate the physical spanning coverage for each
base, and collect maximum coverage for each contig and each join between adja-
cent contigs. We then break at the joins whose maximum coverage is less than p%
(default 30%) of that of each of their neighboring contigs. This method is based on
the assumption that misjoins between contigs tend to have many fewer spanning read
pairs than equivalent regions within the contigs themselves.

SAT format

To retain the scaffolding graph information and employ the information in further
process, we define a new file format called “SAT” format, which is inspired by the
“GFA” format and extended to keep scaffolding information.

We use the “S” tag to represent the contigs with the second field after “S” being the
contig ID, the third field the contig length, and forth optional field for contig sequence.

We use “L” to represent edges, with a plus or minus sign to represent the 5’ and 3’
ends of the contig respectively, and we also add a tag “wt” to record the edge weight.

We use “P” to represent a path (scaffold), with the second field of “P” being the scaffold
ID, the third the scaffold length, and the fourth being the components of the scaffold.

Then we add further tags “A” to represent the set of scaffolds and “C” to represent
the current scaffold set. These tags support the iterative usage of the file.

Figure 1 gives a simple example of SAT format. To facilitate our users, we have sup-
plied a tool called “satool” (https://​github.​com/​dfguan/​satool) to visualize and convert
SAT format to the AGP format used by NCBI and others to represent chromosomal
scaffolds.

Results
To assess the performance of pin_hic, we conducted three experiments on three dif-
ferent VGP assemblies, and compared our results with the state-of-art scaffolding tool
SALSA2 and 3D-DNA. The benchmarks include computational resource consump-
tion, scaffolds continuity and correctness, since 3D-DNA implements parallelization
internally, we ignored its consumption of computational resource.

Both SALSA2 and pin_hic were run in default mode on a LSF HPC cluster. SALSA2
read alignment and filtering were done by the recommended Arima mapping pipeline,
pin_hic used the alignments directly from bwa and filtered the read pairs internally.
The CPU runtime and peak memory for scaffolding are collected by the LSF platform.

https://github.com/dfguan/satool

Page 8 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

Assembly collection

We collected three VGP assemblies, which were all built at chromosome scale,
including an Anabas testudineus (common name: climbing fish, At for short) assem-
bly, a Takifugu rubripes (common name: Tiger puffer, Tr for short), and a Calypte
anna (common name: Anna’s hummingbird, Ca for short). All assemblies were split
at each run of Ns to get the original contigs. Assembly metrics for each species is
listed in Table 1.

For At, we used the fAnaTes1.2 assembly with a scaffold N50 of 25.06 Mb, con-
taining 316 contigs with 7.06 Mb contig N50. The Tr assembly has a scaffold N50 of
16.71 Mb, having 530 contigs with 3.14 Mb contig N50; Ca assembly has a scaffold
N50 of 74.08 Mb, after removing two contigs less than 1 kb, it has 586 contigs and
contig N50 of 14.52 Mb.

The split At, Tr and Ca assemblies have 97.5%, 96.6% and 93.9% complete genes
count using BUSCO [19] analysis, showing all the contigs having a high complete-
ness. Below we use Ats to refer to the split At assembly, Trs for the split Tr assembly,
and Cas for the split Ca assembly.

Hi‑C reads collection and preprocessing

As is displayed in Table 2, we collected 341 M, 128 M and 515 M Hi-C read pairs
for At, Tr and Ca respectively, which were all sequenced in Arima Genomics, using
MboI and HinfI enzyme. Before scaffolding, we mapped all Hi-C read pairs to the
contigs, and preprocessed the Hi-C reads with recommended Arima mapping pipe-
line (https://​github.​com/​Arima​Genom​ics/​mappi​ng_​pipel​ine) for SALSA2.

After mapping, we performed a statistic on read pairs aligned intra and inter con-
tigs. As is shown in Table 2, all split assemblies have over 25% mapped to inter con-
tigs, which can be used for scaffolding. Ca has most inter-contig read pairs, although
Tr has only 128 M Hi-C read pairs, it still has 32 M inter-contig read pairs for
scaffolding.

Table 1  The statistic of genome assembly metrics

NCBI Assembly ID Genome
size (Mb)

Scaffold Scaffold
N50 (Mb)

Contig Contig N50 (Mb) BUSCO
complete
genes (%)

At GCA_900324465.2 556 50 25.06 316 7.06 97.5

Tr GCF_901000725.2 384 128 16.71 530 3.14 96.6

Ca GCA_003957555.2 1060 159 74.08 586 14.52 93.9

Table 2  The statistic of Hi-C reads alignment results

Read pairs (M) # Intra-contig read pairs (M) # Inter-contig
read pairs (M)

Ats 341 155 85

Trs 128 52 32

Cas 515 193 198

https://github.com/ArimaGenomics/mapping_pipeline

Page 9 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

Scaffolding results evaluation

The scaffolding results are shown in Table 3, in which the best results are highlighted in
bold. In the experiments, both SALSA2 and 3D-DNA were run in default settings with-
out error correction before scaffolding. Pin_hic was run in default settings which uses
three iterations, summation normalization and three-part split method. We assessed
their accuracy using QUAST-LG [20] with the chromosome-scale assemblies mentioned
in the last section.

Memory consumption and speed

As is shown in Table 3, pin_hic is more efficient than SALSA2, its speed is around 11%–
65% faster than that of SALSA2. And it consumes less memory for all the cases except
Ats scaffolding, in which it still has a comparable memory consumption.

Scaffold continuity

As is shown in Table 3, 3D-DNA owns the largest scaffolds and NG50s for all the species,
except for Cas where pin_hic is the winner of the largest scaffold, indicating its capacity
of generating more continuous than the other tools. However, its largest scaffold of Ats
is about 7 times larger than that of the reference assembly, which implies misjoins in the
scaffold. By contrast, both pin_hic and SALSA2 have obtained the largest scaffolds with
proper lengths, especially for pin_hic, the largest 34.17 Mb scaffold is consistent with
the VGP curated assembly, which shows its ability in producing correct scaffolds. For
pin_hic, all NG50s are improved by at least 3 times than those of the original assemblies,
the scaffold NG50 of Trs is improved by 4.8 times.

NGA50, reflecting both scaffolding correctness and continuity, is another important
measurement for scaffold evaluation. Both 3D-DNA and pin_hic have larger NGA50s
than that of SALSA2s. However, 3D-DNA achieves a higher NGA50 with a cost of

Table 3  The scaffolding results of primary contigs from three species

The best results are highlighted in bold
1 Original primary contigs
2 pin_hic scaffolding result
3 SALSA2 scaffolding result
4 3D-DNA scaffolding result

sequence Largest (Mb) NG50 (Mb) NGA50 (Mb) Reloc Inv Tran RAM (GB) Runtime
(CPU hrs)

Ats-org1 316 16.97 7.06 – – – – – –

Ats-phc2 93 34.17 24.11 17.83 67 10 0 2.94 1.62
Ats-sal3 124 28.24 20.93 12.47 64 18 0 2.22 1.80

Ats-3d4 95 232.83 131.30 18.81 85 19 39 – –

Trs-org 530 13.38 3.28 – – – – – –

Trs-phc 267 28.10 15.75 9.32 62 13 9 0.98 0.78
Trs-sal 273 26.82 11.11 5.85 82 16 10 1.44 1.08

Trs-3d 653 28.63 16.81 6.00 286 35 108 – –

Cas-org 586 48.75 14.52 – – – – – –

Cas-phc 242 184.75 44.74 28.65 106 9 12 4.54 2.43
Cas-sal 299 179.32 35.40 22.55 85 12 6 4.74 4.02

Cas-3d 14 84.57 84.57 35.40 196 24 113 – –

Page 10 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

scaffolding accuracy, which we will discuss in the following section. The NGA50s of pin_
hic are at least 27% larger than those of SALSA2, and 59% larger than SALSA2 on Trs
scaffolds, which indicates pin_hic can generate highly accurate assembly.

Scaffold correctness

As is shown in Table 3, pin_hic has less misjoins than SALSA2 on Ats and Trs scaffolds,
and has 24 more misjoins than SALSA2 on Cas scaffolds. Through analyzing standard
deviation (SD) on Cas contig lengths, we discovered the misjoin number may be pro-
portional to SD, a larger SD is prone to lead to more misjoins in pin_hic scaffolds. Both
SALSA2 and pin_hic has majority of relocation errors, taking at least 74% of all their
misjoins. 3D-DNA has most misjoins, especially it contains much more translocation
error than the other tools, which needs further manual correction as it is designed.

To further validate the correctness of the scaffolds, we made circos plots to display
the consistency between the scaffolds and the reference genomes by using Jupiterplot
[21]. The plots of Ats scaffolds are shown in Fig. 2. In these figures, scaffolds consisting
of 90% of the reference genome size, are selected to map to the VGP fAnaTes1.2 assem-
bly, the chromosomes of the assembly are displayed on the left side and the scaffolds
on the right, the interrupting ribbons are the visible mis-assemblies. 3D-DNA contains
numbers of misjoins which requires further manual curation. As for SALSA2, although
no translocation occurs, there are at least 5 visible relocations within its scaffolds, while
no apparent mis-assemblies are observed in pin_hic scaffolds, which implies its higher
accuracy than SALSA2 in the Ats scaffolds. Additional file 1: Figs. S4, S5 showing Cas
and Trs circos plots indicating the similar situations.

Misjoin detection evaluation

The final step in pin_hic scaffolding process is misjoin detection, to prove efficacy of the
method, we mapped the scaffolds onto their reference genomes, and made the dotplots
based on the alignment results by a public Dotplot tool (https://​github.​com/​dnane​xus/​

Fig. 2  Scaffolds consistency plots of Ats scaffolds. a Pin_hic scaffolds, b SALSA2 scaffolds and c 3D-DNA
scaffolds. The largest 21, 27 and 4 scaffolds from pin_hic, SALSA2 and 3D-DNA scaffolds, consisting of
90% (NG90) of the genome, are aligned to the VGP fAnaTes1.2 assembly. The chromosomes are displayed
incrementally from 1 to 23 on the left side and the scaffolds are located on the right side of the ring.
Connections show aligned regions over 10 kb. Large-scale mis-assemblies are visible as interrupting ribbons.
Pin_hic scaffoldings are neat, no clear misjoins are found, while SALSA2 scaffolds contain about 5 relocations,
and 3D-DNA scaffolds contain numerous misjoins

https://github.com/dnanexus/dot

Page 11 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

dot). As is demonstrated in Fig. 3, where the Ats scaffolds were mapped to its reference
genome. Before misjoin detection, it contains several misjoins, a few independent chro-
mosomes are chained together. For example, the scaffold “u000000232” is made up of
five complete chromosomes. After misjoin detection, all the visible misjoined contigs are
separated, the scaffolds is aligned consistently to the reference, which proves robustness
of the misjoin detection method. We observed same situations for Trs and Cas scaffolds
in Additional file 1: Figs. S2, S3.

In Fig. 4, we give an example to explain the details of the misjoin identification
method. We extracted the scaffold “u000000232” from the Ats scaffolds before misjoin
detection, which is composed of 43 contigs and 121 Mb long, and made a heatmap using
HiGlass [22] based on the read pairs map to this scaffold and a coverage plot. As is illus-
trated in Fig. 4, the HiGlass heatmap implies five independent chromosomes were joined

Fig. 3  Alignment dotplots for pin_hic Ats scaffolds before and after mis-join detection. a pin_hic scaffolds
alignment before misjoin detection and b pin_hic scaffolds alignment after misjoin detection. Both scaffolds
are aligned to the VGP fAnaTes1.2 reference genome. Before misjoin detection, several chromosome-scale
scaffolds are concatenated together, after the process, all the large misjoined scaffolds are corrected, the
scaffolds are aligned to the reference genome more consistently

Fig. 4  Misjoin detection on a Ats scaffold. a HiGlass heatmap of “u000000232” in Ats scaffolds. The five
independent blocks showing no evidence to be joined together were put together due to noises. b Physical
coverage plot based on the misjoin detection algorithm. The joins which have much lower coverage than
their neighbors are recognized as misjoins and broken (the red crosses)

https://github.com/dnanexus/dot

Page 12 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

together, meanwhile the physical coverage plot shows fairly low local minima at the mis-
joins. The program made 4 breaks (red crosses in the coverage plot) in the scaffolds, and
separated the scaffold into six scaffolds correctly, which proves the method can work
properly to find the misjoins. The other low-coverage joins caused by missing or short
sequences are not broken.

Pin_hic performance in different modes

To measure the effects of different normalization and split methods. Pin_hic were imple-
mented and tested in four different modes: default, 3m, 2s, 2m. Default mode repre-
sents the default settings of pin_hic (i.e., three-part split and summation normalization
method). The number before the letter represents how many parts a contig is split into,
and m, s represents multiplication and summation normalization method respectively.
All tests were run in three iterations. The results are shown in Table 4, best results are
highlighted in bold.

As is shown in the table, different mode of pin_hic has slight effects on resource con-
sumption and shows no clear pattern.

As for scaffolding continuity, pin_hic 2m mode has the largest NGA50 than the other
modes, and has the least scaffold numbers, however its NG50 and largest scaffold is
smaller than the default mode.

As for scaffolding correctness, we observed more misjoins, especially more transloca-
tion errors, in 3m and 2m mode. To balance scaffolding efficiency, scaffolding correct-
ness and continuity, pin_hic use three-part split and summation normalization method
as its default mode.

Table 4  The scaffolding results in different modes

The best results are highlighted in bold

*Chromosomes are misjoined
1 pin_hic default scaffolding mode

sequence Largest
(Mb)

NG50 (Mb) NGA50
(Mb)

Reloc Inv Tran RAM (GB) Runtime
(CPU
hrs)

Ats-phc1 93 34.17 24.11 17.83 67 10 0 2.94 1.62
Ats-phc-2s 89 32.64 24.11 18.39 72 12 0 3.76 1.72

Ats-phc-3m 53 28.84 21.98 18.81 73 18 5 2.91 1.84

Ats-phc-2m 53 28.34 21.83 18.81 71 15 5 2.91 1.73

Trs-phc 267 28.10 15.75 9.32 62 13 9 0.98 0.78

Trs-phc-2s 250 28.04 15.45 9.32 70 21 9 0.99 0.63

Trs-phc-3m 207 27.95 14.73 8.94 81 16 23 0.82 0.50
Trs-phc-2m 191 29.07 14.25 9.52 81 26 12 0.98 0.63

Cas-phc 242 184.75 44.74 28.65 106 9 12 4.54 2.43
Cas-phc-2s 223 326.93* 43.88 28.65 111 12 18 4.54 2.88

Cas-phc-3m 163 170.93 45.83 28.65 119 11 32 4.54 2.62

Cas-phc-2m 154 107.91 39.24 28.65 115 14 32 4.54 3.11

Page 13 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

Pin_hic performance with multiple iterations

To investigate the effects of number of iterations on pin_hic performance, we ran pin_
hic from 1 to 6 iterations on all the split assemblies, and collected N50s, corrected N50s
after misjoin detection and CPU runtime for each iteration. Figure 5 shows the perfor-
mance for Ats scaffolds. As is displayed, the CPU runtime (the blue line) is almost linear
to the iteration numbers. Scaffold N50 (the green line) before misjoin detection increases
drastically from 21.23 Mb (1st iteration) to 39.55 Mb (3rd iteration), which indicates
most true positive links are exhausted during these periods. It finally reaches the scaf-
fold N50 of 364.44 Mb. This large scaffold N50 is not affecting the misjoin method, the
corrected N50 remains constant at 25.18 Mb scaffold N50 after the third round, which
reflects robustness of the mis-join detection algorithm. Pin_hic iteration performances
for the other two scaffolds are demonstrated in Additional file 1: Fig. S6.

Conclusions
Building an accurate and chromosome-scale assembly is still one of the major chal-
lenges in genomic studies. In this paper, we proposed a new Hi-C scaffolding method
for generating chromosome-scale scaffolds through iterative weighted linking, it uses
N-best neighbor strategy to resolve non-reciprocal best neighbor issue and exploit
all possible links, and a robust method to discover misjoins in scaffolds and improve

Fig. 5  pin_hic Ats scaffolding results of multiple iterations. The runtime (dark green line) increases linearly
with the iterations, while the scaffold N50 grows rapidly at the second and third round, it finally reaches
364 Mb at round 6. Even though the contigs are highly expanded, the corrected scaffold N50 keeps constant
at 25 Mb since the third round

Page 14 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

scaffolding accuracy based on comparison of maximum physical coverages of the
joins and their neighboring contigs, which is theoretically and practically unaffected
by the scaffold lengths. Moreover, we defined a novel “SAT” format to keep a scaffold-
ing graph, which can be used in further genomic analysis, such as manual curation.

Through our experiments on four long-read based de novo assemblies from three dif-
ferent species, we demonstrate that pin_hic can generate more continuous assembly
than the start-of-art tool SALSA2, while achieving higher or comparable accuracy than
3D-DNA and SALSA2, it is also proved to be more efficient. Further, pin_hic program
is implemented in C programming language, its only dependency is zlib, which makes
it easy to compile and install, and easy to be integrated into modern assembly pipelines.

Although pin_hic has great potential to be applied in the real de novo sequencing pro-
jects, it required some further improvements: (1) It assumes the input assembly contains
no mis-assemblies, so no module is designed to resolve chimeric assemblies, the misjoin
detection algorithm can make breaks on joins, however it can not find mis-assemblies
within a contig; (2) It still depends on users to specify the number of iterations, however
users may set up a small number leading to short scaffolds. Although misjoin detection
method is not affected by the scaffold lengths, user can choose a large number to pro-
duce more continuous results, it is useful to develop a automatic stop mechanism to save
runtime. (3) Unlike mate pair reads, the distance and the relative orientation between
Hi-C read pairs are not known, which makes it hard to determine gap sizes in a scaffold.

All the assemblies used in this study are based on long reads, which have natural
advantages in read length over NGS reads and are able to span moderately repetitive
regions and allow those regions to be built correctly. The advances in long reads assem-
blers have been stimulating the prosperity of long reads assembly. With long reads, we
are capable of generating more continuous, more correct and more complete genomes
than ever. This has enabled us to produce more accurate structural variant calling
results, discover more novel genes, etc. However due to the complexity of eukaryotic
genomes, long reads assemblies are typically inadequate to provide complete profile of
the genomes, one still needs long-range sequencing technologies such as Hi-C to restore
chromosomal structures of the assemblies.

The advent of long read and long-range Hi-C sequencing technology has opened a
new era, in which the chromosome-scale assemblies can be generated automatically
and productively. As many de novo sequencing projects have been launched in recent
years, such as Darwin Tree of Life (DToL) Project (https://​www.​sanger.​ac.​uk/ sci-
ence/collaboration/darwin-tree-life-project) and Vertebrate Genomes Project (VGP)
(https://​verte​brate​genom​espro​ject.​org), we believe pin_hic has potential to be applied
in these projects and accelerates production of chromosome-scale assemblies in the
near future.

Availability and requirements

Project name: pin_hic.
Project home page: https://​github.​com/​dfguan/​pin_​hic.
Operating system(s): Linux, MacOS.
Programming language: C.

https://www.sanger.ac.uk/
https://vertebrategenomesproject.org
https://github.com/dfguan/pin_hic

Page 15 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569	

Other requirements: gcc.
License MIT Any restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04453-5.

Additional file 1. Supplementary note.

Acknowledgements
The Anabas testudineus and Takifugu rubripes genome was sequenced at the Sanger Institute as part of the Vertebrate
Genomes Project, and we thank members of the Sanger Institute DNA pipelines group for generating the sequence
data and Byrappa Venkatesh for providing the sample. And we thank the Sanger GRIT team for manual curation of these
assemblies.

Authors’ contributions
D.G. and R.D. conceived the study, D.G. developed the software, D.G. and Z.N. designed and performed the experiments,
D.G. drafted the manuscript. R.D., S.M., N.M., Y.W. and G.W. edited and improved the manuscript. All authors have read
and approved the final manuscript.

Funding
D.G. and Y.W. were supported by the National Key Research and Development Program of China (Nos.: 2017YFC0907503,
2018YFC0910504 and 2017YFC1201201), and D.G. was supported by the National Natural Science Foundation of China
(Nos.: 32100329) and the China Scholarship Council. S.M. and R.D. were supported by Wellcome grant WT207492. The
funders had no role in the design of the study, data collection, data analysis, interpretation of results, or writing of the
paper.

Availability of data and materials
Datasets used in the experiments are listed as follows: At: The original assembly and reference genome is available
at NCBI with Genbank accession: GCA 900324465.2. The Hi-C data is deposited in NCBI with accessions ERR4179331-
ERR4179339 and can also be downloaded with the command: “aws s3 -no-sign-request sync s3://genomeark/species/
Anabas_testudineus/fAnaTes1/genomic_data/arima/”. Ca: The original assembly and reference genome is available at
NCBI with Genbank accession: GCF 003957555.1. The Hi-C data can be downloaded with the command: “aws s3 -no-
sign-request sync s3://genomeark/species/Calypte_anna/bCalAnn1/genomic_data/arima/”. Tr: The original assembly and
reference genome is available at NCBI with RefSeq accession: GCF 901000725.2. The Hi-C data is deposited in NCBI with
accessions ERR4179374-ERR4179378, and can also be downloaded with the command: “aws s3 -no-sign-request sync
s3://genomeark/species/Takifugu_rubripes/fTakRub1/genomic_data/arima/”.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
R.D. is a consultant for Dovetail Inc.

Author details
1 Center for Bioinformatics, Harbin Institute of Technology, Harbin 150001, China. 2 Department of Genetics, University
of Cambridge, Cambridge CB2 3EH, UK. 3 Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA,
UK. 4 Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

Received: 2 May 2021 Accepted: 7 September 2021

References
	1.	 Chin C-S, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods.

2016;13(12):1050–4.
	2.	 Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature.

2013;496(7446):498–503.
	3.	 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly

via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.
	4.	 Nagarajan N, Pop M. Sequence assembly demystified. Nat Rev Genet. 2013;14(3):157–67.

https://doi.org/10.1186/s12859-021-04453-5

Page 16 of 16Guan et al. BMC Bioinformatics 2021, 22(1):569

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	5.	 Li R, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res.
2010;20(2):265–72.

	6.	 Li R, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–7.
	7.	 Sohn J-I, Nam J-W. The present and future of de novo whole-genome assembly. Brief Bioinform. 2018;19(1):23–40.
	8.	 Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics.

2018;34(5):725–31.
	9.	 Lam ET, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat

Biotechnol. 2012;30(8):771–6.
	10.	 Lieberman-Aiden E, et al. Comprehensive mapping of long-range interactions reveals folding principles of the

human genome. Science. 2009;326(5950):289–93.
	11.	 Dudchenko O, et al. De novo assembly of the aedes aegypti genome using Hi-C yields chromosome-length scaf-

folds. Science. 2017;356(6333):92–5.
	12.	 Belton J-M, et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods.

2012;58(3):268–76.
	13.	 Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo

genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25.
	14.	 Kaplan N, Dekker J. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol.

2013;31(12):1143–7.
	15.	 Ghurye J, Pop M, Koren S, Bickhart D, Chin C-S. Scaffolding of long read assemblies using long range contact infor-

mation. BMC Genomics. 2017;18(1):527.
	16.	 Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, Pop M, Phillippy AM, Koren S. Integrating Hi-C links with assembly

graphs for chromosome-scale assembly. PLoS Comput Biol. 2019;15(8):1007273.
	17.	 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. PREPRINT 00. 2013.
	18.	 Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32(14):2103–10.
	19.	 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and anno-

tation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
	20.	 Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG.

Bioinformatics. 2018;34(13):142–50.
	21.	 Chu, J. Jupiter plot: a circos-based tool to visualize genome assembly consistency. Zenodo. 2018. https://​zenodo.​

org/​record/​12412​35#.​XA92q​2hKiUk.
	22.	 Kerpedjiev P, et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol.

2018;19(1):125.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://zenodo.org/record/1241235#.XA92q2hKiUk
https://zenodo.org/record/1241235#.XA92q2hKiUk

	Efficient iterative Hi-C scaffolder based on N-best neighbors
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	Overview
	Contact matrix calculation
	Contact matrix normalization
	Scaffolding graph construction
	Misjoin detection
	SAT format

	Results
	Assembly collection
	Hi-C reads collection and preprocessing
	Scaffolding results evaluation
	Memory consumption and speed
	Scaffold continuity
	Scaffold correctness

	Misjoin detection evaluation
	Pin_hic performance in different modes
	Pin_hic performance with multiple iterations

	Conclusions
	Availability and requirements
	Acknowledgements
	References

