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Abstract: Open circuit failure mode in insulated-gate bipolar transistors (IGBT) is one of the most
common faults in modular multilevel converters (MMCs). Several techniques for MMC fault diagno-
sis based on threshold parameters have been proposed, but very few studies have considered artificial
intelligence (AI) techniques. Using thresholds has the difficulty of selecting suitable threshold values
for different operating conditions. In addition, very little attention has been paid to the importance
of developing fast and accurate techniques for the real-life application of open-circuit failures of
IGBT fault diagnosis. To achieve high classification accuracy and reduced computation time, a fault
diagnosis framework with a combination of the AC-side three-phase current, and the upper and
lower bridges’ currents of the MMCs to automatically classify health conditions of MMCs is proposed.
In this framework, the principal component analysis (PCA) is used for feature extraction. Then,
two classification algorithms—multiclass support vector machine (SVM) based on error-correcting
output codes (ECOC) and multinomial logistic regression (MLR)—are used for classification. The
effectiveness of the proposed framework is validated by a two-terminal simulation model of the MMC-
high-voltage direct current (HVDC) transmission power system using PSCAD/EMTDC software.
The simulation results demonstrate that the proposed framework is highly effective in diagnosing
the health conditions of MMCs compared to recently published results.

Keywords: MMC-HVDC; fault detection; fault classification; principal component analysis (PCA);
multiclass support vector machine (SVM); multinomial logistic regression (MLR)

1. Introduction

MMCs in HVDC transmission systems offer high voltage, high efficiency, and high
quality of AC voltage [1–3]. MMC technology was first introduced by Marquardt [4]
in 2001. Recently, it has been implemented by key manufacturers of HVDC equipment
and has shown obvious benefits compared with line communicating converters (LCC)
based HVDC. The MMCs are essentially constructed by linking several arms to create
a three-phase converter. Each arm is created by several series-connected sub-modules
built with controllable semiconductor devices such as IGBTs, diodes, and capacitors. In
series with each arm, an inductor is added to smooth the current. Based on how the arms
are connected, different MMC structures can be developed [5]. Of these, the double-star
structure is the most applied topology. Figure 1 illustrates a typical structure of a DC to
three-phase AC MMC system with n matching submodules (SMs) in each arm of the upper
and lower sides of the converters. Each SM is a half-bridge circuit with two IGBTs and one
capacitor [6]. Condition classification of MMCs can avoid further substantial failures in the
MMC system. Recently, there is an increasing interest in fault detection and localisation
of MMC-based HVDC converters. Generally, the fault types can be put into four main
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types: (1) AC network faults at point of common coupling (PCC); (2) AC faults within
the converter station; (3) DC faults such as pole-to-pole or pole-to-ground faults; and (4)
converter internal faults such as submodule faults, modulation and control faults, and
phase-reactor faults. Yang et al. (2011) have shown that power semiconductor devices were
ranked as the key devices for which reliability was of the most concern [7]. A large number
of power switching devices used in MMCs to meet the requirement of a high voltage level
increases the possibility of the failure occurrence leading to further serious faults [7]. Hence,
fault detection and localisation are key issues.
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Most voltage-source converters (VSCs) use IGBTs as the power devices because of their
high voltage and current ratings, and ability to handle short-circuit currents for periods
exceeding 10 µs. MMCs, which utilise VSCs, have common faults in power electronic
devices (IGBT, fly-wheel diode), and energy storage capacitors, and cause control failure.
Since MMC is made up of hundreds of power electronic devices, IGBT damage is the
most common cause of sub-module failure [8]—generally due to short-circuit faults or
open-circuit faults [9]. Due to their poor ability to deal with overcurrent, IGBTs must
be protected during short-circuit faults, based on short-circuit detection and converter
shutdown [10]. Moreover, industrial gate drivers have now typically been integrated with
standard short-circuit protections by immediately shutting down the IGBTs when such a
fault is detected [11].

Compared to the IGBT short-circuit fault, the IGBT open circuit faults do not essentially
cause the system shutdown and can remain undetected for a long time, which may cause
overvoltage problems, and may further lead to a secondary fault within the converter or
eventually a catastrophic failure of the whole MMC system, consequently resulting in high
repair costs [12–15]. For these reasons, it is essential to develop new fault diagnosis methods
that can not only achieve accurate detection and recognition of IGBT open-circuit faults but
also reduce the cost of sensing and learning from a large number of measurements. Thus,
the main aim of this study is to develop an intelligent fault diagnosis framework for the
IGBT open-circuit faults in MMCs.
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Conventional multilevel converter fault diagnosis has many techniques to deal with
fault detection and localisation [16–20]. For instance, Khomfoi and Tolbert [16] proposed a
fault diagnosis and reconfiguration technique for a cascaded H-bridge multilevel inverter
drive using principal component analysis (PCA) and neural network (NN). In this method,
the genetic algorithm is used to select valuable principal components. Simulation and
experimental results showed that their method can detect fault type, fault location, and
reconfiguration. Song and Huang [17] proposed a fault-tolerant strategy using H-bridge
building block (HBBB) redundancy in cascaded H-bridge multilevel converter (CHMC)-
based static synchronous compensator (STATCOM). In this strategy, the fault identification
is based on the operator analysis. Simulation and experimental results based on switch-
voltage sensed signals appear to validate their method. Sedghi et al. [18] introduced a
method for a cascaded H-bridge fault diagnosis using histogram analysis and NN. In this
method, the output voltage is used to detect fault type and their locations. Similarly, Jiang
et al. [19] proposed a method for a cascaded H-bridge inverter fault diagnosis using discrete
Fourier transform (DFT) and NN. In this method, the output voltage is used as a diagnostic
signal. Lezana et al. [20] proposed a method for cell fault detection using high-frequency
harmonic analysis in a cascaded multicell converter using one voltage measurement per
output phase. Furthermore, Yazdani et al. [21] introduced a method for multilevel cascaded
converter STATCOM fault detection and mitigation using output phase voltages. The
performance of this method is validated using PSCAD/EMDTC simulation. Moreover,
Wang et al. [22] presented a strategy for multilevel inverter fault diagnosis based on PCA
and multiclass relevance vector machine (mRVM). In this strategy, first, the output voltage
is used as a diagnostic signal that is pre-processed using a fast Fourier transform (FFT).
Then, the PCA is used to extract fault signatures from the sensed output voltage. With
these extracted features, an mRVM model is used to classify fault types.

Even though the efficiency of these methods and many more in fault diagnosis of
conventional multilevel converters has been validated in many studies, they cannot be
used directly for diagnosing a fault in the MMC system owing to differences in structure
and operating principle of MMC and conventional multilevel converters [23]. Hence, other
fault diagnosis strategies have been proposed for MMCs. For example, Shao et al. [24]
introduced a fault detection method for MMC using a sliding mode observer (SMO) and
switching model of a half-bridge. However, the accuracy of measurements may limit
its applications. A fault detection and isolation method for open-circuit faults of power
semiconductor devices in an MMC based on SMO for the circulating current in and MMC
was proposed [25]. Moreover, the detection and location of MMCs’ open-circuit fault
using extended state observer (ESO) has been introduced using differences between the
theoretical and observed full arm voltages [23]. A fault identification method [26] based on
wavelet analysis and NN has been proposed. Jiao et al. [27] presented a method for MMC
fault diagnosis using the firefly algorithm optimised support vector machine (FA-SVM),
in which FFT-PCA is used to extract features from the voltage signal of a three-phase AC
side under the open-circuit fault of IGBT. Kiranyaz et al. [28] proposed a real-time system
for early fault detection and identification using adaptive one-dimensional convolutional
NN. Furthermore, Li et al. introduced a method for fault diagnosis and location for MMC
with the open-circuit fault in SM. In this technique, based on the data character of the basic
principle of the MMC in a normal or open-circuit fault condition, a mixed kernel support
tensor machine (MKSTM) is offered to dispose of these tensor data [29]. Chen et al. [30]
proposed a validation method for the simulation model of a power system integrated
with the internet of things that can process high-dimensional simulation data and provide
evidence for model error location. The method consists of two main parts. First, a feature
extraction method for multivariate time series using factor analysis and modified adaptive
Prony method. Second, a validation model based on the similarity evaluation is established.
The validation discussed in this paper identifies the model errors and their locations, which
can be used to improve the simulation model against the practical/acknowledged system.
The method is verified by an application to the MMC-HVDC model in PSASP [30]. Yang



Sensors 2022, 22, 362 4 of 23

et al. proposed two SM failure detection and location techniques, namely, a clustering
algorithm (CA)-based technique and a calculated capacitance (CC)-based technique. In
the proposed CA-based method, the K-means clustering algorithm is employed to detect
and locate the faulty SMs with open-switch failures through identifying the pattern of 2-D
trajectories of the SM characteristic variables. The proposed CC-based method is based on
the calculation and comparison of a physical component parameter—namely, the nominal
SM capacitance—and is capable of failure detection, location, and classification within one
stage [31].

Recently, Huai et al. [32] introduced a single-ended fault location technique with vari-
ational mode decomposition (VMD) method and novel parameter optimization scheme us-
ing traveling wave (TW) that could be used as an alternative backup plan for communication-
based fault location methods. In this method, the VMD is utilised to extract fault features
for fault location estimation, which is further improved by using singular entropy-based
parameter optimization. The continuous TW arrivals can be reflected via the most sin-
gular IMF under the optimized VMD [32]. Han et al. [33] presented a fault diagnosis
technique based on short-time wavelet entropy integrating the LSTM and the SVM. In
this technique, the short-time wavelet entropy is used to extract the fault information,
then the LSTM process theses information, and finally the output of the LSTM is used
as input of the SVM to obtain the fault diagnosis result [33]. Xing et al. [34] proposed
a machine learning-based detection and location method for open-circuit fault. In this
method, sliding window and feature extraction were used to construct the dataset, which
was then used to train a model based on multivariate Gaussian distribution for anomaly
detection [34]. Ye et al. [35] introduced a technique for fault location of MMC-HVDC using
wavelet transform and deep belief network (DBN). In this technique, first, the wavelet
transform is used to decompose the original single pole ground fault voltage waveform,
and then the computed high frequency and low-frequency components were used to train
different DBN models for fault location estimating [35]. Shen et al. [36] presented a fault
diagnosis method for the IGBT open-circuit faults of different MMC SMs have similar char-
acteristics using weighted-amplitude permutation entropy (WAPE), DS evidence fusion
theory, and the LSTM techniques [36]. Ke et al. [37] proposed a fault diagnosis technique
for MMC based on the synchro-squeezing transform (SST) and genetic algorithm optimized
deep convolution neural network (GA-DCNN). In this technique, first, the time-frequency
representations (TFRs) of the raw signals which are synthesized by AC, and the inner
circulating current of the MMC are calculated with SST. Then, DCNN is employed to learn
the underlying features from the TFRs. The genetic algorithm is used to optimize the key
hyperparameters of the DCNN while batch normalization, dropout, and data augmentation
technologies are investigated to prevent the DCNN model from overfitting and improve
the performance of the model [37]. More recently, Guo et al. proposed a fault diagnosis
framework for MMC using temporal convolutional network (TCN) integrating adaptive
chirp mode decomposition (ACMD) and silhouette coefficient (SC). In this technique, first,
the ACMD is used to extract and reconstruct signal components from the original signal.
Then, SC is used to characterize the importance of each component. Finally, the TCN model
was employed to automatically extract features from the signal components and provide
the classification results [38].

Various HVDC open-circuit fault diagnosis-based studies rely on measurements col-
lected from voltage sensors [11,39,40] or both voltage and current sensors [26,41–43] within
the IGBT modules. In [39], a sensor-less current measurement technique is used. It is mainly
based on measuring the instantaneous sub-modules capacitor voltages with the aim to
suppress the circulating second harmonic current rather than detecting an open-circuit fault.
In [40], a reduced number of voltage measuring techniques are used, but an individual
voltage sensor is still needed for each IGBT module. In [11], a method based on the theoret-
ical assumption that all measurements are available and are fed to a MATLAB/Simulink
model is used. Reference [41] is based on fault diagnosis techniques using both voltage and
current sensors. Reference [26] can accurately locate the bridge arm of the faulty submodule
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but cannot locate the specific sub-module. Reference [42] has the limitation of failing to
identify how many IGBTs failed when multiple faults occur simultaneously. Reference [43]
uses excessive current measurements in each arm and the voltage measurements across
each submodule. Certainly, there will be huge advantages if a minimum number of only
current sensors are used to detect faults with high accuracy and reduced computation time.
This is covered in our paper.

Table 1 records different techniques used for IGBT open circuit fault detection and
localisation [24,42,44,45], based on threshold parameters. These have difficulties in setting
correct threshold values for different operating conditions. In contrast, AI-based techniques
can automatically develop a model and improve the accuracy of fault diagnosis. Here, the
fault diagnosis of the IGBT open circuit in SMs is studied to overcome the aforementioned
problems and achieve high fault classification accuracy with fewer sensors and reduced
computational time.

We propose an intelligent diagnosis framework for MMCs faults using machine
learning-based technique and combined information of current sensors to automatically
recognise the open-circuit failures of IGBT in MMCs. The contributions of this paper are as
follows:

a. The proposed intelligent fault diagnosis framework utilises only current sensor data
for fault diagnosis. This study achieves high accuracy of fault diagnosis using only
current sensors and AI-based techniques.

b. We combine the measured current data of the AC-side three-phase current and of the
upper bridge and lower bridge of each three phases to form a vector of features that
represent the current health condition of MMCs.

c. Our proposed framework reduces measured current data using PCA that linearly
maps the current data into a lower-dimensional space of principal components.

d. For fault classification, multiclass SVM based on error-correcting output codes
(ECOC) and multinomial logistic regression (MLR) algorithms are used with the
learned feature vector to achieve improved classification accuracy and reduced
computation time.

e. Compared to recently published results that are based on machine learning tech-
niques, our proposed method is faster and yet achieves competitive, if not better,
classification accuracies of open-circuit failures of IGBT fault diagnosis in MMC-
HVDC transmission.

f. The high reduction in the computational time comes from two elements of our
proposed method: (i) using a minimum number of only current sensors; (ii) using the
PCA method to select fewer features that can be used for training the classification
algorithm—i.e., SVM and MLRC algorithms—and for classifying MMC-HVDC health
conditions using the trained classification models.

g. Being able to obtain high classification accuracy while highly reducing the compu-
tational time, our proposed method can be used in real implementations of MMC-
HVDC fault diagnosis systems.

The use of only current signals of the AC-side three-phase current and the upper bridge
and lower bridge of each three phases for open-circuit fault detection and classification of
MMCs has been investigated in our recently published papers [6,46]. We have conducted a
series of investigations using the same dataset and deep learning methods to identify the
fault type. In [6], we discussed autoencoder-based deep neural network (AE-DNN) and
convolutional neural networks (CNNs) methods. In [46], we investigated long short-term
memory (LSTM) neural network methods. In this paper, our proposed framework reduces
measured current data using PCA that linearly maps the time series data into a lower-
dimensional space of principal components that retain most of the variance of the original
measurements of the current signals. Then, for fault classification, ECOC-based SVM and
MLR algorithms are used with the learned feature vector to achieve improved classification
accuracy and reduced computation time. The experimental results demonstrate that our
proposed framework with MLR is much faster than the CNN, AE-DNN, LSTM, and BiLSTM
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that were studied in [6,46]. For example, the results illustrate that our proposed framework
with MLR requires only 1% of the time of the CNN, 0.27% of the time of the AE-DNN, 0.6%
of the time of the LSTM, and 0.3% of the time of the BiLSTM, and yet our classification
results are better.

Table 1. Summary of different techniques that have been used in different studies of IGBT open-circuit
fault diagnosis.

Ref. Approach Used Detection Threshold
Parameters

Localisation Threshold
Parameters

[24]

Fault detection:
The comparison between the observed îp
using Sliding Mode Observer (SMO) and
measured the current of the upper arm ip.

Fault localisation
The comparison between the observed and
measured lower arm current, îp and ip, and

the capacitor voltages, V̂ci and Vci of the
assumed faulty SM.

Threshold parameters: Ith,
and 700 time-steps (2 µs per

step) Usage:
If
∣∣ îp − ip

∣∣ ≥ Ith and it lasts
for 700 time-steps (2 µs per
step) then an open-circuit

fault has occurred.

Threshold parameters: Ith,
Vthi, and 100 ms. Usage:

If
∣∣ îp − ip

∣∣ < Ith and∣∣ V̂ci −Vci
∣∣ < Vthi and it lasts

for 100 ms, then the SM is
faulty.

[42]

Fault detection:
The detection is achieved using a state

observer to estimate the ideal circulating
current îc and the output current îo using the
state models of the MMC and the variables

already available from the main control
system.

Fault localisation
The comparison between the SM capacitor

voltage Vci and a threshold value Uth.

Threshold parameters: Ith,
and ∆T1. Usage:

If
∣∣ îc − ic

∣∣ > Ith and it lasts
for ∆T1, then an open-circuit

fault has occurred.

Threshold parameters: Uth,
and ∆T2. Usage:

If Vci ≥ Uth and it lasts for
∆T2, then this SM is located to

be faulty.

[44]

Fault detection:
The comparison between measured inner
difference current idiff and the estimated

inner difference current îdi f f through
Kalman Filter (KF).
Fault localisation

Each capacitor voltage (Vc,p,N) of the upper
and lower arms of the targeted phase, i.e., the
phase with a detected fault, is compared with

the minimum capacitor voltage value
(Vc(t),min) for a given time instant.

Threshold parameters: ∆idiff
and ∆ti. Usage:

If
∣∣∣îdi f f − idi f f

∣∣∣ > ∆idi f f and
it lasts for a period of ∆ti, then

a fault is assumed in this
phase of the MMC.

Threshold parameters: ∆Vc
and ∆tv. Usage:

If
Vc, p, N −Vc(t),min > ∆Vc ∆Vc
and it lasts for a period of ∆tv,

then it indicates this SM is
faulty.

[45]

Fault detection:
The comparison between the measured
current of the lower arm current iN and

observed arm current îN , which is based on
Sliding Mode Observer (SMO), and one of

the capacitor voltages, V̂c and Vc.
Fault localisation

The comparison between the observed and
measured lower arm current, îN and iN, and

the capacitor voltages, V̂ci and Vci of the
assumed faulty SM.

Threshold parameters: Ith and
Vth. Usage:

If
∣∣ îN − iN

∣∣ ≥ Ith and∣∣ V̂c −Vc
∣∣ ≥, Vth and it lasts

for 500 µs (50 time-steps, 10 µs
per step), then an open-circuit

fault has occurred.

Threshold parameters: Ith and
Vthi. Usage:

If
∣∣ îN − iN

∣∣ < Ith, and∣∣ V̂ci −Vci
∣∣ < Vthi and it lasts

for 80 ms, then the SM is
faulty.

The remainder of this paper is organised as follows. Section 2 describes the pro-
posed framework including the model of the MMC-HVDC used to generate the data in
PSCAD/EMTDC, and the framework for fault detection and classification of the IGBT
open circuit fault in SMs of MMC-HVDC systems. Section 3 is devoted to descriptions
of the experimental study used to validate the proposed framework. Section 4 presents
comparison results. Finally, Section 5 offers some conclusions.
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2. Proposed Framework
2.1. Data Modeling

The data for this study was simulated from a two-terminal model of the MMC-HVDC
transmission power system using PSCAD/EMTDC [47]. It solves the differential equations
of the entire power system and its controls. Figure 1 shows that each phase of the three-
phase MMC consists of two arms (upper and lower) that are connected to two inductors L.
Each arm contains a series of SMs, and each SM involves two IGBTs (i.e., T1 and T2), two
diodes D, and a DC storage capacitor. In our model (Table 2), different locations of IGBT
break-circuit fault are set manually for each bridge (namely A-phase lower SMs, A-phase
upper SMs, B-phase lower SMs, B-phase upper SMs, C-phase lower SMs, and C-phase
upper SMs). There were 100 cases of IGBT break-circuit fault that happened at different
IGBTs of the six bridges at different times. The power system is depicted in Figure 2. The
type of SMs is half-bridge and the direction of the flow is shown as the green arrow. Ba-A1
and Ba-A2 are two AC current bus bars. Bb-A1 and Bb-A2 are two DC current bus bars. E1
is an equivalent voltage source for an AC network. E2 is a wind farm.

Table 2. Parameters of MMC [6].

Parameters Value

Number of SMs per arm 9
SM capacitor 3000 µF

Arm inductance 0.05 ohm
AC frequency 50 Hz
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The whole time period used is 0.1 s while the time for the IGBT open circuit fault
duration is varied from 0.03 s to 0.07 s. The simulation time step is 2 µs and the sampling
frequency is 20 kHz. The data recorded for fault diagnosis are AC-side three-phase current
(Ia, Ib, Ic) and three-phase circulation current (Idiffa, Idiffb, Idiffc). The circulation current and
bridge current can be represented mathematically using the following equations, where
k stands for the a, b, and c phase, while p and n separately stand for the upper and lower
arms of the MMC. The symbols ikp and ikn are respectively the currents of the upper bridge
and lower bridge of each three phases.{

ikp = idi f f k
+ 1

2 ik

ikn = idi f f k
− 1

2 ik
(1)

idi f f k
=

1
2
(ikp + ikn) (2)

Since the values of iap, ibp, icp, ian, ibn, and icn can be directly measured, we recorded
them, instead of Idiffa, Idiffb, and Idiffc. Consequently, we recorded nine parameters, i.e., Ia,
Ib, Ic, iap, ibp, icp, ian, ibn, and icn, (see Figure 1). Figure 3 depicts some typical time series
plots for seven different health conditions of the MMC as shown in Table 3, based on the
values of the nine parameters described above during the seven states of the wind farm
side MMC. Depending on the fault conditions, the defects modulate the recorded signals
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with their own patterns. The plots give an example of every kind of state, in which six
types of faults happened at different IGBTs at different times.

1 
 

Figure 3. Typical time series plots for seven different conditions as shown in Table 3. 
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Table 3. MMC health conditions [6].

Faulty Bridge Label Value

Normal 1
A-phase lower SMs 2
A-phase upper SMs 3
B-phase lower SMs 4
B-phase upper SMs 5
C-phase lower SMs 6
C-phase upper SMs 7

2.2. Description of the Proposed Framework

Our proposed framework for fault detection and classification of the IGBT open circuit
fault in SMs of MMC-HVDC systems is presented here. As illustrated in Figure 4, first,
nine parameters—i.e., Ia, Ib, Ic, iap, ibp, icp, ian, ibn, and icn—are recorded. Then, we combine
the measured current data of the AC-side three-phase current and three-phase circulation
currents to form a vector of features. However, they may not be the best features from a
classification point of view. Moreover, in real operating conditions, the size of the acquired
and combined data represents a large amount of data to be processed for monitoring of SM
health conditions. Therefore, a technique to extract a set of features that achieves superior
fault detection and diagnosis, and consequently reduces the computational cost, is needed.
Our framework employed PCA [48], often used for feature extraction and dimensionality
reduction, to extract principal components from the measured current data.
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The PCA [48] is used to form a low-dimensional feature vector from the high-dimensional
combined current data by ignoring the least significant of these components from the PCA.
The process of PCA using eigenvector decomposition includes the following steps: First,
calculate the mean vector of the combined measured data. Then, compute the covariance
matrix of the combined measured data. Finally, obtain the eigenvalues and eigenvectors of
the covariance matrix. Suppose that the combined measured dataset X = [x1, x2 . . . xL] has
L observations and N-dimensional space. PCA transforms X to X̂ = [ x̂1, x̂2, . . . , x̂L] in a
new m-dimensional space. The aim is to reduce the dimensionality from N to m (m� N)
of measurements. To calculate the transformation matrix W, PCA utilises eigenvalues and
eigenvectors as

λ
→
V = CX

→
V (3)

Here, λ is an eigenvalue,
→
V is an eigenvector, and CX is the related covariance matrix

of the combined data X, which can be computed by applying the following Equation (4).

CX =
1
L

L

∑
i=1

(xi − x)(xi − x)T (4)

where xi is observation (i) of the combined measured data and x is the mean of the observa-
tions, which can be calculated using the equation,

x =
1
L

L

∑
i=1

xi (5)

To reduce the dimensionality of our combined data X by means of PCA using eigen-
vector, one ignores the least important components from the principal components, i.e.,
columns of V, as

X̂ = WT
1 x (6)

Here X̂ ∈ RL x m is the obtained low-dimensional data matrix of our combined data x,
and W1 is the projection matrix.

Finally, with these extracted features, SVM-based ECOC and MLR algorithms are used
for classification.

2.2.1. SVM-Based ECOC

SVM is a supervised learning algorithm that was first proposed for binary classifi-
cations [49]. The basic idea of SVM is that it can find the best hyperplane(s) to separate
data from two different classes in such a way that the distance between the two classes,
which is called the margin, is maximised. The basic SVM classifier is constructed from a
simple linear maximum margin classifier. Briefly, we present the simplified SVM classifier
as follows:

With a set of examples of the obtained low-dimensional data of our combined data, i.e.,
the selected features from PCA, (X̂ ∈ RL x m) along with their associated class C ∈ RL x 1

such that,
X̂ = (x1, c1), (x2, c2), . . . , (xL, cL) (7)

= (xi, ci), , ∀i = 1, 2, . . ., L (8)

Here xi ∈ Rm is an m-dimensional input vector that represents the observation (i) of the
low-dimensional matrix and ci is the associated class label for every i = 1, 2, . . ., L. Assume
ci ∈ {+1,−1} for two possible classes ‘NORMAL’ and ‘FAULTY’ conditions, which is a
binary classification problem. Binary classification aims to define a function f (x) that can
successfully predict the class label ci for an input vector xi by defining a hyperplane, which



Sensors 2022, 22, 362 11 of 23

is also called a boundary, that can separate the examples with the NORMAL class from the
examples with the FAULTY class such that

f (x) = sgn
(

wTx + b
)

(9)

Here sgn is the sign of
(
wTx + b

)
, x is the input vector, w is an m-dimensional vector

that defines the boundary, and b is a scalar. To find the best boundary the following three
hypothesizes are defined,

H0 = wTx + b = 0 (10)

H1 = wTx + b = −1 (11)

H2 = wTx + b = +1 (12)

As shown in Figure 5, the distance between H1 and H2 is known as a margin. The best
classifier would be the one with the largest margin—i.e., the larger the margin is, the better
is the classifier.

 

2 

 
 

 
Figure 5. Example of a linear classifier for a two-class problem (40).

The model described above is meant to be used for linearly separable data. Non-linear
classifications can be performed by employing various kernel functions, e.g., radial basis
function (RBF), polynomial function (PF), and sigmoid function (SF) [50]. In this study, our
classification problem is a multi-class classification problem with seven health condition
labels. Several binary SVM classifiers can together deal with the multiclass classification
problems using various techniques such as one-against-all, one-against-one, and direct
acyclic graph (DAG). In this research, we employed the “fitcecoc” function [51] on the
selected features from PCA. The “fitcecoc” function uses [c(c−1)/2] binary SVM models,
using a one-versus-one coding design, where c is the number of unique class labels. This
will return a fully trained error-correcting output code (ECOC) multiclass model that is
cross-validated using 10-fold cross-validation.

2.2.2. MLR

Regression analysis can be utilised for predictive modelling by defining the relation-
ship between a dependent variable and one or more independent descriptive variables.
There are several types of regression analysis techniques including linear regression, poly-
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nomial regression, logistic regression, etc. Logistic regression (LR) is one of the most widely
used techniques in binary classification problems. Briefly, we describe the LR as follows:

Let a set of examples of the obtained low-dimensional data of our combined data, i.e.,
the selected features from PCA, (X̂ ∈ RL x m) along with their associated class C ∈ RL x 1 as
described in Equations (7) and (8) above. The LR is a probabilistic discriminative method
that learns P(c|x) directly from the training where ci ∈ {0, 1} such that

P(c = 1|x ) = h1(x) = g
(
−θTh

)
= 1/(1 + e−θTq) (13)

Here c = 1 is the class, x is the input observation of the obtained low-dimensional data,
and g

(
−θTh

)
is the logistic function. As ∑ P(C) = 1 then P(c = 0|x ) can be calculated as

P(c = 0|x ) = h0(x) = 1− P(c = 1|x ) = 1−
(

1/
(

1 + e−θT x
))

(14)

The likelihood of the parameters of L examples of the data can be calculated as

`(θ) =
L

∏
i=1

(
(

g
(

θTxi
))c(i)

(1− g
(

θTxi
)
)

1−c(i)
(15)

Here θ = [θ0, θ1, . . . , θi] are the model parameters. The log-likelihood is widely used
and can be computed as

log `(θ) =
L

∑
i=1

log((
(

g
(

θTxi
))c(i)

(1− g
(

θTxi
)
)1−c(i)) (16)

To avoid the overfitting, a regularisation term λ is added the log-likelihood function
such that

log `(θ) =
L

∑
i=1

log
(

P
(

ci = ck

∣∣∣xi; θ
))
− λ

2
‖ θ ‖2 (17)

The MLR is a linear supervised regression model that generalises the logistic regression
(LR) where labels are binary, i.e., c(i) ∈ {0,1} to multi-classification problems that have labels
{1, . . . , c} where c is the number of classes. The LR and MLR have been used in machine
fault diagnosis [52–55]. We briefly describe the simplified multinomial logistic regression
model as follows: in multinomial logistic regression with multi-labels c(i) ∈ {1, . . . , c} the
aim is to estimate the probability P(c = c(i) |x) for each value of c(i) = 1 to c, such that

hθ(x) =



P(c = 1|x; θ)
P(c = 2|x; θ)

.

.

.
P(c = K|x; θ)

 =
1

∑K
j=1 exp

(
θ(j)Tx

)


eθ(1)T x

eθ(2)T x

.

.

.
eθ(K)T x


(18)

where θ(1), θ(2) , . . . , θ(K) ∈ Rn are the parameters of the multinomial logistic regression
model.

3. Experimental Study

The data used in this study were collected from a two-terminal simulation model of
the MMC-HVDC transmission power system described in Section 2. Seven conditions
of MMCs status have been recorded. These include one normal condition and six IGBT
open-circuit fault conditions in lower and upper arms of the MMC containing, A-phase
lower SMs, A-phase upper SMs, B-phase lower SMs, B-phase upper SMs, C-phase lower
SMs, and C-phase upper SMs faults. A total of 100 examples of each condition were
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recorded; this gave a total of 700 (100 × 7) raw data files to work with. All the nine
parameters—i.e., Ia, Ib, Ic, iap, ibp, icp, ian, ibn, and icn—were recorded to obtain 5001 time
samples. The measurements of these nine parameters were concatenated to form a vector
of samples that represent the current health condition of the MMCs. This gave a total of
45,009 (5001 × 9) samples dimension for each vector of health condition. First, experiments
were conducted for testing data of sizes 15% to 50% and 20 trials for each experiment with
10-fold cross-validation.

By using PCA on the concatenated measurements and then ignoring all eigenvalues
less than 10−10 of the largest eigenvalue, we obtain 604 principal components, retaining
well over 99% of the total variance of the data. With these learned features, SVM-based
on the ECOC algorithm and MLR algorithm are used for classification. Classification
accuracies are obtained by averaging the results of twenty trials for each classifier and each
experiment. Additionally, in each experiment, we have examined the effects of using a
normalisation technique in our classification results for both SVM and MLR.

3.1. Results of SVM-Based ECOC without Data Normalisation

Figure 6 shows the classification results of training and testing data using our frame-
work with an SVM-based ECOC classifier without data normalisation. On average, the
testing classification results have high classification accuracies from 99.8% with 15% testing
data to 98.0% with a 45% testing data rate. A possible explanation for these results might be
that the increase in the training data might improve the accuracy of the trained classification
model. Table 4 provides a sample confusion matrix of the classification results for each
condition with testing data of 15% and 40%. As can be seen from Table 4, the recognition of
the normal condition of the MMCs is 100% with both the 15% and 40% testing data. With
15% testing data, our method misclassified none of the testing examples of conditions 1,
3, 4, 5, and 7. For condition 2, our method misclassified 0.3% of the testing examples of
condition 2 as condition 6 and 1% of the testing examples of condition 6 as condition 2.
However, with 40% testing data, our method misclassified 1.2% of the testing examples of
condition 2 as condition 4 (0.6%), condition 6 (0.4%), and condition 7 (0.2%) For condition
3, our proposed method misclassified 1.1% of the testing examples as condition 5 (0.3%)
and condition 6 (0.7%). For condition 4, 0.9% of the testing examples were misclassified as
condition 2 (0.4%) and condition 6 (0.5%). Results for condition 5 misclassified 3.4% of the
testing examples as condition 2 (1.5%), condition 3 (0.8%), and condition 7 (1.1). Results
for condition 6 showed that 1.8% of the testing examples were confused as condition 2,
0.4% of the testing examples were misclassified as condition 4, and 0.5% were misclassified
as condition 7. Finally, 2.4% of the testing examples of condition 7 were misclassified as
condition 2 (0.5%) and condition 5 (1.9%).

3.2. Results of SVM-Based ECOC with Data Normalisation

Figure 7 shows the classification results of training and testing data using our frame-
work with the SVM classifier and data normalisation. Overall, the testing classification
results have high classification accuracies where the minimum accuracy achieved is 98.4%
with 50% testing data and maximum accuracy is 99.9% with 15% testing data. This indicates
that there was a slight improvement in the classification accuracy of SVM-based ECOC
with data normalization compared to the classification results without data normalization
described above. Table 5 shows the sample confusion matrix of the classification results
for each health condition with testing data of 15% and 40%. Additionally, the recognition
of the normal healthy condition is 100% with both 15% and 40% of testing data. With
15% testing data, there are no misclassifications of conditions 1, 3, 4, 5, and 7. Results for
condition 2 showed that 0.3% of the testing examples were confused as condition 6. While
for condition 6, the results revealed that 0.7% of the testing examples were misclassified as
condition 2. With 40% testing data, the recognition accuracy for condition 1—i.e., the nor-
mal condition—was 100%. For condition 2, 0.9% of the testing examples were misclassified
as condition 4, 0.4% as condition 6, and 0.3% as condition 7. Results for condition 3 showed
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that 0.3% of the testing examples were misclassified as condition 5, and 0.6% as condition
6. For condition 4, 0.8% of the testing examples were confused as condition 2 and 0.1%
as condition 6. The results for condition 5 showed that 1.5% of the testing examples were
misclassified as condition 2, 0.8% were misclassified as condition 3, and 0.8% as condition
7. For condition 6, 1.5% were misclassified as condition 2, 0.4% as condition 3, and 0.6%
as condition 7. Finally, for condition 7, 0.6% of the testing examples were misclassified as
condition 2 and 0.5% as condition 5.
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Table 4. Sample confusion matrix of the classification results of SVM-based ECOC without data
normalization.

Testing Data = 15%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.7 0 0 0 1 0

A-Phase Upper SMs 0 0 100 0 0 0 0

B-Phase Lower SMs 0 0 0 100 0 0 0

B-Phase Upper SMs 0 0 0 0 100 0 0

C-Phase Lower SMs 0 0.3 0 0 0 99.0 0

C-Phase Upper SMs 0 0 0 0 0 0 100

Testing Data = 40%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 98.8 0 0.4 1.5 1.8 0.5

A-Phase Upper SMs 0 0 98.8 0 0.8 0 0

B-Phase Lower SMs 0 0.6 0 99.1 0 0.4 0

B-Phase Upper SMs 0 0 0.5 0 96.6 0 1.9

C-Phase Lower SMs 0 0.4 0.7 0.5 0 97.4 0

C-Phase Upper SMs 0 0.2 0 0 1.1 0.5 97.6

Table 5. Sample confusion matrix of the classification results of SVM-based ECOC with data normali-
sation.

Testing Data = 15%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.7 0 0 0 0.7 0

A-Phase Upper SMs 0 0 100 0 0 0 0

B-Phase Lower SMs 0 0 0 100 0 0 0

B-Phase Upper SMs 0 0 0 0 100 0 0

C-Phase Lower SMs 0 0.3 0 0 0 99.3 0

C-Phase Upper SMs 0 0 0 0 0 0 100

Testing Data = 40%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 98.5 0 0.8 1.5 1.5 0.6

A-Phase Upper SMs 0 0 98.9 0 0.8 0 0

B-Phase Lower SMs 0 0.9 0 99.1 0 0.4 0

B-Phase Upper SMs 0 0 0.5 0 97.0 0 0.5

C-Phase Lower SMs 0 0.4 0.6 0.1 0 97.5 0

C-Phase Upper SMs 0 0.3 0 0 0.8 0.6 98.9
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3.3. Results of MLR without Data Normalisation

Figure 8 depicts the classification results of training and testing data using our frame-
work with the MLR classifier without data normalisation. Figure 8 indicates that the testing
results have classification accuracies above 99% for all the rates of testing data used in this
study. In particular, classification results from our proposed method with MLR are 99.8%
and 99.5% for testing data without normalisation of 15% and 20%, respectively. The least
classification accuracy was achieved using testing data of 35% with 99%. Table 6 presents
the sample confusion matrix of the classification results for each condition with testing data
rates of 15% and 40%. With 15% testing data, there are no misclassifications of conditions
1, 3, 4, and 5—i.e., the recognition is 100%. Additionally, the results for condition 2 are
misclassified 0.3% of the testing samples as condition 6. Moreover, results for condition
6 misclassified 1% of the testing samples as condition 2. Results concerning condition
7 were misclassified as condition 5. While with 40% of the testing data the recognition
accuracy is 100% for conditions 1 and 5. However, results for condition 2 misclassified as
condition 6 (0.4%) and as condition 7 (0.2%). For condition 3, 0.5% of the testing samples
are misclassified as condition 5. For condition 4, 0.4% of the testing samples are misclas-
sified as condition and 0.5% are misclassified as condition 6. Additionally, some testing
examples of condition 6 are misclassified as condition 2 (2%), as condition 4 (0.4%), and as
condition 7 (0.5%). Finally, results for condition 7 misclassified 0.5% of the testing examples
as condition 2 and 0.9% as condition 5. Comparing Table 6 with Tables 4 and 5 shows that
overall classification accuracies are 99.8% (Table 4), 99.9% (Table 5), and 99.8% (Table 6) at
15% of testing data as well as 98.3% (Table 4), 98.6% (Table 5), and 99.1% (Table 6) at 40% of
testing data.
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3.4. Results of MLR with Data Normalisation

Figure 9 presents the classification results using our framework with the MLR classifier
with data normalisation. Classification accuracies are above 99.0% for all the rates of testing
data used in this study. For example, with normalised testing data of 15%, 20%, and
30%, our proposed method with MLR achieved 99.8%, 99.6%, and 99.4% respectively.
Table 7 shows the sample confusion matrix of the classification results of MLR with data
normalisation for each condition with testing data rates of 15% and 40%. Comparing
this Table with Tables 4–6 shows that overall classification accuracies are 99.8% (Table 4),
99.9% (Table 5), 99.8% (Table 6), and 99.8% (Table 7) at 15% of testing data as well as 98.3%
(Table 4), 98.6% (Table 5), 99.1% (Table 6), and 99.1% (Table 7) at 40% of testing data.



Sensors 2022, 22, 362 17 of 23

Table 6. Sample confusion matrix of the classification results of MLR-based without data
normalisation.

Testing Data = 15%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.7 0 0 0 1 0

A-Phase Upper SMs 0 0 100 0 0 0 0

B-Phase Lower SMs 0 0 0 100 0 0 0

B-Phase Upper SMs 0 0 0 0 100 0 0.3

C-Phase Lower SMs 0 0.3 0 0 0 99.0 0

C-Phase Upper SMs 0 0 0 0 0 0 99.7

Testing Data = 40%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.4 0 0.4 0 2 0.5

A-Phase Upper SMs 0 0 99.5 0 0 0 0

B-Phase Lower SMs 0 0 0 99.1 0 0.4 0

B-Phase Upper SMs 0 0 0.5 0 100 0 0.9

C-Phase Lower SMs 0 0.4 0 0.5 0 97.1 0

C-Phase Upper SMs 0 0.2 0 0 0 0.5 98.6
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Table 7. Sample confusion matrix of the classification results of MLR-based with data normalisation.

Testing Data = 15%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.7 0 0 0 1 0

A-Phase Upper SMs 0 0 100 0 0 0 0

B-Phase Lower SMs 0 0 0 100 0 0 0

B-Phase Upper SMs 0 0 0 0 100 0 0

C-Phase Lower SMs 0 0.3 0 0 0 99.0 0

C-Phase Upper SMs 0 0 0 0 0 0 100

Testing Data = 40%

Normal A-Phase
Lower SMs

A-Phase
Upper SMs

B-Phase
Lower SMs

B-Phase
Upper SMs

C-Phase
Lower SMs

C-Phase
Upper SMs

Normal 100 0 0 0 0 0 0

A-Phase Lower SMs 0 99.4 0 0.4 0 2 0.5

A-Phase Upper SMs 0 0 99.5 0 0.2 0 0

B-Phase Lower SMs 0 0 0 99.1 0 0.4 0

B-Phase Upper SMs 0 0 0.5 0 99.8 0 0.4

C-Phase Lower SMs 0 0.4 0 0.5 0 97.1 0

C-Phase Upper SMs 0 0.2 0 0 0 0.5 99.1

4. Comparisons of Results

In this section, the results achieved using our proposed framework with MLR and
SVM-based ECOC are described. Classification results of the MMCs health conditions
achieved using our proposed framework are compared with some recently published
results.

4.1. Comparisons of Testing Classifications

Figure 10 provides a comparison of testing classification results achieved using our
framework with SVM and MLR. From Figure 10, it is apparent that the classification
accuracies of MMCs health condition using our framework with all four combinations are
the same at 15% of the testing rate. Additionally, in each of MLR and SVM, results with
normalised data are better than those with unnormalised data. For larger than 15% of the
testing rate, MLR results are better than SVM results on both normalised and unnormalised
data. Additionally, MLR testing takes significantly less than a 10th of the time of SVM.
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4.2. Comparisons with Recently Published Results

Few studies have considered AI-based techniques for MMCs fault diagnosis. An
adaptive one-dimensional convolutional neural network (CNN) based monitoring system
was introduced in [27]; the raw voltage and current data were used directly as input to the
CNN.

Another approach for MMC-HVDC DC fault detection and classification using CNN
was proposed [56]. The wavelet decomposition and the wavelet logarithmic energy entropy
(WLEE) were combined into the CNN to display their respective advantages based on the
transient DC characteristics. In [57], a deep CNN (DCNN) algorithm and a combination
of the voltage signals of the capacitors in all SMs were proposed for fault detection and
identification.

Table 8 compares the recently published results of MMC fault diagnosis in [6,27,46,56,57]
with ours. Although there are no direct comparisons due to different types of data used
in [27,56,57], our proposed framework and the methods in [27,57] were compared in terms
of the observed variables, number of measured parameters, number of health conditions
used, fault detection accuracy, and testing time. The method used for MMC-HVDC DC
fault detection in [56] achieved only 92.8% accuracy, while methods in [27,57], used for
IGBT open-circuit fault diagnosis, obtain 98.9% and 98.2% accuracy respectively. All four
procedures in our proposed framework offer better accuracies than all three of them and
are significantly faster than the method in [27], even though we are using 100 examples of
each condition compared to only five examples for each condition in [27].

Moreover, Table 8 shows further comparisons with recently published results in [6,36]
using CNN, AE-DNN, LSTM, and a bidirectional LSTM (BiLSTM) with the same dataset at a
40% testing data rate. Two things are clear for each of the methods—(1) Classification results
from our proposed framework, with SVM and MLR on both normalised and unnormalised
data, outperform those achieved using CNN, AE-DNN, LSTM, and BiLSTM techniques;
and (2) Our proposed framework with SVM and MLR is faster than the methods in [6,46].
For example, the reported results in [6] show that, with a 40% testing data rate, CNN
achieved 97% classification accuracy and AE-DNN achieved 97.5% classification accuracy.
In [38], with the same data and testing data rate, LSTM achieved 97% classification accuracy
and BiLSTM achieved 97% classification accuracy. While our proposed framework with the
same data (unnormalised) used in [6,46] achieved 98.3% and 99.1% classification accuracy
using SVM and MLR respectively. Moreover, our proposed framework with both MLR
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and SVM is much faster than CNN, AE-based DNN, LSTM, and BiLSTM that were studied
in [6,46]. As can be seen in Table 8, the results illustrate that our proposed framework with
MLR requires only 1% of the time of the CNN, 0.27% of the time of the AE-DNN, 0.6% of
the time of the LSTM, and only 0.3% of the time of the BiLSTM. Additionally, our proposed
framework with ECOC-based SVM requires 26.5% of the time of the CNN, 7% of the time
of the AE-DNN, 8% of the time of the LSTM, and only 4% of the time of the BiLSTM.

Table 8. Our results with 10-fold cross validation compared with some recently published results.

Ref. Type of Measurement No. of Measured
Parameters

Classification
Accuracy Testing Time

[27] Capacitor voltage
Circulating current

5000 × 7
5 × 9 98.9% 80 ms

[56] DC current – 92.8% -

[57] Capacitor’s voltages in all SMs 800 × 72 98.2% –

[6]
Current signals

CNN
AE-DNN

5001 × 9
40% testing rate

97.0%
97.5%

400 ms
1500 ms

[46]
Current signals

LSTM
BiLSTM

5001 × 9
40% testing rate

97.4%
97.0%

1290 ms
2630 ms

Proposed
framework

at 15% testing rate
using PCA in all cases

Current signals and their phases

5001 × 9
100 × 7

SVM, no norm 99.8% 62 ms
SVM, with norm 99.9% 59 ms
MLR, no norm 99.8% 4 ms

MLR, with norm 99.8% 4 ms

at 40% testing rate
using PCA in all cases

SVM, no norm 98.3% 106 ms
SVM, with norm 98.6% 96 ms
MLR, no norm 99.1% 8 ms

MLR, with norm 99.2% 7 ms

5. Conclusions

This study has developed and evaluated an intelligent diagnosis framework for au-
tomatically recognizing MMCs faults in HVDC transmissions. An original framework
based on feature extraction and classification algorithms with a combination of the AC-side
three-phase current and the upper and lower bridge’ currents of each of the three phases
of the MMCs has been proposed. PCA has been used to reduce the data dimension by
selecting significantly fewer components possessing most of the variance of the original
measurements of the current signals. With these selected components, a classifier (SVM
or MLR) has been used to classify the health conditions of the MMC. A two-terminal
simulation model of the MMC high-voltage direct current (HVDC) transmission power
system using PSCAD/EMTDC software was used to validate the proposed framework for
MMCs faults diagnosis in HVDC transmissions. In each experiment, we have examined
the effects of using a normalisation technique for both SVM and MLR. Classification re-
sults from our proposed framework with MLR are better than those with SVM on both
normalised and unnormalised data. Comparisons with recently published results based on
machine learning indicate that our framework with the MLR classifier is faster by an order
of magnitude, and our classification accuracies with SVM and MLR are better than the
others. For example, the results illustrate that our proposed framework with MLR requires
only 1% of the time of the CNN, 0.27% of the time of the AE-DNN, 0.6% of the time of
the LSTM, and 0.3% of the time of the BiLSTM, and yet our classification results are better.
The reduced computational time of our proposed method is achieved as a result of using
a minimum number of only current sensors as well as using the PCA method to select
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fewer features to train the classification algorithm—i.e., SVM and MLRC algorithms—and
to classify the MMC-HVDC’s health conditions using the trained classification models.
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