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Abstract: Our understanding of RNA structure has lagged behind that of proteins and most other bi-
ological polymers, largely because of its ability to adopt multiple, and often very different, functional
conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks.
Conventional biochemical and biophysical techniques all have limitations in solving RNA structure
and to address this in recent years we have seen the emergence of a wide diversity of techniques
applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility.
Viral RNA is a particularly productive area to study in that this economy of function within a single
molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques
that are being used to elucidate RNA conformational flexibility and exemplify how the structure and
function are, as in all biology, tightly linked.
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1. Introduction

RNA is a critical, central component of the chemical processes of life, not just as an
information storage mechanism but also as a spatially dynamic ligand and chaperone,
and in some cases, catalytic, molecule. As is common in biology, form and function are
inseparable, and the physical properties of RNA are what enables it to perform such a
diverse range of roles. Viruses pack functionality into small genomes, and often use the
different properties of RNA to carry out distinct parts of their lifecycle. The most familiar
of the structural properties is the ability to form Watson–Crick base pairs; this facilitates the
generation of RNA duplexes which are significantly stiffer and less deformable than DNA
duplexes [1]. This additional stiffness also translates to RNA secondary structures, with
RNA hairpin elements requiring more force to disrupt them than equivalent DNA duplexes.
Conversely RNA itself is much more labile than DNA due to its additional 2′ hydroxyl
group on the ribose allowing cyclization and hydrolysis [2]. The duplex length and the base
composition of the helix both influence the flexibility and strength of interaction [3]. There
is often a degree of nucleotide bias in viral genomes; for instance, the HIV-1 genome has a
high density of A’s and a consistently low proportion of C’s, in contrast to deltaretroviruses,
which are A-poor but C-rich [4]. This has implications for the secondary structure of viral
RNA, as well as influencing codon usage and amino acid diversity [5].

Besides the classical canonical base pairing, RNA has many well-categorised non-
canonical interactions that allow for structural diversity. Each base has three edges which
can hydrogen bond to other bases: the Watson–Crick edge, the Hoogsteen edge, and the
sugar edge. These alternative interactions include the G-U wobble base, which has similar
bonding energy to an A-U pair and can fit within a Watson–Crick helix [2]. Having the
ability to form G-U as well as A-U or G-C pairs adds to the ability of the same RNA
sequence to form multiple different structures. Other bases such as pseudo-uracil, inosine,
and dihydrouridine can also be incorporated [2]. Additionally, more than one edge can be
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interacting at any one time, allowing the formation of triple bases such as C-G-A where
guanine is involved in both a canonical and sheared base pair [6]. Common non-canonical
interactions centre around G-A pairs due to their hydrogen bonding capabilities allowing
multiple arrangements of the two purines. There are six dominant modes of G-A base pair
interaction [6]. Each of these interactions can bestow subtle differences to the characteristics
of the base pair, which in turn affect the RNA secondary structure; for instance, the sheared
G-A arrangement stiffens an internal loop more than an imino pair. It has also been
demonstrated that transitions between different ionic bonding arrangements can occur in a
smooth pathway, hinting that RNA conformational flexibility may be facilitated by these
transitions [6].

With such a plethora of possible interactions, and the ability to transition between
different states, it is no surprise that higher order RNA structure is incredibly diverse and
is often flexible. However, an increasing amount of evidence suggests that these secondary
and tertiary structures are comprised of a modular combination of conserved motifs
(examples are described in Table 1) [7], with adenine appearing to be more commonly
present in structure cores and junctions [8].

Table 1. Common RNA structure motifs.

Motif Characteristics

Three-way junction (3WJ) The junction of three helices.

Four-way junction (4WJ) The junction of four helices.

Kink-turn Helix–internal loop–helix motif with a 50◦ bend in
the helical axis. Two classes, N1 and N3.

C-loop Increased helical twist.

Right angle motif Internal helical angle of 90◦.

Stem loop

Intramolecular helix with a terminal loop of three
to eight nucleotides connecting the two sides of the
stem. Tetraloops, where four nucleotides are in the
loop, are particularly common, with UNCG and

GNRA being especially stable.

Paranemic motif Crossover motif of stacked helices

Kissing loops Base pairing between two helix loops.

Ribose zippers
Hydrogen bonding interaction between the 2′OH

groups on ribose sugars of unpaired, anti
parallel bases.

Cross strand purine stacks
Internal loop motif where the six membered rings

of two purines stack across two strands, as
opposed to classical same strand stacking

Bulge-helix-bulge 4 bp A-form helix with a 3 bp bulge either side.

It is unclear whether motif evolution is convergent or divergent, but such motifs are
present in a wide array of organisms [9] and combine to generate the RNA fold [8]. The
use of motifs plays a role not only in static conformations but also in controlling flexibility
of the RNA, the 3WJ motif of Bacillus phage phi29 packaging RNA, for instance, is highly
thermodynamically stable [10].

Many RNAs exist as ensembles of various conformations, usually with a dominant
ground state along with rarer excited state structures, and the composition of the sur-
rounding environment can tune the ensemble composition. Interactions with ligands can
induce conformational changes in RNA, a well characterized example being that of bacte-
rial riboswitches, such as the SAM-1 riboswitch family. As is typical of riboswitches, the
SAM-I riboswitch senses and responds to levels of a particular metabolite (SAM: s-adenosyl
methionine, indicative of cellular methionine levels), which causes multiple changes in the
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RNA structure of an expression platform, hindering translation. Remarkably, the SAM-IXcc
riboswitch was recently observed to respond both to the presence of SAM and to the
presence of uncharged initiator methionine tRNA, which triggers the opposite structural
change, leading to methionine production [11]. Viruses, to our knowledge, do not use
metabolites to control RNA structural switches in this manner, but they do use similarly
complex RNA structural switches.

Mg2+ binding to RNA affects the stability of conformations and variations in its
concentration can induce structural changes, such as the more tightly folded three helix
junction present in 16s RNA being favoured at higher Mg2+ concentrations [12]. Chemi-
cal modification of nucleobases can also affect conformation; N6-methylated adenosine
(m6A) is a common modification in viral as well as eukaryotic RNAs. It destabilizes A-U
base pairing and can have stabilizing or destabilizing effects on RNA duplex formation
depending on where in the structure methylation occurs [13]. The flexibility of RNA
structures is crucial for their regulatory function, especially where it involves interactions
with proteins. The HIV-1 TAR (shown in Figure 1) hinge region, for example, adopts a
particular conformation within the ensemble in order to bind its ligand with high affinity,
in a mechanism known as conformation capture [14]. Studies of RNA recognition motif
regions of polypyrimidine tract binding protein (PTPB) also support this theory with the
pyrimidine motif, containing a CsynUanti arrangement, performing a “conformational
readout” to recognize its RNA target [15].
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panel: the same U5 sequence pairs with the Gag start codon to form the U5:AUG helix. Structures 

Figure 1. The HIV-1 genomic RNA leader contains a structural switch. Left hand panel: pseudoknot
structure, where the DIS palindrome forms a pseudoknot with upstream U5 sequences. Right hand
panel: the same U5 sequence pairs with the Gag start codon to form the U5:AUG helix. Structures
that change during the switch are labelled in red. Structures are drawn according to data from
Kenyon et al., 2013.

Viruses may represent the peak of complexity when it comes to their RNA structure,
since there is enormous selection pressure for the economical use of their small genomes to
maximise replicative fitness. An interesting example of the structural importance of RNA
in the virus lifecycle can be seen in the Φ29 bacteriophage prohead RNA (pRNA). Here,
the 174nt non-coding pRNA self-assembles into a nano-ring which acts as a scaffold for
the recruitment of ring ATPase and, hence, the completion of the bacteriophage packaging
motor used to condense the viral genome into the nucleocapsid [16]. Mutational disruption
of stem loop D flexibility resulted in the inhibition of nano-ring self-assembly, showing the
importance of the structural fluidity necessary to perform this role. In many viruses, the
job performed by pRNA in Φ29 is effected by a protein, but the fact that RNA alone can
achieve the same result speaks to its power as both a structural and functional molecule.

Coding functions of viral RNA also make use of RNA secondary structure, providing
a dual use of information storage and regulation. For instance, the first open reading
frame (ORF) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
full-length RNA contains a pseudoknot that facilitates the ratiometric translation of two
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overlapping sequences, ORF1a and ORF1b, through ribosomal frameshifting [17]. A
similar method of frameshifting in retroviruses also precisely controls the ratio of Gag to
GagPol coding transcripts.

2. Analysis of RNA Structure and Flexibility

The ability of RNA to adopt many conformations has made structure probing tech-
nically challenging. The earliest studies focused on solving two-dimensional secondary
structures by chemical and enzymatic techniques complemented by computer-based free
energy minimization and phylogenetic conservation data. Static three-dimensional mod-
els were later derived by techniques such as crystallography and NMR and global folds
subsequently gleaned from lower-resolution methods such as SAXS and Cryo-electron
microscopy. Developments in all of these techniques have meant that they all are still
capable of providing valuable complementary information and although the challenge of
solving individual structures from within structural ensembles is still significant, advances
are being made. No single method has all the answers yet, but the combination is starting
to reveal some of the unsuspected complexity of viral RNA conformational versatility.

2.1. SHAPE and Other Secondary Structure Probing Techniques

RNA secondary structure probing typically has used enzymatic (ribonuclease) or
chemical reagents that react with specific bases according to their chemical reactivity
and/or the structure in which they are found in the polyribonucleotide chain. Modification
of the base or cleavage of the chain is detected using reverse transcription as the reverse
transcriptase (RT) enzyme dissociates from the template at these sites, giving cDNAs
of varying lengths in different proportions. These data are then used to identify single-
and double-stranded regions of the RNA and can inform minimal free energy structural
prediction algorithms. This was typically a laborious process that necessitated the use of
multiple probing reagents and radiolabelled RNA electrophoresed on long acrylamide
gels. SHAPE (selective 2′OH acylation analyzed by primer extension, Figure 2) [18]
revolutionised RNA secondary structure probing for two reasons: firstly, the SHAPE
reagents can acylate nucleotides agnostically of the actual base and thus theoretically
provide a measure of the single or double strandedness of every nucleotide. Secondly, the
methods used to analyze the cDNAs have improved.
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Figure 2. Process diagram for high-throughput SHAPE structure determination. The 1M7 reacts
covalently with a 2′OH on the sample RNA. This occurs preferentially where the backbone is flexible.
Reverse transcriptase generates a family of cDNAs of length corresponding to the sites of 1M7 adduct
formation. Comparison with a sequencing ladder allows readout of amount of cDNA product of
each length. This ‘SHAPE reactivity’ is used to inform minimal free energy prediction software.

Fragment analysis of cDNA lengths by capillary sequencing has enabled high-throughput
analysis. ‘High-throughput SHAPE’, which uses capillary electrophoresis and fluorophore-
labelled cDNAs, enabled the study of the entire HIV-1 genome inside virions [19] as well as
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its 5′ region in different biological states [20], concluding that the HIV-1 5′UTR is relatively
conformationally stable. Such analyses, however, report upon a structural average, and
modifications to the technique have since helped to separate and probe individual con-
formers, elucidating a plethora of structural changes in retroviral 5′UTRs. ‘In-gel SHAPE’
separates conformers by native gel electrophoresis before probing them individually; such
experiments showed conclusively that a large-scale structural rearrangement occurs in the
HIV-1 RNA upon dimerization [21]. Modifications to the original SHAPE reagents have
extended the range of reagents possessing different half-lives, which has allowed scientists
to follow RNA structural changes across timescales of milliseconds to minutes, as well as
to work within cells and virions [22]. Retroviral virions bud from the cell in an immature,
noninfectious state, subsequently maturing by protease cleavage and structural rearrange-
ments. The use of time-resolved SHAPE and a protease deficient murine leukaemia virus
mutant showed that the immature virion contains a specific structural intermediate in
the genomic RNA dimerization pathway that is distinct from the structure inside mature
virions [23].

The development of SHAPE-MaP, which uses an RT that skips a nucleotide at the site
of the bound reagent rather than terminating the reverse transcription, has enabled the
use of next-generation sequencing and smaller amounts of viral RNA template [24]. In
SARS-CoV-2, it has shown that some regions of the genome contain stable RNA structures
and that others show low correlation of SHAPE reactivities between experiments, hinting
perhaps that slightly different cellular conditions effect structural changes [25]. In dengue
(DENV), SHAPE-MaP has shown that upon packaging, RNA undergoes a structural
rearrangement, which may be brought about and stabilized purely by the capsid protein
or may be due to an RNA structural switch, and that the dominant RNA structure of the
genome inside virions is in the circularized form [26]; this is perhaps surprising given
that the circularized form is thought to begin replication, which happens early in the viral
lifecycle after cell entry.

Modifications that increase the half-life of SHAPE reagents in an aqueous environment
have enabled the cellular phases of viral lifecycles to be examined. In a study comparing
all four dengue serotypes with four geographically distinct strains of Zika virus (ZIKV), a
remarkable degree of RNA structural conservation was observed not only between strains
of the same virus but also between the different flaviviruses [27]. The structures formed
were different inside cells and in virions, with less RNA structure forming inside cells,
likely reflecting the need to facilitate translation of the genome.

SHAPE has also been coupled with photo-crosslinking, to separately probe RNA
structural changes and protein binding sites, using both to build a picture of how the viral
RNA changes structure upon binding a protein ligand. When this technique, known as ‘XL-
SHAPE’, was applied to the dimeric HIV-1 5′ leader RNA interaction with Gag, extensive
structural changes became apparent, indicating remodelling of most of the structural
elements in this 350 nt region [28].

SHAPE-related techniques are not without their limitations, however, as they are
reliant upon structural modelling algorithms to fit the data to the structure, and they do
not give direct evidence of specific nucleotide pairings. The reactivity of nucleotides to the
SHAPE reagents can be influenced by factors other than simple base pairing. There are
further confounding problems, including that the longer half-life needed to penetrate cell
membranes and probe RNAs inside cells also allows binding of reagents to nucleotides
that can interconvert between two or more structures, effectively marking these regions as
‘single-stranded’ rather than being involved in switching between alternative base pairings.
Some authors have specifically noted that structural conservation assessed by intracellular
SHAPE scores can be lower than the sequence conservation between viral strains [29],
which may reflect this phenomenon.
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2.2. Proximity Ligation

Proximity ligation detects spatially interacting nucleotides and provides direct evi-
dence of interactions rather than making predictions using mapping software (Figure 3).
Initially adapted from methods to detect RNA–protein binding sites such as cross link-
ing and immunoprecipitation followed by sequencing (CLIP-seq) [30], a range of novel
techniques for determining RNA structure has emerged, and been used to study viral
RNA–RNA and viral-host RNA–RNA interactions (Table 2). The general mechanism for
such techniques is broadly similar: cross linking is followed by targeted enrichment (if
desired), limited digestion by RNase, RNA–RNA proximity ligation, cDNA library gen-
eration and finally sequencing. A prominent advantage of such a general scheme is the
modularity of the different steps allowing customization of protocols to suit a particular
experimental need.

Viruses 2021, 13, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 3. Process diagram for proximity ligation. Although the specifics of different proximity liga-

tion methods vary, many follow the general scheme shown above. The modular nature of the 

scheme allows a mixing and matching of different steps to suit the experimental goals. 

Table 2. Proximity ligation techniques. 

Technique Distinguishing Features Reference 

Psoralen cross-linked, ligated, and 

selected hybrids (PARIS) 

Uses 2-dimensional gel electrophore-

sis to enrich cross linked fragments 
[32] 

Sequencing of psoralen cross-

linked, ligated, and selected hybrids 

(SPLASH) 

Biotin-streptavidin enrichment [33] 

Ligation of interacting RNA (LIGR) RNase digestion enriches fragments [34] 

Dual crosslinking, immunoprecipi-

tation, and proximity ligation 

(2CIMPL) 

Enriches fragment using magnetic 

bead tethering via an anti-NP anti-

body, also contains an additional 

cross-linking step before introduction 

of AMT 

[31] 

Cross-linking of matched RNAs 

and deep sequencing (COM-

RADES) 

Biotin-streptavidin enrichment [35] 

RNA proximity ligation (RPL) 

Omits psoralen cross linking step, in-

stead relying on spatial proximity of 

bases in RNA secondary structures to 

facilitate chimera formation 

[36] 

Many of these techniques have been used to interrogate viral genomic RNA struc-

ture; PARIS, SPLASH, and COMRADES have all been used to investigate Flaviviruses. 

Such studies revealed that certain RNA secondary structures remain conserved across dif-

ferent ZIKV lineages, particularly within the 3′UTR, and identified a unique long-range 

interaction between the 5′UTR and the E protein coding region in the Asian lineage that 

is linked to increased infectivity [29]. Long-distance base pairing between 5′ and 3′ cycliza-

tion elements has long been known to mediate a conformational change in flavivirus ge-

nomes during replication and interactions with human miRNAs were also found which 

may be important for regulating viral RNA conformation as well as impacting miRNA 

activity [35]. 

Proximity ligation techniques can illustrate structural flexibility in the RNA by the 

identification of nucleotides that have binding partners in two or more regions. Perhaps 

some of the most powerful evidence of conformational flexibility of RNA comes from 

these experiments, as 48.8% of long (≥ 500 bases) and 41.6% of short (< 500 bases) pair-

wise interactions form alternative structures in both DENV and ZIKV genomes [27]. In 

Figure 3. Process diagram for proximity ligation. Although the specifics of different proximity
ligation methods vary, many follow the general scheme shown above. The modular nature of the
scheme allows a mixing and matching of different steps to suit the experimental goals.

Psoralen-based proximity ligation techniques have become particularly important
in recent years as they do not require a pull-down step of RNA–RNA interacting with
a protein. Psoralen is a plant-based intercalating agent which forms reversible covalent
bonds with RNA–RNA duplexes following UV irradiation; derivatives of psoralen such as
AMT have increased cell permeability characteristics [31].

Many of these techniques have been used to interrogate viral genomic RNA structure;
PARIS, SPLASH, and COMRADES have all been used to investigate Flaviviruses. Such
studies revealed that certain RNA secondary structures remain conserved across different
ZIKV lineages, particularly within the 3′UTR, and identified a unique long-range interac-
tion between the 5′UTR and the E protein coding region in the Asian lineage that is linked
to increased infectivity [29]. Long-distance base pairing between 5′ and 3′ cyclization
elements has long been known to mediate a conformational change in flavivirus genomes
during replication and interactions with human miRNAs were also found which may be
important for regulating viral RNA conformation as well as impacting miRNA activity [35].

Proximity ligation techniques can illustrate structural flexibility in the RNA by the
identification of nucleotides that have binding partners in two or more regions. Perhaps
some of the most powerful evidence of conformational flexibility of RNA comes from
these experiments, as 48.8% of long (≥500 bases) and 41.6% of short (<500 bases) pair-
wise interactions form alternative structures in both DENV and ZIKV genomes [27]. In
some regions of the genome such as the 5′UTR, at least three conformational changes occur
during the lifecycle [29]. The use of proximity ligation has particular pertinence to the study
of segmented RNA viruses as it is able to identify conclusively intrasegmental interaction
sites, which are important for viral assembly in particular. 2CIMPL mapping of influenza
RNA identified multiple intrasegmental interactions, with particular hotspots that appear
to interact with multiple sequences in multiple different segments, such as ones within the
nucleocapsid protein (NP) RNA segment. This technique also revealed that synonymous
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base changes in these hotspot regions can result in genome-wide intersegmental interaction
changes without a loss of replicative fitness, suggesting that influenza has evolved to have
flexibility in the RNA interaction networks and structures it uses. Mutations in the NP
hotspot resulted in new hotspots emerging in the polymerase (PA), haemagglutinin (HA),
and neuraminidase (NA) segments. Such insights are vital for understanding influenza
genome reassortment and mutation (and thus pandemic preparedness) [31], and have also
been shown using SPLASH, with particular insights into the limitations on successful strain
reassortment [37]. The likely transient nature of some of these RNA–RNA interactions
during the viral lifecycle makes the choice of technique important: 2CIMPL proved to be
more successful than LIGR/PARIS at identifying intersegmental interactions (RNA hybrids
occurring within 1.14–1.21% of mapped reads compared to 0.004%) thanks to the addition
of a second crosslinking step to preserve spatial information of the vRNP segments.

Table 2. Proximity ligation techniques.

Technique Distinguishing Features Reference

Psoralen cross-linked, ligated, and
selected hybrids (PARIS)

Uses 2-dimensional gel
electrophoresis to enrich cross

linked fragments
[32]

Sequencing of psoralen
cross-linked, ligated, and selected

hybrids (SPLASH)
Biotin-streptavidin enrichment [33]

Ligation of interacting RNA (LIGR) RNase digestion enriches fragments [34]

Dual crosslinking,
immunoprecipitation, and

proximity ligation (2CIMPL)

Enriches fragment using magnetic
bead tethering via an anti-NP

antibody, also contains an
additional cross-linking step before

introduction of AMT

[31]

Cross-linking of matched RNAs
and deep sequencing

(COMRADES)
Biotin-streptavidin enrichment [35]

RNA proximity ligation (RPL)

Omits psoralen cross linking step,
instead relying on spatial proximity

of bases in RNA secondary
structures to facilitate

chimera formation

[36]

2.3. NMR

Certain nuclei, such as 1H, have spin, and when placed in an electromagnetic field,
some of them are promoted to the higher energy state, where they are spinning antiparallel
to the field. The behaviour of such nuclei when they return to the lower-energy state
(‘relax’) is governed by their chemical environment and can be measured in NMR exper-
iments. Nuclei influence one another in this respect along covalent bonds via spin–spin
couplings and through space via the Nuclear Overhauser Effect. The elucidation of flexible
RNA structure via NMR should, on the one hand, be more suitable than the use of X-ray
crystallography since it does not rely on the formation of static crystal structures. However,
RNA has relatively low proton density and a limited chemical diversity of its monomers.
The resonances associated with it also often have short relaxation times, leading to dif-
ficulties in solving spectra associated with RNAs larger than around 70 nt. NMR has
thus typically been used to solve solution structures of small RNAs, and has produced
vital insights into the structural flexibility of individual stem-loops and their roles in viral
lifecycles. NMR studies on multiple RNA structural elements from SARS-CoV-2 recently
allowed comparison of their structural stabilities, as imino resonance line widths differ
between static or metastable helices. The 5′UTR structures SL2 and SL3 were observed
to vary, with the highly conserved SL2 forming a stable helical structure and SL3, which



Viruses 2021, 13, 2130 8 of 17

contains the TRS (transcription regulating sequence) as a metastable structure [38]. The TRS
presumably needs this structural flexibility as during transcription it pairs with sequences
in the developing negative strand to control where strand switching occurs, and thus which
subgenomic RNA is made. When it does this, it forms different RNA structures with each
switch region in the genome. The stabilities of these structures in turn has been proposed to
control the balance of subgenomic RNAs and hence the abundance of individual proteins
that are produced [39].

Isotope substitution has extended the range of NMR to much longer molecules. This
has perhaps been demonstrated most clearly in the case of HIV-1 RNA genomic dimer-
ization. The stem-loop that mediates dimerization, SL1 (a bulged helix loop shown in
Figure 1), does so via a 6 nt terminal kissing-loop interaction that extends into an inter-
molecular interaction between the subtending helices, known as the extended duplex. This
was shown by adding 15N-edited RNA at an equimolar ratio with unlabelled RNA, to
distinguish between inter- and intramolecular interactions [40]. NMR also revealed that a
100% conserved 3-1 bulge within the SL1 helix was highly metastable, likely facilitating
unwinding [41]. More recently, 2H editing has been used similarly to the 15N editing study
above, upon the whole 5′ leader RNA, to show, quite remarkably, that the intermolecular
pairing upon dimer maturation extends much more widely beyond SL1, to involve the
U5:AUG helix [42]. As this helix has been shown to be important for genome packaging,
this raises the distinct possibility that the extent of intermolecular interaction between
the dimers helps to control the HIV-1 encapsidation process. Another modification to
NMR, using 13C-enriched fragments ligated to unlabelled RNA, has allowed the study
of individual regions within much larger RNAs. This was instrumental in identifying a
structural switch that occurs between two distinct structures of the HIV-1 leader RNA: U5
nucleotides involved in the U5:AUG helix pairing can alternatively form a pseudoknot
structure with the dimerization initiation site on SL1 (Figure 1). This switch has been
proposed to control the viral switch from translating to packaging its genomic RNA [21,43],
as shown in Figure 1, where the pseudoknot structure exposes the AUG in a relatively
flexible stem loop (SL4, a 21 nt structure with a G-A bulge) and the dimerization-competent
structure exposes the dimerization initiation site, on SL1.

2.4. Sm-FRET

Single-molecule Förster Resonance Energy Transfer (sm-FRET) measures the spatial
proximity of a donor and acceptor fluorophore and thus determines the distance between
the molecules to which they are attached. This has obvious applications for studying the
conformations of RNA molecules, and was used to solve the core RNA structure within
telomerase [44]. Several groups have applied sm-FRET-based methods to study viral
RNA [45–49]. FRET relies upon energy transfer from an excited donor dye to an acceptor
dye; quantification of the brightness of both donor and acceptor leads to a ratiometric
calculation of FRET efficiency (E), which is a reliable indicator of proximity (Figure 4) [50].
Sm-FRET is usually used in cases where knowledge of absolute distances is not necessary
since conversion of E to distance is dependent upon the environment and orientation of the
dye; however, control experiments with each dye can provide good estimates [50]. A viable
dye must be of sufficient brightness and photostability; cy3 and cy5 are commonly used,
but of particular relevance to this review is dy547, which can replace cy3 in custom RNA
constructs [50]. The detection of fluorescence is most commonly carried out by camera-
based total internal reflection fluorescence microscopy (TIRFM), with time resolution being
determined by the frame rate of the camera [50,51]. Reduction of instrumental noise is
crucial in FRET, and here, TIRFM has an advantage over confocal microscopy (which
can also be used) by reducing the excitation volume to a thin layer above the sample
solution [51]. TIRFM also enables high-throughput protocols, by exciting a large surface
area thousands of molecules can be sampled in tandem.
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sm-FRET has revealed the conformational dynamics of the Hepatitis C virus (HCV)
internal ribosomal entry site (IRES) (Figure 5) [45].
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Figure 5. Structure of the HCV IRES. The two major domains, II and III, are highlighted, alongside
the pseudoknot.

Within the HCV IRES, domain II controls, amongst other things, the progression from
initiation to elongation. In the absence of ligand, it sits in a tightly bent conformation, pro-
posed to act as a brake on the ribosome. Upon ligand binding, the domain straightens and
elongates without changing its secondary structure. Such a large-scale tertiary structural
change without an effect on secondary structure is proposed to be a hallmark of viral RNA
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structural switches substantiated by further experiments on IRES structures from a range
of viruses. HCV IRES domain II has also been studied in complex with 40s ribosomal RNA
using smFRET, revealing that domain II exists in two conformational states even whilst in
complex, instead of the previous single conformation model [52]. It has also been proposed
that HCV must undergo a multistep rearrangement during complex formation with the
40s ribosomal subunit, highlighting the key role of gRNA flexibility during initiation and
maintenance of the complex.

Like other flaviviruses, West Nile Virus (WNV) cyclizes its RNA before genome
replication in the host and has structurally complex 5′ and 3′ UTR regions to facilitate this.
One of the necessary 3′UTR cyclization signals is concealed within a metastable 3′ helix,
which, in human cells, requires AUF1 p45 binding to mediate a structure switch exposing
the cyclization signal. sm-FRET was used to show that this switch can also be mediated in
the mosquito host, by the mosquito squid proteins p30 and p32, although less efficiently
than in humans. smFRET also showed the RNA switch to be temperature sensitive,
acting as a ‘thermometer’ for the virus [47]. Such RNA structural changes at different
temperatures could be advantageous for viruses that can cause temperature fluctuations in
their mammalian hosts, and in particular for arboviruses, which often replicate at a lower
temperature in the insect host than in the mammalian host. Highly conserved Flavivirus
dumbbell structures present in the 3′UTR are also implicated in genome cyclization and
have been investigated by sm-FRET [46]. Part of the dumbbell forms a pseudoknot with a 3′

sequence, occluding this 3′sequence and preventing it from cyclizing with the 5′UTR. This
structural prevention of cyclization is proposed to enable translation. The dumbbell region
in Donggang (DONGV) virus was observed to heavily favour a pseudoknot conformation,
with transient unfolding followed by rapid reformation highlighting the low kinetic energy
barrier of its formation. As with many tertiary RNA structures, pseudoknot formation was
dependent upon a higher Mg2+ concentration (10 mM). Further mutational analysis then
revealed that the ability of the P1 and P2 helices to bend into a close conformation, present
in a four-way junction motif on the opposite side of the dumbbell structure, affected the
frequency of formation of the pseudoknot [46].

Although smFRET has most commonly been used to follow structural changes in real
time, it can also be used to model tertiary RNA structures, if the secondary structure is
known. This was carried out for the HIV-1 packaging signal RNA (a highly structured
stretch of 150–250 nt in the 5′ UTR, containing several conserved stem loops centred on SL1,
SL2, and SL3 (Figure 1), revealing the presence of two very different structural populations,
presumably representing monomer and dimer. Occlusion of the dimerization initiation site
in the RNA using a complementary locked nucleic acid reduced this to a single structural
population and enabled modelling [49].

2.5. SAXS

Small angle X-ray scattering (SAXS) provides a cost-effective, time-efficient method to
investigate molecular structure dynamics in near-native conditions. The technology itself
is not a recent development, having been used to assess tRNA structure in the 1960s [53];
however, improvements in predictive software have greatly increased the value of the
technique. SAXS does not provide single-atom detail as its maximal resolution is around
2 nm [54], but samples can be measured in solution without the need for labelling or
crystallization, and the conformational dynamics of molecules can be observed over a
temporal or conditional range [55]. The principle of SAXS relies upon an X-ray beam
scattering as it passes through a sample; a background reading of scattering through the
solvent alone acts as a control and the remaining signal provides a SAXS curve. Software
packages can then infer structural characteristics about the samples, such as using Kratky
plots to determine the extent of folding [53] and electron pair distance distribution function
(PDDF) to find real space measurements and hence molecular shape [55]. A problem for
this, as with many other structure determining techniques, is the ability to distinguish
between simultaneously existing conformers of the same molecule, as often the multiple
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signals obtained from the many coexisting species can merge into an average which can
lead to incorrect structure prediction. Since RNA conformers are known to frequently exist
in ensembles, it is important that they can be distinguished from each other. Ensemble
fitting, developed by Bernado et al., uses software to generate all possible structures within
the conformational space, and then selects a mixture of these that best fits the available
data [56].

The ability of SAXS to detect flexibility within a molecule makes it an obvious choice
to study viral RNA dynamics in their native state. Both the poliovirus and rhinovirus
interactions with poly-C binding protein (PCBP) have been investigated using SAXS [57,58].
The rhinovirus 5′ UTR contains a type I IRES and a smaller 83 nucleotide 5′ clover leaf
structure (5′CL) that consists of one stem (SA) and three stem loops (SLB, SLC, and SLD).
PCBP is able to bind to both the IRES and SLB of the 5′CL and plays a role in both replication
and translation. Only when PCBP is bound to the IRES can the virally encoded 3C protease
cleave it, switching from viral translation to replication [57]. SAXS data combined with
NMR data showed that the 5′CL structure was Mg2+ dependent, adopting perpendicular
helices or a compact arrangement of SLB and SLD, which are both proposed to be important
at different stages in the replicative cycle, depending on the appropriate conditions [57].
In an analogous situation in poliovirus, which also uses a type I IRES, the RNA structure
changes to a more flexible, base accessible one upon PCBP cleavage. The binding target
of PCBP, stem loop 4 (SLIV), is a complex structure within itself and contains 4 smaller
stem loops (a, b, c, and d). Additional analysis by cryoEM determined two structural
classes of PCBP/SLIV complex, suggesting a degree of flexibility around its four-way
junction. Taken together, the techniques show the presence of flexibility of SLIV both
in and out of complex. Both Hepatitis B (HBV) and HCV have also been investigated
using SAXS [59,60]. SAXS data helped to support an NMR structural determination of
the 6nt HBV priming loop, in which the partially stacked G16 and U17 were identified as
potential residues responsible for initiating DNA synthesis [59]. HCV encodes a noncoding
3′ domain known as 3′X which contains a 16nt palindromic genome dimerization signal
that partially overlaps with a 7nt sequence that forms a long-range interaction with a
complementary site within the ORF. Both structures formed are thought to be vital to the
lifecycle, controlling replication, translation, and possibly genome packaging. SAXS was
used to characterize the 3′X domain structure at high and low ionic strength, forming
monomers and dimers, and enabling insights into the dimerization process. The use of
SAXS in this context also suggests that a large-scale structural rearrangement is necessary
in order to mediate the 3′X-ORF interaction [60].

Long non-coding sub genomic RNAs are produced by several species of flavivirus
and are of functional significance particularly in controlling host antiviral responses. SAXS
analysis has shown that their structure is modular and that differences between them
can be used to explain mechanistic variations [61]. Some of these structural modules are
similar across different flaviviruses, such as the xrRNA1-2′s, which are compact in solution,
indicating reduced flexibility. However, small differences in pseudoknot formation in one
of the dumbbell structures in dengue virus lead to a markedly different tertiary structure
from West Nile and Zika [61]. The HIV-1 Rev response element (RRE, a highly conserved
~350 nt cis-acting sequence within the env open reading frame) and its interaction with Rev
has also been analyzed using SAXS. Multiple Rev molecules must bind to the RRE, and this
nucleoprotein structure engages the Crm1 nuclear export pathway and enables transport
of partially spliced and unspliced HIV RNA out of the nucleus. Using SAXS, a structural
rearrangement has been suggested to occur in the RRE as each successive Rev molecule
binds, eventually exposing a cryptic Rev binding site that enables further nucleation of
Rev [62,63]. Sherpa et.al. have also previously used non-denaturing polyacrylamide gel
electrophoresis to show that the RRE exists as two conformers, containing either four or
five stem-loops, that confer different rates of viral replication [64].
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2.6. Other Techniques

Although SAXS, NMR, sm-FRET, SHAPE, and proximity ligation are the most com-
monly used techniques to study viral RNA dynamic structures, many other techniques
have also been used to complement them, such as cryogenic electron microscopy (cryo-
EM). Here, samples are immobilized within a carbon (or sometimes gold) nano-grid using
vitrified ice and images are then captured by a transmission electron microscope before
software packages combine the different orientations of the complex captured into a robust
three-dimensional model. Cryo-EM has been applied to viral RNA in several studies, and
usually accompanies another technique that can capture the RNA dynamics in a near-native
environment (such as SAXS or sm-FRET). Limitations of cryo-EM include that is has a low
resolution, with structure determinations below 100 kDa being rare [65], and highly flexible
RNAs can inhibit particle classification [61]. Cryo-EM was able to successfully determine
two different conformations of the poliovirus IRES:poly (rC) binding protein 2 (PCBP2)
complex as well as capturing the RNA alone, confirming its predicted cruciform structure
as well as hinting at a degree of flexibility in sub stem loop c (SLc). Cryo-EM has also been
used to investigate the cricket paralysis virus (CPV) type 4 IRES interaction with the 40s and
80s ribosomal complexes, where a degree of density fragmentation of the A-rich variable
loop (VRL, termed variable due to differences at the loop apex between strains) present in
complex with the 40s but not 80s suggested structural rigidity unique to the former [48].
The HCV IRES capturing an actively translating ribosome has also been imaged using
cryo-EM: surprisingly, the IRES is able to initiate cap-independent translation without
inhibiting the ongoing cap-dependent translation, which actually enhances translation of
the viral RNA [66].

A field of study that high-resolution cryo-EM is particularly useful for is imaging the
RNA packaging structure within the nucleocapsid of viruses. Asymmetric reconstructions
of Brome mosaic virus (BMV) and MS2 bacteriophage have been completed and revealed
differing levels of RNA packaging [67]. Analysis of BMV at 3.9 angstrom resolution
showed that the capsid protein interacts with the gRNA at the two- and threefold vertices,
with the RNA forming different conformations. Apart from this, the genome remains
largely disordered. This contrasts with the MS2 genome, where 80% of nucleotides can
be individually resolved (multiple conformers still exist, however) [67], implying a much
higher degree of structural order to the RNA within the virion in the latter.

Smaller genomes can sometimes be structurally solved using X-ray crystallography,
which showed that in tobacco mosaic virus (TMV), RNA structure inside the capsid is
beautifully ordered and exhibits a high degree of symmetry but does not contain the motifs
known to be necessary for viral replication, translation, or RNA transport, indicating that a
genome-wide conformational change must occur when it is released into the host cell [68].

Gel-based experimentation methods have also been used to elucidate viral RNA
structural interactions via mutational analysis. The wheat yellow mosaic virus genome
segment RNA1 contains a 5′ UTR IRES and a 3′-cap-independent translation element
(CITE). In line cleavage analysis in the presence and absence of the 3′ CITE followed by
electrophoretic mobility shift assays (EMSAs) identified a structural switch that controls
translational activity [69], via the formation of a small number of G-C base pairs between
discontinuous sequences in either helix 1 or helix 2 and the intervening linker region.
Interactions between helix 1 and the linker inhibit translation, whereas those between
helix 2 and the linker enhance translation. These interactions are mutually exclusive as
the tertiary structure generated by one attenuates the activity of the other [69]. The use
of in-line probing also hinted that plant RNA viruses generally maintain weaker, more
flexible RNA structures in their IRES elements than do animal RNA viruses.

An emerging technique that is particularly useful for studying long non-coding RNAs
(lncRNAs) is analytical ultracentrifugation (AUC). Using the sedimentation velocity (SV)
and sedimentation equilibrium (SE) modes can give information about molecule size,
purity, aggregation, hydrodynamic shape, and ensemble composition whilst requiring very
small sample sizes compared to other biophysical techniques [70]. AUC is beginning to
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be used as a reliable quality control step for assessing RNA integrity before proceeding
with more laborious techniques such as SAXS, as demonstrated by Mrozowich et al. when
interrogating flavivirus non-coding regions. The AUC data supported urea PAGE results
suggesting that one of the RNAs had a degree of degradation, with all four of the RNAs be-
ing tested showing a minor second peak that could correspond to multiple conformational
states [71].

Several forms of spectroscopy are also emerging as viable techniques for determining
RNA structure. Circular dichroism makes use of the differing absorbance between left and
right circularly polarized light, with different biomolecules displaying different absorbance
spectra signatures. Having been applied widely to DNA and proteins the technology is now
beginning to be applied to RNA, thanks to advances in synchrotron capabilities allowing
the spectral range to become as low as 170 nm [72]. Down at these short wavelengths,
charge transfer regions can be seen, giving insights into the RNA structure and dynamics
in solution across a wide temporal and environmental area. It is thought that this technique
could complement NMR in the future. Another form of spectroscopy, near-infrared (NIR)
Raman spectroscopy, is also proving useful. It provides information about the energy
modes of vibrating molecules subject to modulation by the polarizability of adjacent
nuclei [73]. The technique has only become viable with the latest instrumentation but
allows for even dilute solutions to be reliably characterized under near-native conditions,
and indeed, the avocado sunblotch viroid genome has been analyzed this way [73].

An interesting strategy of investigating RNA excited states (ES) using 2′-O-methyl
(Nm) modification of the ribose sugar has recently been characterized. Nm modification
has been known to alter the biological activities of RNA and is used endogenously by
many organisms. Abou Assi et al. demonstrated that Nm achieves this by altering the
conformational ensemble composition, usually by increasing the incidence of ES confor-
mations that base pair the modified residues compared to the dominant ground state
(GS) conformation [74]. These ensemble shifts can be detected using NMR or UV optical
melting, which can give insights into the kinetics of conformation state transition states, a
highly relevant parameter for those wishing to study RNA dynamics. The strategy also
holds promise for RNA design, since the ability to modulate RNA conformation without
changing the base sequence facilitates an additional layer of complexity.

Alongside the wet lab techniques to study RNA structure and conformational change,
computational structure prediction techniques are also applied extensively. Many such
programs center around the philosophy of finding a local energy minimum, using sim-
plified ‘coarse-grained’ molecular models and optimizing algorithms such as Ant colony
or Metropolis to refine initially random arrangements into an optimized structure. The
many ensuing 2D prediction programs, such as ACOfoldpath and NARES-2P [75,76], are
continually compared for accuracy via the CompaRNA server [77]; some algorithms, such
as SimRNA, which predicts 3D as well as 2D structures, analyze conformational landscapes
and thus provide information on RNA structural flexibility [78]. Although the challenges
of 3D modelling of RNA are substantial, much has been learned from the RNApuzzles
consortium, who have been blind testing a range of computational and experimental predic-
tions before comparing the outcomes with crystal structures. The results have shown that
accurate prediction requires a combinatorial approach of de novo prediction techniques
and comparison with previously solved structures and motifs in databases [79]. Machine
learning has the potential to greatly enhance the accuracy of computational RNA structural
prediction; however, in the meantime, experimental techniques continue to be vital.

3. Summary

The armamentarium of techniques used to study RNA structure is growing, and
with it, a greater appreciation of the extraordinarily versatility of this molecule and its
ability to carry out multiple roles simply by using conformational variants of a single
molecular species. The molecular environment is clearly critical and complicates interpre-
tations of many current methods that rely on analysis in non-native conditions. As with
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much of molecular biology, pivotal findings in this field have been made studying viral
RNA, although, paradoxically, these may represent some of the most densely compacted
overlapping functional entities that exist in RNA molecules. Better in vivo techniques are
emerging and alongside these is the rapidly expanding field of nucleotide modification of
RNA and its effect on RNA structure and function. Enhanced methods of RNA sequenc-
ing such as nanopore are starting to make these more easily analyzable. Combined with
computational advances and the emerging power of machine learning, the future of RNA
structure/function analysis has an exciting but unpredictable future.
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