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Abstract

scRNA-seq datasets are increasingly used to identify gene panels that can be probed
using alternative technologies, such as spatial transcriptomics, where choosing the
best subset of genes is vital. Existing methods are limited by a reliance on pre-
existing cell type labels or by difficulties in identifying markers of rare cells. We
introduce an iterative approach, geneBasis, for selecting an optimal gene panel,
where each newly added gene captures the maximum distance between the true
manifold and the manifold constructed using the currently selected gene panel. Our
approach outperforms existing strategies and can resolve cell types and subtle cell
state differences.

Background
Single-cell RNA sequencing (scRNA-seq) is a fundamental approach for studying tran-

scriptional heterogeneity within individual tissues, organs, and organisms (reviewed in

[1]). A key step in the analysis of scRNA-seq data is the selection of a set of representa-

tive features, typically a subset of genes, that capture variability in the data and that

can be used in downstream analysis. Established approaches for feature selection lever-

age quantitative per gene metrics that aim to identify genes that display more variabil-

ity than expected by chance across the population of cells under study. Commonly

used methods for detecting highly variable genes (HVG) utilize the relationship be-

tween mean and standard deviation of expression levels (reviewed in [2]), GiniClust le-

verages Gini indices [3], and M3Drop performs dropout-based feature selection [4].

The number of selected genes is typically dependent on a user-defined threshold, but

ordinarily is on the order of one to a few thousand genes [2, 5]. A recently developed

approach, scPNMF, further addresses the gene complexity problem by leveraging a

Non-Negative Matrix Factorization (NMF) representation of scRNA-seq, with selected

features being suggested to represent interesting biological variability in the data [6].

scPNMF relies on the chosen dimension for the NMF representation and also does not
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directly compare informativeness between different factors, thus impeding the ability to

compare the importance (i.e., gene weights) between different factors.

Framing the problem as searching for a fixed number of informative genes has re-

cently gained practical relevance. Specifically, recent technological advances have given

rise to multiple approaches where gene expression can be probed at single-cell reso-

lution within a cell’s spatial context, thus enabling the relationship between individual

cells and cell types to be studied (reviewed in [7–9]). One branch of spatial transcripto-

mics approaches builds on the concept of RNA fluorescence in situ hybridization

(FISH), where probes are used to assay the number of molecules of a given gene

present in a single cell [10]. Newly developed approaches, such as seqFISH [11–14],

MERFISH [15–17], and DARTFISH [18], scale up classical RNA FISH strategies, allow-

ing the expression of dozens to hundreds of genes to be assayed in parallel. The single-

molecule resolution of these methods enables quantification of the location of individ-

ual RNA molecules inside a single cell, which has important implications for studying

developmental, neuronal, and immune biology, where cell-cell interactions are highly

informative. However, an important limitation of such methods is that the set of genes

that can be probed is limited (typically in the low hundreds) and this set of genes needs

to be selected prior to the experiment taking place. Additionally, carefully selected tar-

geted libraries are relevant for CRISPR-seq screens [19–21] and, more recently, tar-

geted single-cell gene expression assays [22] have been developed, which improves

capture efficiency and reduces experimental cost.

Current library design strategies leverage prior knowledge regarding the relevance of

genes for the tissue of interest as well as using unsupervised marker selection, where

matched scRNA-seq data is used to find genes of interest. If the goal is to identify genes

that characterize clusters present in scRNA-seq data, existing marker selection methods

can be applied, such as one-vs-all methods testing for genes that exhibit differential ex-

pression between clusters [23–26], ranking genes by correlation with the normalized

boolean vectors corresponding to the clusters [27] or random forest classification algo-

rithms [28, 29]. In addition to one-vs-all methods, the scGeneFit approach selects

marker genes that jointly optimize cell type recovery using a label-aware compressive

classification method, and returns the optimal set of markers given a user-defined panel

size [30].

The main drawback of these approaches is that they fundamentally rely on pre-

determined cell type annotation, thus relying not only on the clustering algorithm but

also that the correct granularity of clustering has been employed. By design, genes asso-

ciated with intra-cell-type variation or genes that vary in expression over a subset of

clustered cell types will not be captured by such approaches. While the latter type of

signal is generally deemed uninteresting, in practice this will depend on the system and

question in mind. For example, tracing stress response and DNA damage will be rele-

vant when analyzing cancerous samples, and understanding proliferation rates and cell

cycle state is important in numerous biological contexts.

These fundamental limitations of most existing marker selection methods can be re-

solved by deploying unsupervised selection methods that aim to capture features

(genes) that describe all sources of variability present in scRNA-seq data, both within

and across cell types. One recently developed method, SCMER, addresses this problem

by aiming to find a set of genes that preserve the overall manifold structure of scRNA-
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seq data [31]. While novel and algorithmically impressive, SCMER has limitations that

hinder its utility in practice. First, SCMER strives to find a selection that preserves the

whole manifold and returns a scalar estimate for how well the manifold is preserved in

the form of a KL divergence between the “true” and the “selected” manifolds. However,

this global score reflects the overall preservation of manifold structure and may not ad-

equately weight or represent the local preservation of rare cell types. Additionally, to

deal with batch effects, SCMER finds common sources of variation across most of the

batches, which will be suboptimal for cell types that are present in only a few batches.

This is not an uncommon case for datasets collected from different donors and differ-

ent tissue sites.

To overcome these limitations, we have developed a novel cluster-free, batch-aware,

and flexible approach, geneBasis, which takes scRNA-seq data and the number of genes

to be selected and returns a ranked gene panel of the designated size. Importantly, we

provide a comprehensive set of metrics—at multiple levels of granularity—that can be

used to assess the completeness of the suggested panel. To incorporate expert know-

ledge, we allow users to preselect genes of interest. Additionally, by avoiding the use of

predefined clusters, geneBasis allows discovery of genes that underpin transcriptional

programs within any selected groups of cells (e.g., cell types). We demonstrate the

power of our approach by applying it in a variety of biological contexts and compare its

performance to existing state-of-the-art strategies.

Results
An algorithm for gene selection.

For a given scRNA-seq dataset, we represent transcriptional similarities between cells

using k-nearest neighbor (k-NN) graphs (Methods). A k-NN graph that is constructed

using the entire transcriptome represents the “true” relationships between cells as man-

ifested by the similarities in expression levels of individual genes between cells and their

“true” neighbors. Subsequently, we aim to find a selection of genes that yields a k-NN

graph similar to the “true” graph and is capable of predicting the true expression of any

gene by using each cell’s neighbors.

Specifically, at each iteration (i.e., given the currently selected gene panel) we com-

pare the graph constructed using the entire transcriptome (“true” k-NN graph) with a

graph constructed using the current “selection” (“selection” graph). At a single gene

level, we assess how well we can predict a gene’s expression levels across cells, using

the cells neighbors in the “selection” graph compared to the “true” graph, and select

the gene that shows the biggest discrepancy between the two graphs (Fig. 1). More pre-

cisely, for each gene, in the “true” graph we compute, across cells, the Minkowski dis-

tance between a gene’s expression in a given cell and its average expression in that

cell’s k-nearest neighbors. Intuitively, this provides a baseline measure for how well a

gene’s expression can be predicted by its nearest neighbors in a best-case scenario.

Similarly, we compute the Minkowski distance for each gene using the “selection”

graph. We then compute, for each gene, the difference in the distances between the

“true” and “selection” graph and add the gene with the largest difference in distance to

the selected set. This process is then repeated until the desired number of genes has

been chosen.
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An important limitation of existing methods is the inability to properly assess how

complete and informative the designed gene panel is. To address this, we derived three

metrics that evaluate gene panels at different levels of granularity: cell type, cell, and

gene level.

The first metric explores whether cell types can be assigned in a specific and sensitive

manner. Specifically, while geneBasis does not rely on clustering, for scRNA-seq data-

sets where annotations already exist, they can be exploited. To do so, we construct a k-

NN graph for all cells using the selected gene panel and compare for each cell its (pre-

determined) cell type label with the (pre-determined) labels assigned to its nearest

neighbors (Methods). This allows construction of a confusion matrix that provides

insight into whether cells from the same type are grouped together in the graph con-

structed using the selected panel.

As a second metric, which does not rely on cell type annotation, we focused on

examining how well an individual cell’s neighborhood is preserved. For each cell, we

compute its nearest neighbors in the “true” and “selected” graph. Subsequently, in the

“true” graph space, we compare the distance between each cell and these two sets of

nearest neighbors (Additional file 1: Fig. S1). Intuitively, when the set of neighbors is

identical in both the “true” and “selection” graph, this metric will output a score of 1,

while a score close to 0 indicates that a cell’s neighbors in the “selection” graph are ran-

domly distributed across the “true” manifold.

Finally, a third metric for assessing the quality of the selected gene panels focuses on

individual genes (Methods). For each gene, we compute the correlation (across cells)

Fig. 1 Schematic overview of geneBasis. Below we describe the steps of the algorithm. (1) “True” k-NN
graph is constructed, which represents the “ground truth” relationship between cells. Colors correspond to
cell types for visualization but are not used by the algorithm. For each gene (Narf and Hba-a1 are used as
examples), we calculate the Minkowski distance between two vectors: the first vector corresponds to log-
normalized expression for each cell (referred to as measured); the second vector corresponds to the
average log-normalized expressions across the first k neighbors for each cell (referred to as predicted). (2)
For the current selection the “Selection” graph is constructed to represent the relationship between cells
using currently selected genes. As in (1), for each gene we calculate the Minkowski distance between
measured and predicted counts. (3) The Minkowski distances are compared for each gene, and the gene
with the biggest difference between Selected and True graphs (in the schematic - Hba-a1) is added to the
current selection. (4) Steps (2)–(3) are repeated until the number of selected genes reaches the
desired value
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between its log-normalized expression values and its average log-normalized expression

values across k-nearest neighbors in a graph. We compute correlations for the “true

graph” and for the “selected graph,” and use the ratio (“selected”/“true”) as the final

gene prediction score.

geneBasis allows recovery of local and global variability

To evaluate whether geneBasis efficiently recovers a selection of genes that preserves

both local and global structure, we applied geneBasis, as well as SCMER and scGeneFit

(Methods), to four diverse systems representing challenges that frequently arise in

scRNA-seq datasets:

1. A study of mouse embryogenesis at embryonic day (E)8.5, coinciding with early

organogenesis [32]. This dataset contains both abundant and rare cell types as well

as multiple different trajectories.

2. A newly generated dataset profiling cells from the adult human spleen. As part of

the lymphatic system, the spleen contains transcriptionally similar immune cell

types that are not straightforward to resolve with a limited number of genes.

3. Multiple independent studies of the adult human pancreas dataset, consisting of

multiple batches from various donors and experiments [33–38].

4. Transcriptional profiling of melanoma samples from 19 donors collected at

different stages of disease progression [39].

Overall, using the metrics defined above, the gene panels chosen by geneBasis (Add-

itional file 2: Table S1) yield better performance than those chosen by SCMER (Fig. 2B,

C). This is true both in terms of preserving cell neighborhoods and in terms of the frac-

tion of cells for which the neighborhood was poorly predicted (Fig. 2B, Additional file

1: Fig. S2A). The effect was most noticeable when a small number of genes were se-

lected, with differences in performance decreasing as the number of genes selected in-

creased (with the exception of the spleen, where geneBasis consistently outperforms

SCMER). This is of practical relevance for designing gene panels for FISH-based exper-

iments, where the number of selected genes can be an important limiting factor.

We hypothesize that the difference in performance arises due to the nature of the

L1-regularization utilized by SCMER. In general, regularizations like Lasso tend to dis-

courage redundancy among the selected features. However, this may not hold if the

strength of the regularization is chosen manually and lies above an appropriately se-

lected range [40]. We empirically support this hypothesis by assessing the redundancy

within selected gene panels for both geneBasis and SCMER (Fig. 2A, Additional file 1:

Fig. S3). Specifically, when a low number of genes is selected, SCMER tends to select

highly co-expressed genes.

Additionally, from the beginning of the search, geneBasis prioritizes genes that allow

delineation of cell types as well as scGeneFit, a method that specifically addresses the

task of cell type separation (Fig. 2C). Moreover, geneBasis robustly recovers genes that

delineate cell types even if a preselected set of genes is provided (Methods, Additional

file 1: Fig. S4). Taken together, we suggest that geneBasis represents an efficient

method to successfully resolve cell types and to preserve the overall manifold.
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Another essential aspect of targeted gene panel design is to determine whether

enough genes have been selected to capture variability in the dataset of interest. To this

end, the cell neighborhood preservation metric can be exploited to investigate whether

specific transcriptional neighborhoods are enriched for cells with low scores, suggesting

that these neighborhoods are not preserved well by the current selection. Across the

Fig. 2 geneBasis preserves local and global structure. Each column represents the results for a different
biological system. A Co-expression within top 10 selected by geneBasis genes. B Upper panel: The overall
convergence of cell neighborhood preservation distributions for geneBasis (in red) and SCMER (in blue) as a
function of the number of selected genes. Lower panel: the weight of tails of the distributions (i.e., fraction
of cells with neighborhood preservation score < 0.5). Values are rescaled as ln(x + 1). C The fraction of cells
mapped to the correct cell type for geneBasis (in red) and scGeneFit (in orange) as a function of number of
genes in the selection. D Upper panel: The distribution of neighborhood preservation scores (calculated for
the first 150 genes) per cell type. Lower panel: UMAP representation colored by neighborhood preservation
score (calculated for the first 150 genes). UMAP coordinates themselves were calculated using the whole
transcriptome. For visualization purposes, cell neighborhood preservation scores lower than 0 were set
equal to 0
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benchmarked datasets, we illustrate this by focusing on the first 150 selected genes

(Fig. 2D, Additional file 1: Fig. S2). We observe that although there exist subtle differ-

ences between cell types, the majority of cell types (Fig. 2D, upper panel) and regions

of the high-dimensional space (Fig. 2D, lower panel) were well covered by the selected

panels, indicative of good performance (the only striking exception was in the melan-

oma dataset, in particular for cells that could not be assigned a clear label in the ori-

ginal analysis). Consistent with these results, we also observed high imputation

accuracy for the expression of genes that were not among the selected set (Additional

file 1: Fig. S2B, C). More generally, we anticipate that a user may not necessarily want

to select an exact number of genes, but rather may have an upper limit of genes that

they could feasibly profile. In these cases, we advise running geneBasis until the limit is

reached, before assessing when the cell neighborhood preservation and gene prediction

score distributions converge as a function of the number of genes (Fig. 2, Additional file

1: Fig. S2). Finally, it is important to stress that the gene panel evaluation is independ-

ent of the selection method employed and can be used to compare two or more panels

generated by any approach.

geneBasis accounts for batch effect and handles unbalanced cell type composition

Careful consideration and adjustment for batch effects is one of the most challenging

aspects of scRNA-seq data analysis [41]. In the context of gene selection, SCMER per-

forms gene selection for each sample individually, and then retains features identified

in all/most samples. While this is an efficient way to discard genes that show technical

variability, such an approach might also discard genes with strong biological relevance

that are only captured in a small fraction of samples, e.g., cell type markers for cell

types present in < 50% of the batches. Importantly, such unbalanced cell type compos-

ition is not uncommon in practice.

To account for this, in cases where a batch is specified by a user (i.e., every cell is

assigned to a batch), we construct k-NN graphs (“true” and “selection”) within each

batch, thereby assigning nearest neighbors only from the same batch and mitigating

technical effects. Minkowski distances per genes are calculated across all cells from

every batch thus resulting in a single scalar value for each gene. Importantly, if a certain

cell type is present only in one batch, cells from this cell type will be consistently “mis-

mapped” if none of its marker genes are selected, and therefore, the algorithm will se-

lect one of the marker genes.

To assess our approach, we utilized the first dataset described above, which consisted

of four independent batches (samples) from the same stage of mouse development

(Additional file 1: Fig. S5). In each batch, a considerable fraction of cells were associ-

ated with blood lineage (11–27%, Methods). Next, we artificially removed cells in a

batch-aware manner, thus keeping cells from the blood lineage in 1, 2, or 3 batches, as

well as adding a positive control (retaining blood lineage in all the batches) and a nega-

tive control (removing blood lineage from all the batches). We applied geneBasis and

SCMER to these different settings. geneBasis efficiently (among first 10 genes) selected

one of the blood markers for each combination except for the negative control (Add-

itional file 1: Fig. S5C). SCMER identified strong markers in the positive control setting

and when the blood lineage was retained in at least 2 of the 4 samples. However, it did
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not select any blood markers when the blood lineage was retained in only one sample

(overall fraction of blood lineage cells in this combination was nearly 5%), even though

the selection provided by SCMER was identified by the algorithm as of satisfactory

quality (all selected genes for this case and KL divergence are listed in Additional file 3:

Table S2).

Computational complexity of geneBasis

With rapid increases in the size of scRNA-seq datasets, computational complexity of

any algorithm is of increasing importance. Consequently, we sought to estimate the

running time of geneBasis, to ensure its scalability. We established that three parame-

ters are relevant for the computational complexity of the algorithm: n - number of cells,

D - number of pre-filtered genes that undergo gene search, and p - number of genes

we want to select. In practice, p will almost never exceed a few hundreds and D will

never exceed 15,000–20,000, meaning that the limiting parameter is the number of

cells. Accordingly, we estimated running time for a series of spleen scRNA-seq sub-

datasets (Methods), while varying n from ~ 5000 to ~ 30,000. We also varied D from

1000 to 10,000, and p from 50 to 150. For the selected range, we observe a linear rela-

tionship between elapsed time and number of cells, and exponential increase in com-

plexity as a function of p (Fig. 3A). As anticipated, change in n had a higher effect on

the running time compared to change in D (Fig. 3B). Additionally, we compared com-

putational complexity between geneBasis and SCMER and established that across the

tested range of n, p, and D geneBasis outperforms SCMER (Fig. 3C, for the details of

the comparison see Methods). Note that this might not hold true for higher values of

p, but since for all tested datasets selections with 150 genes appeared to be sufficient

and complete (Fig. 2), we suggest that p < = 150 is a reasonable assumption. We further

suggest that if a greater reduction in computational complexity is desired, appropriate

downsampling strategies can be applied (Additional file 4: Supplementary Note 1).

geneBasis resolves rare cell types and unannotated inter-cell-type variability

Cellular identity, which is typically represented on the level of cell type, is a basic and

essential unit of information that any gene library needs to recapitulate. In other words,

a “biologically” complete gene library should delineate all cell types, including rare ones,

for which statistical methods can be occasionally underpowered. However, it also

should be able to capture intra-cell-type variability in cases where discrete clustering

has not been performed to the appropriate resolution and identify genes that display

gradual changes in expression across the high-dimensional space, consistent with devel-

opmental trajectories. To address whether geneBasis satisfies the above criteria, we fo-

cused on three datasets: mouse embryogenesis, human spleen, and human pancreas.

All datasets contain annotated cell type labels and involve combinations of abundant

and rare cell types (Fig. 4B, H, J; Additional file 1: Fig. S6A; S7A,E). Moreover, each

dataset contains cell types that are distinct and closely related, making them highly ap-

propriate for the task (Additional file 1: Fig. S6A; S7A,E).

For the study of mouse embryogenesis, selecting only 20 genes accurately resolves

most cell types (Additional file 1: Fig. S6B), with 50–100 genes being sufficient to

achieve nearly perfect matching (Fig. 4A; Additional file 1: Fig. S6C). The minor
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exceptions comprise transcriptionally related cell types, such as the visceral endoderm

and the gut, where only few (if any) differentiating markers exist and cell types, and cell

type classification is made using the degree of expression of commonly shared markers.

Nevertheless, in all such cases, geneBasis selects several genes that could in principle be

used to differentiate the cell types (Additional file 1: Fig. S6D, E).

Having determined that geneBasis identifies genes that characterize annotated cell

types, we next asked whether it could find genes associated with more subtle biological

signals present in the data. To this end, we exploited recently published studies focused

on myocardium development [42] and gut tube formation [43] (Methods). We first in-

tegrated (using all genes) cells annotated as cardiomyocytes from the scRNA-seq atlas

for the whole embryo together with cells from [42] that were isolated from the anterior

cardiac region of mouse embryos, and assigned cluster identities to cardiomyocytes

cells (Methods; Fig. 4C). As expected, all cells were assigned to the mesodermal cardiac

lineage, with the majority being assigned to the most differentiated cardiomyocytes

(Me3). Consistent with Tyser et al., the integrated data also reveal two trajectories lead-

ing to the most differentiated Me3 cluster: an FHF-like differentiation trajectory linking

Me5, Me4, and Me3 and a SHF-like trajectory via Me7. Importantly, when using only

the first 100 genes selected by geneBasis, we were able to recapitulate this structure

(Fig. 4C, D). Among the 100 genes, 13 were differentially expressed in cardiomyocytes

(Additional file 1: Fig. S6F), including markers for the FHF-trajectory (Sfrp5), strong

markers for the differentiated Me3-state (Myl2) and contractile markers (Ttn) that ex-

hibit gradual expression along the differentiation trajectory of the myocardium (Add-

itional file 1: Fig. S6G). Additionally, the selection of genes when performed only

within Cardiomyocytes also contains genes marking different Me-clusters (Additional

file 1: Fig. S6J). Similarly, when focusing on the gut tube, and using the refined annota-

tion provided by [43], we observed that the set of genes chosen by geneBasis recovered

the distinct populations of cells arranged across the Anterior-Posterior axis (Fig. 4E, F;

Additional file 1: Fig. S6H, I, K).

Next, we explored the ability of geneBasis to select genes that captured heterogeneity

among the populations of immune cells present in the adult human spleen. As ex-

pected, compared to mouse development, the ability to discriminate between the set of

transcriptionally similar cell types present in the spleen required more genes

Fig. 3 Estimation of computational complexity. A Distribution of elapsed time as a function of number of
geneBasis selected genes (X-axis) and number of cells present in a scRNA-seq dataset (in color). B
Distribution of elapsed time as a function of number of geneBasis selected genes (X-axis) and initial number
of genes (in color). C Distribution of elapsed time as a function of number of selected genes (in facets) and
number of cells (X-axis). Colors correspond to different methods
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Fig. 4 geneBasis delineates cell types regardless of their abundance and resolves unannotated inter-cell-
type variability. Panels A–F correspond to mouse embryogenesis; G, H correspond to spleen, and I, J
correspond to pancreas analysis. A Cell type confusion matrix for the first 100 selected genes (prog. =
progenitors; mes. = mesoderm; Brain = Forebrain/Midbrain/Hindbrain). B Ordered bar plot representing
relative cell type abundance. C Upper panel: UMAP representation of Cardiomyocytes, colored by clusters
from Tyser et al, when integration between datasets was performed using all genes. Lower panel: UMAP
representation of Cardiomyocytes, colored by mapped cardiac clusters, when integration between datasets
was performed using selection from geneBasis. UMAP coordinates themselves were calculated using the
whole transcriptome. D Confusion matrix for cardiac clusters, where the mapping using all genes is used to
assign true identity and mapping using the geneBasis selection is used to represent a mapped cluster. E
Upper panel: UMAP representation of Gut tube, colored by mapped organs (Nowotschin et al.), when
integration between datasets was performed using all genes. Lower panel: UMAP representation of the Gut
tube, colored by mapped organs, when integration between datasets was performed using the selection
from geneBasis. UMAP coordinates themselves were calculated using the whole transcriptome. F Confusion
matrix for the emerging organs present along the gut tube, where mapping using all genes are used to
assign cells to a true cluster and the geneBasis selection is used to represent a mapped cluster. G Cell type
confusion matrix generated using the first 100 selected genes. For cell types in spleen, we use
abbreviations, see Table S2 for full annotations. H Ordered bar plot representing relative cell type
abundance. I Cell type confusion matrix for the first 100 selected genes. J Ordered bar plot representing
relative cell type abundance
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(Additional file 1: Fig. S7B, C). Nevertheless, selection of 100 genes allowed most cell

types to be identified in a sensitive and specific manner (Fig. 4G, Additional file 1: Fig.

S7D). Similarly to mouse embryogenesis, the occasional mismapping of cells occurred

between transcriptionally similar cell types, such as follicular and marginal zone B cells,

as well as CD4+ and CD8+ T cells and innate lymphoid cells. Of note, the difficulty of

using only the transcriptome to distinguish between different types of T cells is well

known [44], and it has been suggested that a more precise annotation of T cells can be

obtained by generating paired measurements of cellular transcriptomes and immuno-

phenotypes [45].

Finally, we benchmarked geneBasis on a thoroughly annotated and integrated dataset

of human pancreas, containing numerous rare cell types—8 of the 13 annotated cell

types account for less than 5% of the overall dataset. Nevertheless, and similarly to the

previous examples, we quickly and accurately predict all cell types with the exception

of rare cycling cells, which are occasionally conflated with highly abundant alpha cells

(Fig. 4I; Additional file 1: Fig. S7F, G).

geneBasis captures signals associated with cell states

We next examined whether geneBasis could identify sources of biological variation that in

principle can be recovered from scRNA-seq data but that are frequently overlooked be-

cause they do not contribute to cell identity per se. Examples of such genes include cell

state markers associated with transient biological processes, such as cell cycle, DNA dam-

age repair, and oxidative stress. Depending on the biological context, this cell state infor-

mation can be highly relevant for in situ profiling. For example, cell cycle genes are

typically not included in gene panels for spatial transcriptomics experiments [11, 14, 16],

partially due to high abundance of cyclin mRNAs and partially due to the notion that this

signal is frequently deemed to be uninteresting. However, in the context of tumorigenesis,

DNA damage, cell cycle, and proliferation of malignant cells are the hallmarks of disease

progression, and mapping this information spatially could be highly insightful.

To illustrate that geneBasis successfully and sufficiently recovers cell state genes indi-

cative of ongoing biological processes, we analyzed the set of genes recovered in two

distinct biological settings: melanoma (Fig. 5A) as well as activated lymphocytes (Add-

itional file 5: Supplementary Note 2, for CITE-seq dataset [46]). The melanoma dataset

consists of ~ 4500 cells isolated from 19 patients, containing malignant, immune, stro-

mal, and endothelial cells. Within the first 100 genes selected, we identified 53 markers

that were differentially expressed between the annotated cell types (Methods) and veri-

fied that these resolve all cell types, including the rare population of NK cells that are

transcriptionally similar to highly abundant T cells (Fig. 5B, C).

The majority of the remaining genes were globally differentially expressed between

malignant and non-malignant cells (8 and 26 genes were down- and upregulated re-

spectively in malignant cells). In the original study, a substantial degree of transcrip-

tional heterogeneity was characterized across individual cells, both malignant and

healthy, mostly associated with cell cycle, variation in MITF and AXL levels, and activa-

tion of the exhaustion program in T cells. Importantly, among the upregulated genes,

we identified markers of transcriptional programs described in the original study such

as tumor progression and cell exhaustion.
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Finally, 13 genes were neither identified as cell type markers nor significantly up- or

downregulated in malignant cells. Among those we found JunB, B2M, and Narf2—

markers of inflammation, cell exhaustion, and melanoma oncogenic programs taking

place in malignant and T cells. Overall, we select cell state markers for all cell states

characterized in the original publication programs including MITF and AXL (Fig. 5D).

We observed a low degree of co-expression among these genes, with the exception of

cell cycle genes and genes associated with the MITF program. Low co-expression is

consistent both across all cells and within malignant cells, suggesting that these cell

state genes are indicative of distinct transcriptional programs.

geneBasis selects genes that resolve cell types in seqFISH+ data

Technical differences between scRNA-seq and FISH-based technologies affect the scal-

ing, magnitude of variance, and overall distribution of the expression, either across

multiple genes or in a gene-specific manner [46]. To assess whether the panel selected

by geneBasis resolves cell types not only in the scRNA-seq from which it was derived,

but in the matched -FISH data themselves, we applied geneBasis to a published seq-

FISH+ study profiling the olfactory bulb of a mouse using a 10,000 gene probe set [13].

To select a ranked gene panel, we used corresponding scRNA-seq from [47], covering

various anatomical units of a mouse brain.

First, to ensure that the reference scRNA-seq dataset sufficiently covers the hetero-

geneity captured in the seqFISH+ sample, we generated a joint embedding in the latent

space between scRNA-seq and seqFISH+ cells (Methods, Additional file 1: Fig. S8A).

Both data sets contain cluster/cell type labels, and we confirm that cells from the same

or comparable cell types fall in the same latent spaces (Additional file 1: Fig. S8A, B).

This suggests that biological variability between cells from different cell types outweigh

technical differences between scRNA-seq and seqFISH technologies, thereby supporting

the notion of using scRNA-seq data to select genes that are relevant for seqFISH.

Next we applied geneBasis to the corresponding scRNA-seq dataset and consid-

ered the top 150 genes (across genes probed in the seqFISH+ assay) and assessed

whether the selected genes can resolve distinct seqFISH+ clusters identified using

the full dataset. To do so, we estimated the cell type mapping accuracy for normal-

ized logcounts from the seqFISH+ data using only the selected panel (Additional

file 1: Fig. S8C, left panel). To estimate how much scaling differences between

scRNA-seq and seqFISH factor in the performance of the library, we added a posi-

tive control where we applied geneBasis to the seqFISH+ data itself, and then eval-

uated the performance of this panel using the seqFISH+ data (Additional file 1:

Fig. S8C, center panel). Finally, to estimate a per cell type upper bound of cell type

mapping accuracy, we calculated cell type mapping accuracy on seqFISH+ data

using all 10,000 genes (Additional file 1: Fig. S8C, right panel). Overall, the selec-

tion from seqFISH+ shows a moderate increase in cell type mapping accuracy for

some cell types when compared to the selection from scRNA-seq. Nevertheless,

both selections show rapid convergence to the estimated upper limit with the ex-

ception of a small number of rare cell types (Additional file 1: Fig. S8C, D). Thus,

we suggest that geneBasis captures biological heterogeneity that is capable of over-

coming technical differences between scRNA-seq and seqFISH.
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Discussion and conclusions
For the last decade, scRNA-seq technology has transformed our ability to explore mo-

lecular heterogeneity in a variety of biological systems. More recent technological ad-

vances such as single-cell multi-omics assays, CRISPR screens, and spatial

transcriptomics go beyond measuring only the transcriptome, thus facilitating a more

complete understanding of the features that underpin cellular function. In many of

these cases, particularly for a large number of spatial transcriptomics assays, selecting

the set of genes to probe is an important parameter, which in turn necessitates the

emergence of appropriate computational tools.

In this study, we introduce geneBasis, which uses existing scRNA-seq data to select

genes in a cluster-free and highly flexible manner. We have shown that geneBasis out-

performs existing methods, both in terms of computational speed and in identifying

relevant sets of genes and that geneBasis selects genes that characterize both local and

global axes of variation that can be recovered from a k-NN graph representation of

transcriptional similarities. geneBasis also allows user knowledge to be directly incorpo-

rated by selecting, a priori, a set of genes of particular biological relevance, which are

then augmented by the algorithm.

Although we have addressed several important challenges, our approach has limita-

tions that need to be considered, especially when designing libraries for FISH-based ex-

periments. Firstly, scRNA-seq and FISH-based technologies use different approaches

for assessing the number of mRNA molecules that are associated with a given gene,

which in turn creates discrepancies in capture efficiency between the two technologies

[46]. Practically, it is observed that FISH-based technologies capture more mRNAs per

Fig. 5 geneBasis identifies cell state genes relevant for heterogeneity across multiple cell types in the
context of cancer. A UMAP representation, colored by malignancy status and annotated cell types. UMAP
coordinates themselves were calculated using the whole transcriptome. B Cell type confusion matrix for
non-malignant cells. C Ordered barplot for cell type abundance. D Co-expression (within all cells, left panel;
within malignant cells, right panel) for selected genes associated with various transcriptional programs
identified in the original publication. Colors correspond to detected programs, corresponding legend is on
the right
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cell due to a high sequence specificity in probe design. Consequently, genes selected

using scRNA-seq will likely have higher detection rates in FISH-based experiments.

While this is beneficial for detection of cell types that rely on a low number of selected

markers, it can be a problem since FISH-based experiments are experimentally limited

by the total number of individual molecules that can be detected in any given cell. Ac-

cordingly, it is advised to limit the number of ubiquitously or highly expressed genes.

By design, geneBasis does not perform initial pre-filtering of housekeeping genes (since

some could be highly relevant, such as markers of the cell cycle) nor it does discard

them from the selected libraries. Therefore, we provide an option for users to filter out

ubiquitously expressed genes either in the initial submission or post hoc.

Another important aspect to be accounted for in the library design is redundancy

(i.e., the presence of multiple genes that are co-expressed and that mark the same

cell type(s)). In practice, although geneBasis is not explicitly designed to completely

eliminate redundancy in the selection, we typically observed only a small number

of redundant genes. In general, this is a desirable property, since it maximizes the

number of distinct biological processes that can be examined. However, for cell

types of specific interest, it may be useful to add a small number of redundant

genes to the library to avoid risks associated with technical probe failure during

the experiment.

Finally, since geneBasis does not rely upon clustering of the scRNA-seq data, it

does not directly capture “positive” cell type markers. As an example, when exam-

ining the ability to detect primordial germ cells (PGCs), a rare population compris-

ing ~ 0.1% of cells in the mouse embryo study, we showed above that selecting

100 genes successfully resolves all cell types including PGCs. However, manual an-

notation of the selected genes revealed that we do not select unique positive PGC

markers in the selected set. Instead, we select two semi-specific PGC markers,

Ifitm1 and Phlda2, which are shared with other cell types such as somitic and

extra-embryonic mesoderm, extra-embryonic endoderm, and allantois. The ability

to discriminate PGCs from the other related cell types is possible due to the inclu-

sion of genes that mark these related cell types as opposed to the inclusion of spe-

cific PGC marker genes (of note, among the top 200 genes we include Dppa3—a

highly specific and sensitive PGC marker). Consequently, we suggest that in cases

where sensitive and specific identification of cell types, particularly rare ones, is a

high priority, that appropriate marker selection methods are applied alongside gen-

eBasis, thus ensuring the inclusion of specific cell type markers.

Methods
Code availability

Scripts to generate data and to perform the above analysis are available at https://

github.com/MarioniLab/am_geneBasis.

Detailed overview of the geneBasis algorithm

Below we describe the workflow of the algorithm, characterize optional parameters,

and justify the default settings.
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Initial selection of genes

We perform initial pre-filtering of genes by using the function scran::modelGeneVar,

var.threshold = 0. If the number of variable genes exceeds n = 10,000, we use the first

10,000 variable genes as default. Additionally, we filter out mitochondrial genes. If a

user wants to perform more selective filtering, this can be done manually (by using

scRNA-seq entries for only pre-filtered genes) or by tuning var.threshold and n.

k-NN graph representations for “true” and “selection” graphs

� We use log-normalized counts for scRNA-seq data as an input for the algorithm.

� We construct k-NN graphs, for both true and selection graphs, by using the

function BiocNeighbors::findKNN, and represent each cell’s neighborhood using the

first 5 neighbors. As a default, we use n.neigh = 5 as an appropriate compromise

between mitigating potential noise in scRNA-seq data together with the potential

existence of very rare cell types, where n.neigh > 5 can hide true biological variabil-

ity. The same default is used to compute the cell neighborhood preservation and

gene prediction scores. This variable can be tuned by the user.

� For the “true” graph, we first compute principal components by using the function

irlba::prcomp_irlba, n = 50, and apply BiocNeighbors::findKNN on the first 50 PCs.

� For the “selection” graphs, the PCA step is optional and by default is not

performed. In practice, we observed that omitting the PCA step for the

construction of “selection” graphs did not lead to different results when selections

are generated with fewer than 250 genes (Additional file 1: Fig. S9).

Identification of the first gene

To select the first gene, we generate a random gene count matrix thus mimicking a

random transcriptional relationship between cells. Subsequently, we use this matrix to

compute a random “selection” graph. Subsequently, to calculate the per gene Min-

kowski distance in the random “selection” graph, we compute the distance between the

actual log-normalized expression values and the average of the “true” log-normalized

expression values across neighbors in the random “selection” graph. To select the first

gene, we choose the gene with the largest difference between Minkowski distance in

the random “selection” graph and the “true” graph. We repeat this procedure five times

and select the most frequently occurring gene. In the unlikely scenario of ties (5 differ-

ent genes are calculated from 5 random graphs), we select the gene from the first ran-

dom graph.

Adding a new gene to the current gene panel

To add the next gene to the current gene panel (selection), we compare the graph con-

structed using the entire transcriptome (“true” k-NN graph, computed once) with a

graph constructed using the current “selection” (“selection” graph, recomputed for

every updated selection). For each gene in the “true” graph, we compute, across cells,

the Minkowski distance between a gene’s expression in a given cell and its average ex-

pression in that cell’s k-nearest neighbors. Similarly, we compute the Minkowski dis-

tance for each gene using the “selection” graph. To add the next gene to the current
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gene panel, for each gene we calculate the difference in stance between “selection” and

“true” graph and add the gene with the largest difference.

Batch correction

In cases where a batch is specified by a user (i.e., every cell is assigned to a distinct

batch), we construct k-NN graphs (“true” and “selections”) per batch thus identifying

nearest neighbors only from the same batch. To calculate a per gene Minkowski dis-

tance between cells and their neighbors, we use cells from all batches. Note that the

same accounting of the batch is performed to compute cell neighborhood preservation

and gene prediction scores.

Default order for Minkowski distance

The Minkowski distance of order p (p is an integer) between two vectors X = (x1, x2,…,

xn) and Y = (y1, y2,…, yn) ∈ R
n is defined as:

D X;Yð Þ ¼
Xn

i¼1
xi−yij jp

� �1=p

.

The choice of p provides a balance between how much the computed distance weighs

the number of cells that are currently “mismapped” (i.e., the assigned neighbors in the

selection graph show different expression values from what would be expected from

the “true” graph) against the magnitude of this “mismapping” (i.e., how much different).

For example, when the Minkowski distance is calculated between vectors X and Y and

p→∞, then D(X, Y)→ (| Xi − Yi| ) thus prioritizing the magnitude of mismapping. By

contrast, if p = 0 then the Minkowski distance emphasizes the number of mismapped

cells regardless of the magnitude.

To select an appropriate p, we applied geneBasis for the range p = 1, 2, 3, 4, 5 (Add-

itional file 1: Fig. S10). Overall, we observe that different orders of Minkowski distance

return robust selections that do not substantially affect either cell neighborhood preser-

vation or gene prediction scores (Additional file 1: Fig. S10A, B). We next sought to de-

termine the degree of expression resolution that can be achieved for a given range of p.

In other words, we assessed, for each value of p and varying number of selected genes,

what is the most rarely expressed gene (measured as a fraction of cells in which non-

zero counts are observed) that can be achieved. We observe that for all benchmarked

datasets p > 2 gives highly similar results and using p > 2 allows the selection of relevant

genes that are expressed in only ~ 0.1% of cells (Additional file 1: Fig. S10C). Applying

geneBasis with p = 1, 2 shows less flexibility and does not select genes beyond a certain

threshold of expression. As default, we thus select p = 3 as a good tradeoff between the

number of mismapped cells and the size of the discrepancy.

Gene prediction score (“gene score”)

To calculate the gene score for the selected library, we exploit the “selection” and “true”

graphs. For each gene, we compute the Spearman correlation (across cells) between its

log-normalized expression value in each cell and its average expression across (each

cell’s) first 5 nearest neighbors. We perform this calculation separately for the
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“selection” and “true” graphs and compute the ratio [correlation in “selection”]/[correl-

ation in “true”]. We discard genes with correlation in the “true” graph below 0.25 (i.e.,

we omit genes with unstructured expression across the manifold).

Cell neighborhood preservation score (“cell score”).

To calculate the cell score, we exploit the “True k-NN graph.” In the “True k-NN

graph” for each cell we compare the vector of distances to the assigned neighbors from

the “true graph” and assigned neighbors from the “selection graph” (Additional file 1:

Fig. S1). To normalize vectors and provide an interpretable metric, for each cell we z-

transform the distribution of distances to all other cells and multiply the vector by -1,

thus higher distances reflect more transcriptionally similar cells. For each cell, the “cell

score” is calculated as the ratio of the median of the scaled distances to the first k

neighbors from the “selection” graph to the median across of the scaled distances to

the first k neighbors from the “true” graph (we use k = 5). The upper limit for the score

of 1 arises if a cell’s neighborhood perfectly overlaps between the “true” and the “selec-

tion” graph, while a score of 0 suggests that a cell’s neighbors from the “selection”

graph are distributed randomly across the manifold.

Cell type mapping.

To compute confusion matrices for cell type labelling using the selection, we use log-

normalized counts of the selected genes, perform PCA, and use the first 50 components

to build a k-NN graph. If batch is not provided, PCA is performed using the prcomp_irlba

function from the irlba package. If batch is provided, we first perform PCA using the

multiBatchPCA function from the batchelor package, and then perform MNN correction

using the reducedMNN function from the batchelor package. For each cell, we assign the

mapped cell type as the most frequent cell type label across the first 5 neighbors (in case

of the ties, we assign the cell type label of the closest cell from tied cell types).

Benchmarking

Datasets

� Mouse embryogenesis: The dataset was downloaded using the

MouseGastrulationData package in R, which contains data generated for [32].

Further we selected samples for stage E8.5 and discarded cells annotated as

doublets or stripped. The final dataset consists of 4 samples (i.e., batches), and we

use the field “sample” as a batch identification for gene selection methods. For cell

type mappings, we discard extremely rare cell types that are present only at earlier

developmental stages: Paraxial Mesoderm, Notochord, and Rostral Neuroectoderm

(< 10 cells in the E8.5 dataset).

� Spleen: scRNA-seq for spleen was downloaded from the HubMap portal [48]

(https://portal.hubmapconsortium.org). The HuBMAP dataset IDs are as follows:

� HBM984.GRBB.858,

� HBM472.NTNN.543,

� HBM556.QMSM.776,

� HBM336.FWTN.636,
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� HBM252.HMBK.543,

� HBM749.WHLC.649.

Raw counts were SCT transformed and integrated using Seurat RPCA workflow.

Annotation of cell types was performed using a manually curated list of previously

characterized cell type markers (Additional file 6: Table S3). Cells that could not be

confidently assigned to a single cell type based on these markers were denoted as “Un-

known.” The dataset consists of samples from 6 donors (i.e., batches), and we use the

field “donor” as a batch identifier for gene selection methods.

� Pancreas: Annotated scRNA-seq datasets for the pancreas were obtained from the

Azimuth portal [49, 50]. The integrated dataset contains data from 6 individual

studies [33–38], with each individual study also being composed of several batches

or samples. We use a combination of study and batch within study as a meta-batch

variable (20 in total).

� Melanoma: The melanoma dataset described by [39] was downloaded from ncbi.

nlm.nih.gov with accession number GSE72056. The dataset consists of samples

from 19 donors at different stages of metastasis. Considering the highly variable and

overall low number of cells per each donor (4645 cells across 19 donors), and, more

importantly, substantial transcriptional variability across donors, we decided to

perform gene selections for this study without performing batch correction. For cell

type mappings, we only use annotated non-malignant cells.

Benchmarked methods

� SCMER and scGeneFit require initial preselection of genes. We used HVG-based

gene screening with defaults from SCMER and manually increased the search range

for spleen due to the observation that the defaults in SCMER selected an insuffi-

cient number of genes that poorly represented the overall manifold. Other parame-

ters of the algorithms were left as default.

� For SCMER, we used the same batch identifications as for geneBasis. To get a

range of gene selections for SCMER, we generated a coarse grid for regularization

strength (the parameter that directly affects number of genes selected) and applied

the method on the generated grid.

� In order to perform a faithful comparison between scGeneFit and geneBasis, for

scGeneFit we discarded the Unknown cell type for the spleen data and Paraxial

Mesoderm, Notochord, and Rostral Neuroectoderm cell types for the Mouse

embryo data. For all 4 datasets, we used the option “centers.”

Estimation of computational complexity for geneBasis and SCME

geneBasis and SCMER use distinct computational strategies that required us to ap-

proach the estimation of computational complexity separately for each method. To vary

the number of cells, we used the spleen dataset containing samples from 6 donors

(henceforth referred as samples). We applied both methods to subsets of the spleen
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dataset by varying which samples we included in the subsets. Below we explain how we

then assessed computational complexity for both methods.

� geneBasis: To vary the initial number of genes, we performed highly variable gene

selection and selected the top 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, or

10,000 highly variable genes. We then ran the algorithm to select the first 150

genes, and accordingly for every added gene, recorded the elapsed time.

� SCMER: SCMER requires the regularization strength λ to be inputted.

Subsequently, given this parameter, a selected set of genes are returned.

Alternatively, it can take a number of genes to be selected as an input, in which

case it will run SCMER on the coarse grid of various values for λ, select an optimal

λ to achieve the desired number of genes, and return the selection. By design, the

latter takes longer to run since the algorithm has to first perform a grid search.

Accordingly, to achieve a more faithful comparison, we selected the appropriate

grid for λ ourselves, and for each value of the grid, we recorded the selected

number of genes and elapsed time. The initial preselection of genes is not part of

SCMER, and we varied the number of initial genes by selecting highly variable

genes with scanpy.pp.highly_variable_genes with different values for min_disp (0,

0.25, 0.5).

Generation of semi-random initial selections (for Additional file 1: Fig S4)

To perform semi-random initial selections, for each dataset, we randomly chose half of

the cell types and for each cell type we randomly selected a gene that was upregulated

in the corresponding cell type. A union of these genes was used as initial selections.

Integration with lineage-specific datasets for mouse embryo development

To integrate scRNA-seq data of the whole mouse embryo [32] together with the

lineage-specific dataset for cardiac development [42], we concatenated log-normalized

counts for cells from [32] annotated as “Cardiomyocytes” and cells from [42]. To inte-

grate scRNA-seq data of the whole mouse embryo [32] together with lineage-specific

dataset for endodermal development [43], we concatenated log-normalized counts for

cells from [32] annotated as “Gut” and cells collected at E8.75 from [43].

For both integrations, we performed cosine normalization of log-normalized counts

using batchelor::cosineNorm and performed PCA using batchelor::multiBatchNorm,

using 20 PCs (using combination of + dataset + corresponding to the dataset batch en-

tity as meta-batch). Mapping was then calculated using BiocNeighbors::findKNN. For

each cell, we assigned the most common cluster across the first 5 neighbors.

Joint embedding between seqFISH+ and scRNA-seq datasets for the mouse olfactory

bulb

To create joint embedding between the two data modalities, we first selected genes for

which we had entries in both datasets and performed cosine normalization using batch-

elor::cosineNorm to the log-normalized counts (i.e., logcounts) for both datasets. We

then concatenated cosine normalized logcounts and performed PCA using batchelor::

multiBatchNorm, using 25 PCs. Mapping was then calculated using BiocNeighbors::
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findKNN. For each cell, we assigned the most common cluster across the first 5

neighbors.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02548-z.

Additional file 1: Fig. S1. Schematic visualisation for cell neighbourhood preservation score workflow. Fig. S2.
Systematic assessment of the ‘completeness’ of the generated gene panels. Fig. S3. SCMER introduces
redundancy in the selections when selecting a small number of genes. Fig. S4. geneBasis is robust to initial
selections and quickly finds missing sources of variation. Fig. S5. geneBasis accounts for batch effects even with
highly unbalanced celltype composition. Fig. S6. Detailed analysis of the gene selection for mouse
embryogenesis. Fig. S7. Detailed analysis of the selection for spleen and pancreas . Panels A-D correspond to
spleen; panels E-G correspond to pancreas. Fig. S8. geneBasis selects genes that recover biological heterogeneity
in seqFISH datasets. Fig. S9. Performing PCA for mapping manifolds with selections does not change cell neigh-
borhood preservation score or gene prediction score. Fig. S10. Minkowski distance of order p=3 provides the
resolution to select rare markers and genes expressed in a low fraction of cells.

Additional file 2: Table S1. Top 150 genes selected by geneBasis for mouse embryo, spleen, pancreas and
melanoma datasets.

Additional file 3: Table S2. Selection of genes by SCMER for mouse embryo dataset, where blood lineage was
retained in one sample.

Additional file 4: Supplementary Note 1. Analysis of robustness of geneBasis approach.

Additional file 5: Supplementary Note 2. Analysis of PBMC dataset.

Additional file 6: Table S3. List of cell type specific markers for the spleen dataset.

Additional file 7. Review history.

Acknowledgements
We thank Emma Dann and Mike Morgan for useful discussions on the package development.

Review history
The review history is available as Additional file 7.

Peer review information
Barbara Cheifet was the primary editor of this article and managed its editorial process and peer review in
collaboration with the rest of the editorial team.

Authors’ contributions
AM conceived the method, developed the algorithm, performed the analysis, and wrote the R package. MB, CW, HN,
TB, and MA generated scRNA-seq data for the adult spleen. JJ preprocessed and annotated spleen scRNA-seq data. AB
integrated pancreas data from the original publications. RS, JJ, AB, SG, and TS provided critical feedback and helped
shape the methodology, analysis, and the package. AM and JM wrote the manuscript with the input from RS, JJ, AB,
SG, and TS. RS and JM oversaw the project. The author(s) read and approved the final manuscript.

Funding
This work is supported by the National Institutes of Health: RS and JM acknowledge 1OT2OD026673-01 which supports
AM; RS acknowledge RM1HG011014-02; TS acknowledges K99HG011489-01; MA, HN, CW, and TB acknowledge
U54AI142766. SG acknowledges Royal Society Newton International Fellowship (NIF\R1\181950). MA and TB acknow-
ledge Helmsley Charitable Trust 2004-03813. JM acknowledges core funding from EMBL and core support from Cancer
Research UK (C9545/A29580). In the past 3 years, RS has worked as a consultant for Bristol-Myers Squibb, Regeneron,
and Kallyope, and served as an SAB member for ImmunAI, Resolve Biosciences, Nanostring, and the NYC Pandemic Re-
sponse Lab. Open Access funding enabled and organized by Projekt DEAL.

Availability of data and materials
geneBasisR’s open-source code is maintained and documented on GitHub [51] and is publicly available under the MIT
license from the following Zenodo repository (DOI: https://doi.org/10.5281/zenodo.5675255).
scRNA-seq mouse embryo dataset described by [32] was obtained from MouseGastrulationData package in R.
scRNA-seq spleen dataset was obtained from HubMap portal [48] (https://portal.hubmapconsortium.org). The HuBMAP
dataset IDs are as follows: HBM984.GRBB.858; HBM472.NTNN.543; HBM556.QMSM.776; HBM336.FWTN.636;
HBM252.HMBK.543; HBM749.WHLC.649.
scRNA-seq pancreas datasets were obtained from the Azimuth portal [49, 50].
scRNA-seq melanoma dataset described by [39] was downloaded from https://www.ncbi.nlm.nih.gov/ with accession
number GSE72056.
scRNA-seq PBMC dataset described by [46] was obtained from https://data.humancellatlas.org/explore/projects/
efea6426-510a-4b60-9a19-277e52bfa815.
SeqFISH+ mouse olfactory bulb dataset described by [13] was obtained from https://github.com/CaiGroup/seqFISH-
PLUS.
scRNA-seq mouse olfactory bulb dataset described by [48] was obtained from http://mousebrain.org/.

Missarova et al. Genome Biology          (2021) 22:333 Page 20 of 22

https://doi.org/10.1186/s13059-021-02548-z
https://doi.org/10.5281/zenodo.5675255
https://portal.hubmapconsortium.org
https://www.ncbi.nlm.nih.gov/
https://data.humancellatlas.org/explore/projects/efea6426-510a-4b60-9a19-277e52bfa815
https://data.humancellatlas.org/explore/projects/efea6426-510a-4b60-9a19-277e52bfa815
https://github.com/CaiGroup/seqFISH-PLUS
https://github.com/CaiGroup/seqFISH-PLUS
http://mousebrain.org/


Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge,
UK. 2Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK. 3New York Genome Center,
New York, USA. 4Center for Genomics and Systems Biology, NYU, New York, USA. 5Department of Pathology,
Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Jacksonville, USA. 6Department of
Neuroscience, College of Medicine, University of Florida, Jacksonville, USA. 7Wellcome Sanger Institute, Wellcome
Genome Campus, Cambridge, UK.

Received: 20 July 2021 Accepted: 19 November 2021

References
1. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;

50(8):1–14. https://doi.org/10.1038/s12276-018-0071-8.
2. Yip SH, Sham PC, Wang J. Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief

Bioinform. 2019;20(4):1583–9. https://doi.org/10.1093/bib/bby011.
3. Jiang L, Chen H, Pinello L, Yuan G-C. GiniClust: detecting rare cell types from single-cell gene expression data with Gini

index. Genome Biol. 2016;17(1):144. https://doi.org/10.1186/s13059-016-1010-4.
4. Andrews TS, Hemberg M. M3Drop: dropout-based feature selection for scRNASeq. Bioinformatics. 2019;35(16):2865–7.

https://doi.org/10.1093/bioinformatics/bty1044.
5. Wang F, Liang S, Kumar T, Navin N, Chen K. SCMarker: Ab initio marker selection for single cell transcriptome profiling.

PLoS Comput Biol. 2019;15(10):e1007445. https://doi.org/10.1371/journal.pcbi.1007445.
6. Song D, Li K, Hemminger Z, Wollman R, Li JJ. scPNMF: sparse gene encoding of single cells to facilitate gene selection

for targeted gene profiling. bioRxiv. 2021;37(Suppl_1):i358–66.
7. Larsson L, Frisén J, Lundeberg J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat Methods.

2021;18(1):15–8. https://doi.org/10.1038/s41592-020-01038-7.
8. Zhuang X. Spatially resolved single-cell genomics and transcriptomics by imaging. Nat Methods. 2021;18(1):18–22.

https://doi.org/10.1038/s41592-020-01037-8.
9. Close JL, Long BR, Zeng H. Spatially resolved transcriptomics in neuroscience. Nat Methods. 2021;18(1):23–5. https://doi.

org/10.1038/s41592-020-01040-z.
10. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. Imaging individual mRNA molecules using multiple

singly labeled probes. Nat Methods. 2008;5(10):877–9. https://doi.org/10.1038/nmeth.1253.
11. Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial organization of cells in the

mouse hippocampus. Neuron. 2016;92(2):342–57. https://doi.org/10.1016/j.neuron.2016.10.001.
12. Shah S, Lubeck E, Zhou W, Cai L. seqFISH accurately detects transcripts in single cells and reveals robust spatial

organization in the hippocampus. Neuron. 2017;94:752–758.e1.
13. Eng C-HL, Lawson M. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature. 2019;568(7751):

235–9. https://doi.org/10.1038/s41586-019-1049-y.
14. Lohoff TS Ghazanfar A, Missarova N, Koulena N, Pierson JA, Griffiths ES, Bardot et al. “Integration of Spatial and Single-

Cell Transcriptomic Data Elucidates Mouse Organogenesis.” Nature Biotechnology. 2021. https://doi.org/10.1038/s41587-
021-01006-2.

15. Moffitt JR, Hao J. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in
situ hybridization. Proc Natl Acad Sci U S A. 2016;113(39):11046–51. https://doi.org/10.1073/pnas.1612826113.

16. Moffitt, J. R. , Bambah-Mukku D. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic
region. Science (2018):362, DOI: https://doi.org/10.1126/science.aau5324.

17. Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA
compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci U S A. 2019;116(39):19490–9.
https://doi.org/10.1073/pnas.1912459116.

18. Cai M. Spatial mapping of single cells in human cerebral cortex using DARTFISH: a highly multiplexed method for in
situ quantification of targeted RNA transcripts; 2019.

19. Jaitin DA, et al. Dissecting Immune Circuits by Linking CRISPR-pooled screens with single-cell RNA-Seq. Cell. 2016;167:
1883–1896.e15.

20. Dixit A, et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens.
Cell. 2016;167:1853–1866.e17.

21. Adamson B, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded
protein response. Cell. 2016;167:1867–1882.e21.

22. Schraivogel D, Gschwind AR. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat Methods.
2020;17(6):629–35. https://doi.org/10.1038/s41592-020-0837-5.

23. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.

Missarova et al. Genome Biology          (2021) 22:333 Page 21 of 22

https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.1093/bib/bby011
https://doi.org/10.1186/s13059-016-1010-4
https://doi.org/10.1093/bioinformatics/bty1044
https://doi.org/10.1371/journal.pcbi.1007445
https://doi.org/10.1038/s41592-020-01038-7
https://doi.org/10.1038/s41592-020-01037-8
https://doi.org/10.1038/s41592-020-01040-z
https://doi.org/10.1038/s41592-020-01040-z
https://doi.org/10.1038/nmeth.1253
https://doi.org/10.1016/j.neuron.2016.10.001
https://doi.org/10.1038/s41586-019-1049-y
https://doi.org/10.1038/s41587-021-01006-2
https://doi.org/10.1038/s41587-021-01006-2
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1126/science.aau5324
https://doi.org/10.1073/pnas.1912459116
https://doi.org/10.1038/s41592-020-0837-5
https://doi.org/10.1093/bioinformatics/btp616


24. Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods.
2014;11(7):740–2. https://doi.org/10.1038/nmeth.2967.

25. Finak G, McDavid A. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing
heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16(1):278. https://doi.org/10.1186/s13059-015-
0844-5.

26. Delmans M, Hemberg M. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of
single-cell RNA-seq data. BMC Bioinformatics. 2016;17(1):110. https://doi.org/10.1186/s12859-016-0944-6.

27. Vargo AHS, Gilbert AC. A rank-based marker selection method for high throughput scRNA-seq data. BMC Bioinformatics.
2020;21(1):477. https://doi.org/10.1186/s12859-020-03641-z.

28. Aevermann, B. D. et al. A machine learning method for the discovery of minimum marker gene combinations for cell-
type identification from single-cell RNA sequencing. Genome Res. (2021) doi:https://doi.org/10.1101/gr.275569.121.

29. Nelson ME, Riva SG, Cvejic A. SMaSH: A scalable, general marker gene identification framework for single-cell RNA
sequencing and Spatial Transcriptomics. bioRxiv. 2021.

30. Dumitrascu B, Villar S, Mixon DG, Engelhardt BE. Optimal marker gene selection for cell type discrimination in single cell
analyses. Nat Commun. 2021;12(1):1–8. https://doi.org/10.1038/s41467-021-21453-4.

31. Liang S, Mohanty V. Single-cell manifold-preserving feature selection for detecting rare cell populations. Nat
Computational Sci. 2021;1(5):374–84. https://doi.org/10.1038/s43588-021-00070-7.

32. Pijuan-Sala B, Griffiths JA. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;
566(7745):490–5. https://doi.org/10.1038/s41586-019-0933-9.

33. Grün D, Muraro MJ. De novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell. 2016;
19(2):266–77. https://doi.org/10.1016/j.stem.2016.05.010.

34. Muraro MJ, et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 2016;3:385–394.e3.
35. Segerstolpe Å, Palasantza A. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes.

Cell Metab. 2016;24(4):593–607. https://doi.org/10.1016/j.cmet.2016.08.020.
36. Lawlor N, George J, Bolisetty M, Kursawe R. Single-cell transcriptomes identify human islet cell signatures and reveal

cell-type–specific expression changes in type 2 diabetes. Genome. 2017;27(2):208–22. https://doi.org/10.1101/gr.21272
0.116.

37. Baron M, et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell
population structure. Cell Syst. 2016;3:346–360.e4.

38. Xin Y, et al. Single-cell RNA sequencing and analysis of human pancreatic islets. J Vis Exp. 2019. https://doi.org/10.3791/
59866.

39. Tirosh, I, Izar B, Prakadan SM, Wadsworth MH II, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of
metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–96. https://doi.org/10.1126/science.aad0501.

40. Hebiri M, Lederer J. How correlations influence lasso prediction. IEEE Trans Inf Theory. 2013;59:1846–54.
41. Chen W, Zhang S, Williams J, Ju B, Shaner B, Easton J, et al. A comparison of methods accounting for batch effects in

differential expression analysis of UMI count based single cell RNA sequencing. Comput Struct Biotechnol J. 2020;18:
861–73. https://doi.org/10.1016/j.csbj.2020.03.026.

42. Tyser RCV, Ibarra-Soria X, McDole K, Arcot Jayaram S, Godwin J, van den Brand TAH, et al. Characterization of a common
progenitor pool of the epicardium and myocardium. Science. 2021;371(6533). https://doi.org/10.1126/science.abb2986.

43. Nowotschin S, Setty M, Kuo YY, Liu V, Garg V, Sharma R, et al. The emergent landscape of the mouse gut endoderm at
single-cell resolution. Nature. 2019;569(7756):361–7. https://doi.org/10.1038/s41586-019-1127-1.

44. Andreatta M, et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat
Commun. 2021;12:2965.

45. Hao Y, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29.
46. Lawlor N, Nehar-Belaid D, Grassmann JDS, Stoeckius M, Smibert P, Stitzel ML, et al. Single cell analysis of blood

mononuclear cells stimulated through either LPS or anti-CD3 and anti-CD28. Front Immunol. 2021;12:636720. https://
doi.org/10.3389/fimmu.2021.636720.

47. Asp M, Bergenstråhle J, Lundeberg J. Spatially resolved transcriptomes-next generation tools for tissue exploration.
Bioessays. 2020;42(10):e1900221. https://doi.org/10.1002/bies.201900221.

48. Zeisel A, et al. Molecular architecture of the mouse nervous system. Cell. 2018;174:999–1014.e22.
49. Consortium, H. & HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas

Program. Nature. 2019;574:187–92. https://doi.org/10.1038/s41586-019-1629-x.
50. Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e21.
51. Missarova A, Jain J, Butler A, Ghazanfar S, Stuart T, Brusko M, et al. geneBasis: an iterative approach for unsupervised

selection of targeted gene panels from scRNA-seq. Github: https://github.com/MarioniLab/geneBasisR; 2021. https://doi.
org/10.5281/zenodo.5675255.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Missarova et al. Genome Biology          (2021) 22:333 Page 22 of 22

https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s12859-016-0944-6
https://doi.org/10.1186/s12859-020-03641-z
https://doi.org/10.1101/gr.275569.121
http://paperpile.com/b/qavk7v/nSgZ3
https://doi.org/10.1038/s41467-021-21453-4
https://doi.org/10.1038/s43588-021-00070-7
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1016/j.stem.2016.05.010
https://doi.org/10.1016/j.cmet.2016.08.020
https://doi.org/10.1101/gr.212720.116
https://doi.org/10.1101/gr.212720.116
https://doi.org/10.3791/59866
https://doi.org/10.3791/59866
https://doi.org/10.1126/science.aad0501
https://doi.org/10.1016/j.csbj.2020.03.026
https://doi.org/10.1126/science.abb2986
https://doi.org/10.1038/s41586-019-1127-1
https://doi.org/10.3389/fimmu.2021.636720
https://doi.org/10.3389/fimmu.2021.636720
https://doi.org/10.1002/bies.201900221
https://doi.org/10.1038/s41586-019-1629-x
https://github.com/MarioniLab/geneBasisR
https://doi.org/10.5281/zenodo.5675255
https://doi.org/10.5281/zenodo.5675255

	Abstract
	Background
	Results
	An algorithm for gene selection.
	geneBasis allows recovery of local and global variability
	geneBasis accounts for batch effect and handles unbalanced cell type composition
	Computational complexity of geneBasis
	geneBasis resolves rare cell types and unannotated inter-cell-type variability
	geneBasis captures signals associated with cell states
	geneBasis selects genes that resolve cell types in seqFISH+ data

	Discussion and conclusions
	Methods
	Code availability
	Detailed overview of the geneBasis algorithm
	Initial selection of genes
	k-NN graph representations for “true” and “selection” graphs
	Identification of the first gene
	Adding a new gene to the current gene panel
	Batch correction
	Default order for Minkowski distance

	Gene prediction score (“gene score”)
	Cell neighborhood preservation score (“cell score”).
	Cell type mapping.
	Benchmarking
	Datasets

	Benchmarked methods
	Estimation of computational complexity for geneBasis and SCME
	Generation of semi-random initial selections (for Additional file 1: Fig S4)
	Integration with lineage-specific datasets for mouse embryo development
	Joint embedding between seqFISH+ and scRNA-seq datasets for the mouse olfactory bulb

	Supplementary Information
	Acknowledgements
	Review history
	Peer review information
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

