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Abstract
1. The COVID- 19 pandemic has highlighted the importance of efficient sampling 

strategies and statistical methods for monitoring infection prevalence, both in hu-
mans and in reservoir hosts. Pooled testing can be an efficient tool for learning 
pathogen prevalence in a population. Typically, pooled testing requires a second- 
phase retesting procedure to identify infected individuals, but when the goal is 
solely to learn prevalence in a population, such as a reservoir host, there are more 
efficient methods for allocating the second- phase samples.

2. To estimate pathogen prevalence in a population, this manuscript presents an ap-
proach for data fusion with two- phased testing of pooled samples that allows 
more efficient estimation of prevalence with less samples than traditional meth-
ods. The first phase uses pooled samples to estimate the population prevalence 
and inform efficient strategies for the second phase. To combine information 
from both phases, we introduce a Bayesian data fusion procedure that combines 
pooled samples with individual samples for joint inferences about the population 
prevalence.

3. Data fusion procedures result in more efficient estimation of prevalence than tra-
ditional procedures that only use individual samples or a single phase of pooled 
sampling.

4. The manuscript presents guidance on implementing the first- phase and second- 
phase sampling plans using data fusion. Such methods can be used to assess the 
risk of pathogen spillover from reservoir hosts to humans, or to track pathogens 
such as SARS- CoV- 2 in populations.
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1  | INTRODUC TION

The rapid pandemic spread of COVID- 19 has overwhelmed health 
systems globally, from funding and supply chains to testing and 
hospital capacity. The capacity to detect infections circulating in 
a population is constrained by technical limitations, costs, and lo-
gistics, which rapidly scale with the temporal and spatial scales of 
epidemics. The COVID- 19 pandemic has highlighted the importance 
of efficient sampling strategies and statistical methods for monitor-
ing infection prevalence, both in humans and in reservoir hosts. In 
studies of reservoir hosts, the research question is not necessar-
ily whether an individual is infected, but rather the goal can be to 
estimate the prevalence in the reservoir host population, and how 
this changes over space and time. Furthermore, funding for screen-
ing potential reservoirs is generally limited compared with human 
screening. Nevertheless, estimating prevalence in reservoir hosts is 
critical for understanding drivers of pathogen spillover and precise 
estimates of population prevalence require testing a large number of 
samples (Plowright et al., 2017, 2019). Unfortunately, the total num-
ber of samples that can be screened is limited by the high costs of 
field sampling, laboratory testing, and other fiscal constraints; thus, 
strategies to optimize testing samples are critical for successful dis-
ease surveillance.

One approach for testing, particularly when the prevalence 
rates are expected to be low, is to pool individual samples to assess 
whether one, or more, of the pooled samples results in a positive 
test. This pooling procedure is commonly referred to as group test-
ing (Du et al., 2000). Group testing was first developed in 1940s 
to detect cases of syphilis in soldiers in the US military during the 
Second World War. The technique increases efficiency of utilization 
of limited resources during outbreaks or surveillance programs with 
direct impact on response capacity (Dorfman, 1943). However, the 
effectiveness of pool testing can be compromised as disease inci-
dence and prevalence increases, as this results in more tests con-
ducted during the second rounds of diagnostic assays to identify 
individual positive samples. Thus, there is a need for clear guidance 
on the optimal number of samples to pool or number of total pools 
to be tested. Depending on the population prevalence, pooling too 
many or too few samples can decrease precision in the estimated 
parameter and make inferences on the population prevalence unreli-
able, or require multiple stages of individual testing.

In light of testing limitations, pooled techniques have been 
adapted for COVID- 19 screening in humans (Mallapaty, 2020; 
Mutesa et al., 2020). In this scenario, the primary intent is to deter-
mine which individuals are infected to implement isolation of cases 
and contact tracing protocols to mitigate spread of the virus. The 
idea is to first combine individual samples into a single pooled sam-
ple. If the pooled sample is negative, then all of the individual sam-
ples are assumed to be negative. If a pooled sample tests positive, 
although it is not immediately clear how many and which of the indi-
vidual tests are positive, there are many strategies to subsequently 
identify this.

The simplest strategy involves retesting each of the individual 
samples that comprise the pool. This procedure will enable a re-
searcher to have a complete dataset that identifies all individuals 
that test positive. Rather than automatically retesting all individuals 
in a positive pool, Sobel and Elashoff (1975) present a hierarchical 
approach for testing subsets of the pools in an iterative fashion. 
Phatarfod and Sudbury (1994) proposed an array approach where 
an individual specimen was divided across multiple pools. In the con-
text of estimating population prevalence, Bilder et al. (2010) present 
“Informative Retesting,” where the retesting approach uses individ-
ual covariate information in the retesting protocol and Hepworth and 
Watson (2017); Hepworth and Walter (2020) present a restricted 
randomization approach for retesting similar in spirit to Phatarfod 
and Sudbury (1994)’s arrays. With appropriate pooling strategies and 
retesting positive pools, the overall number of samples tested can be 
less than the total number of individuals.

In addition to testing humans, there are also broad efforts to 
identify the reservoir hosts for SARS- CoV- 2- related viruses, and 
coronaviruses more broadly. In contrast studies where the goal is 
case identification (Zhang et al., 2013), however, individual results 
may not be required and population- level estimates of prevalence 
are often sufficient to identify hosts and understand transmission 
dynamics within their populations. In some cases, this will involve 
collecting new samples with purpose- fit sampling designs, or in 
other cases, sample banks may already exist that can be screened 
for coronaviruses. The number of samples available does not always 
match the funding available for screening, and optimal testing ap-
proaches to achieve desired inferences are required. Thus, to under-
stand population prevalence in reservoir populations and in other 
situations where the focus is on population prevalence, we propose 
a data fusion procedure, with pooled testing, that enables estimates 
of population prevalence in multiphase studies without retesting 
positive pools.

With the remainder of this article, Section 2 details sampling 
approaches for screening individuals and presents estimation ap-
proaches, including data fusion techniques, for estimating popula-
tion prevalence, Section 3 contains results from a set of simulation 
studies, and Section 4 concludes with a discussion.

2  | MATERIAL S AND METHODS

2.1 | Sampling approaches

In some scientific studies, particularly for studying viral prevalence 
in reservoir hosts, a large number of samples may already exist or 
can be collected for minimal costs relative to the cost of testing sam-
ples. Ideally, all of these samples would be tested; however, with this 
work, we assume that the number of samples that can be tested is 
constrained. Most often the constraint is the research funding, but 
limits can also be a result of instrument capacity or availability of 
materials. Given these constraints, a sampling strategy needs to be 
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devised to determine which individual samples to test and whether 
these samples should be combined into pools.

The optimal number of samples per pool requires knowledge of 
the population prevalence— which is generally unknown for investi-
gations into novel host– pathogen combinations. Thus, an approach 
for pooled sampling is to implement a two- phase sampling design 
where an initial pooling in the first phase can be used to inform 
second- phase sampling strategies. Altering the pool size or testing 
additional samples individually in the second phase requires a data 
fusion procedure to combine inferences across pooled and indi-
vidual samples. With this work, we provide guidance on adaptive 
two- phase sampling designs while combining pooled samples with 
individual samples using a novel Bayesian data fusion (Allen, 2017) 
procedure. We will show that this procedure results in a more precise 
estimator of the population prevalence than retesting positive pools.

2.1.1 | Pooling and group testing

If the overall population prevalence is close to zero, then most of 
the individual samples will be negative, and therefore, testing costs 
per positive sample detected are high. With a fixed cost for a sin-
gle test, pooling strategies allow two or more samples to be jointly 
tested for the same cost as an individual sample. While a negative 
pool implies that all of the individual samples are negative, a positive 
pooled sample only implies that one or more samples in the pool are 
positive. The positive samples can be retested or be directly used to 
inform population prevalence and future sampling. Optimal pooling 
approaches require knowledge of population prevalence. This article 
focuses on data fusion methods for combining pooled results from 
multiple phases without requiring retesting positive pools to esti-
mate population prevalence and establish optimal pool sizes, which 
can include either retesting samples from positive pools; testing ad-
ditional pools of the same or different sizes; or testing additional in-
dividual samples, which requires a data fusion procedure.

Pooling procedures involve combining two or more individual 
samples into a pool. There is a long history of pooled sampling ap-
proaches (Bhattacharyya et al., 1979; Burrows, 1987; Dorfman, 1943; 
Swallow, 1985) and associated statistical methodology for parameter 
estimation (Biggerstaff, 2008; Chen et al., 2009; Colón et al., 2001; 
Hepworth, 2005). The difference between these approaches and 
what we propose is that existing methods are generally focused on 
designing a single- phase pooled sampling plan or estimating popula-
tion prevalence conditional on pooled samples (Colón et al., 2001). 
In contrast, we propose a procedure that combines adaptive pooling 
with data fusion techniques to integrate pooled and individual sam-
ples combining.

2.1.2 | Adaptive sampling + two- phase sampling

Adaptive sampling is a procedure where the sampling strategy 
is informed by previously collected data. Adaptive sampling has 

a history in quality control fields (Prabhu et al., 1994; Runger & 
Montgomery, 1993; Runger & Pignatiello Jr, 1991). More recently, 
adaptive sampling has become popular in sensor networks (Gedik 
et al., 2007; Jain & Chang, 2004) and Bayesian model selection pro-
cedures (Clyde et al., 2011; Nott & Kohn, 2005). In the context of 
pooled testing, Hepworth (1996) proposed a sequential approach for 
pooled sizes. In theory, the number of samples in a pool could be 
adaptively changed after each test (e.g., as an outbreak is developing 
and cases rise and then subsequently falls); however, for practical 
implementation we restrict the sampling procedure to two phases. In 
addition to the sampling approach, there is a corresponding estima-
tion problem, often referred to as sequential estimation (Lai, 2001). 
Estimation methods for the two- phase sampling approach are de-
scribed in the next section.

In ecological settings, due to data collection, processing, and 
analysis procedures, adaptive sampling and estimation are generally 
conducted with a small number of discrete phases. Often, two- phase 
approaches include an initial screening of rare species that informs 
more efficient resource allocation in the second phase (Pacifici 
et al., 2012). In other settings, certain types of sampling are more ex-
pensive and a cheaper method is used for an initial screening before 
employing a more expensive sampling procedure (Rivest et al., 1990; 
Villella & Smith, 2005; Villella & Smith, 2005). Conceptually, pooled 
sampling represents a cheaper form of sampling, on a per sample 
basis, and hence is quite similar to these scenarios.

Adaptive sampling approaches have been developed for mon-
itoring prevalence, both with and without pooling. Reilly (1996) 
developed optimal sampling approaches for two- phase sampling 
where the cost of sampling may differ between phase 1 and phase 2. 
Breslow and Chatterjee (1999) presented an approach for two- phase 
sampling where the second- phase estimation is a case– control sam-
ple. McIsaac and Cook (2015) developed a framework of two- phase 
sampling which they define as “response- dependent,” meaning that 
sampling approach in the second phase depends on the responses in 
the first phase. However, we are not aware of any approaches that 
combine adaptive sampling with data fusion for estimation of viral 
prevalence by enabling researchers to combine information from 
pooled and individual samples. Our two- phase approach would be 
beneficial in calibrating the optimal pool size in any biological setting 
with pooled samples, such as pooled samples for Salmonella detec-
tion (Kinde et al., 1996) or estimating prevalence of infected insect 
vectors (Ebert et al., 2010). Moreover, the ability to fuse pooled and 
individual samples can lead to more efficient sampling in any sce-
nario that implemented a phase one pilot study to inform sampling 
parameters for prevalence or took an either or approach to pooled 
sampling versus individual samples (Arnold et al., 2011).

2.1.3 | Choosing pool size and identifiability of 
population prevalence

When choosing pool sizes, one issue is identifiability of population 
prevalence when the rate of prevalence is high and a large number 
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of samples are pooled. The maximum- likelihood estimator of the 
prevalence has been shown to be biased (Colón et al., 2001). The 
reason is that the probability that a pooled sample tests positive, is π,

can be effectively 1 for a range of population prevalence, which is de-
noted with p. For illustrative purposes, assume that p > .5 and the pool 
size, n, is 10. In this example, if p = .5, then π = 0.999. Thus, nearly all 
pooled samples would test positive for prevalence between 0.5 and 1, 
and hence, it would be impossible to differentiate values in the inter-
val between 0.5 and 1, or in other words, this is not identifiable. This 
issue is further magnified when all, or nearly all, of the pooled samples 
test positive. Hepworth and Watson (2009) present a bias correction 
method for maximum- likelihood approaches of estimating prevalence. 
Note that Bayesian estimates, particularly with informative prior dis-
tributions, are better suited for this problem. In fact, Hepworth and 
Watson (2009) mention one possible solution for calculating the MLE 
with all positive samples is “to calculate the expectation of the pos-
terior distribution of p under an appropriate prior distribution.” Of 
course, retesting all positive pooled samples would also enable a rela-
tive frequency calculation of prevalence.

Implicitly the calculation of π in Equation 1 assumes that the sam-
ples are independent. For the applications we are primarily focused 
on, viral surveillance in wildlife populations where individual samples 
can be randomly assigned to pools, this is usually a reasonable as-
sumption. However, if this assumption is violated, Equation 1 would 
not be valid. If the goal is to follow up with individual samples, such as 
the COVID- 19 scenario in humans, correlation could be exploited for 
more efficient groupings. For example, a group consisting of mem-
bers of a household or wildlife populations with spatial structure 
would be more likely to be all positive or negative, than a random 
selection of individuals. Having pools that are all negative or mostly 
positive, due to correlation from patients interacting and potentially 
infecting each other, would reduce the total number of tests.

2.2 | Model framework

Using two- phase adaptive sampling, we describe three methods for 
estimating population prevalence using a combination of pooled and 
individual samples. Using information from data in the first phase to 
inform the second phase, efficient adaptive sampling requires se-
quential estimation. These estimation methods present a set of ap-
proaches for two- phase sampling. Bayesian data fusion methods are 
implemented to estimate overall prevalence, where a beta(α,β) dis-
tribution is used as the prior for p. For the experiments in Section 3, a 
uniform prior, beta(1,1) is used, but for specific applications, subject 
matter expertise can, and should, be used to select parameters in 
the beta distribution for an informed prior of population prevalence. 
Practitioners with knowledge of prevalence can use established 
prior elicitation techniques, such as Wu et al. (2008), to create in-
formative prior distributions.

Data integration is formally defined by using different streams 
that measure the response of interest to make combined inferences 
and uncertainty calculations. It is important to differentiate between 
collecting streams of data that can be used as covariates with that 
of multiple streams of data about the outcome of interest. In the 
former, information like demographic information could be collected 
that might be indicative of the parameter of interest. In contrast, the 
latter scenario contains multiple direct measurements of the out-
come of interest, but they may be on different spatial and/or tem-
poral scales and require a formal method for combining the data. In 
this work, we use a more general term data fusion, rather than data 
integration, to signify the combining pools of different sizes, includ-
ing individual samples. Data from these settings consist of positive 
or negative results from pools of different sizes, potentially along 
with individual results. Following the framework defined in Miller 
et al. (2019), we evaluate a joint likelihood method for combining the 
data streams.

2.2.1 | Individual samples only

If all samples are tested individually, estimating the population prev-
alence is straightforward. The individual samples are modeled with 
a Bernoulli distribution,

where Yi is a binary variable denoting whether the ith sample tests pos-
itive and p is population prevalence or equivalently the probability that 
an individual tests positive. Given the sampling model in Equation 2 
and the beta prior distribution for p, the posterior distribution for p has 
a closed form. Specifically, the posterior distribution is

where Y = (Y1,…, Yn) and n is the total number of individuals that are 
tested.

2.2.2 | Pooled samples

With pooled samples, a common second- phase approach is to re-
test individuals from pools that test positive. Brookmeyer (1999) 
presents a conditional probability function that accounts for the 
dependence between the initial and subsequent pools. When the 
retesting pools are of size one, the end result is that the total number 
of positives and negatives are known and the exact posterior distri-
bution can be computed using Equation 3. If the prevalence is low, 
this approach can be more efficient than testing individual samples. 
In particular, this approach is more efficient, on a per- test basis, if the 
expected number of samples tested is less than the total number of 
individual samples.

(1)� =
(
1 − (1−p)n

)
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Rather than a set of individual tests, the sampling model, or the 
statistical likelihood, is defined as:

where Zj is a binary variable denoting whether the jth pooled sample 
tests positive, nj is the number of samples in pool j, and πj is a function 
of p that corresponds to the probability that a pooled sample j tests 
positive. The posterior distribution for p does not have a closed- form 
solution as the likelihood is a nonlinear function of p. Rather, this re-
quires Markov chain Monte Carlo (MCMC) techniques. A Metropolis– 
Hastings algorithm, which is detailed in Appendix 1, is used to estimate 
the prevalence, p, using the calculated probability πj.

2.2.3 | Integrated analysis

When the data consist of pooled and individual samples, a data fusion 
approach combines two different streams: the individual samples, Y, 
and the pooled samples, Z, where Z = (Z1,…,ZJ) is the collection of J 
pooled samples. It is important to note that the individual samples 
are not contained in the pools, but rather could come from a differ-
ent data collection process. Then, using a joint likelihood method as 
in Miller et al. (2019) they can be modeled as.

Similar to pooled samples scenario, a Metropolis– Hastings algo-
rithm is used to estimate the prevalence, p. The difference is that 
the posterior distribution of p is now conditional on both the pooled 
samples (Z) and the individual samples (Y).

Formally, the joint likelihood approach uses the likelihood of the 
individual samples, Y|p, and the pooled samples, Z|p. The joint like-
lihood is proportional to Equation 9. The MCMC algorithm for this 
data fusion is detailed in Appendix 1.

3  | RESULTS

A set of four synthetic studies are constructed to explore adaptive 
sampling and data fusion techniques across Phase 1 (initial testing 
of samples to obtain initial estimates of prevalence) and Phase 2 
(follow- up or additional testing to obtain more detailed prevalence 
estimates). Simulation 1 provides justification for the data fusion 

procedure against pooled samples or individual samples alone for 
Phase 1 testing. Simulation 2 shows the data fusion procedure with 
a phase 2 plan that tests new individual results in a more efficient 
estimation following up individuals in pools that tested positive. 
Simulation 3 contains a demonstration to inform the phase 1 pooling 
procedure. Simulation 4 evaluates a set of phase two approaches, 
given a phase pooling. All simulations use 99 prevalence values, 0.01 
to 0.99, with 200 replications for each prevalence value. MCMC are 
run for 10,000 iterations with the first 1,000 iterations discarded 
as burn- in. Prevalence values are initialized at 0.5 for each of the 
simulations. Code for recreating the simulations or adjusting pool 
size/sample size is available in the supplemental materials section.

3.1 | Simulation 1: Efficacy of data fusion for phase 
1 of testing

The purpose of the first simulation study is to show the efficacy of 
integrated analysis against individual or pooled samples alone. The 
study compares three modeling approaches for a fixed number of 
samples. Specifically, there are 100 pools of samples, with each pool 
comprising three individual samples, along with another 100 indi-
vidual samples that are tested. The first modeling approach uses just 
the individual data, the second uses just the pooled samples, and the 
third uses both pieces of information in a data fusion framework.

The top panel of Figure 1 shows the posterior mean for all of 
the methods across a range of prevalence values. With only three 
samples per pool, the pooled approach tracks the true prevalence 
values fairly well for lower prevalence values, but as the prevalence 
approaches one, estimates of the prevalence are biased. This is 
due to the difficulty of identifying higher levels of prevalence from 
pooled samples, as discussed above. This bias would be amplified 
with larger pool sizes. Both the data fusion and individual samples 
do a good job of identifying the true prevalence; however, the inte-
grated approach provides, on average, more accurate estimates of 
the true prevalence.

The bottom panel of Figure 1 shows the average width of a 95 
percent highest posterior density credible interval for each method 
across a range of prevalence values. For lower levels of prevalence, 
100 pooled samples, of size 3, result in more efficient estimation 
of overall prevalence than 100 individuals. However, as the preva-
lence increases, the individual samples become more efficient. The 
data fusion approach, which combines both the individual samples 
and the pooled samples, has a smaller credible interval width for 
the entire prevalence range than both other approaches. This is un-
surprising as more data are used, but this verifies the utility of the 
data fusion method that we propose. The data fusion approach has 
smaller credible interval width than both other methods and also 
provides accurate posterior mean estimates.

The results from Figure 1 corresponded to 100 samples, both for 
the pooled samples (of size 3) and individual samples. Figure 2 shows 
the credible interval width for a set of sample sizes. Unsurprisingly, 
the credible intervals are narrower for larger sample sizes, but this 

(4)Zj ∼ Bernoulli
(
� j

)

(5)� j =
(
1 − (1−p)

nj
)

(6)Yi ∼ Bernoulli (p)

(7)Zj ∼ Bernoulli
(
� j

)

(8)�j =
(
1 − (1−p)

nj
)
.

(9)p |Z ,Y ∝ Y| p × Z |p × p.
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F I G U R E  1   Simulation 1: Data 
fusion efficacy for phase 1 testing. 
This simulation shows that data fusion 
technique, which requires combining 
pooled and individual samples, is superior 
to either approach alone. For the lower 
ranges of prevalence, the posterior mean 
of all of the methods tracks the overall 
prevalence, on average. However, as 
the prevalence becomes closer to one, 
the pooled only approach is unable to 
identify the true prevalence. The data 
fusion approach has the narrowest 
credible interval width across a range of 
prevalence values
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0.00
0.25

0.50
0.75

1.00
0.00

0.25
0.50

0.75
1.00

0.00
0.25

0.50
0.75

1.00
0.00

0.25

0.50

0.75

1.00

prevalence (p)

E
st

im
at

ed
 p

re
va

le
nc

e

Posterior Mean by Prevalence

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00

prevalence (p)

W
id

th

Method data fusion individual samples pooled only

Credible Interval Width by Prevalence

F I G U R E  2   Simulation 1: Data fusion 
efficacy for phase 1 testing. Credible 
interval width shown for a set of sample 
sizes that correspond to the total number 
of pools and individual samples
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figure will illustrate the number of total samples required for achiev-
ing target credible interval width. Additionally, code for recreating 
the simulation, and adjusting sample size and/or pool size, is avail-
able in the supplemental materials.

3.2 | Simulation 2: Retesting versus new samples for 
phase 2 of testing

Following the initial phase of testing to obtain an estimate of popula-
tion prevalence, this next simulation explores a pair of methods for 
phase two of testing: retesting all samples in a positive pool or test-
ing a new set of individual samples and using our data fusion frame-
work. To make the comparison “fair,” the retesting procedure is done 
first and then the same number of samples is used in the data fusion 
approach. For instance, if the retesting procedure results in a total of 
35 phase two tests, then 35 additional samples are tested (without 
pooling) for the data fusion procedure. The data fusion procedure 
then combines inferences from the original pooled samples and the 
new individual samples.

The top panel of Figure 3 shows that both retesting positive 
pools and a data fusion approach result in accurate posterior means. 
However, in the bottom panel of Figure 3, the data fusion proce-
dure has smaller credible interval width for all prevalence levels. This 
result is fairly intuitive as taking additional samples would contain 
more information that retesting old samples, where it is known that 
at least one sample is positive Figure 4 shows the credible interval 

width as a function of sample size. Prior to this work, the challenge 
had been the lack of a coherent method to combine the pooled 
and individual samples, which our proposed data fusion procedure 
allows.

3.3 | Simulation 3: Initial pool sizes for phase 
1 of testing

Simulation 1 assumed a pool size of three samples per pool for phase 
one of testing; however, given the importance of choosing the pool 
size in phase one, the third simulation compares different pooling 
sizes across a range of prevalence values from 0.01 to 0.99. While 
pools of size three are useful for higher prevalence values, near 0.5, 
with lower prevalence values larger pools should be considered. The 
phase one goal is to explore the posterior means and the widths of 
the credible intervals for different pooling sizes to inform phase 2 
decisions. This simulation assesses pool sizes of 1, 3, 5, 7, and 9 to 
compare the posterior means and credible interval width as a func-
tion of the prevalence rate.

Similar to simulation 1, Figure 5 contains the posterior means 
and credible intervals for each of the comparison methods. When 
the prevalence is close to zero, all of the pools accurately estimate 
the true prevalence. The larger pool sizes have a more precise esti-
mate, which is not surprising as the posterior variance, or similarly 
the standard error of the point estimate, is a function of the total 
number of individual pooled samples. However, as the prevalence 

F I G U R E  3   Simulation 2: Retesting 
versus new samples for phase 2 testing. 
While the posterior mean for both 
approaches is accurate, the data fusion 
procedure has a substantially smaller 
credible interval width for the entire range 
of prevalence values for the same number 
of tests conducted
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F I G U R E  4   Simulation 2: Retesting 
versus new samples for phase 2 testing. 
Credible interval width shown for a set of 
sample sizes that correspond to the total 
number of tests conducted
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F I G U R E  5   Simulation 3: Initial 
pool sizes for phase 1 of testing. With 
prevalence values close to zero larger 
sized pools have smaller credible intervals; 
however, as the prevalence gets larger, the 
pooled samples become inaccurate and 
imprecise. Initial pool size can be selected 
based on mean and credible interval width 
for a priori prevalence belief

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
prevalence (p)

Po
st

er
io

r m
ea

n 
fo

r p
re

va
le

nc
e 

(p
)

Posterior Mean by Prevalence

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00

prevalence (p)

C
re

di
bl

e 
In

te
rv

al
 W

id
th

pool size 1 3 5 7 9

Credible Interval Width by Prevalence



14020  |     HOEGH Et al.

gets larger, the posterior means of the pooled estimators start to 
deviate from the true prevalence. In fact, at a certain threshold when 
all of the pooled samples end up positive, the posterior means flatten 
off and the posterior distribution ends up being uniform between a 
threshold of p values that map to θ ≈ 1. In addition to inaccurate 
posterior means, this identifiability problem also results in credible 
intervals that are very wide.

The takeaway from this simulation is that a larger pool size can 
be more efficient with lower prevalence. The potential drawback to 
large pool sizes is the case when prevalence is high and many, or all, of 
the pools test positive, resulting in an imprecise answer. Prior knowl-
edge about the prevalence should be used in selecting phase 1 pooling 
strategies. As described in Hepworth and Watson (2009), researchers 
should give thought to the upper level of population prevalence, by 
estimating the probability of prevalence exceeding a specified thresh-
old, when choosing pool sizes. The calculations in Section 2.1.3 pro-
vide guidance on the largest prevalence that can be identified from 
pooled samples. In spite of this issue, simulation 4 builds on this sce-
nario by exploring a set of methods for phase 2 estimation that can 
correct some of the problems with suboptimal phase 1 pool sizes.

3.4 | Simulation 4: Adaptive sampling for phase 
2 of testing

Simulation 3 provided guidance on choosing the phase 1 pool size; 
this simulation follows that to compare the performance of phase 

2 sampling and estimation techniques. Simulation 2 already estab-
lished that the second- phase data fusion procedure (adding data 
from new individual samples without pooling) is superior to follow-
ing up with retesting of individual samples in positive pools. For this 
next scenario, we compare outcomes when the second- phase data 
fusion also uses pooled samples. Specifically, in simulation 4, phase 1 
consists of 100 pooled samples of size 5; then, we compare second- 
phase testing with pools of sizes 1, 3, and 5 that run the same num-
ber of total tests.

Figure 6 shows the estimated posterior means and credible in-
terval widths from the phase 1 samples as well as the three phase 2 
approaches. The only approach that accurately estimates the entire 
range of prevalence values is the phase 2 method that tests addi-
tional single samples, as taking additional pools of size 3 or size 5 
results in inaccurate estimates with larger prevalence values. Taking 
individual samples also has the smallest credible interval with large 
prevalence values. Otherwise, with smaller prevalence values, vary-
ing levels of pooled samples can result in accurate estimates and 
precise results.

Given phase 1 results, p can be estimated using Equations 4 and 
5 along with the associated MCMC procedure. Then, this result can 
be used to identify appropriate phase 2 approaches. If the preva-
lence value from the phase 1 approach is estimated to be close to 1, 
individual samples should be used. With prevalence values closer to 
zero, additional pooled samples can give accurate and more precise 
results. As the prevalence values get closer and closer to zero, larger 
pool sizes can give the most precise results with accurate estimation.

F I G U R E  6   Simulation 4: Adaptive 
sampling for phase 2 of testing. Phase 
1 credible interval constructed from 20 
pooled samples of size 5. Depending on 
the prevalence, which can be partially 
inferred from the phase 1 samples, phase 
2 plans should differ
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3.5 | Conclusion

The simulation studies have verified the utility of combining data 
fusion with two- phase adaptive sampling. By introducing data fu-
sion methods that combine individual and pooled samples, esti-
mates of prevalence are more efficient, and more accurate, than 
using just the individual or pooled samples alone. Pooled samples 
are commonly used to screen sets of individuals, where the individ-
uals that compose pools that test positive are retested. If the goal 
is to estimate population prevalence, rather than identify individu-
als that are positive, testing new individuals, and using data fusion 
methods, is a more efficient procedure than retesting individuals in 
positive pools.

Optimal decisions for pooled sampling strategies to estimate 
population prevalence require knowing the population prevalence. 
While that is not possible, data fusion methods enable estimat-
ing population prevalence from the first- phase samples to inform 
second- phase adaptive sampling techniques. The data fusion meth-
ods that we have presented are the necessary component to com-
bine information across pooled results of different sizes, including 
potentially individual samples. Prior information can be useful in de-
signing pool sizes for phase one sampling. When considering phase 
two sampling strategies, population prevalence can be estimated, to 
a degree, from the phase 1 samples. When the prevalence is larger, 
smaller pool sizes, or even individual samples, should be used. When 
prevalence is smaller, larger pool sizes can be used to increase effi-
ciency without compromising accuracy.

4  | DISCUSSION

When the goal is to estimate population prevalence, rather than 
identify infected individuals, pooled testing without retesting posi-
tive pools as a second- phase strategy can result in fewer overall tests 
or more efficient estimates than testing individual samples. Sampling 
strategies for pooled testing require selecting the pool size as well 
as the total number of pools to test. Selecting optimal, or efficient, 
pool sizes is a well- known problem (Thompson, 1962) that requires 
knowing the population prevalence.

As the population prevalence is what researchers are trying to 
understand, it is typically unknown and cannot be directly used for 
pool size selection. Thus, there is a trade- off when considering the 
choice between larger or smaller pools. Pool sizes that are too small 
result in less efficient estimation. Pool sizes that are too large result 
in inflated credible intervals and inaccurate estimation. However, 
another approach is to implement a two- phase sampling procedure 
that can be used to gain information about the population preva-
lence, which can then be used to inform pool sizes for the second 
phase and subsequent testing.

The two- phase approach can enable researchers to learn about 
the population prevalence before conducting all of the tests on a 
given pool size; however, using data from the first phase and second 

phase to jointly inform population prevalence requires formal data 
fusion procedures. This article presents data fusion methods that 
can combine information from pooled samples of different sizes, in-
cluding individual samples.

Adaptive sampling could be implemented on a sample- to- sample 
basis where the pool size changes with each test. However, in many 
settings this is impractical as tests are run in large batches or con-
currently. In general, a smaller share of the total tests should be al-
located to the phase 1 setting than the phase 2 setting. This allows 
the information gained from phase 1 to be used to create the most 
efficient pool sizes.

This work has assumed perfect sensitivity and specificity of tests. 
In practice, this is rarely the case. However, known sensitivity and 
specificity could easily be incorporated into the model framework 
to adjust for the potential of false positive and false negatives. If the 
sensitivity and specificity of the pooled tests depend on the propor-
tion of pooled samples that are positive or negative, this could also 
be handled in the model framework but would likely require labora-
tory testing to understand the relationship between sensitivity and 
specificity and the underlying samples.

One potential advantage of the data integrated approach and 
an active area of ongoing research is the ability to incorporate 
individual- level covariate information, see McMahan et al. (2017) 
or Joyner et al. (2020). Consider the case that demographic in-
formation is available and is related to the prevalence of an in-
dividual. Then, pooled tests could be used to inform the overall 
prevalence in the population, along with the individual samples. 
The individual samples also can be used to infer the relationship 
between individual demographic information and the likelihood 
of being infected.
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APPENDIX 1

MCMC FOR POOLED AND INTEG R ATED ANALYSIS
The MCMC details for both the pooled and integrated analysis are quite similar, with the only difference being the target function, f(). 
Furthermore, the MCMC approach is basically a standard Metropolis– Hastings algorithm with an additional transform step to convert p to π.

where g() is a random walk proposal function. For pooled samples, f() is Equation 4 combined with the prior distribution for π. For the data fusion 
approach, f() is Equation 9.
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