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Abstract: This paper presents a computer-vision-based methodology for automatic image-based
classification of 2042 training images and 284 unseen (test) images divided into 68 categories of
gemstones. A series of feature extraction techniques (33 including colour histograms in the RGB,
HSV and CIELAB space, local binary pattern, Haralick texture and grey-level co-occurrence matrix
properties) were used in combination with different machine-learning algorithms (Logistic Regression,
Linear Discriminant Analysis, K-Nearest Neighbour, Decision Tree, Random Forest, Naive Bayes
and Support Vector Machine). Deep-learning classification with ResNet-18 and ResNet-50 was also
investigated. The optimal combination was provided by a Random Forest algorithm with the RGB
eight-bin colour histogram and local binary pattern features, with an accuracy of 69.4% on unseen
images; the algorithms required 0.0165 s to process the 284 test images. These results were compared
against three expert gemmologists with at least 5 years of experience in gemstone identification,
who obtained accuracies between 42.6% and 66.9% and took 42–175 min to classify the test images.
As expected, the human experts took much longer than the computer vision algorithms, which in
addition provided, albeit marginal, higher accuracy. Although these experiments included a relatively
low number of images, the superiority of computer vision over humans is in line with what has
been reported in other areas of study, and it is encouraging to further explore the application in
gemmology and related areas.

Keywords: gemstone; segmentation; machine learning; computer vision; human vision

1. Introduction

Accurate gemstone classification is crucial to the gem and jewellery trade as the identi-
fication is an important first step in the evaluation and appraisal of any gem [1]. Currently,
the identity of a gemstone is determined using a combination of visual observation and
spectrochemical analysis [2]. Through careful observation of gemstones with the unaided
eye and under magnification, gemmologists detect visual characteristics, such as colour,
transparency, lustre, fractures, cleavages, inclusions, pleochroism, phenomenon and bire-
fringence, to facilitate the separation of gemstones [3]. This is a difficult process, as many
gems share colour and characteristics, as illustrated in Figure 1, which displays a sample of
500 gems distributed among 87 different categories. Identification and classification are
often accompanied by the use of gemmological tools, which include refractometers [4],
polariscopes and conoscopes [5], handheld spectroscopes [6], dichroscopes [7] and ultravio-
let light [8] to probe the optical properties of gemstones. Measuring physical properties
such as specific gravity [9] (also known as relative density) provides additional information
related to the identity of a gemstone. With the emergence of new synthetic gemstones
and treatment techniques, increasingly complex instruments with powerful spectroscopic,
fluorescent or chemical analysing abilities have been introduced into gemmological labora-
tories [2]. Such instruments include infrared spectrometers [10], Raman and luminescence
spectrometers [11–13], ultraviolet–visible spectrometers [14], cathodoluminescence [15],
energy-dispersive X-ray fluorescence spectrometers [4,16], laser ablation-inductively cou-
pled plasma-mass spectrometers [17] and fluorescence spectrometers [18].
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Figure 1. Five hundred images of gemstones selected from eighty-seven different categories, from Al-
mandine to Zoisite. The images are arranged by hue to illustrate the difficulty of identifying the gems
by visual inspection.

Yet, the identification is still difficult and time consuming, and not all laboratories have
access to these sophisticated instruments; thus, the identification through automatic tech-
niques based solely on images is attractive. In recent years, computers and algorithms have
evolved significantly, and image processing and computer vision tasks are commonplace
in many areas such as medical imaging, manufacturing and security. In geological sciences,
computer vision algorithms have been developed for classifying mineral grains [19–24]
and rocks [25–29]. Thompson et al. [19] segmented microscopic thin sections using edge
detection and achieved a test accuracy up to 93.53% when classifying 10 different minerals
with an Artificial Neural Network trained on extracted colour and texture features. The re-
ported accuracy was likely inflated, as the same examples of Biotite were used for training
and testing. Baykan and Yilmaz [20] developed an Artificial Neural Network to separate
five minerals using the Red–Green–Blue (RGB) values of pixels in manually segmented
thin sections as the input and attained an accuracy of 89.53%. Izadi et al. [21] segmented
thin sections using incremental clustering and performed mineral classification using a
cascade approach. An Artificial Neural Network was first used to differentiate 23 types
of minerals and glass based on pixel colours, and only those minerals exhibiting similar
colours under both plane- and cross-polarised light were passed into a second Artificial
Neural Network for concurrent colour and texture analysis. This resulted in an overall
accuracy of 93.81%. Borges and de Aguiar [22] demonstrated that simple machine-learning
algorithms—K-Nearest Neighbour and Decision Tree—were capable of classifying minerals
in microscopic thin sections based on colour and texture with a high average accuracy of
94.11–97.71% using two datasets with four and seventeen mineral types. Maitre et al. [23]
segmented microscopic images containing eight mineral types and background by simple
linear iterative clustering and classified them using three machine-learning algorithms,
namely K-Nearest Neighbour, Random Forest and Decision Tree, based on colour features
in the RGB, Hue–Saturation–Value (HSV) and CIELAB space. The Random Forest algo-
rithm produced the highest accuracy of 82%. Zhang et al. [24] investigated the classification
of four minerals with six different algorithms, namely Logistic Regression, Support Vector
Machine, Random Forest, K-Nearest Neighbour, Multilayer Perceptron and Naive Bayes,
using features extracted from microscopic images with Inception-v3. Support Vector Ma-
chine was identified as the single algorithm yielding the highest accuracy (90.6%). Stacking
Support Vector Machine, Logistic Regression and Multilayer Perceptron models further
improved the accuracy by 0.3%. Despite the robustness of computer vision systems in
mineral recognition, only one study on automatic identification of gemstone images [30]
has been reported to date, to the best of the authors’ knowledge. A per-class accuracy of
75–100% was attained for classifying unseen Ruby, Blue Sapphire and Emerald images
based on the Hue channel of the HSV colour space using an Artificial Neural Network. It
should be noted that Rubies, Blue Sapphires and Emeralds have very distinctive colours
and as such are relatively easy to distinguish from each other, much easier than gems of
similar colours such as Topaz and Aquamarine. Other computer vision research in the con-
text of gemmology focused mostly on gemstone evaluation [31–33] and recognition [34,35].
Robust computer vision systems for grading the colour of Amber [36], Jadeite Jade [37],
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Opal [38] and Pearls [39] were developed. Zhang and Guo [37] proposed a system that can
be developed into a tool for measuring gemstone colour.

In this paper, we present a computer vision approach for automatic image-based clas-
sification of 68 categories of gemstones. We first introduce the image dataset and describe
the feature extraction techniques and the classification algorithms in Section 2. Section 3
presents an evaluation and comparison of the results with reference to an expert group.
In Section 4, a discussion of the experimental findings is provided. Finally, conclusions and
ideas for further work are presented in Section 5.

2. Materials and Methods
2.1. Materials

A total of 2326 images of gemstones were obtained from Kaggle [40] (accessed on 27
April 2021) and analysed in this work. A sample of these is illustrated in Figure 2. The im-
ages were grouped into categories, and for this work, the following 68 classes were selected
for analysis: Alexandrite, Almandine, Amazonite, Amber, Amethyst, Ametrine, Andradite, Aqua-
marine, Aventurine Green, Aventurine Yellow, Benitoite, Beryl Golden, Bixbite, Bloodstone, Blue
Lace Agate, Carnelian, Chalcedony, Chalcedony Blue, Chrome Diopside, Chrysoberyl, Chryso-
colla, Chrysoprase, Citrine, Coral, Diamond, Diaspore, Dumortierite, Emerald, Fluorite, Hessonite,
Iolite, Jasper, Kunzite, Kyanite, Lapis Lazuli, Malachite, Onyx Black, Onyx Green, Onyx Red,
Peridot, Prehnite, Pyrite, Pyrope, Quartz Beer, Quartz Lemon, Quartz Rutilated, Quartz Smoky,
Rhodochrosite, Rhodolite, Rhodonite, Ruby, Sapphire Blue, Sapphire Pink, Sapphire Purple, Sap-
phire Yellow, Serpentine, Sodalite, Spessartite, Sphene, Sunstone, Tanzanite, Tigers Eye, Topaz,
Tourmaline, Tsavorite, Turquoise, Zircon and Zoisite. The images were acquired under very
different conditions of illumination and background colours, as can be appreciated in
Figure 1. The dimensions spread across a wide range: heights between 93 px and 3055 px
and widths between 89 px and 3947 px. Post-processing may have been applied to some of
the images, i.e., cropped or processed in Photoshop, but these details were not available.
A total of 2042 images were used for training and 284 images were reserved for testing.
For each class, 24–44 training images and 4–5 test images were available. The original
Kaggle dataset consists of 3219 images distributed into 87 classes, but some of these were
discarded according to the criteria described in Appendix A.

Most images contained a single gemstone, but a small number of images portrayed
multiple gemstones (Figure 2). The gemstones exhibited various colours, shapes and
cutting styles. The top of the gemstones were featured in most images. It should be noted
that whilst some gemstones such as Malachite and Zoisite were readily recognised by their
colours and patterns, it would be challenging to separate some gemstones such as Emerald
and Tsavorite based solely on colour.

(a) Amber (b) Benitoite (c) Coral (d) Emerald (e) Kyanite (f) Malachite

(g) Onyx Red (h) Pyrope (i) Rhodolite (j) Topaz (k) Tsavorite (l) Zoisite

Figure 2. Twelve representative images of the gemstones in this work. It can be noticed that some
gems, such as Malachite and Onyx Red, can be readily recognised by the unique colours, whereas it
would be challenging to distinguish between Emerald and Tsavorite.

2.2. Methods

The framework consisted of data acquisition, background segmentation, feature ex-
traction, construction of the machine-learning classifiers and evaluation (Figure 3).
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Figure 3. The computer vision framework followed in this work: data acquisition, background
segmentation, feature extraction, construction of machine-learning classifiers and evaluation.

All the algorithms used in this work were coded in Python 3.7.9. and are freely
available via GitHub (https://github.com/hybchow/gems accessed on 31 December 2021).
With the exception of transfer learning, the scripts were executed on a MacBook Pro
equipped with a 2.3 GHz Intel Core i5 processor. Transfer learning was implemented on a
virtual NVIDIA Tesla K80 Graphics Processing Unit (GPU) with two workers in Google
Colaboratory. Experimental findings were visualised using Python and Tableau.

2.2.1. Background Segmentation

We used Otsu thresholding [41] to automatically extract gemstones from the back-
ground. Otsu thresholding is a non-parametric, unsupervised segmentation method that
operates by maximising the variance between background and foreground intensities.
The binary masks created by application of Otsu thresholding to either grey-level intensity
or the Saturation channel of the HSV space were compared visually (Figure 4). An image
was regarded as well-segmented upon satisfying these criteria: (1) the background was
completely removed, and (2) the majority of the gemstone was extracted. The approach
yielding more well-segmented training images for a gemstone class was adopted for seg-
menting the test images in the same class. All test images were retained regardless of
segmentation quality.

The pipeline to obtain the background through intensity-based Otsu thresholding
was as follows: 1. Converted images to grayscale; 2. Applied Gaussian smoothing with
sigma of 2 to the grayscale image; 3. Applied Otsu thresholding to grey-level intensity to
create a binary mask; 4. Flipped the mask if the average intensity of 20 × 20 px regions
from each corner of image is higher than average of the entire image, i.e., the background
had a higher intensity than the gemstone, so that the gemstone instead of the background
was extracted; 5. Filled holes in the mask; 6. Applied binary closing to the mask using a
disc-shaped structuring element with a radius of 8 px; 7. Removed objects smaller than
301 px in size; 8. Filled holes in the mask; 9. Applied binary erosion to the mask using a
square-shaped structuring element of 2 × 2 px; 10. Filled holes in the mask; 11. Applied the
mask to the original image by setting the pixels identified as background to a value of zero.

The pipeline to obtain the background through Otsu thresholding to the Saturation
channel was very similar: 1. Converted image from the RGB to HSV space and extracted
the Saturation channel of HSV; 2. Applied Gaussian smoothing with a sigma of 5 to the
Saturation channel of HSV; 3. Applied Otsu thresholding to Saturation channel of HSV to
create a binary mask; 4. Flipped the mask if the average Saturation of 20 × 20 px regions
from each corner of image is higher than average of the entire image, i.e., the background
had a higher Saturation than the gemstone, so that the gemstone instead of the background
was extracted; 5. Filled holes in the mask; 6. Applied binary closing to the mask using a
disc-shaped structuring element with a radius of 9 px; 7. Removed objects smaller than
301 px in size; 8. Filled holes in the mask; 9. Applied binary erosion to the mask using a
square-shaped structuring element of 2 × 2 px; 10. Filled holes in the mask; 11. Applied the
mask to the original image by setting the pixels identified as background to a value of zero.

https://github.com/hybchow/gems
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(a) (b) (c)

(d) (e) (f)

Figure 4. Illustration of the background segmentation for two representative images of Alexandrite
(top row) and Amazonite (bottom row). (a,d) Original images. (b,e) Mask through intensity-based
Otsu thresholding. (c,f) Mask through Otsu thresholding based on the Saturation channel of the HSV
space. It should be noted that the purely intensity-based mask is less accurate than the Saturation-
based mask.

2.2.2. Feature Extraction

Feature extraction is one of the essential processes of computer vision and image-
processing tasks [42]. Feature extraction can be understood in many ways: low-level
extraction, which focuses on edges, colours, textures, shapes, regions and other characteris-
tics of an image, sometimes extracted through transforms such as Fourier or Discrete Cosine
Transform [43–45] ; high-level extraction that jumps to understanding or behaviours [46]
and also to the reduction of dimensionality, which sometimes is accomplished by selecting
a reduced set of features or measurements from the data [47].

A total of 33 features based on colour and texture were extracted from masked images
for posterior classification. These features were: colour of the non-background K-means cluster
in the RGB, HSV or CIELAB space, 4- and/or 8-bin histogram(s) in the RGB, HSV or CIELAB
space, combination of the RGB or HSV 4- or 8-bin histogram and Haralick texture, combination of
the RGB 8-bin histogram and one grey-level co-occurrence matrix (GLCM) property from correlation,
dissimilarity, energy, angular second moment (ASM), contrast or homogeneity, combination of the
RGB or HSV 4- or 8-bin histogram and the local binary pattern (LBP) with 8 points at radius 1,
combination of the RGB 8-bin histogram and the LBP with 8 points at radius 3, combination of the
RGB 8-bin histogram and the LBP with 16 or 24 points at radius 1 or 3, combination of the RGB 4-
and 8-bin histograms and the LBP with 8 points at radius 1 and combination of the RGB 4- and
8-bin histograms and the LBPs with 8 points at radius 1 and 24 points at radius 3.

Colour feature extraction was performed in three colour spaces: RGB, HSV and
CIELAB colour space. The RGB space is conceptualised by human trichromatic colour
vision and describes colours by the additive combination of orthogonal red, green and
blue components [48]. HSV is based on human intuition [49], closely related to the artistic
ideas of hue tint and shade [50] and provides excellent discrimination for highly saturated
areas [51,52].

HSV is represented by a hexacone, where Saturation is the horizontal axis, Hue can
be either a circular angle or a value with the horizontal axis, and Value is the vertical
axis [53]. CIELAB is designed to represent perceptual uniformity (the colour difference
matches that perceived by humans) [49]. Unlike the RGB and HSV space, CIELAB is
device-independent [49]. Figure 5 illustrates the three colour spaces for all the images of
the training data and Figure 6 illustrates the median Hue and Saturation per gemstone.
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(a) (b) (c)

Figure 5. Illustration of the central colour characteristics for all the images of the training data
represented in the three colour spaces. (a) Red–Green–Blue (RGB). (b) Hue–Saturation–Value (HSV).
(c) CIELAB. It should be noted that, visually, HSV provides better discrimination as the colours are
ranked, in this case along the horizontal axis. HSV can also be displayed in polar plots as Hue is a
circular property.

Figure 6. Distribution of median Hue and Saturation of gemstone images aggregated by class and
displayed as polar scatter plots. It should be noted that the distribution of several gemstones is very
similar, e.g., Emerald and Tsavorite.
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K-means clustering and colour histograms were used to extract colour from the gemstones
(Figure 7). K-means clustering was performed to divide the pixels in each image into groups
based on colour such that the difference between the groups was maximised and the variation
within each group was minimised [54]. For simplicity, we assumed that each image consisted
only of two colours representing the gemstone and the background and that the centre of the
background colour cluster had a smaller sum of Red, Green and Blue values in RGB, a smaller
sum of Hue and Saturation components in HSV or a lower Luminosity in CIELAB than the
equivalent of the gemstone colour cluster. Colour histograms are three-dimensional arrays
representing the counts of pixels in each colour space component in individual images [55,56].
We investigated the use of either 4-bin, 8-bin or a combination of both 4- and 8-bin colour
histograms. The background pixels having a value of zero in the masked images were neglected
when constructing the colour histograms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Illustration of colour and texture features extracted from a representative image. (a) Masked
image of Alexandrite. (b) Scatter plot of the RGB values of all pixels. (c) RGB colour of the centre of
the non-background K-means cluster. (d) GLCM matrix with an offset of 1 and angle of 0 (e) RGB
histogram. (f) HSV histogram. (g) CIELAB histogram. (h) LBP histogram.

Textural features extracted from images have been widely employed in the past [57–61]
in areas such as crystallography [62], stratigraphy [63], the natural stone industry [64] and
medical imaging [65–67]. Besides chromatic characteristics, texture seems to be one of
the most attractive features to use to discriminate between gemstones, e.g., the gems of
Figure 2d,f,k,l have similar hues, but different textures. Texture features were extracted
using either the LBP, the Haralick texture or the selected GLCM property. The LBP, pro-
posed by Ojala et al. [68], is a grey-scale-invariant texture-extraction method that binarises
the grey levels of neighbouring pixels relative to a central reference pixel. Only LBPs with
either 8 points, 16 points or 24 points at a radius of 1 or 3 were explored in this work.
Haralick [57] developed the GLCM to describe the spatial dependencies of grey levels
of neighbouring pixels and derived 14 properties from the GLCM, which later became
known as the Haralick texture. Only six individual properties, namely correlation, energy,
dissimilarity, homogeneity, contrast and ASM, for the GLCM with an offset of 1 and angle
of 0, were investigated. When computing the Haralick texture and GLCM, the background
pixels were ignored. However, the background pixels were not explicitly disregarded when
extracting the LBP. With little variation in intensity, the background would contribute only to
the lowest LBP values, which was expected to have little impact on the image classification.

Following feature extraction, the Synthetic Minority Oversampling Technique (SMOTE)
with the four nearest neighbours (k = 4) was applied to equalise the class proportions.
SMOTE is a technique that generates “synthetic” training data for non-majority classes by
interpolation [69].
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2.2.3. Machine-Learning Algorithms

Seven supervised machine-learning algorithms, namely Logistic Regression, Linear
Discriminant Analysis, K-Nearest Neighbour, Decision Tree, Random Forest, Naive Bayes
and Support Vector Machine, were investigated.

Logistic Regression

Logistic Regression [70] yields probabilistic predictions for each class based on a non-
linear transformation of the input features. In multi-class classification, the softmax function is
applied to the input features. The parameter C is the inverse of the regularisation strength.

Linear Discriminant Analysis

Linear Discriminant Analysis [71] works by reducing the dimensionality of the input
features such that the difference between classes is maximised, whilst minimising intra-
class variance. A linear decision boundary can thus be drawn to separate any two classes.
In this study, Linear Discriminant Analysis with the least squares formulation was applied.
Shrinkage is a regularisation parameter that takes values between 0 and 1 and may improve
accuracy in cases where the number of training samples is small compared to the number
of features.

K-Nearest Neighbour

K-Nearest Neighbour [72] is a non-parametric classification algorithm based on simple
majority voting by a predefined number of nearest (most similar) neighbours.

Decision Tree

Decision Tree [73] operates by sequentially dividing data into smaller subsets based
on one of the criteria (features) until each subset contains the most homogeneous (lowest
Gini impurity) collection of data possible. The three parameters optimised in this work
were the maximum depth of the tree, the maximum number of features to consider at each
split and the minimum number of samples required in a leaf node.

Random Forest

Random Forests, first proposed by Breiman [74], are based on voting by an ensemble of
independent, dissimilar decision trees. Each individual tree is constructed using a random
selection of training data with replacement (bootstrap) such that the correlation between
trees is reduced. The data are recursively partitioned at each node using the feature from a
randomly selected subset, which results in the most homogeneous collection of samples.
Three parameters, namely the number of estimators (trees), the maximum depth of the
tree and the minimum number of samples required in each leaf node, were optimised.
For a comprehensive description of Random Forests, the reader is directed to the book by
Criminisi and Shoton [75].

Naive Bayes

Naive Bayes [76] is based on Bayes Theorem and makes probabilistic predictions using
the probabilities for each class and the likelihood probabilities of the features given the
class. The smoothing factor was assigned the default value of 1 × 10−9.

Support Vector Machine

Support Vector Machine [77] is a binary classifier that separates two classes by max-
imising the margin between them. To solve a multi-class problem, a series of binary Support
Vector Machine classifiers is constructed, each separating a single class from the remain-
ing classes (“One-versus-Rest”). Three parameters, namely kernel type, regularisation
parameter C and the kernel coefficient gamma, were optimised.
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Parameter Optimisation

A 5-fold cross-validated grid search [78] was performed to find the optimal parameters
using negative cross-entropy loss as the scoring metric. The ranges of the parameters
specified for the grid search are listed in Table 1.

Table 1. Parameters specified for the 5-fold cross-validated grid search for the seven machine-learning
algorithms and for the ResNets are listed. Note that a single parameter value was assigned to Naive
Bayes, whereas three hyperparameters of the Decision Tree, Random Forest and Support Vector
Machine algorithms were optimised.

Algorithm Range of Parameters

Logistic Regression “C”: [0.001,0.01,0.1,1,10]

Linear Discriminant Analysis “solver”: “lsqr”; “shrinkage”: [0,0.5,1]

K-Nearest Neighbour “n_neighbors”: [3,5,7,9]

Decision Tree “max_depth”:[10,None]; “max_features”: [3,5,7,9];
“min_samples_leaf”: [3,5,7,9]

Random Forest “n_estimators”: [50,100]; “max_depth”: [3,5,7,9];
“min_samples_leaf”: [3,5,7,9]

Naive Bayes “var_smoothing”: 1 × 10 −9

Support Vector Machine “estimator__kernel“: [“linear”, “poly”, “rbf”, “sigmoid”];
“estimator__C”: [1,10,100]; “estimator__gamma”: [0.1,0.01]

ResNet

Number of layers: 18 or 50;
Training images:RandomResizedCrop(224),

RandomHorizontalFlip, RandomVerticalFlip and
Normalize; Test images: Resize(256), CenterCrop(224) and

Normalize; “batch_size”: 16; “max_epochs”: 25;
“criterion”: torch.nn.CrossEntropyLoss; “lr”: 0.001;

“optimizer”: torch.optim.SGD; “optimizer__momentum”: 0.9;
“iterator_train__num_workers”: 2;
“iterator_valid__num_workers”: 2;

“iterator_train__shuffle”: True;
“callbacks”: LRScheduler(policy = “StepLR”,

step_size = 7,gamma = 0.1),
Checkpoint(monitor = “valid_acc_best”),

Freezer(lambda x: not x.startswith(“model.fc”))

2.2.4. Convolutional Neural Networks and Transfer Learning

Recent years have been dominated by the advances in the areas of deep learning [79].
Deep learning can be considered as a branch of machine learning where large amounts
of input data and their corresponding labels are provided to a model, also known as the
architecture or network, which will then learn the characteristics or representations intrinsic
to the data in order to classify or regress the data [80]. These architectures have a large
number of layers, thus considered deep, and a very large number of parameters between
these layers. Deep learning has provided incredible results, perhaps the most significant
being that related to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [81].

One of the limitations of deep learning is the need for a large amount of input data,
which can be minimised through training of the architecture with data from a different
context and then fine-tuning later on. Transfer learning [82] is a popular and efficient
approach for image classification [83–85], in which a model applies the knowledge acquired
from one task to another.

In this work, Microsoft’s Residual Network (ResNet) [86], the winner of the 2015
ILSVRC, was selected for analysis. ResNet is characterised by a deep architecture with
shortcut connections between non-adjacent convolutional layers. In this work, 18- and
50-layer ResNets pre-trained on the ImageNet dataset were applied to the gemstone classifi-
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cation. For compatibility with the ResNets, the gemstone images were cropped and resized
to 224 × 224 px and each batch of 16 images was normalised using the mean and standard
deviation of the ImageNet dataset. Slightly differing approaches were used to process
the training and test images. For the training images, a random portion was cropped
and resized to 224 × 224 px and data augmentation in the form of random horizontal or
vertical flip was applied. Weighted random sampling was applied when grouping the
training images into batches, so as to eliminate the effect of class imbalance. The test
images were first resized to 256 × 256 px, and the centre portion was cropped to produce
images of 224 × 224 px. When training the ResNet models, the weights of the neurons
in the convolutional layers were frozen and only those in the final fully-connected layer
were adapted. The learning rate was initially set at 0.001 and was scheduled to decay
by a factor of 0.1 every seven epochs. The optimiser Stochastic Gradient Descent (SGD)
with a momentum of 0.9 and the cross-entropy loss function were selected. Shuffling was
applied when presenting batches of training images to the models. Within a maximum
epoch of 25 epochs, the model with the highest 5-fold stratified cross-validation accuracy
was regarded as the final model.

2.2.5. Evaluation

The algorithms were evaluated and compared in terms of: accuracy, top-5 accuracy,
training time and test computation time. Accuracy [87] is the proportion of correct pre-
dictions (true negatives and true positives) out of all predictions (false positives, false
negatives, true positives and true negatives). Top-k accuracy [88] is similar to accuracy,
the difference being each algorithm is allowed a number of guesses instead of a single
guess for each prediction and the prediction is regarded as correct when one of the guesses
matches the true label. The time required by a machine-learning classifier to perform a grid
search on the most important parameters to optimise the algorithm [89] or that required
by ResNet to complete 25 training epochs is regarded as the training computation time.
The total time a classifier required to make predictions on all 284 test images was recorded
as the test computation time. Both the training and test computation time of the machine
learning classifiers was measured using a MacBook Pro equipped with a 2.3 GHz Intel Core
i5 processor, whereas for ResNets, a virtual NVIDIA Tesla K80 GPU provided by Google
Colaboratory was used.

2.2.6. Expert Group

The expert group consisted of three gemmologists with both Graduate Gemologist of
Gemological Institute of America (GIA) and Fellowship of the Gemmological Association
of Great Britain qualifications and 5–8 years of experience in gemstone identification.
The performances of the algorithms and the expert group were evaluated and compared
in terms of accuracy and time requirement for the classification of the 284 unseen images.
Confusion matrices [90] were used to visualise the counts of predictions for all combinations
of true and predicted labels.

3. Results
3.1. Background Segmentation

The segmentation of the backgrounds was assessed visually. Saturation-based Otsu
thresholding provided better segmentation results for the training images of 52 classes,
whereas grey-level Otsu thresholding produced better segmentation results for the images
of 16 classes. The 52 classes segmented using Saturation-based Otsu thresholding were
Amazonite, Amber, Amethyst, Ametrine, Andradite, Aventurine Green, Aventurine Yellow, Beni-
toite, Beryl Golden, Bixbite, Carnelian, Chalcedony, Chalcedony Blue, Chrysoberyl, Chrysocolla,
Chrysoprase, Citrine, Coral, Diaspore, Dumortierite, Emerald, Hessonite, Iolite, Jasper, Kunzite,
Kyanite, Lapis Lazuli, Malachite, Onyx Green, Onyx Red, Peridot, Prehnite, Pyrite, Quartz Lemon,
Quartz Smoky, Rhodochrosite, Ruby, Sapphire Pink, Sapphire Purple, Sapphire Yellow, Serpentine,
Spessartite, Sphene, Sunstone, Tanzanite, Tigers Eye, Topaz, Tourmaline, Tsavorite, Turquoise,
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Zircon and Zoisite. The remaining 16 classes segmented with grey-level Otsu thresholding
were Alexandrite, Almandine, Aquamarine, Bloodstone, Blue Lace Agate, Chrome Diopside, Dia-
mond, Fluorite, Onyx Black, Pyrope, Quartz Beer, Quartz Rutilated, Rhodolite, Rhodonite, Sapphire
Blue and Sodalite. It was estimated that Saturation-based Otsu thresholding yielded an
average of 77% well-segmented test images per class, whereas grey-level Otsu thresholding
produced an average of 76% well-segmented test images per class.

3.2. Feature and Algorithm Comparison

Seven different machine-learning algorithms were compared, each with 33 different
feature-extraction methodologies, which provided a total of 7 × 33 = 231 combinations.
Deep-learning classification with ResNet-18 and ResNet-50 was also investigated. The
algorithm that provided the highest accuracy on the unseen images was based on Random
Forest using the RGB eight-bin colour histogram and local binary pattern with eight points
at radius one with an accuracy of 69.4% and required a test time of 0.0165 s. This accuracy
was better than the expert group, who achieved an accuracy of 42.6–66.9% in 42–175 min.

Table 2 shows the results for each machine-learning algorithm. The test accuracy and
time requirement of each gemmologist in the expert group are listed in Table 3. Results for
the most accurate algorithm for each feature extraction method are presented in Table 4.
Figure 8 displays the test accuracy of all combinations, grouped by algorithm on the
horizontal axis. Each combination is shown as a filled circle, with the colour corresponding
to the feature extraction method. In addition, the distribution of the results per algorithm is
summarised as a boxplot with black horizontal lines corresponding to maximum/minimum
values, a grey box between the 25th and 75th percentiles and a change of grey tone at the
median of the distribution. In some cases (e.g., Decision Tree), some values are considered
outliers and fall outside the boxplots. A continuous horizontal line at the test accuracy of
66.9% indicates the performance of the most accurate gemmologist.

Table 2. Accuracy, top-5 accuracy, training and test time of the most accurate classifier for each
machine-learning algorithm. Random Forest was the most accurate algorithm. Support Vector
Machine required a significantly longer training and test time than the other algorithms. It should be
noted that unlike the other algorithms, the ResNets were trained and tested on a Graphics Processing
Unit (GPU) instead of a Central Processing Unit (CPU).

Algorithm Accuracy Top-5 Accuracy Training Time in Seconds Test Time in Seconds

Random Forest 69.4% 94.4% 39.81 0.0165
Logistic Regression 68.7% 92.6% 17.79 0.0008

Support Vector Machine 66.9% 86.3% 1881.36 0.5459
ResNet50 63.4% 91.5% 449.09 4.5244

Naive Bayes 62.7% 77.8% 0.54 0.0281
ResNet18 62.0% 89.4% 293.05 2.2119

Linear Discriminant Analysis 59.9% 94.0% 3.71 0.0007
K-Nearest Neighbour 54.6% 85.9% 1.09 0.0479

Decision Tree 46.5% 73.9% 0.56 0.0002

Table 3. Accuracy and test time of three expert gemmologists classifying the 284 unseen images
varied significantly.

Expert Accuracy Test Time

Gemmologist 1 66.9% 175 min or 10,500 s
Gemmologist 2 46.8% 97 min or 5820 s
Gemmologist 3 42.6% 42 min or 2520 s



Minerals 2022, 12, 60 12 of 21

Table 4. Accuracy, top-5 accuracy, training and test time of the most accurate classifier for each feature
extraction method. The system based on the RGB 8-bin histogram and the LBP with 8 points at radius
1 yielded the highest accuracy of 69.4%. The highest top-5 accuracy of 96.5% was attained by the
system using the RGB 4 and 8-bin histograms and the LBP with 8 points at radius 1. It should be
noted that unlike the other algorithms, the ResNets were trained and tested on a Graphics Processing
Unit (GPU) instead of a Central Processing Unit (CPU).

Method Accuracy Top-5 Accuracy Training
(s)

Test
(s)

RGB 8-bin hist. and LBP, 8 points, radius 1 69.4% 94.4% 39.81 0.0165

RGB 4-bin hist. and LBP, 8 points, radius 1 69.0% 93.7% 33.78 0.0164

RGB 4/8-bin hist. and LBP, 8 points, radius 1 68.7% 96.5% 60.73 0.0181

RGB 8-bin hist. and LBP, 16 points, radius 1 68.7% 95.4% 43.33 0.0168

RGB 4/8-bin hist. and LBP, 8 points,
radius 1 & 24 points, radius 3 68.7% 92.6% 17.79 0.0008

RGB 8-bin hist. and GLCM correlation 67.6% 94.4% 38.42 0.0162

RGB 8-bin hist. and LBP, 8 points, radius 3 67.6% 94.4% 78.96 0.0176

RGB 8-bin hist. and GLCM dissimilarity 67.3% 94.0% 43.60 0.0190

RGB 8-bin hist. and LBP, 24 points, radius 3 66.9% 94.7% 66.56 0.0169

RGB 8-bin hist. and LBP, 24 points, radius 1 66.9% 86.3% 1881.36 0.5459

RGB 8-bin hist. and GLCM energy 66.5% 96.1% 37.92 0.0164

HSV 8-bin hist. and LBP, 8 points, radius 1 66.5% 93.3% 82.35 0.0484

RGB 8-bin hist. and GLCM ASM 66.2% 94.7% 39.65 0.0164

RGB 8-bin hist. and LBP, 16 points, radius 3 65.8% 92.6% 14.97 0.0008

RGB 8-bin hist. and GLCM contrast 65.5% 96.1% 48.90 0.0164

RGB 4-bin hist. and Haralick texture 65.5% 95.1% 77.00 0.0262

HSV 8-bin hist. and Haralick texture 65.5% 93.7% 55.76 0.0100

RGB 8-bin hist. and Haralick texture 65.5% 93.7% 69.33 0.0176

RGB 8-bin hist. and GLCM homogen. 65.1% 95.1% 38.59 0.0165

RGB 4 and 8-bin hist. 65.1% 94.0% 45.88 0.0163

RGB 4-bin hist. 64.8% 95.4% 26.42 0.0164

HSV 4 and 8-bin hist. 64.4% 93.3% 57.64 0.0166

CIELAB 4 and 8-bin hist. 64.1% 94.0% 31.49 0.0196

CIELAB 8-bin hist. 64.1% 93.7% 26.91 0.0165

HSV 8-bin hist. 63.4% 95.1% 52.25 0.0165

ResNet50 63.4% 91.5% 449.09 4.5244

RGB 8-bin hist. 62.7% 87.0% 1387.63 0.4420

ResNet18 62.0% 89.4% 293.05 2.2119

HSV 4-bin hist. and LBP, 8 points, radius 1 60.9% 91.2% 46.68 0.0176

HSV 4-bin hist. and Haralick texture 57.7% 87.3% 580.56 0.3129

HSV 4-bin hist. 57.0% 88.7% 32.88 0.0167

CIELAB 4-bin hist. 56.7% 91.5% 21.12 0.0163

CIELAB non-background K-means cluster centre 47.9% 87.7% 20.95 0.0180

RGB non-background K-means cluster centre 44.0% 86.3% 0.17 0.0002

HSV non-background K-means cluster centre 43.0% 81.3% 17.57 0.0165
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Figure 8. Results of all the combinations of algorithms and feature extraction methodologies grouped
by algorithm. Each combination is represented by a coloured circle, and the summary of the distribu-
tion per algorithm is displayed as a statistical boxplot (for an explanation, see the text). The most
accurate results corresponded to Random Forest and Logistic Regression, both of which surpassed
the best gemmologist in the expert group.

Confusion matrices of the most accurate algorithm and the best gemmologist are
displayed in Figures 9 and 10.
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Figure 9. Confusion matrix of the most accurate combination, i.e., the Random Forest algorithm with
the RGB 8-bin colour histogram and local binary pattern with 8 points at radius 1. The difficulty in
separating between Jasper and Quartz Smoky and between Almandine and Pyrope should be noted.
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Figure 10. Confusion matrix of the best gemmologist revealing the poorest ability in distinguishing
between similarly coloured gemstones, namely Sapphire Purple and Amethyst; Hessonite and
Spessartite; Quartz Beer and Hessonite.

4. Discussion

The background segmentation results revealed that Saturation-based Otsu threshold-
ing was more efficient to separate vividly coloured gemstones from neural background
and shadows, whereas grey-level Otsu thresholding yielded better results for multi-colour
or low-Saturation gemstones. A challenge encountered was the separation of some trans-
parent, light-coloured gems such as Aquamarine from the background, as the background
colour showed through the gemstone. One possible solution, provided infrared images
are available, would be to perform segmentation using camera images and infrared im-
ages simultaneously, as a gemstone and its background are expected to exhibit distinct
transmission characteristics [91].
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The choice of the feature extraction technique and machine-learning algorithm both
contributed significantly to the robustness of the results obtained, as exemplified in Figure 8
and Table 4. The most accurate combination was based on Random Forest and the RGB
eight-bin histogram and the LBP with eight points at radius one, which provided an
accuracy of 69.4% within 0.0165 s. Another characteristic of the Random Forest results was
that the distribution was more compact than those of Logistic Regression and SVMs, even
taking into account the three results considered as outliers. This was more robust than the
most accurate gemmologist in the expert group (test accuracy up to 66.9% in 175 min or
10,500 s) for the classification of 68 categories of gemstone images in terms of both accuracy
and time.

The superiority in terms of time was expected as the algorithms would be very quick
at processing, whilst humans take time to look at the images, observe the characteristics
and then decide the category of gemstone to which they belong. The superior performance
in terms of classification, albeit by a small margin (69.4% vs. 66.9%), was interesting and
can be observed in the confusion matrices shown in Figures 9 and 10. In both matrices,
the diagonal, which corresponds to the correct predictions, contains the majority of the
predictions, whilst the errors are shown outside the diagonal. Some of the incorrect predic-
tions were common to both the expert and the algorithm (e.g., Number 2 on the bottom left
corresponding to Zircon and Aquamarine), but others were not shared and only incorrectly
predicted by one or the other (e.g., both cases at the bottom left, Amber/Spessartite or Ama-
zonite/Turquoise). Upon further comparison of the most accurate combination (Figure 9)
with the expert (Figure 10), it was discovered that the algorithm had a stronger ability
to separate gemstones of similar colours. Nonetheless, gemmologists readily recognised
gemstones displaying unique colour patterns, such as the green bandings on Malachite,
which was not distinguished by the algorithms. Exploring alternative colour and texture
feature extraction techniques, such as colour-scale-invariant feature transform descrip-
tors [92], may improve the accuracy. Furthermore, the widespread variation between the
three experts should be noticed, with the lower two closer to the worst results of most
algorithms. Yet, the highest gemmologist devoted much more time than the other two. It
should also be mentioned that a baseline result, that is a random selection of a class for any
given image, would be 1/68 = 1.47%.

The highest top-five accuracy of 96.5% was attained by the Random Forest model
using the RGB four- and eight-bin histograms and the LBP with eight points at radius one.
Colour histograms were significantly more effective than K-means clustering in extracting
colour features. The RGB space in general yielded higher accuracy than the HSV or CIELAB
space. The lower accuracy for the HSV space may be attributed to the cyclic nature of
the Hue channel. There was inconsistency in the colour features extracted from some
red gemstones such asOnyx Red, as the hue of some pixels was close to zero and others
were close to one. The incorporation of texture features, in particular local binary pattern,
enhanced the capability of the algorithms to differentiate between gemstones of similar
colours. The training time was shortest for systems using non-background K-means cluster
colours, followed by those using the four-bin colour histograms, whereas those based on
the eight-bin colour histograms required the longest training time. The addition of texture
features or the simultaneous use of both four- and eight-bin colour histograms did not
significantly lengthen the training time. Amongst all machine-learning algorithms, Random
Forest yielded the highest accuracy. The training and test time appeared significantly
longer for Support Vector Machine (up to 1943.02 s and 0.5918 s, respectively) than for
other algorithms (up to 83.26 s and 0.1215 s, respectively). Nonetheless, the test time was
remarkably shorter than that required by the gemmologists (a minimum of 42 min or 2520 s).

One surprising result was the lower performance of both ResNet architectures against
Random Forest, Logistic Regression and Support Vector Machine. The lower performance
may be due to the limited number of training images that were employed. Additionally,
it should be noted that the comparison is not exactly like-with-like as the ResNets were
trained directly with the images and the other machine-learning algorithms were trained on
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the extracted features. This may imply that the images would be harder to discriminate than
the extracted features. Furthermore, the ResNets were pre-trained on the ImageNet dataset,
and only the final fully-connected layer was adapted for gemstone image classification,
whereas the machine-learning classifiers were tailored for this task.

One major limitation to is that it is impossible to identify gemstones that are not in
the predefined categories. It is expected that the system would be incapable of separating
natural from synthetic gemstones, which share the same optical properties. Additional data,
such as the refractive index, specific gravity and spectroscopic, fluorescent or chemical data
from laboratory instruments [2], need to be incorporated for the system to perform more
complex gemstone analysis. With the constant emergence of novel gemstone colour treat-
ments, it is essential to upgrade the system from time to time for real-world applications.

Although a limited range of gemstones was included, the findings provided a viable
proof-of-concept that computer vision can be applied to gemstone classification.

5. Conclusions

To the best of the authors’ knowledge, this was the first study that compared the
performance of a computer-vision-based methodology against trained gemmologists on
image-based classification of as many as 68 classes of gemstones. The number of classes
is important, as it should be considered that a random guess would provide a 1/68 or
1.47% accuracy. In turn, a human expert provided an accuracy of 66.9%, which was
outperformed by the best computer vision approach with 69.4%. Whilst the difference
in accuracy is relatively small, the difference in time was of several orders of magnitude,
as could have been expected. Thus, it was demonstrated that computer vision approaches
can be successfully implemented for image-based gemstone classification. Whilst one of
the experts provided a high accuracy, the other two experts reported much lower levels of
accuracy (42.6%, 46.8%), which were well below the median values of all algorithms except
Decision Tree.

In addition to the superior results of the computer vision approach in terms of accuracy
and time, this approach does not require sample preparation or destruction of the materials,
as is sometimes performed by gemmologists when identifying gemstones.

Future work should consider: (a) including a larger range of gemstones, potentially
adding those that were discarded in this study and others; this addition could drive the
accuracy down as some gems could share features; (b) considering more images for training,
validation and testing; this would impact the training of the ResNet architecture and could
potentially improve the performance of the architecture; (c) considering other deep-learning
architectures; (d) considering, besides expert gemmologists, humans that could be trained
to recognise a smaller range of gems, i.e., distinguishing between Emeralds and Tsavorites;
(e) A final development could consider to apply computer vision techniques similar to those
developed in this work to investigate if it is possible to distinguish between high-quality
gemstones, low-quality gemstones and even counterfeits.
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Abbreviations
The following abbreviations are used in this manuscript:

ASM Angular Second Moment
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GLCM Grey-Level Co-occurrence Matrix
GPU Graphics Processing Unit
ILSVRC ImageNet Large Scale Visual Recognition Challenge
LBP Local Binary Pattern
ResNet Microsoft’s Residual Network

Appendix A

In the original Kaggle dataset, 87 gemstone categories were present. The category
Garnet was removed due to overlapping with Almandine, Pyrope, Rhodolite and Spessar-
tite. The Moonstone images displayed a variety of either orange, white or yellow colour,
which was undesirable for the algorithms, and were thus eliminated. Upon background
segmentation, poorly segmented training images satisfying either of these conditions were
discarded: (1) incomplete removal of background or (2) extraction of only a minor por-
tion of the gemstone. Seventeen classes, namely Andalusite, Cats Eye, Danburite, Goshenite,
Grossular, Hiddenite, Jade, Labradorite, Larimar, Morganite, Opal, Pearl, Quartz Rose, Scapolite,
Spinel, Spodumene and Variscite, were removed, as fewer than 24 training images per class
were retained.
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27. Młynarczuk, M.; Górszczyk, A.; Ślipek, B. The application of pattern recognition in the automatic classification of microscopic
rock images. Comput. Geosci. 2013, 60, 126–133. [CrossRef]

28. Perez, C.A.; Saravia, J.A.; Navarro, C.F.; Schulz, D.A.; Aravena, C.M.; Galdames, F.J. Rock lithological classification using
multi-scale Gabor features from sub-images, and voting with rock contour information. Int. J. Miner. Process. 2015, 144,
56–64. [CrossRef]

29. Xu, Z.; Ma, W.; Lin, P.; Shi, H.; Pan, D.; Liu, T. Deep learning of rock images for intelligent lithology identification. Comput. Geosci.
2021, 154, 104799. [CrossRef]

30. Maula, I.; Amrizal, V.; Setianingrum, H.; Hakiem, N. Development of a Gemstone Type Identification System Based on HSV Space
Colour Using an Artificial Neural Network Back Propagation Algorithm. In Advances in Intelligent Systems Research, Proceedings of
the International Conference on Science and Technology (ICOSAT 2017), Jakarta, Indonesia, 10 August 2017; Atlantis Press: Dordrecht,
The Netherlands, 2017; pp. 104–109.
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