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Abstract

We define cell morphodynamics as the cell’s time dependent morphology. It could be called

the cell’s shape shifting ability. To measure it we use a biomarker free, dynamic histology

method, which is based on multiplexed Cell Magneto-Rotation and Machine Learning. We

note that standard studies looking at cells immobilized on microscope slides cannot reveal

their shape shifting, no more than pinned butterfly collections can reveal their flight patterns.

Using cell magnetorotation, with the aid of cell embedded magnetic nanoparticles, our

method allows each cell to move freely in 3 dimensions, with a rapid following of cell defor-

mations in all 3-dimensions, so as to identify and classify a cell by its dynamic morphology.

Using object recognition and machine learning algorithms, we continuously measure the

real-time shape dynamics of each cell, where from we successfully resolve the inherent

broad heterogeneity of the morphological phenotypes found in a given cancer cell popula-

tion. In three illustrative experiments we have achieved clustering, differentiation, and identi-

fication of cells from (A) two distinct cell lines, (B) cells having gone through the epithelial-

to-mesenchymal transition, and (C) cells differing only by their motility. This microfluidic

method may enable a fast screening and identification of invasive cells, e.g., metastatic can-

cer cells, even in the absence of biomarkers, thus providing a rapid diagnostics and assess-

ment protocol for effective personalized cancer therapy.

Introduction

Despite much progress over the last century, cancer remains one of the leading causes of death

globally [1]. Its lethality is overwhelmingly due to metastasis, the process by which cells from
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the original cancerous tumor leave their micro-environment (TME) and disseminate to colo-

nize new tissues [2]. During this metastatic process, separated single cells, or multi-cellular

clusters, migrate through the extra-cellular matrix (ECM) surrounding the tumor, passing

through the endothelium into the bloodstream [3, 4]. Upon entering the bloodstream, cells

and clusters are buffeted by hemodynamic forces on the range of 4–30 dynes/cm2 [5–7]. Addi-

tionally, these cells must contend with immunological insults and collisions with red blood

cells. Having survived under these conditions, cancer cells must latch onto epithelial cells and

extravasate into “foreign” tissue, so as to seed a secondary tumor.

To complete the aforementioned challenges, metastatic cells must express entirely different
phenotypes than their stationary counterparts. Specifically, the epithelial to mesenchymal tran-
sition (EMT) permits the relatively stationary, epithelial cells of solid tumors to obtain the

mobility required to intravasate and exit the primary tumor, and eventually intravasate at a

new tissue location. The EMT may be induced without any gene mutations [8]. It has been

observed that the post-EMT amoeboid-like cells can significantly increase the metastatic
potential of the tumor [9]. It has also been reported that morphological changes can be used to

identify cells having undergone the EMT [10, 11]. Morphology has been linked to cell cycle

progression, cell-matrix adhesion properties, gene expression patterns, aging, chemo-sensitiv-

ity, and chemo-resistance [12, 13]. Morphology has also been used to predict the metastatic
potential of both osteosarcoma [14, 15], and breast cancer [16]. Thus, morphology with its
dynamics presents an attractive option for evaluating cancer progression. Here we emphasize

the dynamic aspects, i.e., the cancer cell’s morphodynamics, that is its time-dependent mor-

phology (or shape shifting ability).

To date, most studies of cell morphology have focused on plated, adherent cell lines. Even

though clear morphological distinctions can be discerned among cells when plated, the mere

two-dimensional plating process might change their phenotypes and thus alter the quality of

the diagnostics [17–22]. Furthermore, tumor grading by professional histologists is character-

ized by poor reproducibility and accuracy [23]. The goal of these studies has been to correlate

genetic features with morphological ones. Wu et al. demonstrated that isolated morphological

sub-phenotypes were predictive of tumorigenic and metastatic potentials [24]. In a separate

study, the same group showed that metastatic cells possessed more homogenous heritable

morphological traits [25]. Another study demonstrated that oncogenesis and metastasis were

associated with characteristic changes in morphology [11, 26]. While studies have been con-

ducted that differentiate cancerous from non-cancerous cells [27, 28], we have extended this

analysis to compare metastatic with non-metastatic cell types. It would be of significant utility

if a morphodynamic classification system could be built for suspended cells, such as circulating

tumor cells (CTCs) or those harvested from a biopsy. To realize this goal, we use magnetic

nanoparticles so as to trap, suspend, and rotate cells that are captured in a microfluidic cham-

ber [29]. Magnetorotation prevents cells from adhering the microwells and permits explora-

tion of their morphodynamic space.

To examine the cellular morphodynamics, we combine cell magneto-rotation with machine
learning and we show that this approach may allow one to probe both cell motility as well as

morphological expression. Machine learning has lent itself to many medical applications and

removes the subjectivity of a histologist’s analysis [24, 30]. In our approach, green fluorescent

protein (GFP) expressing cancer cells are activated by endosomic uptake of magnetic nanopar-

ticles, and are then loaded into a microfluidic device that contains an array of microwells

where they remain non-adherent while rotating in an oscillating magnetic field [31, 32]. This

enables 3-dimensional cell deformations in which the cells explore and express their morpho-

logical phenotype. Most of the device’s microwells contain just one single cell; and in each

such microwell the single cell is free to take any of the shapes that exist in its morphological
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space. After taking fluorescent images of these cells, we combine object recognition and

machine learning algorithms, so as to first reject information from multi-occupancy or empty

microwells, and then to differentiate, cluster, and identify each of the cells by its morphological
profile (Fig 1). We found that cells having undergone the EMT could be distinguished from

control cells, which demonstrates the morphodynamic equivalent of a change in protein expres-
sion. Furthermore, highly migratory cells were found to be morphodynamically distinct from a

control population. This new machine learning (ML) based method appears to have the poten-

tial to map and classify the morphodynamic distribution of a given cell population, and thus to

provide information on the degree of morphological plasticity of a tumor cell’s population. The

latter may be related to the tumor’s lethality. We have thus used this method here to demon-

strate the strong relationship between a cell’s morphological and biological behaviors.

Results

To test our technique, we started with an example system: distinguishing between two well

characterized breast cancer cell lines of unequal metastatic potential (MDA-MB-231 and

MCF-7), using the AdaBoost algorithm [33]. The algorithm is capable of correctly identifying

cells with a probability of 99%, both in terms of true positives and true negatives, for both phe-

notypes, as shown in Fig 2A. This means that, on average, our method has a false positive rate

below 0.01, and a false negative rate below 0.01 as well (Fig 2A). Using principal component
analysis, we can project the morphological measurements of the cells onto those principal

components that explain most of the data’s variance (Fig 2B). Doing so shows that distinct cell

phenotypes are clustered together in a manner that allows for separation and classification.

Naturally, this does not exclude partial overlap between distributions.

In order to test the capacity of our method, we also reduced the amount of training exam-

ples of the target cells (MDA-MB-231, being the most aggressive cells) in the general popula-

tion (being represented by the MCF-7 cells). Surprisingly, even at a ratio of 1/1500 the

algorithm is still capable of learning to differentiate the two cell lines, with an f1 score of 0.965.

As scores for the reduced number of examples from one of the two categories remain high, it

is instructive to look at how the standard deviation of the score changes (Fig 2C). We see that

reducing the presence of one target population largely contributes to results with a higher vari-

ance; in other words, outliers, even small ones, have a larger effect for smaller sample sizes.

One of the reasons for this is that having fewer examples for one class contributes to overfitting

that particular class, and thus brings a poorer discrimination power when more diverse exam-

ples of the same class are presented to the computer.

Fig 1. A schematic summary of the cell morphodynamics protocol. A: A captured cell expresses its morphodynamic

phenotype while being gently rotated in a magnetic field, enabled by endocytosis of magnetic nanoparticles. B: The

microfluidic device contains an array of triangular microwells designed so as to capture individual cells, in spaces large

enough for cells to rotate freely. C: Rotating cells are fluorescently imaged on an environmentally controlled

microscope stage. D: Cell images are converted by CellProfiler into parameters, used by Machine Learning algorithms

to provide cellular clustering, classification, and analysis.

https://doi.org/10.1371/journal.pone.0259462.g001
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Having distinguished cells from two distinct lineages, we next utilized our method to ana-

lyze cells that originally shared the same phenotype, but had undergone a significant change,

i.e., the epithelial to mesenchymal transition (EMT). To do so, we forced a human prostate can-

cer cell line, PC-3, to go through the EMT, yielding the cell line HR-14 [34]. As can be seen in

Fig 3A, when using the representation of the cell measurements in the eigenvector space after

only one imaging sequence, the two populations of cells are readily separable. To determine if

any sub-phenotypes existed among these populations, we ran unsupervised k-means clustering,

in which we partition our observations into k clusters, with each observation falling into the

cluster with the nearest mean [35]. We chose k so as to maximize cluster homogeneity, with a

strict constraint that all clusters must have a homogeneity greater than 0.95. In doing so, we

found seven (7) sub-phenotypes (Fig 3B). Therefore, with our microfluidics imaging method,

just using Cell Magneto-Rotation (CMR) coupled with unsupervised clustering techniques, we

could identify and discriminate cells that went through an EMT. Furthermore, we were able to

Fig 2. A ‘proof of concept’ classification task by morphodynamics with two distinct cell lines: MCF-7 (low

metastatic potential, epithelial) and MDA-MB-231 (high metastatic potential, mesenchymal). A: The detection

power for MCF-7 vs. MDA-MB-231 after 1 minute (one image is captured every minute) using Adaboost. We observe

high precision and recall, in both classes, indicating that the algorithm is robust for the two phenotypes, that the rate of

false positives is low, and that we are capturing nearly every cell in each group (support designates the number of cells

in a given group). B: Projections of the measured data onto the first three eigenvectors (principal components) reveals

distinguishable clusters for the two cell lines: MCF-7 (blue) and MDA-MB-231 (red). Each point in the eigenvector

space represents a single cell. C: A plot of the f1-score’s standard deviation as a function of the MCF-7/MDA-MB-231

ratio. Colored lines indicate how long the cells were imaged. By increasing the number of scans, the classifier can

become more confident in the phenotype of a particular cell, allowing us to distinguish the artificially rare

subpopulation of MDA-MB-231 cells, even as their relative abundance becomes less than 0.1% of the population.

https://doi.org/10.1371/journal.pone.0259462.g002
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identify the presence of sub-phenotypes, though their physiological manifestation remains

uncharacterized.

Finally, we sought to detect subpopulations of cells within a given population. To do so, we

separated those MDA-MB-231 cells that had a higher motility than the rest of the population,

using a Boyden chamber [36]. We compared the data collected from these highly motile cells

with those from the cells that had failed to migrate (Fig 4). Our results show that, using just a

morphodynamic analysis with k-means clustering, we were able to easily distinguish the highly

motile subpopulation of MDA-MB-231 cells from that of the general population. Our homoge-

neity score stands at 0.96 for 7 clusters, which means that the clusters have a very high purity.

As a consequence, each cluster is composed, almost exclusively, of cells that have the same

Fig 3. Unsupervised analysis of PC-3 (epithelial) and HR-14 (mesenchymal) cell lines using k-means clustering. A:

The projection of PC-3 (blue) and HR-14 (red) cells onto the first three eigenvectors. Notably, when training the

computer, it gets the information about each cell being either PC-13 or HR-14. Before any machine learning has been

done, we can see that the two cell lines clearly cluster into distinguishable groups. Interestingly, we find that the

clusters are not continuous and the emergence of morphological sub-phenotypes is apparent. B: The results of k-means
clustering with the constraint that each cluster must maintain a homogeneity score greater than 0.95. We find that the

constraint for highly pure clusters results in the identification of 7 sub-phenotypes.

https://doi.org/10.1371/journal.pone.0259462.g003

Fig 4. Unsupervised analysis of highly motile cells separated from the bulk population chamber via a Boyden
chamber. A: Projections of migratory (blue) and non-migratory (red) MDA-MB-231 cells. The migratory and non-

migratory fractions segregate into distinct clusters of cells, with many individual or small clusters of cells expanding

into the periphery, away from the main clusters, indicating the presence of morphological sub-phenotypes. B: Using

the k-means clustering algorithm with the strict criterion that clusters must have a homogeneity greater than 0.95, we

find seven distinct clusters. In the absence of genetic profiling, we cannot confirm the biological role of these clusters,

but have demonstrated that morphology alone is enough to distinguish, cluster, and analyze cell sub-phenotypes.

https://doi.org/10.1371/journal.pone.0259462.g004
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phenotype (“normal” or invasive). We conclude that a simple morphodynamics test can reliably

predict the results of a motility test, such as a Boyden Chamber test, i.e., segregate the motile

from the non-motile cell populations. It appears, therefore, that using unsupervised clustering

(and without any human input regarding classification into phenotypes), we can detect, with

this morphodynamics based method, subpopulations of cells that are very different from the

rest of the population, including their motility-related potential aggressiveness, i.e., metastatic
potential. Thus, our technique augments, or obviates, the Boyden chamber assay, by allowing us

to predict, using the morphodynamics analysis, which cells will migrate through the chamber.

Additionally, we can detect sub-phenotypes of both migratory and non-migratory cells, though

the origin of these sub-phenotypes remains uncharacterized. This preliminary evidence that

new sub-phenotypes can be detected by our method will be a main item in our future studies.

Discussion

Our morphodynamic histology approach pushes the biological adage, “structure dictates func-

tion”. Using only a morphology analysis, we were able to cluster and differentiate (A) cells of

separate and distinct lineages (e.g., MCF-7 vs. MDA-MB-231), (B) cells before and after having

gone through the EMT (PC-3 vs. HR-14), and (C) cells from a single cell line (MDA-MB-231)

that differed only in their motility. Our first classification experiment (Fig 2) is a proof of con-

cept, as the ability to distinguish between the two genotypically distinct cell lines MCF-7 (epi-

thelial-type) and MDA-MB-231 (mesenchymal-type) can be accomplished by eye. However, it

is less trivial to delineate cells sharing a single genotype that have undergone the EMT. The sec-

ond experiment (Fig 3) demonstrates that we can readily distinguish between pre- and post-

EMT cells, suggesting that changes in phenotype are detectable as morphodynamic changes.

In addition, the HR-14 cells have been shown, in animal models, to be much more metastatic

than their epithelial counterparts [34]. In our final experiment (Fig 4), we used only a single

population of cells, and we were able to identify, by morphodynamics alone, the highly motile

cells within that population, as confirmed by a Boyden migration assay.

Importantly, we can track behaviors and morphological changes that are intrinsic to a label
free, floating or circulating, cell, without relying on any biomarker or on any a priori knowl-

edge of the genotype, which are often required for other CTC-capturing techniques [37, 38].

We note that protrusions, blebs and amoeboid morphologies have all been strongly correlated

with an increase in malignancy [9, 34, 39, 40]. It thus follows that detecting such morphologi-

cal cues could greatly help in the identification of those cells that are most responsible for the

metastatic process. Importantly, early identification of cancerous or pre-cancerous morphody-

namic phenotypes could enable early detection of cancers which produce no known biomark-

ers, such as is the case for pancreatic cancer [28, 41]. In future work, it would be beneficial to

extend the dynamic morphodynamics platform to demonstrate sensitive differentiation of

such cells, which could be of important diagnostic value.

Another advantage of the morphodynamic cell phenotyping approach is the ability to easily

track thousands of individual cancer cells. Since the cells are loaded onto a grid of microfluidic

wells, the location of each cell is known for the duration of the experiment, and the morphody-

namic features of the cells can be tracked over time. While each present device is limited to a

maximum capacity of 10,000 wells, the experimental approach is easily automatable, and there

appears to be no difficulty in extending the analysis to other common model cell lines, or even

to non-adherent cells.

To emphasize, in this study we have been able to start from a purely physical readout, i.e.

the shape features of rotating cells, and end up segregating cells into morphodynamically

unique clusters. While subtle differences in nanoparticle formulations have been shown to
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effect cell responses to therapy [42, 43], our technique has been demonstrated to have minimal

impact on cell viability (S2 Fig in S1 File). All along the analysis, our method maintains the

ability to follow single cells individually. As such, this system lends itself well to serving as a

single cell analysis assay. Importantly, each of the populations we studied (Figs 2–4) could be

readily split into two distinct populations (e.g., MDA-MB-231 vs. MCF-7). Beyond that, our

use of unsupervised learning demonstrated that there exist in these cell groups identifiable sub-

populations of cells. The underlying genetic origin of these sub-clusters remains unresolved

and their elucidation is beyond the scope of the present report. Indeed, their resolution may

not be strictly fruitful as the inherent genetic instability of many late stage, metastatic cancers

makes finding reliable, gene-based biomarkers quite challenging [44, 45]. Also, our technique,

by probing morphology directly, avoids the difficulty of attempting to associate unstable genetic
codes with single, static cell states.

Finally, we notice that by using just our morphodynamic analysis, we were able to easily dis-

tinguish the highly motile subpopulation of the MDA-MB-231 cells from that of the general

population. As this entire cell line is considered to have a relatively high metastatic potential,

and motility is often associated with intravasation, our analysis may have identified the more,

or most, aggressive subpopulation of this cell line. Furthermore, we clearly demonstrate that

morphology can be used to associate cells with real, physiological behaviors, such as crawling

through the extracellular matrix (Boyden chamber). In our future work, our goal will be to

establish the relationship between the biological heterogeneity and the morphological expres-

sion within a cell population, ultimately leading to the characterization of EMT activation

within a cell population, without the need of any biomarker or genetic profiling.

In summary, we first introduced a new concept, cell morphodynamics, as well as the method

for measuring it, based on the cell magneto-rotation (CMR) technique, which prevents cell

adherence and allows 3-dimensional cell deformations, and on combining CMR with machine

learning (ML) algorithms. This morphodynamic method is thus based on a label-free testing of

non-fixed, minimally perturbed, live individual cells, kept in bio-mimetic micro-environ-

ments. Our massively parallel single cell analysis assay investigates the similarities and dissimi-

larities of cancer cells’ morphological behaviors over time, and we could thus identify cells

whose phenotype may be associated with a more, or most, malignant potential, including

motility and invasiveness, and achieving this without the use of any biomarker. We further

note that this approach does lend itself well to mapping the heterogeneity characterizing a
tumorous cell population, as well as identifying the presence of both morphologically and bio-

logically distinct subpopulations. We believe that these techniques could well present health-

care providers with a new and inexpensive tool for evaluating and predicting the plasticity and

potential aggressiveness of a population or subpopulation of cancer cells, and how it might

behave, without a genetic screen. We do plan, in future work, to further develop the method

introduced here for the characterization of cellular subpopulations. This may benefit from

sequencing specific single cells. Overall, this effort will be geared toward monitoring changes

in the magnitudes and ratios of subpopulations of cell groups, so as to better predict a tumor’s

metastatic potential. We hope that such a rapid and reliable estimate of a tumor’s migration

potential could become an important feature of informed precision cancer medicine; it would

provide the caregiver, as early as possible, with the likelihood of metastasis.

Materials and methods

Preparation of Magnetic Nanoparticles (MNPs)

Amine-coated magnetic nanoparticles (Ocean Nanotech1) with a diameter of 30nm, are pre-

pared in a 1mL stock solution of 200μg/mL in cell culture media. We then add 15μL of Poly-
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L-Lysine at 0.1%w/v (Sigma-Aldrich©), and the solution is left for an hour on a rotator at

room temperature. The solution is then filtered using a 0.2μm syringe filter.

Cell culture and magnetization

For these experiments, two lines of breast cancer cells, MCF-7 and MDA-MB-231, and one

line of prostate cancer cells, PC-3, was used. These three cell lines were purchased from

ATCC1. A fourth cell line, dubbed HR-14, which consisted of PC-3 cells that had undergone

the EMT, was also used [34]. All cell lines were stably expressing Green Fluorescent Protein

(GFP) and cultured in RPMI 1640 supplemented with 10% fetal bovine serum (FBS) and 1%

Penicillin-Streptomycin-Glutamine (PSG) in a cell incubator at 37˚C, with 5% CO2 and 100%

humidity. Media and supplements were all purchased from Life Technologies©. Cells’ con-

fluency before addition of the MNPs is around 20–30%. Cells are incubated for 24 hours with

cell culture medium to which is added (see below) 20μg/mL of amine-coated magnetic nano-

particles. These particles are uptaken via endocytosis (S1 Fig in S1 File).

Microfluidic trapping system and cell loading

One hour before being exposed to fluorescent light, cells are washed with Hank’s Balanced

Salt Solution (HBSS) three times to remove traces of phenol red contained in the cell culture

media, and then incubated for an hour in a colorless cell culture media that has been supple-

mented with the radical oxygen scavenger, Trolox (6-hyrdoxy-2,5,7,8-tetramethylchroman-

2-carboxylic acid, Sigma-Aldrich), at 0.25nM. After an hour, cells are washed with HBSS, and

gently detached using a cell scraper. Cell density is then adjusted by the help of a magnetic

separator.

Cells are then gently pipetted into the microfluidic device. The microfluidic trapping device

is made of polydymethylsiloxane, according to the protocol used by Park et al. [46]. Each well

has a triangular shape, with a side size of 40μm and a depth of 35μm. The chip has two ports:

An inlet port and an outlet port. Cells are loaded with a 100μL pipetter into the inlet, and

gently introduced into the channel by applying negative pressure at the outlet. Once posi-

tioned, the device is put on top of a rare earth magnet to pull the cells down into the wells. We

repeat these steps several times, until a sufficient loading ratio is achieved (above 60% of the

traps occupied by single cells). These loading steps take around 3 minutes, and no more than 5

minutes. Finally, cells are washed with fresh media by gently pipetting fresh media into the

device (fresh media is placed at the inlet port and pipetted from the outlet port). At the end of

the imaging series (usually 60 minutes), propidium iodide is pipetted into the inlet port and

the cells are imaged so that dead cells can be removed from the analysis.

Cell Imaging and rotation

Cells are imaged on an Olympus©IX71™microscope, equipped with an arc-mercury lamp

(U-RX-T™) and a high definition monochromatic digital camera (Q-Imaging©Retiga 6000, 10

Megapixels). To image simultaneously multiple positions of the device, the microscope stage is

replaced with a motorized stage (ASI MS-4400 XYZ Automated Stage). Images are captured

with the software package Micro-Manager (extension of ImageJ), while the stage is pro-

grammed and controlled via a custom made script in Micro-Manager [47]. To protect cells

from light exposure, a custom made shutter opens for 700ms at every position each minute.

Only single cells are kept to be measured. Temperature and humidity are controlled using a

homemade, on-stage system that keeps the cells at 37˚C with 100% humidity. Cell media is

supplemented with HEPES in order to maintain pH in the absence of CO2. The oscillating

magnetic field is generated via 4 solenoids positioned around and slightly above the
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microfluidic device (S2 Fig in S1 File). All solenoids are driven by an alternating current with

frequency of 15Hz; two solenoids are driven 90˚ out of phase. Suspended cells rotate with a fre-

quency of 0.1Hz.

Image processing

Raw images consist of a grid of cells at regular intervals (each cell is sitting in regularly-spaced

microwells). Each live, single cell is cropped from the original image into separate, smaller

images, each consisting of a single cell. It is these cropped images of single cells that are ana-

lyzed. The basis for measuring cell morphology relies on the accurate delineation of a cell’s

contours (S4 Fig in S1 File). This task is performed by a pipeline with the image analysis soft-

ware CellProfiler [48]. Once cells are delineated, CellProfiler measures and records the value

of different morphological parameters, such as cell area, perimeter, extent, etc., as well as Zer-

nike moments and Haralick features. For a single experimental run, over 1000 individual cells

are processed, and each cell has over 100 measured features.

Data processing

To form a training set, the list of all the cells that have been monitored is established. Every

time the classification function is called, the list of names (from different populations of cells

that we want to distinguish) is re-shuffled and 70% of the cells are randomly selected to be part

of the training set, the 30% left are kept as a testing set that is used to establish the efficiency of

the algorithm; these percentages typically correspond to 1100 training cells and 400 tests cells.

When a time limit is set, only the measurements at time points smaller than the time limit are

kept to form the training and testing data sets. Once selected, the training set is normalized

and its dimension reduced to 14 components with Principal Component Analysis (PCA). The

parameters used for normalization and dimension reduction are kept and used to perform the

same transformations on the testing set. To avoid over-fitting problems, we also used a Cross

Validation technique, with a random shuffling of the data samples. A classifier is trained and

results are calculated on the testing set. For a specific time limit and ratio between general and

target population (i.e. MCF-7 vs MDA-MB-231), we repeat all these steps (from shuffling to

testing) 30 times and average the results.

Adaboost method—Supervised learning

In order to perform the machine learning step of our method, we split our data (morphology

measurements) into two distinct subsets: a training subset and a testing subset. The training

subset is used to train the computer to make decisions, while the testing set is used to evaluate

its performance. We used 70% of the data as a training set, and the rest as a testing set, as is

customary for machine learning problems [49, 50]. To avoid over-fitting, we also used a cross

validation technique, with a random shuffling of the data samples. Cross validation trains the

computer by using different training sets and evaluating its resolving abilities on the corre-

sponding testing sets. This helps avoiding the problem of training the computer on a subset

where the samples are too similar, leading to over-fitting, because the algorithm will be able to

detect and rightly recognize only small variations from the training subset. In that case, when

tested, the algorithm would perform poorly, and other variations would be missed. Shuffling

cells randomly reduces the likelihood of this issue occurring. Finally, before we commence

learning, the data is normalized and we perform a principal components analysis to reduce the

dimensionality of the data from 169 to 14.

Training the computer means that for each entry, or cell measurement at a specific time

point, we let it know the phenotype to which this entry belongs (0 if MCF-7, and 1 if
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MDA-MB-231). Using the AdaBoost algorithm [33], the computer builds a decision proce-

dure. When presented with unlabeled data (testing set), the decision rules are used to make

predictions on the labels to assign whether a cell is an MCF-7 or an MDA-MB-231 cell. A way

to measure the efficiency of a classification is by measuring its precision and recall, which are

defined below:

Precision ¼
TP

TP þ FP
ð1Þ

Recall ¼
TP

TP þ FN
ð2Þ

Where the F1 score is the geometric mean of precision and recall:

F1score ¼ 2
Precision � Recall
Precisionþ Recall

ð3Þ

Where Tp and Fp are true positives and false positives in the classification task, and FN repre-

sents the false negatives.

K-means clustering—Unsupervised learning

Without indicating from which sample the cells came from (epithelial or mesenchymal), we

used an unsupervised clustering algorithm to group similar cells together, and to find clusters.

We then compared the clusters that were found with the actual sampled labels. To measure the

accuracy of the fit, we used the homogeneity score. The homogeneity of the clustering mea-

sures whether each cluster contains only members of a single class (i.e. phenotype), and its

value is between 0 and 1, where 1 means a perfect clustering and classification. Let A = A1,

A2,. . .,An be the true classes of data points that we have (“the ground truth”), and C = C1,

C2,. . .,Cl the classes obtained after clustering operations. We will set N to be the total number

of data points. Let am = kAmk be the number of objects (i.e. cells) belonging to the m-th class,

ck = kCkk be the number of objects classified into the k-th cluster by the algorithm, and nmk

the number of objects that belong to both Am and Ck. We can then define the homogeneity

measure as:

homogeneity ¼ 1 � EðA=CÞ=EðAÞ ð4Þ

where,

EðA=CÞ ¼ �
X

m

X

k

nmk

N
log

nmk

ak
ð5Þ

EðAÞ ¼ �
X

k

ak

N
log

ak

N ð6Þ

Clustering was performed using the k-means algorithm [51]. The principle of this algorithm

is to find clusters by minimizing the within-cluster sum of squares (WCSS). At first, k random

points, called “means”, are chosen, and for every single point left, the cluster to which it is

attributed is the one where the WCSS is minimal. For each cluster formed, the means are cal-

culated, and the attribution process is done again. These steps are repeated until the clusters

are stable.
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Inducement of EMT in PC-3 cells

This epithelial to mesenchymal transition (EMT) protocol was originally developed by Roca

et al [34]. Briefly, a subpopulation of PC-3 cells expressing luciferase and presenting an epithe-

lial morphology were isolated. These cells were then co-cultured with interleukin-4 treated,

CD14+ monocytes. These lines were cultured together for four days, which induced strong

morphological changes in the PC-3 cell lines (PC-3-EMT). The PC-3-EMT cells were isolated

and it was confirmed that concomitant with the morphological changes, the cells experienced

a decline in E-cad expression while Vimentin expression had increased—changes consistent

with cells having undergone the EMT.

Cell migration assay

MDA-MB-231 cells were loaded into a standard Boyden chamber for cell migration assay

[Cultrex Cell Migration Assay by R&D Systems]. After 12 hours, the highly motile cells that

went completely through the porous membrane were detached and collected from the bottom

part of the chamber. They were immediately loaded into the device and imaged with the help

of fluorescence while being rotated.

Supporting information

S1 File. Methods and controls. This document contains detailed description of the dynamic

morphology method, both experimental and computational, as well as cell viability controls.

(PDF)
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