Supplementary Information

Eukaryotic cell biology is temporally coordinated to support the energetic
demands of protein homeostasis

O’Neill et al.
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Supplementary Figure 1, Relating to Figure 1. The YRO gates S-phase entry but not mitosis

a, Individual dissolved oxygen traces from the four bioreactor vessels used for harvesting of cells for multi-omic
analysis. b, Reoxygenation of media (without cells) over time under conditions used for YROs, n=4 independent
experiments. ¢, Dissolved O, quickly equilibrates with that in the gaseous phase, so under constant aeration the
rate at which dissolved O, increases, decreases as [0,] approaches saturation (n=4 independent experiments). d, As
0, is supplied at a constant rate, the rate at which O, is consumed (O, consumption rate, OCR) to achieve any given
steady state [O,] can be interpolated from the standard curve. e, To allow comparison between experiments, we
define HOC as the time when the rate of change in oxygen consumption rate is above zero, LOC when below zero.
HOC and LOC durations may readily be quantified from the first derivative of OCR (mean+SEM, for the 4 biological
replicates shown in a). f, DNA replication is inhibited at the transition into and during HOC, resulting in an oscillation
in the relative proportion of 1C to 2C cells (G1:G2). There is no significant variation in cell number across the YRO
that is consistent for all three dilution rates, however. This means that any variation observed across the YRO at all
three dilution rates cannot be attributed simply to synchronized mitosis or variation in cell number (meantSEM,
n=4 biological replicates, 2-way ANOVA for time effect reported). g, Gating strategy to determine the percentage of
1C (gate 1) and 2C (gate 2) cells showing the intensity of the propidium iodide signal (DNA) vs. forward scatter for
populations. h, Representative flow cytometry data of populations of yeast oscillating at 0.08 dilutions/h. Scale is
the same as g.
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Supplementary Figure 2, Relating to Figure 1. Proteomics reveals modest changes in protein abundance with
clusters that correspond to HOC and LOC. a, Plot of fold change vs. detected proteins for three dilution rates.
Informed by quantitative genome-wide measurements of the intrinsic noise of gene expression in yeast?, and
given that our approach will not detect very low copy number proteins, we chose a conservative threshold for
biological significance of 1.33. This means that any protein whose abundance does not change by >33% over the
YRO at all three dilution rates, as well as the average abundance across all dilutions, is not considered to be
consistently rhythmic. b, Amongst the consistently rhythmic proteins, unbiased k means cluster analysis
provided no strong support for any specific number of clusters between 2-10, as revealed by the ‘break point’ in
a plot of inter-cluster variation versus cluster number. We therefore selected the simplest model, i.e., two
clusters. The temporal profiles of proteins in these two clusters correspond with the relative phases of HOC and
LOC. ¢, Plot of normalized protein abundances at each dilution rate vs. OCR (top, repeated from Figure 1a),
stratified by profile. Three randomly selected examples highlight proteins whose expression peaks during LOC or
HOC. Note that the majority of detected proteins 2247/3389 varied by <33% at all 3 dilution rates, whereas
proteins that were consistently rhythmic typically showed modest changes in abundance. d, The most enriched
non-redundant Gene Ontology processes for consistently rhythmic proteins in the HOC and LOC

clusters reveals differential regulation of transporters in both YRO phases. Also see Supplementary Table 1.
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Supplementary Figure 3, Relating to Figure 1. Proteomics
analysis reveals weak correlations between fold change in
protein abundance across the YRO with stability, abundance,
size or cost of synthesis. a-d, The expression of most mRNAs
varies over the YRO 23, yet the abundance of most proteins
does not, implying that transcriptional rhythms may function to
maintain steady state protein levels, rather than to drive
rhythms in the activity of the encoded protein. Consistently
rhythmic proteins were enriched for transport processes which
implies that differential transporter activity over the YRO is
relevant to its mechanism and biological function. However, it
was equally plausible that more rhythmic proteins were simply
those with shorter half-life, or those with higher copy number,
such that changes in abundance would be more readily
detectable. Because larger proteins are more costly to produce?
another possibility is that natural selection has acted to
suppress the production of large proteins at stages of the YRO
when they are not needed, leading to rhythms in abundance.
Considering all 3389 detected proteins, however, poor
correlations were observed between each protein’s relative
amplitude and its half-life, abundance, size or the energetic cost
of its synthesis (size x abundance). Data combined across all
three dilution rates (meantSEM, n=3 pooled protein samples
from 4 biological replicates across 3 dilutions). Since all 4
simpler hypotheses were rejected by these analyses, we
consider that the over-representation of transporters among
consistently rhythmic proteins occurs in response to the
requirement for differential regulation of transporter activity
over the YRO. e, Heatmap showing all consistently rhythmic
proteins without clustering, normalized to the relative change
for each protein over the course of the oscillation.
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Supplementary Figure 4, Relating to Figure 2. Cellular ionomics, H* and K* export vary consistently over the
YRO a, NaOH is pumped into bioreactor vessels to maintain the media at pH 3.4; greater NaOH addition
occurs during HOC compared with LOC (mean+SEM, n=4 biological replicates). b, From the rate of NaOH
addition and its concentration, the rate at which the cell population exports H* is readily interpolated. H*
export rate changes in parallel with the oxygen consumption rate (OCR) (mean+SEM, n=4 biological replicates).
¢, and d, Samples of cells undergoing YROs were harvested across four replicates at three dilution rates, as
described, and subjected to analysis of intracellular metal ion content by ICP-MS using 43Ca, 44Ca, 5°Co, 63Cu,
65Cu, 57Fe, 39K, 24Mg, >>Mn, ONi, 31P, and 66Zn. Only the intracellular concentration of potassium ions shows
variation significant for time but not dilution or interaction effect (mean+SEM, n=4 biological replicates, 2-way
ANOVA reported). N.B. Due to the preparative method used for these yeast cell samples, Na* and CI- could not
be measured (this method was used to make them compatible with the metabolomic and proteomic data).
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Supplementary Figure 5(ii)
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Supplementary Figure 5(iii
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Supplementary Figure 5(iv)
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Supplementary Figure 5(v)
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Supplementary Figure 5, Relating to Figure 2. Most cellular metabolites detected vary consistently over
the YRO.

a, The abundance of most detected metabolites significantly and consistently varies across the YRO
(meantSEM, n=4 biological replicates, 2-way ANOVA reported). 82/89 of the metabolites identified in each
replicate at every time point showed a time effect by two-way ANOVA with p<0.05, we describe these as
consistently rhythmic N.B. unlike the other metabolites, acetate was not validated against external
standards but its profile is entirely consistent with previous reports3. b, Cellular ATP content varies over the
YRO, measured enzymatically as previously*® (mean+SEM, n=4 biological replicates, 2-way ANOVA
reported). ¢, The osmolality of the extracellular media (EC osmolality) transiently increases during HOC
(meanzSEM, n=4 biological replicates, 2-way ANOVA reported). d, As with consistently rhythmic protein
profiles (Supplementary Figure 2b), unbiased k means cluster analysis of consistently rhythmic metabolites
suggests that two clusters of temporal profile are appropriate, as revealed by the ‘break point’ in a plot of
inter-cluster variation versus cluster number. e, Heat map for consistently rhythmic metabolites associated
with Cluster 1 or 2, normalized to the average minimum and maximum detected abundance of each
metabolite for each YRO cycle. Cluster 2 suggests an association of phospholipid synthesis with LOC,
whereas profiles of metabolites in cluster 1 are similar to K*, peaking around the LOC=>HOC transition and
falling as OCR increases. This includes amino acids, organic osmolytes and storage carbohydrates.
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Supplementary Figure 6, Relating to Figure 2. Release of protein from cytosolic storage/stress granules, or
BMCs, varies consistently over the YRO. a, The amount of protein resolubilized in reducing 8 M urea buffer
following hot ethanol precipitation (soluble protein), from the equal numbers of cells, changes by more than 2-
fold across the YRO, while the concentration of total cellular protein, or protein in the media, does not change
significantly (mean+SEM, n=4 biological replicates, 2-way ANOVA time effect p-value reported). Precipitation in
hot ethanol favours intramolecular disulphide formation for hydrated ‘soluble proteins’ in the cytosolic
compartment, compared with an increased relative likelihood of intermolecular disulphide formation for
proteins in BMCs. Upon reconstitution in reducing 8 M urea buffer at 37°C, most BMC disulphides are less
solvent-accessible to the reductant (10 mM TCEP), and more likely to remain within insoluble aggregates that
are removed by centrifugation, whereas precipitated proteins with accessible disulphides that were not within
proteinacious non-membrane bound are more likely to go into solution and therefore remain in the
supernatant upon centrifugation®. b, Representative coomassie-stained gel from n=4 experiments showing
soluble protein extracted from equal numbers of cells harvested across YRO cycles at three dilution rates. c,
Mass-spectrometry of proteins with highest variation across the YRO (*labelled 1 to 4) reveals enrichment for
gene ontology terms associated with protein folding and degradation, as well as catalytic and oxido-reductase
activity. From the proteins that were identified in each band, the most enriched GO term (function) is
reported, with corrected p-value and identified proteins. 4* Ribosomal proteins were identified in band 4,
however, they are not significantly enriched, due to the large number of ribosome-associated proteins in cells
at all times.
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Supplementary Figure 7, Relating to Figures 3 and 4. Further experimental perturbation of the YRO.
a,b, Inhibition of TORC1 activity during HOC by addition of rapamycin (rapa) transiently decreases the
period and amplitude of oscillation. YROs recover as the drug is diluted out of the reactor vessel. The
duration of LOC is affected more than HOC, likely because the resource required to support translation is
not exhausted during HOC and is therefore replenished faster. Critically, the first LOC after rapamycin
addition is not affected, whereas the next HOC is, consistent with differential regulation of TORC1 activity
(n=3 independent experiments, TWA, F (16, 48) = 13.58, p<0.0001). ¢, Osmotic stress promotes
premature exit from HOC, likely due to increased macromolecular crowding, which inhibits TORC1 and
opposes the liberation of proteins from BMCs. d,e, The effect of potassium depletion is ion-specific and is
not due to loss of viability, as a return to standard inflow media (containing 14mM K*) rapidly restores
normal oscillations (n=3 independent experiments). f, g, The addition of KCl to cells undergoing HOC
increases the duration of HOC, OCR and basal respiration rate, this is the opposite of the response to
potassium depletion (n=2 independent experiments, t-tests from two oscillations per condition).
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Supplementary Figure 8, Relating to Figures 3 and 5. Relationships between vacuole morphology and
protein homeostasis with the YRO, extracellular osmolality and pH.

a, b Full immunoblots shown in Figure 3b and c. Red lines indicate the regions shown. ¢, Cells sampled from
the bioreactor during LOC and HOC have vacuoles of different shapes (vacuoles stained with CMAC,
representative of images quantified in Figure 3d). d, Strains deficient in the breakdown of glycogen (gph1)
harbour more aggregated protein than wild type strains. Silver stained gel, quantified in Figure 5d, showing
data from 4 biological replicates. e, Cells sampled from the bioreactor in mid-HOC incorporate less puromycin
when diluted into media containing 10% glycerol or 1 M sorbitol, while cells sampled during early HOC
incorporate less puromycin when diluted into media of pH 2.8 and more puromycin when diluted into media
of pH 4.8. Data quantified in Fig. 5b.



A detailed, testable and experimentally-derived YRO model.
During exponential growth glucose is not limiting. Protein synthesis and growth (biomass accumulation, DNA synthesis, fatty acid synthesis) do not compete
for bioenergetic resources.

A. Early LOC.

. Storage carbohydrates and amino acids are depleted, glucose supply is low (Fig.2a, 54).

. Low glucose inhibits Pmal, the ATP-dependent plasma membrane H+-pump in yeast, resulting in a low rate of H+-export 1522,

. Cytosolic pH drops (Fig.2c, Supplementary Fig.4a), coordinately regulating the activity of many metabolic and signalling pathways 2 e.g. inhibition of
glycolysis 4.

. Low glucose availability and low cytosolic pH leads to a reduction in glycolytic flux and O, consumption, with decreased rates of ATP production 12> and
a concomitant fall in energy charge (Fig.2a,c, Supplementary Fig.5).

. TORC1 is inactivated (Fig.3b) due to: (1) low energy charge via SNF1/AMPK (Fig.2a, Supplementary Fig.5, 2°); (2) amino acid depletion (Fig.2a,
Supplementary Fig.5) via Gen2 #7; (3) inhibition of the activating GTPase Gtrl/2 due to low pH 262,

. TORC1 inactivation results in decreased protein synthesis (Fig.3b, ?’) and stimulates autophagy (Fig.3c, ).

B&C. Mid-Late LOC

. Pmal activity is further limited by reduced ATP availability 20,21,23.

. Cytosol stabilizes at ~pH6.3, initiating a cellular response to starvation stress which facilitates macromolecular assembly of cytosolic enzymes and
increased formation of biomolecular condensates such as stress granules and p-bodies (Fig.2c, Fig.4a, >3'#!). This resembles the quiescent state in
which stress-resistance is enhanced and the cytoplasm is viscous (Fig.5a 74244).*

. TORC1 inactive (Fig.3b), reduced protein synthesis (Fig.3b), increased autophagy (Fig.3c), low oxygen consumption (Fig.2a) and energy charge (Fig.2a,
Supplementary Fig.5).

. Sequestration of cytosolic metabolic enzymes such as Cdc19 3° (Supplementary Fig.6b,c), low pH and reduced glycolytic flux 2 direct incoming glucose
toward production of storage carbohydrate (glycogen and trehalose, Fig.2a, 7:1%133845) and generate biosynthetic intermediates for cell growth via the
pentose phosphate pathway, fatty acid and DNA synthesis (Supplementary Figl, Supplementary Fig5, %6). The ~1000-fold H+ gradient (pH 3.4
extracellularly) across the plasma membrane is used in secondary active transport to accumulate nutrients and osmolytes (Fig.2a,b, 2047).

. Import of K+ and other osmolytes (Fig.2a, Supplementary Fig.4c) counter-balances the reduced contribution that sequestered cytosolic macromolecules
make to cellular osmotic potential 4748, The cytosol is predicted to be ‘glass-like’ 42444950,

. Autophagy and amino acid symporters act to replenish vacuolar amino acid stores 2,

D. Entry to HOC

. Replete carbohydrate stores (Fig.2a, 4b) stimulate glycolysis, respiration and ATP production 5%,

. Increased ATP availability and higher glycolytic flux increase Pma1 activity 202423,

. Cytosolic pH begins to increase (Fig.2a,c).

. Energy charge increases due to increased ATP production relative to consumption and associated fall in AMP/ADP (Fig.2a, Supplementary Fig.5).

. Increased energy charge relieves SNF1/AMPK-mediated inhibition of TORC1 2° and stimulates glycogenolysis 3.

. Replete amino acid stores relieve Gecn2-mediated inhibition of TORC1 %7.

. Condensate disassembly is initially attenuated by high cytosolic osmolyte concentration (K+, choline, betaine) and low pH (Fig.2a,c; Supplementary
Figs.4,5).

E. Early HOC

. Elevated cytosolic pH and increasing energy charge trigger the release of sequestered ribosomes, proteasomes, chaperones and metabolic enzymes
such as Cdc19 from macromolecular assemblies and condensates 3145 — a feed-forward switch that further stimulates glycolysis (Supplementary Fig.5)
and glycogen/trehalose breakdown (Fig.4b, Supplementary Fig.5, *®). This increases ATP production and the rate of H+-export (Fig.2a,c, *2%%7. Cytosolic
pH reaches pH7 (Fig.2c).

. Increased cytosolic pH activates TORC1 2829,

. TORC1 activation stimulates increased translational initiation and represses autophagy 27:3%%,

. To maintain osmotic homeostasis, osmolytes are exported down their concentration gradients. This buffers the increase in osmotic potential resulting
from the increase in cytosolic macromolecules, and the cytosol becomes more fluid 42444750,

F. Late HOC
. Glycogen and trehalose breakdown sustain high glycolytic flux and respiration (Fig.2a, 4b, Supplementary Fig.5).
. Increased mitochondrial ATP production rate is stimulated by, and sustains, the high rate of ATP turnover required for efficient protein synthesis 5%,

The proportion of ribosomes available for translation increases (Supplementary Fig.6, 4).

. Continued export of osmolytes counter-balances the increase in osmotic potential due to newly synthesized macromolecules 444748,

. Increased protein synthesis consumes stored amino acids (Fig.2a, Supplementary Fig.6)

. DNA replication and fatty acid synthesis does not occur (Supplementary Fig.1f,g) as cellular glucose is used to sustain translational bursting, which now
consumes up to 75% of cellular energy 596262,

G. HOC Exit

. The decrease in protein synthesis leads to decreased ATP turnover and oxygen consumption falls (Fig.2a, 3b, Supplementary Fig.5b).

. This could be due to insufficient: stored osmolytes to buffer further protein synthesis (equivalent to osmotic stress, Fig.2a, Supplementary Fig.5 3),
stored amino acids to sustain further protein synthesis ?’; stored carbohydrates or oxygen to meet the requirements of protein synthesis and H+-export
(via TORC1, 26:2829),

. This predicts that premature HOC exit will occur on acute osmotic stress (Supplementary Fig.7c), inhibition of protein synthesis or inhibition of TORC1
activity (Fig.3e, Supplementary Figure 7a,b) and that perturbation of osmotic buffering capacity, the transmembrane H+-gradient, or Pmal activity will
alter the period of oscillation (Fig. 4c-h, Supplementary Figure 7c-g).

*The mechanisms that facilitate widespread macromolecular assembly formation and condensation in low glucose are incompletely understood, but have
been widely observed, and are likely to involve increased association of proteins with RNA, and other proteins, through electrostatic charge-charge
interactions made favourable by histidine protonation, lysine/arginine modification and changes in protein phosphorylation, as well as changes in ionic
strength and the chemical potential of water 366471,

Supplementary Table 1, Relating to Figure 5e
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