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Abstract 

Background:  Quantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive 
to changes in tissue composition, however their use in cruciate ligament assessment has been limited to studies of 
asymptomatic populations or patients with posterior cruciate ligament tears only. The aim of this preliminary study 
was to compare T1rho and T2 relaxation times of the anterior cruciate ligament (ACL) and posterior cruciate ligament 
(PCL) between subjects with mild-to-moderate knee osteoarthritis (OA) and healthy controls.

Methods:  A single knee of 15 patients with mild-to-moderate knee OA (Kellgren-Lawrence grades 2–3) and of 6 age-
matched controls was imaged using a 3.0 T MRI. Three-dimensional (3D) fat-saturated spoiled gradient recalled-echo 
images were acquired for morphological assessment and T1ρ- and T2-prepared pseudo-steady-state 3D fast spin 
echo images for compositional assessment of the cruciate ligaments. Manual segmentation of whole ACL and PCL, as 
well as proximal / middle / distal thirds of both ligaments was carried out by two readers using ITK-SNAP and mean 
relaxation times were recorded. Variation between thirds of the ligament were assessed using repeated measures 
ANOVAs and differences in these variations between groups using a Kruskal-Wallis test. Inter- and intra-rater reliability 
were assessed using intraclass correlation coefficients (ICCs).

Results:  In OA knees, both T1rho and T2 values were significantly higher in the distal ACL when compared to the 
rest of the ligament with the greatest differences in T1rho (e.g. distal mean = 54.5 ms, proximal = 47.0 ms, p < 0.001). 
The variation of T2 values within the PCL was lower in OA knees (OA: distal vs middle vs proximal mean = 28.5 ms vs 
29.1 ms vs 28.7 ms, p = 0.748; Control: distal vs middle vs proximal mean = 26.4 ms vs 32.7 ms vs 33.3 ms, p = 0.009). 
ICCs were excellent for the majority of variables.

Conclusion:  T1rho and T2 mapping of the cruciate ligaments is feasible and reliable. Changes within ligaments 
associated with OA may not be homogeneous. This study is an important step forward in developing a non-invasive, 
radiological biomarker to assess the ligaments in diseased human populations in-vivo.
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Background
The cruciate ligaments play a critical role in stabilising 
the knee joint. The anterior cruciate ligament (ACL) has 
been studied extensively, due to isolated ACL tears being 
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a frequent injury in orthopaedics with an annual inci-
dence of 68.6 per 100,000 persons [1]. Posterior cruciate 
ligament (PCL) injury is rarer with an estimated annual 
incidence of 2 per 100,000 persons [2]. Studies have also 
found that degeneration of the cruciate ligaments (ACL 
and PCL) may contribute to the onset and progression 
of other musculoskeletal diseases such as osteoarthritis 
(OA) [3, 4].

Conventional magnetic resonance imaging (MRI) can 
depict tears of the cruciate ligaments and the advanced 
stages of (mucoid) degeneration. However, the sensi-
tivity of conventional MRI is limited in detecting early 
ligamentous changes and mainly provides qualitative 
information. Quantitative MRI measurements such as 
T1rho and T2 have predominantly been used as a way of 
quantifying proteoglycan, collagen and water content in 
articular cartilage [5–7]. T1rho and T2 relaxometry have 
been used extensively to probe the composition of colla-
gen rich tissues such as cartilage, ligament and meniscus 
[8]. These methods may provide a way of quantitatively 
assessing changes in the cruciate ligaments before gross 
morphological changes have occurred. There has been a 
new emphasis on biological augmentation of the ACL, 
using growth factors [9], stem cells [10] and bio-scaffolds 
[11] to regenerate the ACL. Quantitative MRI may also 
be helpful in such studies looking at understanding and 
monitoring the biological changes that occur in liga-
ments post augmentation or repair. Newer techniques 
have used 3D cartilage surface mapping to analyse these 
cartilage changes [12]. Furthermore, Prasad et  al. used 
a longitudinal approach and found that T1rho and T2 
measurements may predict progression of knee OA, 
in particular degenerative cartilage abnormalities [13]. 
However, their in-vivo application in ligaments has been 
limited to evaluating T2 of the PCL in an asymptomatic 
population, in patients with PCL tears as well as in ACL’s 
of asymptomatic populations and individuals post ACL 
reconstruction [14–17].

To our knowledge, these techniques have not been 
applied to subjects with OA. The purpose of this study 
was to evaluate the intra-ligamentous differences in 
T1rho and T2 values of the ACL and PCL between 
patients with OA and age-matched healthy controls.

Methods
Subjects cohort
The subject cohort used in this cross-sectional study has 
previously been described in a study assessing longitu-
dinal changes in cartilage morphology and composition 
[12]. Between April 2017 and June 2018, 15 patients with 
knee OA were recruited from specialist orthopaedic 
knee clinics at a University teaching hospital. Six age-
matched healthy controls were recruited via paper and 

electronic advertisement materials and from a register 
of healthy individuals who had agreed to be contacted 
about research studies. Key inclusion criteria for OA 
subjects were: (i) age 40–60 years, (ii) body mass index 
(BMI) of ≤35 kg/m2, (iii) clinical diagnosis of knee OA 
per American College of Rheumatology criteria [18], and 
(iv) mild-moderate radiographic OA defined as Kellgren-
Lawrence grade 2 or 3 on a postero-anterior fixed flexion 
knee radiograph taken using a positioning device (SynaF-
lexer; BioClinica, Newtown, PA) with medial compart-
ment predominant disease [19]. Key exclusion criteria 
were any history of previous lower limb fracture, previ-
ous knee surgery (including arthroscopy) or history of 
inflammatory arthritis. For control subjects, key inclu-
sion criteria were: (i) age 40–60 years, (ii) no current or 
significant previous symptoms of knee pain or stiffness 
and (iii) BMI ≤ 35 kg/m2. A MRI Osteoarthritis Knee 
Score (MOAKS) was additionally conducted on the con-
trol subjects to assess any signs of degeneration [20]. At 
each study visit subjects completed the knee injury and 
osteoarthritis outcome score (KOOS) to assess symp-
toms and had their BMI recorded [21].

Image acquisition
Subjects were imaged using a 3.0 T MRI system (GE 750, 
GE Healthcare, Waukesha, WI, USA) with an 8 channel 
transmit/receive dedicated knee coil (InVivo, Gaines-
ville, FL, USA). Subjects were positioned foot first in 
the supine position with immobilisation of the knee to 
reduce potential motion artefact. A standard clinical 
MRI examination protocol including a sagittal 3D fat-
saturated spoiled gradient recalled-echo (3D-FS SPGR) 
sequence and additional sagittal T1rho and T2 map-
ping sequences (pseudo steady state 3D fast spin echo 
sequences with T1ρ and T2 magnetisation preparation) 
was used. A summary of key sequence parameters is pro-
vided in Table 1.

Image analysis
The ACL and PCL were segmented manually on the high 
spatial resolution anatomical 3D-FS SPGR images using 
ITK-SNAP v 3.6.0 [22]. Segmentation was performed by 
a single reader (CDSR) and supervised by a musculo-
skeletal radiologist with 8 years’ experience (JWM). Seg-
mentations were repeated by the same reader at a second 
timepoint (at least 2 weeks following the initial segmen-
tation) to assess intra-rater reproducibility, and also by 
an independent second reader, a radiologist with 3 years’ 
experience (VC), to assess inter-rater reproducibility. 
Segmentation was done on 5–10 sagittal images corre-
sponding to 2–3 images on T1rho/T2 maps. An example 
of a 3D- rendering made from a segmentation in ITK-
SNAP is shown in Fig. 1.
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Images for T1rho and T2 mapping (individual spin-
lock time/echo times) were rigidly registered to the 
3D-FS SPGR images using Elastix registration software 
[23]. Parameter maps were constructed from the reg-
istered images by fitting an exponential decay curve to 
the observed signal on a voxel-by-voxel basis using non-
linear least squares curve fitting with a routine devel-
oped in MATLAB (R2017a, Mathworks) in the regions 
masked by the ACL/PCL segmentations. The fitting rou-
tine excluded pixels from the final map if the signal at any 
spin lock/echo time was less than the estimated noise 
floor or if the curve fit was poor (operationally defined 
as R2 < 0.8). The mean and standard deviations T1rho 
and T2 relaxation times within the segmented masks 
for the ACL and PCL were then recorded. The cruciate 
ligaments were also divided into thirds (proximal, middle 
and distal) based on their maximal length in the cranio-
caudal direction using an in-house MATLAB routine 
utilising the manual segmentation to define the proximal 
and distal extent of the ligaments. Mean T1rho and T2 
relaxation times were also recorded separately for each 
third.

Additional exploratory analyses
We conducted additional exploratory analyses between 
OA individuals who had a bone marrow lesion associated 

with the ACL/PCL tibial insertion and those without 
ganglion cysts at the footplates/footprints. We also con-
ducted comparisons between OA individuals with KL 
Grade 3 and those with KL Grade 2. These can be found 
in the Additional file 1.

Statistical analysis
To compare structural variation across the thirds of the 
ligament for each group, repeated measures ANOVAs 
were performed. Any violations in assumptions were 
checked before comparison. If there was a violation of 
sphericity or normality, a Greenhouse-Geisser correc-
tion was applied or a Friedman test was used, respec-
tively. To investigate whether this structural variation 
differs between groups (OA vs CON), percentage differ-
ence values were obtained between each of the thirds of 
the ligament. These percentage difference values were 
then compared across groups using a Kruskal-Wallis test. 
Intra-rater and inter-rater reproducibility of the extracted 
mean T1rho and T2 relaxation times were assessed using 
intraclass correlation coefficients (ICCs). For inter-rater 
agreement, a two-way random effects, single meas-
ures model was used. For intra-rater agreement, a two-
way mixed effects, single measures model was used. 
Both models looked for absolute agreement. Any ICC 
below 0.4 was deemed to represent poor agreement; one 

Table 1  Sequence parameters

NOTE: TR Repetition time, TE Echo time, TSL Spin-lock pulse duration, FOV Field of view, SPGR Spoiled gradient recalled-echo, FS fat-suppressed, FSE Fast spin echo. No. 
of averages = 0.5 = a half-fourier acquisition using phase-conjugate symmetry for acceleration purposes. Sequence times are rounded to nearest 30 s

Sequence TR (ms) TE (ms) TSL (ms) Matrix FOV (mm) In-plane spatial 
resolution (mm)

Slice 
thickness 
(mm)

Flip angle (o) No. of 
averages

Sequence 
duration 
(mins)

3D-FS SPGR 25.6 6.7 N/A 512 × 380 160 × 120 0.31 × 0.31 1 20 0.5 7

3D FSE 
T1rho

1260 35 1/10/20/35 320 × 256 150 × 120 0.47 × 0.47 3 90 0.5 5

3D FSE T2 1285 6.5/13.4/27.0/40.7 N/A 320 × 256 150 × 120 0.47 × 0.47 3 90 0.5 5

Fig. 1  Representative 3D renderings of ACL(green) and PCL (red) segmentations superimposed on 3D models of the knee joint and viewed from 
(from left to right) anteromedially, anteriorly and anterolaterally
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between 0.4 and 0.75 represented fair to good agreement; 
an ICC above 0.75 was interpreted as “excellent agree-
ment.” Data from the first reader’s segmentation was used 
for all other analyses. SPSS (IBM Corp, Version 25) was 
used for statistical analysis. We did not correct for multi-
plicity of testing in this exploratory study.

Results
Subject characteristics
We investigated 15 symptomatic subjects in our knee 
OA sample and 6 control subjects (CON). Subject demo-
graphics are shown in Table 2. Four of the individuals in 
the OA group had a K-L grade of 3 and eleven had a K-L 
grade of 2. The results of the structural, semi-quantitative 
assessment of the healthy controls using MOAKS scoring 
are presented in Table 3.

Variation across ligaments
Examples of T1rho colour maps for the ACL and PCL in 
healthy and OA individuals are shown in Fig.  2. Means 
and standard deviations for each parameter (T1rho and 
T2), subregion (distal, middle and proximal thirds of the 
ligament) and group (OA and control) are presented in 
Table  4. The data is also displayed graphically in Fig.  3. 
Two variables for the OA group displayed significant 
variation across the ligament: mean T1rho times of the 
ACL (distal = 54.5 ± 9.9 ms, middle = 46.9 ± 9.6 ms, prox-
imal = 47.0 ± 6.9 ms; p <  0.001) and mean T2 times of 
the ACL (distal = 43.2 ± 9.4 ms, middle = 38.0 ± 8.3 ms, 
proximal = 37.0 ± 5.0 ms; p =  0.017). Pairwise compari-
sons revealed for the former that the distal third of the 
ligament varied significantly from both the middle and 
the proximal thirds (p =  0.007 and 0.002 respectively). 
Pairwise comparisons for the latter revealed that the 
distal third of the ligament varied significantly from the 
proximal third (p =  0.007). For the control group, the 
mean T2 relaxation times for the PCL varied signifi-
cantly across the ligament (distal = 26.4 ± 2.3 ms, mid-
dle = 32.7 ± 3.8 ms, proximal = 33.3 ± 5.2 ms; p =  0.009). 
Pairwise comparisons revealed again that the distal third 

of the ligament varied significantly from both the middle 
and the proximal third (both p = 0.031).

Comparing the variation across the ligament 
between groups (OA vs control)
Table 5 shows the mean difference between T1rho ACL 
and T2 PCL of each group for each variable. A signifi-
cant difference between groups was found for the vari-
ation in mean T2 values between the distal and middle 
thirds of the PCL as well as the variation in mean T2 val-
ues between the distal and proximal thirds of the PCL 
(p = 0.006 and 0.008 respectively).

Inter‑ and intra‑rater reliability
Intra-rater and inter-rater reliability was assessed for all 
T1rho and T2 variables for the three sub-regions and 
for the ligament as a whole using the intraclass correla-
tion co-efficient (ICC) within subjects and between sub-
jects respectively [24]. The values are shown in Table 6. 
The majority of variables were deemed to have “excellent 
agreement.”

Table 2  Demographics of the sample

NOTE: N number in sample, F Female, M Male, SD Standard deviation, BMI Body 
Mass Index, KOOS-5 Knee Injury and Osteoarthritis Outcome Score, average 
across 5 subscales

Group Control (N = 6; 4 F, 2 M) OA (N = 15; 6 F, 
9 M)

Mean SD Mean SD

Age (years) 55.0 3.5 51.1 5.0

BMI (kg/m2) 29.7 3.0 29.2 3.9

KOOS-5 91.8 15.8 50.9 17.7

Table 3  MRI Osteoarthritis Knee Score (MOAKS) for Healthy 
Controls

MOAKS domain Number of healthy 
controls (n = 6) with 
feature

Bone marrow lesion
  - Any 1

  - ≥ grade 2 0

Cartilage defect
  - Any 2

  - ≥ grade 2 (size) 1

  - Any full-thickness 1

Osteophyte
  - Any 2

  - ≥ grade 2 0

Meniscal damage
  - Any medial tear 1

  - Any lateral tear 1

Meniscal extrusion
  - Any medial 4

  - ≥ grade 2 medial 4

  - Any lateral 1

  - ≥ grade 2 lateral 0

Effusion-synovitis
  - Any 1

  - ≥ grade 2 0

Hoffa-synovitis
  - Any 1

  - ≥ grade 2 0
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Discussion
Validation of the quantitative MRI technique for cruciate 
ligament compositional analysis
This is the first study to our knowledge that compares 
T1rho and T2 relaxation times in the cruciate ligaments 
between OA and healthy knees. This study has demon-
strated the feasibility of segmentation and T1rho and 
T2 mapping of the cruciate ligaments. Our results indi-
cate that quantitative MRI assessment of the cruciate 

ligaments is feasible and reliable and may be of clinical 
utility in diseases such as osteoarthritis. Intra-rater and 
inter-rater reproducibility was in the “excellent” range for 
the majority of measurements. However, there were three 
variables in the “poor range” (These were the inter-rater 
reliabilities for the T1rho variables of the distal ACL and 
PCL and the proximal PCL T2 variable). This may be due 
to inter-observer variation in defining the ligament/bone 
boundary at proximal/distal attachment sites. This is 

Fig. 2  A Representative sagittal 3D spoiled gradient echo MRI images of the ACL of an OA (left) and healthy (right) subject with overlaid T1rho 
colormaps. Note higher and more heterogeneous values of T1rho in the OA subject. B As above but with T1rho colormaps of the PCL. Note higher 
T1rho values in proximal part of the PCL in the OA subject. C Variation in T1rho within the cruciate ligaments of an OA (left) and healthy (right) 
subject. Note increased variation/heterogeneity of T1rho values throughout the ACL of the OA subject

Table 4  Summary of T1rho and T2 variables by ACL and PCL subregion for OA and controls

NOTE: Means and standard deviations (SD) are in ms. Within the (Sig.) column: M = different from middle; P = different from proximal; D = different from distal (all 
p < 0.05); * = A Friedman test was used here; ** = p-value after Greenhouse-Geiser correction; all effect sizes are partial-eta squared values unless indicated by a *** 
which represents a Kendall’s co-efficient of concordance value; p-values < 0.05 are shown in bold. ACL = Anterior cruciate ligament; PCL = Posterior cruciate ligament

Distal Middle Proximal Variation across 
ligament

Group Ligament Parameter Mean (SD) Sig. Mean (SD) Sig. Mean (SD) Sig. p-values Effect size

OA ACL T1rho 54.5 (9.9) M, P 46.9 (9.6) D 47.0 (6.9) D < 0.001 0.430

T2 43.2 (9.4) P 38.0 (8.3) 37.0 (5.0) D 0.017* 0.271***

PCL T1rho 33.8 (3.2) 34.2 (3.0) 33.9 (5.2) 0.881** 0.005

T2 28.5 (4.5) 29.1 (2.8) 28.7 (3.4) 0.748 0.021

Controls ACL T1rho 53.2 (13.4) 52.4 (12.4) 51.3 (7.5) 0.855 0.031

T2 39.9 (12.5) 40.5 (10.3) 40.3 (3.7) 0.987 0.003

PCL T1rho 33.9 (3.2) 35.3 (4.9) 34.5 (4.0) 0.790 0.046

T2 26.4 (2.3) M, P 32.7 (3.8) D 33.3 (5.2) D 0.009* 0.778***
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particularly difficult for the distal ACL for example, as it 
has a relatively wide fan-shaped attachment which blends 
in with adjacent lateral meniscal tissue.

Sub‑regional differences in the distribution of T1rho 
and T2 values between controls and OA groups
A key finding of this study was that there were significant 
differences in the distribution of T1rho and T2 values of 
the cruciate ligaments according to sub-region between 
control and OA individuals. Previous studies in cartilage 
have indicated that T1rho value changes may correlate 
with proteoglycan loss [8, 25] and changes in collagen 
architecture in vitro [26]. Our results suggest that in OA 
subjects, alterations in ligament composition occur het-
erogeneously within the ligament.

Previous histological studies have looked at composi-
tion of the ligaments and there has been interest in the 
biological mechanisms that underlie ligament degener-
ation in the cruciate ligaments. Hasegawa et al. found 
that disorganisation of collagen fibres was the first and 
most prevalent change in age-related degeneration of 
the anterior cruciate ligament [4]. Recent interest has 
been directed to how these compositional changes may 
differ through various sub-regions of the ligament. For 
example, a study by Skelley et al. documented how the 
anteromedial region of the ACL may have a different 
cellular composition to the posterolateral region [27]. 
A previous study by Wilson et al. investigated T2 map-
ping values in an asymptomatic sample and found sig-
nificant differences between sub-regions of the PCL 

Fig. 3  Means and standard deviations of T1rho and T2 relaxation time measurements by ACL and PCL subregion for OA and healthy control 
subjects. Note: ACL = anterior cruciate ligament; PCL = Posterior cruciate ligament

Table 5  Summary of differences in variation of T1rho and T2 variables across the ligaments between groups (OA vs Control) using a 
Kruskal-Wallis test

NOTE: p-values < 0.05 are shown in bold

D and M = Difference between the T1rho and T2 value for the distal part of the ligament and the Middle part; D and P = Difference between the T1rho and T2 value for 
the distal part of the ligament and the Proximal part; OA = OA group; CON = Control group; ACL = Anterior cruciate ligament; PCL = Posterior cruciate ligament

Ligament Parameter Difference between 
Regions

OA mean rank Control mean 
rank

Kruskal-Wallis H 
(df = 1)

Sig. (two-tailed)

ACL T1rho D and M 12.5 7.3 2.93 0.087

D and P 12.7 6.8 3.79 0.052

T2 D and M 12.3 7.7 2.42 0.119

D and P 12.3 7.7 2.42 0.119

PCL T1rho D and M 11.0 11.0 0.00 1.000

D and P 11.3 10.3 0.10 0.755

T2 D and M 13.3 5.2 7.42 0.006
D and P 13.3 5.3 7.01 0.008
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[14]. Namely, the distal third of the PCL had higher T2 
values than the proximal or middle thirds. The present 
study similarly found variation between sub-regions, 
but in contrast found that the distal third of the PCL 
had lower T2 values than the proximal or middle. 
Despite this, the magnitude of the values was gener-
ally similar. This could be due to a number of reasons 
such as differences in the demographics of the cohort 
studied (the mean age in Wilson et al’s study was con-
siderably younger at 39.8 years compared to 56 years in 
our healthy control group) or differences in the meth-
odology of dividing the PCL into sub-regions; Wil-
son et  al. used a 3D centreline. Another study found 
higher mean T2 values in the PCL than the mean val-
ues found in this study [15]. This could be explained by 
the present study investigating PCLs in asymptomatic 
individuals and those with OA, rather than those with 
PCL tears. Looking at the ACL, the magnitude of T2 
relaxation values of healthy controls found in a previ-
ous study were generally similar to those found in the 
present study [16]. Quantitative MRI techniques such 
as those featured in this manuscript may allow for the 
further exploration of these sub-regional differences 
non-invasively.

Future applications in in‑vivo studies of the cruciate 
ligaments
Evaluating ligament healing in animal models currently 
requires histological or biochemical testing. These either 
require the need for a biopsy or destructive testing of 
the ligament [28]. Thus, in  vivo assessment is impossi-
ble with these current methods. Previous studies looking 
at other MRI parameters, signal intensity or “grayscale” 
and volume of tissue in T2*-weighted MRI scans can 

predict structural properties of the healing ligament 
[29]. Another MRI variable, the T2* relaxation time vari-
able, has been found previously to be linked to ligament 
structural properties; tissues with shorter T2* values 
were found to have higher ligament structural properties 
[30]. Further, shorter ligament T2* values are linked with 
higher histological scores of healing ligaments and could 
provide a method to assess ligament healing at a micro-
scopic level [28]. These studies, together with our study 
working with T1rho and T2 parameters, reinforces the 
growing body of evidence that quantitative MRI methods 
could evaluate ligaments non-invasively in vivo.

Future directions
The findings of this study are encouraging and should be 
replicated on a larger scale. A longitudinal study using 
a similar methodology to this study would help estab-
lish whether these T1rho and T2 mapping values could 
predict clinical outcomes over time and would provide 
more evidence that these non-invasive techniques can 
be used to track ligament degeneration or healing lon-
gitudinally. Further, studies monitoring repair tissue 
post ACL or PCL injury using these techniques could be 
possible.

Limitations of this study
There are some important limitations in the present study 
that must be highlighted. First, this was a feasibility study 
and thus small in sample size, which creates an unavoid-
able consequence of an increased risk of a type II error. 
The relatively low number of control subjects (CON) 
compared to the osteoarthritis (OA) group in the study 
is also a limitation. However in the initial design phase of 
the study, it was felt the CON group was likely to be more 
homogenous than the OA and therefore a lower number 

Table 6  Results of intra-rater and inter-rater reliability assessment

NOTE: Overall = The inter/intra-rater reliability across the whole of the ligament. ACL Anterior cruciate ligament, CI Confidence interval, PCL Posterior cruciate ligament

Intra-rater reliability T1rho T2
ACL (95% CI) PCL (95% CI) ACL (95% CI) PCL (95% CI)

Overall 0.94 (0.86, 0.98) 0.78 (0.53, 0.91) 0.92 (0.81, 0.97) 0.84 (0.65, 0.93)

Distal 0.58 (0.21, 0.81) 0.68 (0.36, 0.86) 0.61 (0.24, 0.82) 0.81 (0.58, 0.92)

Middle 0.83 (0.62, 0.93) 0.79 (0.54, 0.91) 0.80 (0.57, 0.92) 0.77 (0.51, 0.9)

Proximal 0.89 (0.74, 0.96) 0.75 (0.47, 0.89) 0.92 (0.77. 0.97) 0.68 (0.35, 0.86) 

Inter-rater reliability T1rho T2
ACL PCL ACL PCL

Overall 0.91 (0.66, 0.97) 0.76 (0.46, 0.91) 0.84 (0.61, 0.94) 0.84 (0.62, 0.94)

Distal 0.33 (−0.92, 0.68) 0.2 (−0.35, 0.63) 0.5 (0.04, 0.78) 0.78 (0.48, 0.91)

Middle 0.83 (0.56, 0.94) 0.75 (0.39, 0.91) 0.83 (0.59, 0.94) 0.86 (0.66, 0.95)

Proximal 0.87 (0.68, 0.95) 0.79 (0.5, 0.92) 0.73 (0.39, 0.89) 0.31 (−0.18, 0.68)
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of participants would be required, bearing in mind also 
the pragmatic considerations of availability of suitable 
age-matched healthy volunteers. This study’s findings also 
lack a histological correlation, which could validate how 
techniques are useful on a microscopic level. This would 
be difficult to obtain in humans in-vivo for practical and 
ethical reasons, however, a comparative assessment of 
histological and quantitative MRI features has previously 
been performed in-situ of cartilage and menisci in struc-
turally intact human knee specimens [31]. Moreover, the 
methodology used for identification of the ACL and PCL 
used manual rather than automatic segmentation, allow-
ing scope for human error. This being said, there is no 
established method of automatic segmentation and the fit-
ting routine we used minimised error by ensuring exclu-
sion of any pixels from the final map that could have been 
erroneous. Finally, the results of this study could have been 
influenced by the magic angle effect, whereby ordered 
collagen-containing tissues when oriented at 55 degrees 
to the direction of the magnetic field of the MRI scanner 
produce an artefactually increased signal [32]. Unfortu-
nately, this may be difficult to avoid particularly in the 
PCL, given its natural curvature. Additionally, sequences 
were optimised for cartilage rather than ligament assess-
ment. Further customisation (for example, of echo times) 
for ligament assessment may provide an advantage.

Conclusion
This study shows that T1rho and T2 mapping of the cru-
ciate ligaments is both feasible and reliable in subjects 
with OA and age-matched controls. We found significant 
variation between sub-regions of the cruciate ligaments 
in T1rho and T2 relaxation times for both controls and 
OA subjects, indicating heterogeneity across the liga-
ments. Significant differences between controls and OA 
subjects in this variation across the ligament was found. 
This study is an important step forward in identifying a 
non-invasive method to evaluate the cruciate ligaments 
in diseased human populations in vivo.
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