
 
Abstract—A single latent factor-dependent, non-negative and 

multiplicative update (SLF-NMU) learning algorithm is highly 
efficient in building a non-negative latent factor (NLF) model defined 
on an HiDS matrix. However, convergence characteristics of such 
NLF models are never justified in theory. To address this issue, this 
study conducts rigorous convergence analysis for an SLF-NMU-based 
NLF model. The main idea is two-fold, a) proving that its learning 
objective keeps non-increasing with its SLF-NMU-based learning 
rules via constructing specific auxiliary functions, and b) proving that 
it converges to a stable equilibrium point with its SLF-NMU-based 
learning rules via analyzing the Karush-Kuhn-Tucker (KKT) 
conditions of its learning objective. Experimental results on ten HiDS 
matrices from real applications provide numerical evidence that 
indicates the correctness of the achieved proof.  

Index Terms—Learning System, Single Latent Factor-dependent 
Non-negative and Multiplicative Update, Non-negative Latent Factor 
Analysis, Neural Networks, Convergence, Latent Factor Analysis, 
High-Dimensional and Sparse Matrix, Big Data 

I. INTRODUCTION

HIGH-DIMENSIONAL AND SPARSE (HiDS) matrix is 
commonly adopted to describe incomplete interactions 

among concerning objects in big data-related applications, e.g., 
user-service invocations in services computing [1], [3], 
user-item preferences in recommender systems [4], and protein 
interactomes in bioinformatics [7]. Despite its extreme sparsity, 
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it contains tremendously useful knowledge such as potential 
links [11]-[13], community tendency [14]-[16], [54] and cluster 
[17], [35]. A latent factor (LF)-based approach [4], [5], [18], 
[19] can efficiently implement knowledge acquisition from an
HiDS matrix. It works by 1) mapping concerned objects into a
low-dimensional LF space, 2) defining a learning objective on
the known data of an HiDS target with desired LFs, and 3)
optimizing the objective to achieve LFs precisely outlining
concerned objects, which are useful in addressing subsequent
learning tasks like missing data recovering [9]-[17], [43].

Non-negativity is a common characteristic of most real data, 
e.g., social impacts from social network services applications
[16], [27]. To well represent their non-negativity, an LF model
should be restricted to be non-negative [3], [26], [28]. A
non-negative matrix factorization (NMF) model [29]-[36],
[48]-[52] is designed to address full matrices under the
non-negative constraints, but it cannot address an HiDS one
directly. Although such a defect can be overcome via specific
model designs like weight indication [48] or intermediate
matrix incorporation [49], it further suffers high costs in both
computation and storage. This is because its costs are
proportional to the target matrix’s full size [3], [28]. When the
target is HiDS, its full size can be much larger than the size of
its known data. For instance, the MovieLens 20M [44] matrix’s
full size is 3.7 billion, while the density of its known data is
0.54%. Due to its extremely low density, it is very inefficient to
make a model’s costs linear with its full size.

For efficiently implementing non-negative latent factor 
(NLF) analysis on an HiDS matrix, Luo et al. [3], [28] present a 
single latent factor-dependent, non-negative and multiplicative 
update (SLF-NMU) algorithm. It is defined on an HiDS 
matrix’s known data, thereby reducing the storage and 
computational costs to be linear with the size of its known data. 
Although it builds an NLF model with high efficiency, its 
convergence characteristics are never justified formally. For 
addressing this issue, this paper aims at theoretically proving 
that an NLF model converges to a Karush-Kuhn-Tucker (KKT) 
equilibrium point with an SLF-NMU learning algorithm. Main 
contributions of this work include 
a) Rigorous proof demonstrating that an SLF-NMU-based NLF

model’s learning objective is non-increasing during the
training process via building specific auxiliary functions
corresponding to its parameter update rules;

b) Rigorous proof demonstrating that an SLF-NMU-based NLF
model’s parameter learning sequence converges to a KKT
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equilibrium point of its learning objective; and 
c) Detailed empirical studies on ten HiDS matrices collected by

big data-related applications.
Note that convergence analysis for a non-convex learning

model is critical in the optimization community [2], [5], [6], [8], 
[21]-[25]. According to prior research [3], [11], [12], an 
SLF-NMU-based NLF model is a bi-linear and thus 
non-convex learning model. Therefore, its rigorous 
convergence proof is highly useful in providing insights into its 
learning ability with an HiDS matrix as its input. Moreover, as 
discussed in [66], [67], performing LF analysis on an HiDS 
matrix is actually equivalent to building a single-layered neural 
network whose inputs and outputs are both the target HiDS 
matrix. Note that in big data-related applications, HiDS 
matrices are far more frequently encountered than complete 
ones [3], [68]. It is becoming increasingly important to design a 
neural network-based learning system with incomplete inputs 
[3], [66]-[70]. Therefore, results achieved in this study can help 
people better understand the characteristics of a neural network 
defined on incomplete data.  

The remainder of this paper is organized as follows. Section 
II gives the preliminaries. Section III presents rigorous proof 
regarding the convergence of an SLF-NMU-based NLF model. 
Section IV provides empirical studies. Section V discusses 
several critical points. Finally, Section VI concludes the paper. 

II. PRELIMINARIES

A. Problem Formulation

For LF analysis, we recall the definition of an HiDS matrix
[3], [11], [12], 
Definition 1. Let M and N be two large entity sets, Y|M|×|N| be a 
matrix whose element ym,n quantifies the interaction between 
m∈M and n∈N, Ʌ and Γ be Y’s known and unknown subsets. Y 
is an HiDS matrix if |Ʌ|≪|Γ|.  

Based on Ʌ, an LF model implements a rank-d estimation 
Ŷ=AXT for Y with A|M|×d and X|N|×d being LF matrices. It should 
be pointed out that d is far less than the minimum of |M| and |N|. 
For achieving A and X, we construct a loss function to measure 
the difference between Y and Ŷ depending on Ʌ only. Based on 
the Euclidean distance, it is given by 
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where am,k, xn,k and ym,n denote specified elements in A, X, and Y. 
For correctly representing non-negative data [1], [3], [11]-[13], 
[16], [19], [27], (1) should fulfill the non-negativity constraints, 
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Meanwhile, building an LF model on an HiDS matrix is 
ill-posed [3], [28], [42], making regularizations indispensable. 
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where A and X denote the regularization constants for A and X, 
respectively. 

B. A Non-negative Latent Factor Model

An NLF model adopts an SLF-NMU-based learning
algorithm to optimize A and X in (3). It initially applies additive 
gradient descent (AGD) to each LF: 
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where ηm,k and ηn,k are learning rates for am,k and xn,k, Ʌ(m) and 
Ʌ(n) are Ʌ’s subsets related to m and n, respectively. From (4), 
we see that am,k and xn,k can become negative due to 
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For canceling these negative terms to keep the non-negativity 
of A and X, an SLF-NMU algorithm manipulates ηm,k and ηn,k, 
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By combining (5) and (4), we achieve the learning rules for an 
SLF-NMU-based NLF model [28]: 
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C. Incorporation of Linear Biases

As discussed in previous studies [20], [22], incorporating
linear biases makes an NLF model become more steadily 
during the training process, at the same time obtain higher 
accuracy for estimating missing entries of a target HiDS matrix. 
With linear bias vectors B|M| and C|N| for M and N, respectively, 
the objective function (3) is reformulated into 
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where each approximation ŷm,n to ym,n∈ is given by 
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Following the same principle of (6), we have the learning rules 
for a biased NLF (BNLF) model, 

 

 
 

 

 
 

 

 
 

 

 
 

, , , , , , ,

, ,

-

,

,

,

, ,

, ,

,

,

,

,

arg min

,

, , ,

ˆ

ˆ

,

ˆ

,

ˆ

m k m k n k m n n k m n A m k
n m n m

n

SLF NMU

A X B C

m m m n m

n

n B m
n m

k k m k m n m k m n X
m n

n

n m

n n m n m n C
m n m n

a a x y x y m a

x x a y a y n x

A X B C

b b y y m b

c c y y n c











 



 

 



 



    
 



 
    

 


  

  

  
 





 






 

, .n k
m n
















 
  
 


  (9) 

III. CONVERGENCE ANALYSIS OF THE NON-NEGATIVE LATENT

FACTOR MODEL 

A. An Alternative Way to Achieve an SLF-NMU Algorithm

It is firstly necessary to discover the connections between an
SLF-NMU algorithm and the KKT conditions [46], [52], [54] 
of the learning objective (6). Let Κ=[κm,k], =[n,k] be 
Lagrangian multipliers for the non-negative constraints am,k0 
and xn,k0, respectively. Then the Lagrangian L for (3) is: 
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where Tr(∙) calculates the trace of an enclosed matrix. 
Considering the partial derivatives of L with am,k and xn,k:  
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Then considering the KKT conditions of (10), i.e., κm,kam,k=0, 
∀κm,k, am,k, and n,kxn,k=0, ∀n,k, xn,k, we achieve that 
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With (12), we arrive at the following iterative equations which 
actually lead to (6), 
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From (10)-(13), we see that the SLF-NMU-based learning 
rules in an NLF model are closely connected to the KKT 
conditions of its learning objective. 

B. Convergence Analysis of an NLF model

In this part, we theoretically analyze the convergence of an
SLF-NMU learning algorithm in the following two steps. 
1) Non-increasing learning objective with SLF-NMU.

In this step, we aim to prove that (3) is non-increasing with
(6). To do so, we have 
Theorem 1. (3) is non-increasing with (6). 
To prove Theorem 1, an auxiliary function [31], [53] is vital. 
Definition 2. G(x, x) is an auxiliary function of F(x) if 

       , ,  , .G x x F x G x x F x         (14) 

We further recall the following lemma [31], [53], 
Lemma 1. F keeps non-increasing with the following rule, 

 1 arg min , . t t

x
x G x x   (15) 

Proof of Lemma 1. With Definition 2, we deduce that 

       1 1, , .t t t t t tF x G x x G x x F x    (16)■

Note that we have F(xt+1)=F(xt) when xt guarantees a local 
minimum of G(x, xt), Hence, F(xt)=0 holds if F is 
differentiable around xt. Hence, (16) can be extended into the 
following converging sequence to xmin=arg minx F(x), 

         1
min 1 0 .t tF x F x F x F x F x        (17) 

Next, we aim to achieve that (6) for is exactly consistent with 
that in (15) with a specifically designed G. Considering xn,k∈X, 
let 

,n kxF be the partial loss from (A, X) related to xn,k only, 
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Based on (18)-(20), we achieve the following proposition. 
Proposition 1. The following function 
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is an auxiliary function of 
,n kxF . 

Proof of Proposition 1. With (21),    
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By combining (20-22), we see that   ,, t
n kG x x  is an auxiliary 

function of 
,n kxF  if the following inequality holds, 
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Note that we have ym,n0 according to Y’s non-negativity, and 
am,k0, and xn,k0 with SLF-NMU. So (23) is equal to 
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Then we reformulate the left term of (24) as follows: 
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Note that (23) holds with (25), making   ,, t
n kG x x  be an 

auxiliary function of 
,n kxF .■ 

Based on Proposition 1, we achieve the following proof. 
Proof of Theorem 1. Based on (15), (19) and (21), we achieve  
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Based on (26), it is clear that 
,n kxF is non-increasing with (6). 

Naturally, (26) holds ∀n∈N, m∈M, k∈{1, 2, …, d}. Hence, 
Theorem 1 holds.■ 

Following Theorem 1, with a positive initialization, i.e., 

∀m∈M, n∈N and k∈{1, 2, …, d}:  0
,m ka ,  0

,n kx >0, (3) is 

non-increasing when training A and X with (6). From this point 
of view, we have the following recursion, 
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With (28), we further have the following inference, 
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To prove it, we have 
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following KKT conditions of (3) regarding X should be 
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Note that following (10)-(13), Condition (a) is naturally 

fulfilled with (6) and (13). Thus, we actually have 
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Obviously, (32) is bounded by non-negative am,k and ym,n: 
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Hence, the update rule of xn,k can be rewritten with SLF-NMU, 
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Note that following the update rule (13),  *
,n kx is greater than 

or equal to zero with a non-negatively initial hypothesis. Hence, 
we have the following inferences. 
a) When  *
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Combining (31) and (36), we obtain the Condition (b) in (30), 
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Meanwhile, when  *
,n k =0 and  *

,n kx >0, Conditions (c) and (d) are 

naturally fulfilled. Hence, (30) is fulfilled when  *
,n kx >0. 

b) When  *
,n kx =0. Note that conditions (b) and (c) in (30) are 

naturally fulfilled in this case. Hence, we want to justify 
Condition (d). To do so, we reformulate  *

,n kx  into 

     * 0
, , ,

1

lim .
t

r
n k n k n kt
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Based on (38) we further have the following inferences, 
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(39) 

Hence, (30) is also fulfilled when  *
,n kx >0. Analogously, we 

can prove that sequence   ,
t

m ka  also converges to an stable 

equilibrium point of (3). Thus, Theorem 2 stands.■ 
By combining Theorems 1 and 2, we have proven that an 

SLF-NMU-based NLF model converges to a KKT equilibrium 
point of its objective. It should be pointed out a positive 
initialization of LFs is helpful in achieving an optimal solution, 
which is consistent with [55]. 

C. Convergence Analysis of a BNLF model

1) Non-increasing learning objective with biased SLF-NMU.
We firstly present the following theorem.

Theorem 3. (7) is non-increasing with (9). 
Note that for Theorem 3, we only have to analyze the partial 

loss with B and C since conditions of A and X are highly similar 
with that in an NLF model as shown in Theorem 1. Considering 

bm∈B, let 
mbF be the partial loss of (A, X, B, C) related to bm

only. Then we derive the first-order and second-order 

derivatives of 
mbF with respect to bm,

   
 

, ,ˆ .
mb B m m n m n

n m

F m b y y 


                      (40)

   = 1 .
mb BF m           (41) 

Based on (7), (40) and (41), we present Proposition 2. 
Proposition 2. The following function 
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    (42) 

is an auxiliary function of
mbF . 

Note that the proof of Proposition 2 is provided in the 
supplementary file of this paper. With it we prove Theorem 3, 
whose proof is also provided in the supplementary file. 

Following Theorems 1 and 3, with a positive initialization, 

i.e., ∀m∈M, n∈N, and k∈{1, 2, …, d}:  0
,m ka ,  0

,n kx , 
 0
mb  and 

 0
nc >0, (7) is non-increasing when training A, X, B and C with 

(9). From this point of view, we have the following recursion: 
             0 1 1, 0,t t t t
m m m m mF b F b G b b F b         (43) 

which indicates that a sequence    t
mF b is non-increasing and 

bounded. Hence, we deduce that 
     1lim 0.t t
m mt

F b F b 


        (44) 

Based on (49), we further yield the following inference: 
   +1lim 0.t t
m m

t
b b


      (45) 

Therefore, a sequence   t
mb is convergent and bounded. 

Similarly, a sequence   t
nc  is also convergent and bounded. 

2) Sequences   ,
t

m ka ,   ,
t

n kx ,   t
mb  and   t

nc  by a biased 

SLF-NMU converge to a KKT equilibrium point of (7). 
To prove it, we have the following theorem. 

Theorem 4. Sequences   ,
t

m ka ,   ,
t

n kx ,   t
mb and   t

nc by (9) 

converge to an equilibrium point of (7). 
Note that its proof is provided in the supplementary file. By 

analogy, we prove that sequence   t
nc  also converges to an 

equilibrium point of (7). 
Hence, by combining Theorems 1-4, we arrive at the 

conclusion that a BNLF model converges to a KKT equilibrium 
point of its objective with a biased SLF-NMU algorithm.  

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. General Settings

Evaluation Metrics. Considering the need for recovering
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distributions on a probe set; and 2) building an ensemble. 
Since different initialization distributions can achieve 
diversified NLF models as shown in Fig. 6, they can form an 
efficient ensemble [57], [58] which can outperform any of its 
base models to achieve stably high accuracy. 

TABLE VII 
RMSE OF M1-2 ON D1-3 WITH DIFFERENT INITIAL HYPOTHESES 

Uniform Hypothesis Gaussian Hypothesis 

U1 U2 U3 G1 G2 G3 

D1 
M1 0.7901 0.7905 0.7894 0.7901 0.7899 0. 7930

M2 0.7930 0.7930 0.7925 0.7923 0.7925 0. 7947

D2 
M1 0.8389 0.8389 0.8392 0.8387 0. 8387 0. 8392

M2 0.8417 0.8419 0.8416 0.8414 0. 8413 0. 8417

D3 
M1 0.7258 0.7226 0.7089 0.7423 0.7193 0.7359

M2 0.7177 0.7158 0.7083 0.7177 0. 7135 0. 7283

F. Summary

We summarize from the experimental results:
a) An SLF-NMU-based NLF/BNLF model converges to a

stable equilibrium point on an HiDS matrix;
b) An SLF-NMU-based NLF/BNLF model converges better

than an NMF model on an HiDS matrix. Its reconstruction
ability for an HiDS matrix’s unknown data is also better than
that of an NMF Model; and

c) An SLF-NMU-based NLF/BNLF model’s regularization
coefficient and initialization hypotheses should be chosen
wisely to improve its performance.

V. DISCUSSIONS

A. Connections between an NLF and an NMF Model

An NMF model is designed for full matrices, which are
mostly seen as images in the area of computer vision. Initially, 
Lee and Seung [30], [31] adopt it to extract local features from 
a non-negative matrix representing an image. Subsequently, 
many researchers investigate it and propose various NMF 
extensions [29]-[36], [48]-[52]. To achieve the desired 
non-negative feature matrices, a non-negative multiplicative 
update (NMU) algorithm is commonly adopted. With it, if 
Y|M|×|N| is a full matrix, then it extracts features A|M|×d and X|N|×d as 
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        (50) 

As a matter of fact, other algorithms like the projected gradient 
descent [59], projected alternating least squares [60] are also 
proposed to train an NMF model. Nonetheless, an NMU 
algorithm does not make truncations during the training process, 
making it more suitable to represent the natural structures such 
as node clusters hiding in the original matrix. Meanwhile, it is 
implemented through making the learning rate adaptive to 
achieve the multiplicative form, i.e., its learning rate is 
self-adaptive. Hence, an NMF model frequently adopts an 
NMU algorithm. The processing flow of such a model is shown 
in Fig. S3 in the Supplementary File. According to (50), its 
computational complexity is Θ(|M|×|N|×k×t) with t being 
training iteration count, and storage complexity is Θ(|M|×|N|). 

However, an NMF model cannot handle an HiDS matrix 
directly since the products YX and YTA are intractable with Y 
being incomplete. As discussed in [28], [48], an NMF model 

can be adjusted to fit an incomplete Y by integrating an 
indicator matrix W|M|×|N| into (50) to achieve a weighted NMF 
(WNMF) model. In it, the indicator matrix’s element is set at 
one if the corresponding element in Y is known, and zero 
otherwise. Thus, WNMF can extract non-negative features 
from an incomplete Y with an NMU algorithm: 
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   (51) 

where the operator ○ calculates the Hardamad product of two 
matrices. Thus, the products (W○Y)X and (W○Y)TA are solvable 
when Y is HiDS. However, the computational and storage costs 
of WNMF are respectively Θ(|M|×|N|×k×t) and Θ(|M|×|N|), 
which are the same as those of NMF. It is compatible with 
existing NMF training algorithms like an NMF algorithm, 
however, it suffers unnecessarily high costs on an HiDS matrix. 
Its processing flow is in Fig. S4 in the Supplementary File. 

In comparison, an NLF model is specifically designed for an 
HiDS matrix. With an SLF-NMU algorithm, its computational 
and storage costs are respectively Θ (|Λ|×k×t) and Θ(max{|Λ|, 
(|M|+|N|)×d}). Thus, we have the following inferences: 
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       (52) 
Given that |Λ|≪|M|×|N|, i.e., the known data of an HiDS matrix 
are far less than its unknown ones (e.g., the known data of the 
NetFlix matrix take 0.21% of its all entries only), an 
SLF-NMU-based NLF model’s computational and storage 
costs are much lower than those of an NMF model in theory. 
Hence, an NLF model is far more efficient than an NMF-type 
model on an HiDS matrix. Its processing flow is depicted in Fig. 
S5 in the Supplementary File. From this point of view, it is 
much suitable to address an HiDS matrix than an NMF model 
does on the premise that it converges well, which is guaranteed 
by the convergence analysis given in this paper. 

On the other hand, it is well known that in the area of 
recommender systems or social network services, an HiDS 
matrix is far more frequently encountered than a full one. 
Therefore, we’d prefer to take an NMF model as a special case 
for an NLF model owing to the following reasons: 
a) In our concerned big data-related Web-applications like a

recommender system, the observed data are commonly
incomplete, making an HiDS matrix be far more frequently
encountered than a full matrix. Actually, a full matrix can be
considered as an HiDS matrix whose data density is 100% in
such a scenario, indicating that the interactions among users
and items are fully observed (or quantized by the system,
which is also an ultimate objective for a recommender
system); and

b) Note that owing to its data-density-oriented learning
objective and algorithm, i.e., an SLF-NMU algorithm, an
NLF model can address an HiDS matrix whose data density
can be an arbitrary number in the (0%, 100%] interval. In
other words, it can address a matrix with/without missing
data. In comparison, an NMF model is defined on a full
matrix. Thus, it can only handle a matrix without missing
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data (or transmit a HiDS target into a full one like in a 
WNMF model). 
Nonetheless, in other fields like computer vision, full 

matrices representing normal images are much more than 
incomplete ones. Under such circumstances, an NLF model can 
be considered as a special case of an NMF model. From this 
point of view, we clearly see that although these two kinds of 
models are closely connected, they are targeting at different 
problems. It is important to make an appropriate choice for a 
specific problem. From the theoretical and empirical studies of 
this paper, it is efficient to adopt NLF on an HiDS matrix. 

B. Theoretical Achievements of This Study

Since both NMF and NLF models are bi-linear, an auxiliary
function-based method can be adopted to show that both NMU 
for NMF and SLF-NMU for NLF make their loss functions 
non-increasing. Nonetheless, the theoretical achievements of 
this work stand in two aspects: 1) an SLF-NMU is single 
LF-dependent, making its mathematical expression very 
different from that of an NMU algorithm. Meanwhile, an HiDS 
matrix’s data density is low and distribution is highly 
imbalanced. The convergence analysis in this paper 
innovatively shows that an SLF-NMU learning algorithm can 
enable an NLF model to converge on an arbitrary matrix in 
spite of its sparsity and imbalanced data distribution; 2) its 
ability to converge to a KKT equilibrium point is also proved 
on an HiDS matrix, which is also not seen in prior studies. 

C. Local or Global Convergence

It should be mentioend that the objective function of an
NLF/BNLF model is constrained and non-convex. Meanwhile, 
according to (6), an SLF-NMU-based learning algorithm 
actually implements an additive gradient descent-based training 
process with carefully-selected learning rates to guarantee the 
non-negativity of a resultant model. In other words, its achieved 
stationary point (whose properties are verified according to the 
previously provided theoretical studies) is a first-order one on a 
non-convex problem. According to a prior study [25], such a 
first-order stationary point can be a global optimum, local 
optimum, or saddle point. How to identify its more specific 
properties is very challenging (which still remains unveiled in 
the optimization community according to [25]). We plan to 
address this problem in our future work. 

VI. CONCLUSIONS

In this paper, we rigorously prove that an NLF/BNLF model 
defined on an HiDS matrix converges to a KKT equilibrium 
point of its objective with an SLF-NMU-based learning 
algorithm. Note that the proof consists of two steps, a) proving 
that its learning objective goes non-increasing with SLF-NMU 
by constructing a specifically-designed auxiliary function; and 
b) proving that its parameter learning sequences finally
converge to a stable equilibrium point with SLF-NMU by
analyzing the KKT conditions of its learning objective.

Note that this study conducts the convergence analysis on an 
objective relying on the Euclidean distance. However, the same 
principle also applies equally to an NLF model depending on 
other kinds of loss functions. With it, an SLF-NMU-based NLF 
model’s convergence characteristics are theoretically justified, 

which are also supported by the empirical results on ten HiDS 
matrices from real applications. 

As revealed in previous studies [3], the parallelization of an 
SLF-NMU algorithm can be implemented via a 
properly-designed distributed computing framework. In this 
case, can it still converge to a stable equilibrium point? We will 
answer this question in the future.  
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