
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

December 2021

Dynamic Reduction of Scientific Data Through Spatiotemporal Dynamic Reduction of Scientific Data Through Spatiotemporal

Properties Properties

Megan Louise Hickman Fulp
Clemson University, mhickman828@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Hickman Fulp, Megan Louise, "Dynamic Reduction of Scientific Data Through Spatiotemporal Properties"
(2021). All Theses. 3656.
https://tigerprints.clemson.edu/all_theses/3656

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3656?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Dynamic Reduction of Scientific Data Through
Spatiotemporal Properties

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Megan Hickman Fulp

December 2021

Accepted by:

Dr. Jon C. Calhoun, Committee Chair

Dr. Melissa C. Smith

Dr. Walt Ligon

Dr. Rong Ge

Abstract

Improvements in High-Performance Computing (HPC) has enabled researchers to develop

more sophisticated simulations and applications which solve previously intractable problems. While

these applications are critical to scientific innovation, they continue to generate even larger quantities

of data, which only worsens the existing I/O bottleneck. To resolve this issue, researchers use various

forms of data reduction.

Currently, researchers have access to many different types of data reduction. These include

methods such as data compression, time-step selection, and data sampling. While each of these

are effective methods, data compression algorithms and data sampling methods do not leverage the

temporal aspect of the data, and time-step selection is prone to missing critical abrupt changes.

With this in mind, we develop our spatiotemporal data sampling method.

In this thesis, we develop a spatiotemporal data sampling method that leverages both the

spatial and temporal properties of simulation data. Specifically, our method compares corresponding

regions of the current time-step with that of the previous time-step to determine whether data

from the previous time-step is similar enough to reuse. Additionally, this method biases more rare

data values during the sampling process to ensure regions of interest are kept with higher fidelity.

By operating in this manner, our method improves sample budget utilization and, as a result,

post-reconstruction data quality. As the effectiveness of our method relies heavily on user input

parameters, we also provide a set of pre-processing steps to alleviate the burden on the user to

set appropriate ones. Specifically, these pre-processing steps assist users in determining an optimal

value for the number of bins, error threshold, and the number of regions. Finally, we demonstrate

the modularity of our sampling process by demonstrating how it works with any different internal

core sampling algorithm.

Upon evaluating our spatiotemporal sampling algorithm, we find it is capable of achieving

ii

higher post-reconstruction quality than Biswas et al.’s non-reuse importance-based sampling method.

Specifically, we find our method achieves a 31.3% higher post-reconstruction quality while only

introducing a 37% degradation in throughput, on average. When assessing our pre-processing steps,

we find they are efficient at assisting users in determining an optimal value for the number of bins,

error threshold, and the number of regions. Finally, we illustrate the modularity of our sampling

method by showing how one would swap the core sampling algorithm. From our evaluation, we find

our spatiotemporal sampling method is an effective choice for sampling simulation data.

iii

Acknowledgments

I first and foremost would like to thank my committee chair, Dr. Jon C. Calhoun, for his

guidance and encouragement throughout my time at Clemson. I would also like to give thanks to

Ayan Biswas with Los Alamos National Laboratory, who introduced me to the field of data sampling

and served as a great mentor. I also thank Dr. William Jones and Dr. Nathan DeBardeleben, who

first introduced me to scientific research. Finally, I am grateful to Dr. Melissa Smith, Dr. Walt

Ligon, and Dr. Rong Ge for serving as part of my committee.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

List of Algorithms . ix

1 Introduction . 1

2 Related Work . 4
2.1 Data Compression . 4
2.2 Time-Step Selection . 5
2.3 Data Sampling . 6
2.4 Summary of Our Contributions . 7

3 Background . 9
3.1 Simple Random Sampling . 9
3.2 Importance-Based Sampling . 10
3.3 Temporal Selection . 11
3.4 Data Reconstruction . 11
3.5 Data Quality . 11

4 Spatiotemporal Sampling . 13
4.1 Overall Concept . 13
4.2 Configuring Parameters . 19
4.3 Sampling Process . 25
4.4 Summary . 28

5 Experimental Setup . 29

6 Evaluating Our Sampling Method . 32
6.1 Configuring Parameters . 32
6.2 Overall Spatiotemporal Sampling . 35
6.3 Core Sampling Algorithm Exchange . 38
6.4 Summary . 40

7 Conclusions and Future Work . 42

v

7.1 Conclusions and Contributions . 42
7.2 Theoretical Implications . 43
7.3 Future Work . 43

Bibliography . 45

vi

List of Tables

5.1 Datasets and configurations used in experimental evaluations. 31

vii

List of Figures

4.1 Hurricane Isabel divided into regions . 14
4.2 Hurricane Isabel histogram intersection . 15
4.3 Hurricane Isabel root mean square error . 16
4.4 Hurricane Isabel reduced data sizes . 18
4.5 Hurricane Isabel distribution intersection . 20
4.6 Consistent vs. varying number of bins . 22
4.7 Hurricane Isabel regions . 24

5.1 ExaAM dataset . 31
5.2 Hurricane Isabel pressure dataset . 31
5.3 Asteroid Impact V02 dataset . 31

6.1 Average quality, varying number of bins . 33
6.2 Average quality, varying error threshold. 34
6.3 Evaluation of region size . 35
6.4 Average PSNR over varying sample rates. 37
6.5 Average percentage of regions reused over varying sample rates. 38
6.6 Average bandwidth of sampling process. 39
6.7 Average bandwidth of sampling sub-processes. 39
6.8 ExaAM samples gathered by different sampling algorithms 40
6.9 ExaAM evaluation of varying core sampling algorithms 41

viii

List of Algorithms

3.1 Simple Random Sampling Algorithm . 9
3.2 Importance-Based Sampling Algorithm . 10
4.1 Doane’s Rule Algorithm . 20
4.2 Scott’s Rule Algorithm . 21
4.3 Generic Error Threshold Algorithm . 23
4.4 Importance-Function Algorithm . 26

ix

Chapter 1

Introduction

High-performance computing (HPC) systems are capable of performing complex calcula-

tions and processing data at high speeds, with today’s systems capable of performing 442,010 tril-

lion floating-point operations per second [1]. Researchers from a plethora of disciplines use this

tremendous computational power to solve previously intractable complex problems. Some examples

of these problems include studying the universe’s evolution, climate change, storms, artificial intel-

ligence, and medical research. Virtually all scientific research fields have the ability to leverage the

capabilities of HPC systems.

As the capabilities of HPC systems advance, so does the amount of data HPC applications

produce. From 2008 to 2018, Cappello et al. found that the computational power of HPC systems

has increased by 114× [8]. Researchers leverage this extra computational power to run more complex

scientific simulations. For instance, the Coupled Model Intercomparison Project Phase 5 (CMIP5)

[34] is an international project that consists of research centers around the world running the same

set of simulations to study climate and other problems. One such simulation is the Community

Earth System Model [14] (CESM) which simulates various climate events around the world.

While these complex simulations are necessary, they also produce an increasing amount

of data, making processing and storing the data more challenging. This issue is easily seen when

using the CESM simulation. First, Baker et al. detail how a single modern high-resolution CESM

simulation can generate one half a terabyte of data per simulation year [4]. Additionally, Mickelson

et al. found that the CESM simulation generated 2.5 PB of data over the course of 18 months, but

an additional 18 months was needed to post-process and publish only 6.6% of the data [25]. The

1

extensive time required to post-process the data is partly due to the strenuous process of storing

and loading these large quantities of data. Performing I/O operations on large datasets is difficult

due to disparities in HPC system capabilities. While Cappello et al. found the computational power

increased 114× over the ten years, they also found the I/O bandwidth only improved 10.4× over the

same period [8]. Due to the lack of I/O capabilities, working with large quantities of data creates a

bottleneck in the overall HPC workflow.

Previous works have aimed to alleviate this bottleneck by reducing the overall volume of data

before transferring it. While traditional data reduction methods, such as data deduplication [24]

and lossless compression, do reduce data with no loss in precision, they suffer from limited reduction

ratios on scientific floating-point data. Such methods achieve limited ratios due to the high entropy

in the IEEE 754 floating-point mantissa bits that most HPC applications use. This limitation is an

issue for the even larger data files that will occur in the next phase of CMIP (CMIP6) [11]. These

files will require better levels of reduction to improve the scientific workflow and ensure the data is

processed data published more efficiently.

To mitigate issues with the high entropy mantissa bits, researchers use lossy compression.

Lossy compression is capable of achieving higher compression ratios by introducing controlled error

into the data [9, 20, 21] and has also been shown to increase I/O bandwidth [8]. However, these

algorithms introduce a uniform amount of reduction across the entire data, which is not always

the result researchers desire. In many cases, data has areas of interest that researchers wish to

keep with higher fidelity. Data sampling is another data reduction method that achieves higher

levels of reduction by saving a sparse subset of the data and discarding the rest. By using data

sampling, researchers are able to preserve areas of their data with full precision, while less important

background data has a higher tolerance to distortion. While leading data sampling approaches have

been shown to retain higher data quality within regions of interest than lossy compression algorithms,

these approaches are capable of being pushed further.

The research presented in this thesis contributes to the area of data sampling within scientific

floating-point simulation data by integrating both spatial and temporal aspects of the input data.

First, we propose the concept of spatiotemporal sampling and how it works in general. Then, we

investigate the effect algorithmic configurations have on this method and apply existing concepts to

yield an optimal input configuration. Lastly, we compare the effectiveness of our sampling method

to existing methods.

2

The remainder of this thesis is organized as follows. Chapter 2 is a discussion of related

work in data reduction motivation and schemes. Chapter 3 provides the background knowledge

explicitly related to reduction schemes leveraged in our sampling method. Chapter 4 explains how

we specifically use those schemes to form our spatiotemporal sampling method its configuration

parameters. Chapter 5 presents the architecture needed and experimental setup, including input

parameters and datasets. Chapter 6 presents the final results of our data reduction scheme in terms

of throughput and post-reconstruction quality. Finally, we give our conclusions and suggestions for

future work in Chapter 7.

3

Chapter 2

Related Work

As complex HPC applications continue to generate even larger datasets, the I/O bottleneck

found on HPC systems is complicated further. Researchers often leverage various forms of data

reduction to alleviate this issue, including data compression, time-step selection, and data sampling.

2.1 Data Compression

Data compression algorithms are a data reduction technique that encode the input data to

represent it using fewer bits. Such algorithms are divided into two categories: lossless and lossy com-

pression. Lossless algorithms compress data using Huffman or arithmetic coding techniques while

ensuring they can decompress the data without introducing any error. However, when encoding sci-

entific floating-point data, these algorithms suffer from limited compression ratios of up to 2×. This

limitation is due to the high entropy found in the binary representation of floating-point data [31].

This is unacceptable for scientific simulations like the Community Earth Simulation Model (CESM)

that need a reduction of 10× or higher [4].

Conversely, lossy compression algorithms are capable of achieving much higher compression

ratios by approximating parts of the data. Leading lossy compression algorithms, SZ [9, 32, 20]

and ZFP [21], operate through data transformations, truncations, curve fitting models, or some

combination of these techniques, allowing them to manage the high entropy found in scientific

floating-point data. While this approach achieves higher compression ratios and throughputs, it

does so at the cost of data fidelity. With this in mind, these algorithms control the error they

4

introduce through a user-specified error bound, ensuring they only introduce an acceptable amount

of data distortion. Overall, these algorithms are capable of achieving high compression ratios while

introducing a limited amount of error [33].

Be that as it may, lossy compression is not always an ideal solution. In many cases, domain

scientists consider certain regions more valuable than others, such as the eye of hurricane simula-

tions [19] or the dark matter halos in cosmological simulations [18]. While researchers would want

to save these regions with full precision, to the best of our knowledge, no generic lossy compression

algorithm exists that applies different levels of compression to different regions of the dataset. Fur-

thermore, many scientific simulations change slowly over time, yet current leading lossy compression

algorithms, SZ [9, 32, 20] and ZFP [21], do not leverage the temporal aspect of data at all.

2.2 Time-Step Selection

Another popular data reduction technique researchers use is time-step selection. Most sci-

entific simulations have some temporal property that evolves over increments of time (time-steps)

throughout the lifetime of the simulation. During these time-steps, the simulation records necessary

information and checkpoints in case the simulation needs to be restarted. However, as simulations

are becoming even more complex, it is becoming less tractable to record all time-steps of a simu-

lation. For instance, the Hardware/Hybrid Accelerated Cosmology Code (HACC) [13] consists of

625 time-steps corresponding to moments in time from 5 million years back to the current day.

Each time-step consists of 524,288 particles, yielding up to 220 TB of data per snapshot and 22

PB over the entire simulation [26, 35]. The sheer size of time-series simulation data makes post-hoc

visualization and analysis of multiple time-steps overwhelming.

To alleviate this issue, researchers save only a select subset of time-steps that are represen-

tative of the simulation as a whole and can be used to reconstruct the time-steps that they did not

save. For example, assume we choose to store time-step tk. Following this, researchers then need to

decide if the next chronological time-step, tk+1, is unique enough to be stored as well or is similar

enough to be estimated by tk. After comparing the two, if they are similar enough, researchers do

not need to use storage to save tk+1, as tk is a sufficient representation. Overall, time-step selection

is a process that reduces the number of time-steps the user has to save, reconstruct, visualize and

analyze.

5

Currently, there are many different approaches to time-step selection. First, the most basic

form of time-step selection is to remove time-steps periodically then reconstruct this data using

interpolation post-hoc. While this approach has a low overhead, it suffers from low quality as time-

varying datasets change in complex patterns and at unknown frequencies. Next, another approach

to time-step selection is to utilize user input to manually specify areas of interest to visualize smaller

portions of the time series [30, 22, 3, 2] or by visualizing the hierarchical state transition relation-

ships [12]. However, these visual inspection processes can become labor-intensive and relatively

slow. Thus, for today’s large-scale HPC datasets, automatic selection techniques are more preferred.

Such techniques include choosing the most representative time-steps to save based on time-variant

features [2], utilizing importance curves [37] or utilizing information theory [39].

While these various time-step selection approaches work well with slow uniformly changing

data, there is a significant loss of information when they are used with data that changes more

sporadically over time. By only saving a subset of time-steps, any abrupt changes in the simula-

tion could be missed. Therefore, to ensure important events are not lost, we must preserve some

information from each time-step.

2.3 Data Sampling

One last data reduction technique researchers use is data sampling. Data sampling algo-

rithms use statistics to select a representative subset of data values to store rather than all the

data. This process enables data scientists and analysts to study, transport, and store a smaller

quantity of data more quickly. However, when sampling data, it is essential to consider the sample

size being taken in relation to the error that sample size introduces. While a larger sample size may

be unnecessary and include redundant information, too small of a sample size may lose too much

information.

Currently, various existing sampling methods exist, with each one having different strengths

and weaknesses. First, systematic sampling creates a sample by extracting a data value at a specific

repeated interval [23]. Next, simple random sampling randomly selects a subset such that it is an

unbiased representation of the dataset. Every item in the dataset has an equal probability of being

selected in the sample; thus, no bias is introduced. It is a fundamental method that researchers

often use as a component of more complicated algorithms. No prior knowledge of the data is needed

6

before one uses random sampling, and there is no restriction on sample size. Likewise, stratified

sampling divides data into subsets, then randomly collects samples from each group [38, 36].

While the previous sampling methods maintain the original data distribution, mean, and

other statistical properties, they do not consider a data point’s value nor importance to the user.

As we mentioned previously, some datasets consist of features that researchers wish to preserve at

a higher level than other parts of the dataset. In this case, users will want to bias samples in these

areas. Biasing samples based on the importance of their value or location enhances the overall

visualization and analysis process by ensuring the preservation of regions of interest.

Importance-based sampling operates on the notion that certain data points are inherently

more important to the user based on value, location, or other metrics. Nouanesengsy et al. developed

a basic adaptive sampling approach that uses a user-defined importance function to determine the

region of interest [27]. However, for generic sampling algorithms, this importance function should

be constructed without prior knowledge of the dataset. Biswas et al. operate under the assumption

that rare data values are more valuable to the user and should be sampled at a higher rate than

other data points [6]. Specifically, their method constructs a histogram of the dataset, then assigns

each histogram bin an importance factor such that it gives fuller bins a lower priority and emptier

bins a higher priority. Their method uses this importance factor when determining whether or not

to keep the data point in the sample set, giving a bias to more rare values.

While previous works show importance-based sampling methods achieve higher levels of

quality than compression in regions of interest, they still lack in critical areas. Specifically, these

methods do not fully utilize their sampling budget by disregarding any temporal aspects within the

data.

2.4 Summary of Our Contributions

Currently, there are many different data reduction methods researchers are able to choose

from. However, each of them lacks in critical areas that limit their capabilities. First, while current

industry-standard generic lossy compression algorithms and importance-based sampling methods

are both powerful, neither leverage any available temporal aspects of the data they are reducing.

Likewise, while time-step selection approaches do leverage the temporal aspect of simulation data,

they are prone to missing critical turning points in the simulation as they keep only a subset of

7

time-steps. This illustrates the gap between spatial and temporal data reduction.

The research we detail in this thesis aims to bridge this gap by combining the two ideas into

a single sampling process. Specifically, our work integrates both the spatial and temporal aspects

of the input data to improve the usage of the available sampling budget. Using this approach, we

demonstrate how leveraging spatial and temporal redundancies within the data results in higher

post-reconstruction quality at the same reduction rate as other sampling algorithms.

8

Chapter 3

Background

3.1 Simple Random Sampling

With all forms of data sampling, a sampling ratio, also known as sampling rate, is the explicit

parameter to specify the number of samples taken from the original data. This parameter is driven

mainly by the user’s storage constraint. It is calculated as the ratio between the desired output size

compared to the total original data size per time-step. Simple random sampling gives each data

point an equal probability of being included in the sample, limited by the sample ratio. This method

works well with data of unknown distributions as all samples are unbiased and maintain statistical

quantities such as mean and standard deviation. For each element in the dataset, a random number

ξ is generated and compared to the user-specified sample ratio α, where ξ, α ∈ [0, 1]. If ξ < α, the

point is included in the data sample.

Listing 3.1: Simple Random Sampling Algorithm

INPUT: n : o r i g i n a l data s e t to be sampled

INPUT: α : user−s p e c i f i e d sampling percentage

OUTPUT: samples : array o f sample va lues

// Take samples randomly

for i in range (0 , s izeof (n)) :

f loat ξ = random () ; // between 0 and 1

i f (ξ < α) : samples . push back (n [i]) ;

9

3.2 Importance-Based Sampling

Importance-based sampling assumes that rare data values are more important to the user.

Thus, a bias is given to data points of rare values, while more frequent values are less likely to be

a part of the sample. Biswas et al. present an importance-based sampling method that assigns an

importance factor to each data point such that the resulting samples over-represents the rare data

values without completely ignoring more common values [6]. The importance factor is calculated

using a histogram of the data values within a single time-step such that data points that fall into

less full bins have a higher probability of being included in the sample. Once the importance factors

are calculated, a random number ξ is generated and compared to the importance factor IF (i) per

data point i, where ξ, IF (x) ∈ [0, 1]. The point is included in the data sample if ξ < IF (i). The

resulting sample set meets the user-specified sample ratio while maintaining high data fidelity in

more important regions.

Listing 3.2: Importance-Based Sampling Algorithm

INPUT: n : o r i g i n a l data s e t to be sampled

INPUT: α : user−s p e c i f i e d sampling percentage

OUTPUT: IF : Importance Factor per bin

OUTPUT: samples : array o f sample va lues

max per bin = α / bins ; // Calcu late maximum number of samples per histogram bin

f r e qu en c i e s = so r t (build histogram(n)) ; // Build and Sort Histogram of Values

while (i < bins) : // Calcu late Importance Factor per Bin

i f (f r e qu en c i e s [i] < max per bin) : // Keep a l l o f these items

IF [i] = f r e qu en c i e s [i] ;

i++;

else : // Can ’ t keep a l l items in bin

for j in range (0 , b ins) :

IF [j] = max per bin ;

break ;

// Normalize Importance Factors

for i in range (0 , b ins) :

IF [i] = IF [i] / f r e qu en c i e s [i] ;

// Take samples randomly

for i in range (0 , s izeof (n)) :

f loat ξ = random () ; // between 0 and 1

i f (ξ < IF [i]) : samples . push back (n [i]) ;

10

3.3 Temporal Selection

Time-step selection is the process of analyzing the difference between sequential, chronolog-

ical time-steps to determine which steps provide a representative overview of the entire data series.

For example, assuming the previous time-step (tk−1) was previously selected, we need to decide if

the current time-step (tk) is different enough to justify the cost of storing it in addition. If tk, is

similar enough to tk−1, we do not need to select it as tk−1 is a sufficient representation.

3.4 Data Reconstruction

There are various existing methods for reconstructing the data back to full resolution based

on a collection of samples. Interpolation is a process of approximating the value of a non-given data

point given the values of a discrete set of the known surrounding data points. In our workflow, we

use our group of samples to interpolate the intermediate values not included in the sample, then

compare this full-resolution data with the original dataset to see how well a sample we saved. One

of the most common and simplest interpolation methods is a piecewise constant interpolation, also

known as nearest-neighbor interpolation. This method assigns the non-given data the value of the

nearest sampled point. This process can be fast as it does not consider any of the other neighboring

points, but this causes the resulting data to have blocky artifacts.

Linear interpolation is a method that uses the curve fitting of linear polynomials to estimate

the value of non-given data using the surrounding samples. This method usually produces a higher

quality reconstructed data than nearest neighbors, but at a computational cost. Using a Delaunay

triangulation with linear interpolation is a fast method that divides the domain into triangles,

defined by the three vertices chosen from the sample, that form a plane surface [10]. We use a linear

interpolation-based reconstruction for our experiments using a Delaunay triangulation reconstruct,

as it is a balanced trade-off between quality and speed. In general, the higher-order the interpolation,

the better the quality but the slower the process.

3.5 Data Quality

After reconstructing a time-step from the gathered data samples, we assess the quality of the

resulting data. Assessing quality based on the visual representation can be too subjective. Thus, we

11

use the peak signal-to-noise ratio (PSNR) to represent the quality between the reconstructed data

and the original data. PSNR is the ratio between the original and reconstructed data, measured in

decibels (dB). The higher the PSNR, the better quality the reconstructed data is. PSNR is based on

the mean-square error (MSE), the cumulative squared error between the original and reconstructed

data values. We describe MSE as Equation 3.1, where n is the number of data points in the dataset,

Yi is the original value and Ŷi is the reconstructed value. Equation 3.2 details PSNR, where max val

and min val are the maximum and minimum of the original dataset.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (3.1)

PSNR = 20 ∗ log10((max val −min val)/
√
MSE) (3.2)

12

Chapter 4

Spatiotemporal Sampling

4.1 Overall Concept

Within most HPC scientific simulations, larger areas transform slowly over time, with

smaller regions changing more drastically, such that there is a visual difference between the two.

For instance, Figure 4.1 visualizes three time-steps of a simulation of the 2003 Hurricane Isabel,

specifically the pressure variable [15]. We divide each time-step into smaller sub-regions. In this

dataset, each time-step’s defined region of interest is the hurricane eye, as weather forecasters and

meteorologists study it to determine when the hurricane is gaining strength and when it is necessary

to take precautions.

Our goal per time-step is to preserve data fidelity in the region of interest as much as possible,

at the cost of some precision in other areas of the dataset. To do so, we use the importance-based

method by Biswas et al. [6] (see Chapter 3.2) as it has been shown to yield higher accuracy in regions

of interest than other methods.

Over time, some regions of the dataset, like region A, change drastically as time progresses.

In general, this area of frequent change corresponds to the region of interest. As such, we want

to save this region with higher accuracy. However, the unchanging regions, like region C, are

background information and therefore are most likely not as important to the domain scientists.

The unchanging regions are less important than the areas of frequent change, so we tolerate more

error in them. Lastly, regions like B are some mix in between, where there is little change over time.

Thus, we need to keep accuracy in those regions, but it is not as important as A.

13

C

B

A

Time-Step 10

C

B

A

Time-Step 11

C

B

A

Time-Step 12

4000

3000

2000

1000

0

1000

2000

Figure 4.1: Hurricane Isabel divided into regions

For regions like C that are consistent over time, the idea of temporal selection can be applied

in this region, as the data in region C in time-step 11 is a sufficient representation of the data in

the corresponding region in time-step 12. However, time-step selection would not be a good fit for

region A since data changes quickly over time; we want distinct information from every time-step

in this region to ensure we save a sufficient amount of information.

Such is the motivation for our spatiotemporal sampling method. Not only is it essential to

select samples based on their relative location and value within one time-step, but also to acknowl-

edge and leverage redundancies over time. Doing so enables our sampling method to provide higher

post-reconstruction quality than other current data sampling algorithms.

Given a data series with multiple time-steps divided into a certain number of sub-regions,

we compare each corresponding region to its chronological neighbor. From that comparison, we

determine if it is different enough to be incorporated into the temporal selection or similar enough

to be represented by the previously selected data. To accomplish this, we first need to quantify what

it means for two regions to be similar or different enough.

4.1.1 Histogram-Based Reuse

The first way we determine if two regions are similar is to compare the distribution of

data values in each. Histograms are lightweight in terms of storage and add little computational

overhead. Thus, they are a valuable way to compare two regions quickly. We first construct a

histogram of the data values within each region in two chronologically neighboring time-steps, 11

and 12, from Figure 4.1. Next, we use histogram intersection (see Equation 4.1) to determine if the

two distributions are similar enough to utilize the data from time-step 11 for time-step 12 as well.

14

0 25 50 75 100 125 150 175 200 225

0

25

50

75

100

125

150

175

200

225

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0

1.0 1.0 1.0 1.0 1.0 0.9 0.7 1.0 0.8 1.0

1.0 1.0 1.0 1.0 0.8 1.0 0.7 0.4 1.0 0.0

1.0 1.0 0.7 0.8 0.9 0.9 0.9 0.8 1.0 0.5

1.0 0.8 0.9 0.9 1.0 0.9 0.7 0.9 0.8 0.6

0.9 0.4 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.9

0.7 0.0 0.8 0.8 0.9 0.8 0.9 0.7 0.9 0.8

1.0 1.0 0.6 0.9 0.8 0.8 0.8 0.6 0.7 1.0

1.0 1.0 1.0 0.7 0.8 0.2 1.0 1.0 0.6 1.0

Histogram Intersection of Time-Step 10:11

0 25 50 75 100 125 150 175 200 225

0

25

50

75

100

125

150

175

200

225

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 0.7 0.6 1.0 0.8 1.0

1.0 1.0 1.0 1.0 0.8 0.7 0.7 1.0 0.8 1.0

1.0 1.0 0.8 0.8 0.8 0.9 0.8 1.0 0.6 1.0

0.9 1.0 0.8 0.9 0.9 0.8 0.9 0.9 0.8 0.8

1.0 1.0 0.8 1.0 0.9 0.8 0.5 0.8 1.0 1.0

1.0 1.0 0.8 0.7 1.0 1.0 0.9 1.0 0.8 0.8

1.0 1.0 1.0 1.0 0.6 0.9 0.8 0.5 0.9 1.0

0.6 0.0 0.7 1.0 1.0 0.6 1.0 1.0 0.6 0.0

Histogram Intersection of Time-Step 11:12

4000

3000

2000

1000

0

1000

2000

Figure 4.2: Hurricane Isabel histogram intersection

Here, pi is the number of elements in the ith bin of the histogram of the previous time step, and qi

is the number of elements in the corresponding ith bin of the current time step histogram, and n is

the total number of bins. We normalize the intersection by dividing by qi, such that the results are

always between 0 (no intersection) and 1 (identical distributions).

∑n
i=1min(pi, qi)∑n

j=1(qi)
(4.1)

We only choose to reuse previous information in a region for our implementation if 100%

of the previous and current histograms for that region intersect. This means that the histograms of

the two regions are identical; thus the data distribution of that region has not changed between the

two time-steps. Figure 4.2 shows the amount of intersection per region between time-steps 11 and

12. The areas marked with 1.0 mean the histograms are 100% intersected. Thus, the data in those

regions will not take new samples from time-step 12 and instead refer to the data in time-step 11.

4.1.2 Error-Based Reuse

Our second method for determining similarity uses the error between the two temporally

corresponding regions. This method allows the user to set an error tolerance based on each region’s

root mean square error of each region, as described in Equation 4.2, where pi is a value in the previous

time-step and qi is the corresponding value in the current time-step. When the root mean squared

15

0 25 50 75 100 125 150 175 200 225

0

25

50

75

100

125

150

175

200

225

0.0 0.0 0.0 0.0 0.0 0.0 11.0 27.3 48.1 37.9

0.0 0.0 0.0 0.0 2.5 102.1 33.3 56.4 115.2 94.4

0.0 0.0 0.0 0.0 46.6 56.9 65.0 86.5 80.8 85.0

0.0 37.7 65.4 28.8 55.9 40.9 63.7 73.4 81.5 145.4

9.9 74.0 54.5 45.4 37.0 76.4 157.2 71.6 45.2 56.7

97.6 101.7 80.3 32.7 36.5 174.4390.7570.3 78.5 46.1

54.7 102.2 89.0 38.6 34.2 106.4129.3197.6 61.9 33.5

45.8 106.0106.1 65.7 52.4 48.9 75.6 85.3 53.9 54.1

25.8 78.6 142.4 94.8 83.9 83.3 34.0 37.7 23.3 37.2

32.8 35.3 119.7103.3 90.6 73.6 77.0 62.2 55.1 48.8

RMSE of Time-Step 10:11

0 25 50 75 100 125 150 175 200 225

0

25

50

75

100

125

150

175

200

225

0.0 0.0 0.0 0.0 0.0 0.0 2.9 9.2 65.0 28.3

0.0 0.0 0.0 0.0 2.7 91.2 46.3 44.6 81.8 78.8

0.0 0.0 0.0 0.0 69.9 112.2110.8 81.3 46.1 86.0

0.0 91.2 110.4143.7 95.4 88.9 92.3 59.9 61.3 74.4

28.7 28.0 65.5 108.5 73.4 153.9188.1 53.2 80.8 48.6

64.5 29.3 63.7 51.0 53.4 215.1512.0311.0 65.1 33.6

93.9 64.6 91.3 62.8 33.2 87.1 155.1189.8 42.3 34.5

91.4 74.0 54.4 52.9 45.5 45.4 87.8 75.0 72.2 30.4

103.9122.8 89.5 47.2 67.9 36.5 34.0 49.0 44.4 48.4

41.1 133.9 88.9 77.9 50.2 65.2 43.3 25.3 45.3 45.4

RMSE of Time-Step 11:12

4000

3000

2000

1000

0

1000

2000

Figure 4.3: Hurricane Isabel root mean square error

error is less than the specified tolerance, regions are considered similar enough to be represented by

previous information. If the error of a region is greater than the threshold, it cannot be represented

by the previous time-step as it would introduce more error than the user wants to allow.

√∑n
i=1(pi − qi)2

n
(4.2)

For example, Figure 4.3 shows the error per region between time-steps 11 and 12. If the

user threshold was 28.0, then regions less than that tolerance would not be saved in the sample, as

the information in 11 is representative of that in 12 for that region.

4.1.3 Similarity Metric Comparison

We leave the selection of similarity metrics to the user, as each has advantages and disadvan-

tages. Thus, the best metric heavily relies on the dataset and user constraints. First, we analyze the

speed of the two methods. It is relatively fast to build and calculate the intersection of histograms.

Therefore, two time-steps of Hurricane Isabel with 200 regions can be compared in 14 MB/s. The

calculation of error takes longer, running in 13 MB/s for the same data. The difference in speed

between the two processes grows as the number of regions increases.

Second, we analyze the amount of storage it takes to calculate similarity. Histograms are a

lightweight solution when using a relatively small number of bins. To compare each region of the

16

current time-step with the previous one, we only need to have access to the region histograms. Thus

the amount of storage needed in bytes is calculated as Equation 4.3, based on the number of data

values per time-step (n), the number of regions (r), and the number of bins (b).

n+ (r ∗ b ∗ size(int)) (4.3)

When using the error-based method, we need to have access to all samples taken from the

previous time-step to calculate the error. Thus, as the sample ratio increases, so does the number

of samples taken and the number of computations needed to calculate the root mean squared error.

The amount of storage needed to calculate similarity with the error-based metric is calculated as

Equation 4.4, based on the number of data values per time-step (n) and the sample ratio (s). Thus,

depending on the sample ratio, the error-based method may introduce more storage overhead than

the histogram-based method.

n+ (n ∗ s) (4.4)

Lastly, we address the quality of each method. While histograms are a lightweight and

fast solution, they lack spatial awareness. The distribution of the values within a region might

remain the same but might have changed in location within the region. Thus if we deem two regions

similar based only on identical value distributions, we may introduce too much error, yielding a

lower quality. The error-based method for quantifying similarity is based on the user’s specified

error tolerance, making it easier to bound the amount of error and, in general, yielding a higher

quality post-reconstruction.

The main attribute to the difference in quality can be seen in the differences between Fig-

ures 4.2 and 4.3 where we analyze which and how many regions are considered similar per method.

When using histograms to determine similarity, we find 24% of regions eligible for reuse between

the 10th and 11th and 22% between the 11th and 12th. However, the error-based method is more

rigorous, as it only reuses 10% to 14% of regions from time-steps 10 to 11 and 11 to 12, respectively.

The amount of storage required to store the samples of time-step 11 is shown in Figure 4.4, where

the error-based method reused fewer regions; thus, it takes more storage to save more samples than

the histogram-based method. Since this finer similarity metric reuses fewer regions, as it is bound to

the user-specified error tolerance, it generally yields higher quality. For example, we analyze region

17

0.005 0.01 0.02
Sample Ratio

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Da
ta

 S
ize

 (M
B)

Non-Reuse
Histogram-Based Reuse
Error-Based Reuse

Figure 4.4: Hurricane Isabel reduced data sizes

B of Figure 4.1 as it was labeled a region of medium levels of change over time. The histogram-

based method determined to reuse this region, as the histograms between time-steps 10 and 11 were

identical. However, the error-based method found that those two regions had a root mean square

error of 45.2, greater than the specified error tolerance of 28.0. Thus, if the histogram-based method

were used, it would allow in more error than the user wanted even though it is faster.

Regardless of similarity metric, some amount of regions are specified for reuse in each time-

step. Since data sampling works by saving a specified amount of samples, as given by sample ratio,

we want to fill the sampling budget as best as possible. The non-reuse method will fill the sample

budget nearly completely. However, since the histogram-based and error-based reuse methods reuse

some data from the previous time-step instead of taking new samples from the current time-step

in some regions, they do not use the entire budget. This trend is seen in Figure 4.4, where both

reuse methods only fill about 70% of the allocated budget. Since our method is centered around the

notion that the user sets the sample ratio to meet the storage allocated, we aim to meet this space

as near as possible. Thus, we add a layer of random samples to the sample set until the allocated

space is filled.

18

4.2 Configuring Parameters

Our sampling scheme has several input parameters designed to give the user the most

flexibility with our algorithm. However, this freedom may become a burden to the user if specific

details about the data are unknown. For example, we need to know the number of bins to use,

error threshold, and sub-region dimensions before the sampling process. If the user randomly selects

a less than optimal value for one of these parameters, the data quality can significantly be lower

than expected. Thus, we provide the user with a dynamic parameter assistance tool to aid in the

parameter setting process.

4.2.1 Determining Number of Bins

Our sampling method gives a sampling bias to data points whose values are rarer. We

determine the rarity of each value based on the sorted histogram of each time-step. We also leverage

smaller histograms per region when using the histogram-based method to determine when to reuse

previous information. This heavy reliance on histogramming means that we need to determine an

optimal number of histogram bins early on in the process to ensure consistency throughout the

data reduction process. Having a consistent number of bins is critical for the histogram-based reuse

method, as if we are using histogram intersection to determine reuse, we need to ensure that the bin

ranges are the same such that we have a fair comparison.

When selecting the number of bins for our histograms, we could use a random arbitrary

number or estimation. However, we could not ensure that this yields an optimal sample. When

using the sampling method provided by Biswas et al. to gather samples, the number of bins is

important to set wisely, as, with too few bins, rare important values may be placed into the same

bin as less important values. Likewise, the histogram will be too finely distributed with too many

bins, and the overall algorithm will be slowed down. Moreover, the number of bins affects the amount

of histogram intersection with the histogram-based reuse method. In general, with fewer histogram

bins, it is easier to have each bin intersect as there are fewer ways to distribute the data. With

more bins, the data is more distinctly identified and categorized; thus, it is more challenging to have

an identical histogram as it is less tolerable to minor variations in the data values. This trend is

shown in Figure 4.5, where we analyze the amount of histogram intersection in regions A, B, and C

between time-steps 11 and 12 of Figure 4.1. In general, as the number of bins increases, the amount

19

0 200 400 600 800 1000
Number of Bins

0.80

0.85

0.90

0.95

1.00

Am
ou

nt
 In

te
rs

ec
te

d

Histogram Intersection

Region
Region A
Region B
Region C

Figure 4.5: Hurricane Isabel distribution intersection

of intersection decreases. This trend is more dramatic in regions of entropy, like region A. This

trend is essential to understand and leverage as, with too many bins and too few intersections, our

histogram-based reuse method is left un-optimized and rarely utilizes previous data. On the other

hand, fewer bins yield more intersection, which will hyper-inflate the number of regions determined

similar, resulting in excess error.

To assist users in determining an optimal number of histogram bins, we run a pre-processing

step using existing algorithms and the first time-step. To set a consistent bin width, we need to

know the entire possible range of the data values. Since we aim to set the bin ranges once and use

them consistently, we must ensure that we account for all possible values. We use this range as

the minimum and maximum edges in the histogram. Next, we need to determine the bin width or

the total number of bins to yield an optimal distribution. Sturges’ rule was the original proposed

method for estimating an optimal number of bins and is widely recommended. It calculates the

number of bins (K) as Equation 4.5, where n is the number of data points to histogram. While this

algorithm is generally the default, it tends to over smooth the histogram with large datasets and

is only optimal for gaussian data. Therefore, we use Doane’s rule, a modification to Sturges’ that

works better with non-normal datasets [16]. Doane attempts to account for the skew of the data.

The algorithm for this is shown in Listing 4.1.

K = 1 + log2(n) (4.5)

20

Listing 4.1: Doane’s Rule Algorithm

INPUT: n : o r i g i n a l data s e t to be sampled

INPUT: data range : range o f data va lues over the e n t i r e s e r i e s

INPUT: mean : mean o f data va lues over the e n t i r e s e r i e s

INPUT: s tdev : standard dev i a t i on o f data va lues over the e n t i r e s e r i e s

OUTPUT: numBins : number o f b ins recommended

sg1 = sq r t (6 . 0 ∗ (n . s i z e () − 2) / ((n . s i z e () + 1 . 0) ∗ (n . s i z e () + 3))) ;

i f (stdev > 0 . 0) :

temp = n − mean ;

temp = temp / stdev ;

temp = pow(temp , 3) ;

sum temp = std : : accumulate (temp . begin () , temp . end () , 0 . 0) ;

mean temp = sum temp / temp . s i z e () ;

binWidth = data range / (1 . 0 + log2 (n . s i z e ()) + log2 (1 . 0 + abs (mean temp) / sg1)) ;

numBins = data range / binWidth ;

return numBins ;

Secondly, we use Scott’s rule, as it is more statistically rooted by taking data size and

variability into account. It also works well with large datasets, which is when our data reduction

scheme is needed most. In this method, the bin width is proportional to the standard deviation of

the data, which is not very robust to outliers. The algorithm for this is shown in Listing 4.2.

Listing 4.2: Scott’s Rule Algorithm

INPUT: n : o r i g i n a l data s e t to be sampled

INPUT: data range : range o f data va lues over the e n t i r e s e r i e s

INPUT: mean : mean o f data va lues over the e n t i r e s e r i e s

INPUT: s tdev : standard dev i a t i on o f data va lues over the e n t i r e s e r i e s

OUTPUT: numBins : number o f b ins recommended

binWidth = pow ((2 4 . 0 ∗ sq r t (p i) / s izeof (n)) , (1 . 0 / 3 . 0)) ∗ stdev ;

numBins = data range / binWidth ;

return numBins ;

In our pre-processing step, we use both Doane’s and Scott’s rules to provide the user with a

range of bins to consider. Instead of simply presenting these recommendations to the user, we also

collect a small number of samples with these bins and reconstruct the data to estimate the resulting

data quality. Based on this estimation, our algorithm selects the number of bins corresponding to the

highest quality. Thus, the overall overhead of this pre-process depends on the time it takes to sample,

reconstruct, and analyze the data twice. Since we only need an estimation of the quality to assess

21

20

25

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Q
ua

lit
y

(P
SN

R
)

Time-Step

Configure Once

Reconfigure Each
Time-Step

(a) Non-Reuse.

20

25

30

35

40

45

50

55

60

1 10 19 28 37 46 55 64 73 82 91 100

Q
ua

lit
y

(P
SN

R
)

Time-Step

Configure Once

Reconfigure Each
Time-Step

(b) Error-Reuse.

Figure 4.6: Consistent vs. varying number of bins

which number of bins is better, we use an OpenMP accelerated CPU version of nearest neighbors

reconstruction. This method is faster but yields lower quality than other reconstruction methods.

This is an acceptable trade-off, as we only need to know the quality trend and not necessarily the

exact expected quality.

When using the histogram-based reuse method, it is crucial to maintain the same bin width,

to ensure a fair comparison. However, when using the non-reuse or error-reuse method, we could

update the number of bins for each time-step. Our experiments in Figure 4.6 find no improvement

in configuring the number of bins once at the beginning or re-configuring at each time-step. This is

true for our experiments, as our sampling algorithm is designed to work with datasets that progress

smoothly over time. Thus, using the number of bins optimal for the first time-step yields the same

quality as if we were to recompute the optimal number of bins for each time-step independently.

4.2.2 Determining Error Threshold

When using the error-based reuse method, we use the root mean square error to determine

if two temporally corresponding regions are similar. Regions are considered similar if their error

is less than the user-specified error threshold, designed to limit the amount of error allowed when

reusing data. However, the user may not know what threshold would yield the best result. With

a threshold too loose, too much data from the previous time-step would be reused, even if it is not

a sufficient representation of the updated values of the current time-step. However, very little data

will be reused if the threshold is too strict, leaving our algorithm un-optimized. It will add an extra

temporal overhead of checking for similarity but finding nothing similar enough to leverage, yielding

22

the same quality as the non-reuse methods.

As a generic standard to determining the error threshold, we calculate the difference to

each corresponding data value between the first two time-steps of the series. After calculating the

difference between these steps, we sort the differences from least to greatest. Lastly, we calculate the

third quartile of this list and present this as our proposed error threshold. This process is detailed

in Listing 4.3.

We have found that using the third quartile of the sorted list of errors is the best generic

error threshold, as it generally yields one of the highest quality, post-reconstruction. This method

works well, as the user does not need to know any prior information on their dataset.

Listing 4.3: Generic Error Threshold Algorithm

INPUT: n0 : time−s tep 0 o f o r i g i n a l datase t

INPUT: n1 : time−s tep 1 o f o r i g i n a l datase t

OUTPUT: e r r o r t h r e s h o l d : e r r o r th r e sho ld recommended

vector<f loat> e r r o r (s izeof (n)) ;

for i in range (0 , s izeof (n0)) :

e r r o r [i] = abs (n0 [i] − n1 [i]) ;

s o r t (e r r o r . begin () , e r r o r . end ()) ;

e r r o r t h r e s h o l d = e r r o r [int (s izeof (n0) ∗ 0 . 7 5)] ; // 75 th pe r c en t i l e AKA 3rd qua r t i l e

4.2.3 Determining Region Dimensions

It is critical to set an appropriate region size to yield an optimal performance of our spa-

tiotemporal sampling method, as a region size too small or too large affects both overall quality

and throughput. For example, Figure 4.7 shows the hurricane dataset divided into differently sized

regions. If we used a region size too large, it would be more difficult to consider two temporally

corresponding regions similar, as there is more data inside.

The more regions we divide the dataset into, the lower the amount of data within them,

making the data values very localized. This raises the probability that this small amount of data

points has not changed over time, potentially yielding more reuse and generally a higher quality

sample. However, the more regions, the more similarity comparisons are needed, which slows down

the overall process. Thus, we need some balance between a small and large region size.

To assist the user in determining an optimal number of regions for their dataset and con-

straints, we run a pre-processing step to estimate the throughput and amount of regions reused per

23

Region Dimensions: 50x50x50 Region Dimensions: 25x25x25 Region Dimensions: 5x5x5

4000

3000

2000

1000

0

1000

2000

Figure 4.7: Hurricane Isabel regions

number of regions. We provide a line plot to the user to visualize the trade-off between the two

metrics. In general, as the number of regions increases, the quality increases, but the throughput

decreases. Thus, the optimal number of regions depends on what is more important to the situa-

tion: quality or throughput. Given this trade-off plot, one can choose the number of regions that

are best for their constraints. While an exhaustive study of testing every possible region dimension

would yield a more specific plot, doing so would introduce a costly overhead that outweighs the

pre-processing benefits. Thus, we only test a distributed subset of 10 region sizes, as it adequately

represents the overall trend while adding little overhead.

24

4.3 Sampling Process

In this section, we detail the specific steps that comprise our spatiotemporal sampling algo-

rithm. This sequence of processes runs for all time-steps in the series. Note that steps 1, 2, 3, 6, and

7 are leveraged from the importance-based method of Biswas et al. [6]; we refer to this process as

the non-reuse method. We use the non-reuse method for the first time-step as there is no previous

data to utilize.

4.3.1 Step 1: Data Histogram Creation

Regardless of reuse, the first step is to construct a histogram of all the data values in the

current time-step. The bin range of this histogram is based on the maximum and minimum values

of the current time-step.

4.3.2 Step 2: Data Histogram Sorting

The next step is to sort the histogram bins from least to greatest. This resulting list of bins

is then used to develop the acceptance function that biases the values that fall into bins with the

lowest amount.

4.3.3 Step 3: Acceptance Function Development

Using the sorted histogram, we develop an acceptance function that sets the acceptance rate

for each bin. If a data point’s value falls into that bin range, it is compared to the corresponding bin

acceptance rate. Using the user-specified sample ratio, we determine the target number of samples

per bin, which, ideally, is evenly distributed. Thus the maximum target number of samples per bin

equals the sample ratio divided by the number of bins. We then iterate over the sorted histogram

to determine if the number of points in the bin is more than the target maximum. If so, we update

the bin value to equal the target maximum. If there are fewer data points than the maximum, we

do not update. If a bin does not reach the maximum, the unused storage is redistributed among

the remaining bins. Once every bin has been processed, we divide them by the original histogram

entry, creating an acceptance rate between 0.0 and 1.0. This ensures that the rare values have an

acceptance probability closer to 1.0, therefore more likely to be a part of the sample, and common

values have an acceptance probability closer to 0.0. This process is detailed in Listing 4.4.

25

Listing 4.4: Importance-Function Algorithm

INPUT: n : o r i g i n a l data s e t to be sampled

INPUT: α : user−s p e c i f i e d sampling percentage

INPUT: numBins : number o f histogram bins

OUTPUT: IF : Importance Factor per bin

max = α / numBins ; // Calcu late maximum number of samples per histogram bin

// Build and Sort Histogram of Values

f r e qu en c i e s = build histogram(n) ;

f r e qu en c i e s = so r t (f r e qu en c i e s) ;

// Calcu late Importance Factor per Bin

while (i < numBins) :

items in bin = f r e qu en c i e s [i] ;

i f (items in bin < max) :

// Keep a l l o f these items

IF [i] = items in bin ;

i++;

else :

// Can ’ t keep a l l items in bin

for j in range (i , numBins) :

IF [j] = max ;

break ;

// Normalize Importance Factors

for i in range (0 , numBins) :

IF [i] = IF [i] / f r e qu en c i e s [i] ;

4.3.4 Step 4: Region Histogram Construction

If we use the histogram-based reuse method, we need to construct a histogram per region

of the current time-step. While these smaller histograms use the same number of bins as the full

data histogram, the bin range is set to the minimum and maximum values one expects throughout

the simulation’s lifetime. Since these histograms are used to compare multiple time-steps, we need

to ensure the bin widths stay constant for all samples. Thus, we need to use the lifetime extrema

rather than for the current time-step alone.

26

4.3.5 Step 5: Region Comparison and Reuse

When using the histogram-based or error-based reuse method, we must compare each re-

gion to its temporally corresponding counterpart. With the histogram-based method, we calculate

histogram intersection for each region with the current and previous time-steps. If they are found to

be identical, they are marked for reuse. With the error-based method, we calculate the root mean

square error per region. If a region has an error less than the user-specified tolerance, it is marked

for reuse. If previous information is unavailable or has been reused in the previous iteration, we skip

the region. This helps us to avoid a domino effect upon time for reconstruction.

4.3.6 Step 6: Random Number Generation and Sample Selection

In this step, we determine which data points will be included in the sample. First, we create

a mask of zeros equal to the size of the dataset to signify which points will be a part of the sample

set and which will be left out. Then, for each data point, we determine which bin the value would

fall into in the global histogram and the corresponding acceptance rate for that bin. Next, each data

point is assigned a random number, generated between 0.0 and 1.0. If this random number is less

than the acceptance rate, we update the corresponding mask location to a 1 to signify that it is to

be kept in the sample.

4.3.7 Step 7: Gathering Sample Data

Once all of the data has been processed, we need to use the previously created mask to

collect all of the data locations and values for the chosen samples and append them to the final list

of samples.

4.3.8 Step 8: Additional Random Sampling

Both the histogram-based and error-based methods use less storage space by reusing infor-

mation in certain regions of the previous time-step instead of taking new samples for the entirety

of the current time-step. Figure 4.4 shows that the non-reuse method will nearly exactly fill the

user-specified sample ratio, while the reuse methods do not. Since our method is centralized around

the concept of a sample ratio, we aim to collect a number of samples as close as possible. Thus, we

use simple random sampling to fill the remainder of the sample budget. We only take more samples

27

from the regions that did not reuse this time-step to further improve the quality in those areas of

significant change.

4.4 Summary

Our goal is to reduce the overall size of a data series by taking spatial samples of each

time-step, and leveraging temporal similarities to reuse samples between time-steps. Figure 4.4

shows that regardless of how temporal similarities are quantified, by reusing data from previous

time-steps we have the storage capacity to take additional samples to fill the user-specified sample

ratio. In general, more samples yield higher reconstructed quality. Thus, we expect improvements

over existing data sampling methods.

28

Chapter 5

Experimental Setup

With our spatiotemporal sampling method designed and implemented, we move to evaluate

both our preprocessing steps and the effectiveness of our sampling method. In all of our experiments,

we conduct our trials using Clemson’s Palmetto Cluster [28]. Specifically, we use an R740 model 40

core Intel Xeon CPU with 372 GB of memory when running all trials. We evaluate our sampling

method using three real-world High-Performance Computing datasets and three sampling ratios:

0.5%, 1%, and 2%. Table 5.1 describes the details of each data set and the input parameters we use

for sampling (as described in Section 4.2).

5.0.1 ExaAM

The Exascale Additive Manufacturing Project uses exascale simulations to design Additive

Manufacturing components [5, 17]. This research was supported by the Exascale Computing Project

(17-SC-20-SC), a collaborative effort of the U.S.Department of Energy Office of Science and the

National Nuclear Security Administration. It consists of 108 time-steps of spatial resolution 20 ×

200 × 50. We experiment with this data set primarily to show the difference in results when using

a smaller data set that has more time-steps. Figure 5.1 shows time-step 64, with the highlighted

region of interest, the hottest portion of the visual.

29

5.0.2 Isabel

The Hurricane Isabel Data models the 2003 hurricane in the western Atlantic region [15].

This data was produced by the Weather Research and Forecast model, courtesy of NCAR, and

the U.S. National Science Foundation. For our experiments, we sample the pressure variable, as it

provides a distinct representation of the region of interest for this data, the hurricane eye, as seen

in Figure 5.2. This dataset consists of 48 time-steps of resolution 500× 500× 100.

5.0.3 Impact

The Deep Water Impact Ensemble dataset [29] is the collection of simulations run at Los

Alamos National Laboratory to study Asteroid Generated Tsunami. These simulations help study

the impact of an asteroid in deep ocean water to learn the limit of dangerous asteroids. We sample the

water volume variable, V02, as it clearly visualizes the resulting water splash, the region of interest

of this dataset. The data values range from 0.0 to 1.0, where 1.0 is pure water and <1.0 is asteroid

debris mixed with water. For our experiments, we use 100 time-steps of resolution 300× 300× 300,

as presented in Figure 5.3.

30

DATASET VARIABLE DIMENSIONS DATA SIZE STEPS SUB-REGION BINS ERROR

ExaAM - 20× 200× 50 0.8 MB 108 10× 40× 10 633 0.0
Isabel Pressure 500× 500× 100 95 MB 48 25× 25× 25 27 28.0
Impact V02 300× 300× 300 108 MB 130 50× 50× 50 27 0.0

Table 5.1: Datasets and configurations used in experimental evaluations.

0 25 50 75 100 125 150 175

0

20

40

Time-Step 60

0 25 50 75 100 125 150 175

0

20

40

Time-Step 61

0 25 50 75 100 125 150 175

0

20

40

Time-Step 62

400

500

600

700

800

900

Figure 5.1: ExaAM dataset

0 100 200 300 400

0

100

200

300

400

Time-Step 10

0 100 200 300 400

0

100

200

300

400

Time-Step 11

0 100 200 300 400

0

100

200

300

400

Time-Step 12

4000

3000

2000

1000

0

1000

2000

Figure 5.2: Hurricane Isabel pressure dataset

0 50 100 150 200 250
0

50

100

150

200

250

Time-Step 22960

0 50 100 150 200 250
0

50

100

150

200

250

Time-Step 23151

0 50 100 150 200 250
0

50

100

150

200

250

Time-Step 23341

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Asteroid Impact V02 dataset

31

Chapter 6

Evaluating Our Sampling Method

We first analyze the effectiveness of our proposed pre-processing steps to determine the

number of bins, error threshold, and the number of regions for each dataset. Using those parame-

ters, we sample each dataset with various methods and analyze the throughput of each. Next, we

reconstruct from the samples and calculate the average data accuracy with the original data. Lastly,

we explore changing the sampling algorithm used within our reuse method and analyze how doing

so affects throughput and quality.

6.1 Configuring Parameters

6.1.1 Number of Bins

Our first pre-processing step is to determine what number of bins to use with the histograms

when sampling the data. This step uses Doane’s rule and Scott’s rule to provide two possible optimal

numbers of bins for the dataset, based on the first time-step. Using the two proposed numbers of

bins, we estimate the quality of the reconstructed dataset if we were to construct with that many

bins. Then we either use Doane’s or Scott’s proposal, based on which provided the highest quality

post-reconstruction dataset. The number of bins our pre-processing step selects per dataset are

listed in Table 5.1.

Figure 6.1 shows an experiment varying the number of histogram bins and the resulting

quality per dataset. This shows that our pre-process’s proposed number of bins yields one of the

32

Doane: 20

Scott: 633

30

35
40

45

50

55
60

65

0 200 400 600 800 1000

Q
ua

lit
y

(P
SN

R)

Number of Bins

First Time-Step Average of First Ten Time-Steps

(a) ExaAM.

Doane: 27
Scott: 1438

25

26

27

28

29

30

0 500 1000

Q
ua

lit
y

(P
SN

R)

Number of Bins

First Time-Step Average of First Ten Time-Steps

(b) Isabel.

Doane: 27

Scott: 225

5

7

9

11

13

15

0 200 400 600 800 1000

Q
ua

lit
y

(P
SN

R)

Number of Bins

First Time-Step Average of First Ten Time-Steps

(c) Impact.

Figure 6.1: Average quality, varying number of bins

highest qualities across datasets. Since this process determines an optimal number of bins based

only on the first time-step, it is possible that it does not yield the most optimal overall time-steps.

This is why we also provide the average quality of the first ten time-steps if we were to sample

with that number of bins. This shows that the proposed number of bins still provides one of the

highest qualities, even as the data series progresses, as our sampling algorithm is designed to utilize

temporal similarities; Thus, it works best with datasets that change smoothly over time. Overall,

while our method does not guarantee to propose the most optimal number of bins, it does provide

a more near-optimal option than if the user were to set at random. For example, Figure 6.1a shows

that with the ExaAM dataset, a user could randomly choose to use ten bins for their experiments,

resulting in a PSNR of 42 dB. However, using our pre-processing step, 633 bins are used, yielding a

1.43× improvement in quality.

Even though this pre-processing step improves the overall quality of the reconstructed data,

it is only as effective as its throughput. We run the data reduction process to avoid the I/O

bottleneck, so the overall data sampling algorithm is useless if it itself becomes the new bottleneck.

We find that with a sample ratio of 1%, this specific pre-processing step introduces an average 0.2%

temporal overhead of the sampling process for the entire data series. The majority (≥93%) of this

process is spent in the reconstruction and quality analysis phase. However, we find this to be an

acceptable temporal trade-off, as assisting the user in determining the number of bins helps yield

the highest overall quality.

33

Q3

0

10

20

30

40

50

0 50 100 150 200

Q
ua

lit
y

(P
SN

R)

Error Threshold

First Time-Step Average of First 10 Time-Steps

(a) ExaAM.

Q3

0
5

10
15
20
25
30
35

0 50 100 150 200

Q
ua

lit
y

(P
SN

R)

Error Threshold

First Time-Step Average of First 10 Time-Steps

(b) Isabel.

Q3

0
2
4
6
8

10
12
14

0 50 100 150 200

Q
ua

lit
y

(P
SN

R)

Error Threshold

First Time-Step Average of First 10 Time-Steps

(c) Impact.

Figure 6.2: Average quality, varying error threshold.

6.1.2 Error Threshold

Next, we run our pre-processing step to estimate an optimal error threshold per dataset.

This process calculates the sorted error distribution between the first two time-steps and takes the

third quartile as the threshold. We run experiments with varying error thresholds and resulting

post-reconstruction quality to prove the validity of this process. As shown in Figure 6.2, using the

third quartile of error as the threshold results in one of the highest qualities across datasets. The

trend holds as we continue to use it over the next ten time-steps.

We use the error threshold recommended by this pre-processing step for each dataset, as

listed in Table 5.1. The ExaAM and Impact datasets both have a recommended threshold of 0.0

because they change very smoothly over time, causing the difference between the first two time-steps

to be very small. Even with this stringent error threshold, there are still enough similarities between

regions to consider samples reusable.

With a sample ratio of 1%, this pre-processing step introduces an average 0.03% temporal

overhead to the entire sampling process, varying slightly as data size and number of time-steps

varies. While the error threshold has a smaller effect on quality than the other input parameters,

we still find this pre-processing step a good trade-off between the possible quality achieved and the

low temporal overhead.

6.1.3 Number of Regions

Lastly, we use a pre-processing step to determine the number of regions to divide each time-

step into. In this process, we compare the average percentage of regions reused from time-step tk−1

when gathering samples for time-step tk, of the first ten time-steps. Our spatiotemporal sampling

34

0

0.05

0.1

0.15

0.2

0.25

0%

20%

40%

60%

80%

100%

1 10 100 1000

Ba
nd

w
id

th
 (G

B/
s)

Re
gi

on
s R

eu
se

d

Number of Regions
Blocks Reused Percent Bandwidth (GB/s)

(a) ExaAM.

0

0.05

0.1

0.15

0.2

0.25

0%

20%

40%

60%

80%

100%

1 100 10000

Ba
nd

w
id

th
 (G

B/
s)

Re
gi

on
s R

eu
se

d

Number of Regions
Blocks Reused Percent Bandwidth (GB/s)

(b) Hurricane Isabel.

0

0.05

0.1

0.15

0.2

0.25

0%

20%

40%

60%

80%

100%

1 100 10000

Ba
nd

w
id

th
 (G

B/
s)

Re
gi

on
s R

eu
se

d

Number of Regions
Blocks Reused Percent Bandwidth (GB/s)

(c) Asteroid Impact.

Figure 6.3: Evaluation of region size

algorithm utilizes more samples from tk−1 when we have each time-step divided into more small

regions than with fewer large regions. The more regions we have, the smaller the region dimensions

are, meaning the data within each region is very precise. This allows our algorithm to reuse more

regions as the probability of fewer data points changing over time is lower than if we had to consider

a region of more data points. Reusing more regions allows us to have access to more samples

overall, which generally correlates to a higher post-reconstruction quality. Thus, if the user wants

the highest qualities possible, the more regions they should specify. Consequently, having more

regions means that more similarity computations have to be performed, drastically slowing down

the overall sampling process. This trade-off is presented in Figure 6.3. In general, the more regions,

the higher the percentage of regions reused, but the lower the throughput. We present a version of

these plots to the user with their input dataset for them to choose a number of regions to focus on

higher post-reconstruction quality, higher throughput, or some trade-off of both.

With a sample ratio of 1%, the average overhead introduced is ≤3% of the entire sampling

process. Similar to the previous two pre-processes, we deem this overhead as an acceptable trade-off

as it provides a more precise understanding of the quality-throughput trade-off of our algorithm.

It also aids the user in choosing a configuration that will meet their standards. In the following

experiments, we choose a middle-ground number, as described in Table 5.1, to have a more general

amount of previous time-step utilization with an acceptable bandwidth trade-off.

6.2 Overall Spatiotemporal Sampling

In this section, we evaluate the overall throughput and quality of our spatiotemporal sam-

pling algorithm as compared to existing algorithms. We first analyze the resulting quality of each

35

sampling method: the non-reuse sampling, histogram-based reuse sampling, and error-based reuse

sampling. After using linear interpolation to reconstruct the dataset from each group of samples

for every time-step in each data series, we calculate the peak signal-to-noise ratio (PSNR) between

each reconstructed time-step and the original data (Equation 3.2). PSNR is based on the range

of the data values and the cumulative squared error between the original and reconstructed values

(the mean-square error). With this metric, a higher PSNR represents better quality. For our ex-

periments, we use the input parameters as configured in Section 4.2 and listed in Table 5.1. We

test with extremely small sampling ratios, with 0.5% equating to a 100 : 1 compression ratio, as our

sampling method is designed to maintain data fidelity with a large amount of reduction. Figure 6.4

shows the resulting quality from our experiments with varying sample ratios. Regardless of sample

ratio and dataset, we find that our spatiotemporal reuse methods consistently achieve higher levels

of quality than the original non-reuse sampling method. Our method is designed to never yield a

quality that is less than the original sampling method, as even with the worst case where no regions

are determined fit for reuse, the base algorithm is still used. This means that even in the case where

no regions are ever reused, the lowest quality our algorithm will ever achieve is equivalent to the

highest quality the base algorithm can achieve.

When comparing our two methods of reuse, histogram-based and error-based, we find that

they yield similar levels of quality, with error-based yielding slightly higher on average. This is

heavily due to the fact that the error-based method reuses regions based on the specified error

tolerance; therefore, it lets in less error on average than the histogram-based method. Datasets like

ExaAM consist of a central region of interest with a lot of static background data. While these static

data distributions may also correlate to low levels of error, we find that the histogram similarity

metric reuses more regions of data than the error based method, as shown in Figure 6.5a. For this

particular dataset, reusing the regions specified by the histogram metric resulted in higher quality

than the error metric.

Datasets like Hurricane Isabel consist of a region of interest, but the rest of the data is

not static. The hurricane eye is the region of interest, as it has the levels of lowest pressure, but

the surrounding areas also have fluctuating pressure over time. Thus, there is a lower correlation

between finding similar histograms and low error across time. Figure 6.5b shows that the error

based method reused more regions, however it kept the data within the error tolerance. Thus, the

resulting average quality displayed in Figure 6.4b for the error-based reuse method is the highest.

36

0.5% 1.0% 2.0%
Sample Ratio

25

30

35

40

45

50
Qu

al
ity

 (P
SN

R)

Non Histogram Error

(a) Average Overall ExaAM

0.5% 1.0% 2.0%
Sample Ratio

30

35

40

Qu
al

ity
 (P

SN
R)

Non Histogram Error

(b) Average Overall Isabel

0.5% 1.0% 2.0%
Sample Ratio

0

5

10

15

20

Qu
al

ity
 (P

SN
R)

Non Histogram Error

(c) Average Overall Asteroid

Figure 6.4: Average PSNR over varying sample rates.

Lastly, we analyze the resulting quality for the asteroid impact dataset. We find the most

improvement over the non-reuse method with this dataset. However, the overall PSNR for this

dataset is lower than the averages of the previous two datasets. This is an artifact from the core

sampling algorithm. Our spatiotemporal method improves the base group of samples, but the

resulting quality is heavily limited by the performance of the base. This trend is further explored in

Section 6.3.

We also include error bars of the standard deviation between the quality of each time-step,

per data series. Our spatiotemporal reuse methods have degrees of high variation partially due to

the non-reuse method used to gather samples. Since the base algorithm introduces a high variance

in quality between time-steps, our reuse method reflects this variance. If we change the base method

of choosing samples before reusing, the variance can be lowered, as further explained in Section 6.3.

The second factor that introduces variance in quality is the number of regions that are reused per

time-step. As the data series fluctuates, some neighboring time-steps may be very similar to each

other, yielding high levels of reuse and higher quality. However, there may be parts of the series

where the dataset is no longer smooth, and the simulation changes rapidly, yielding lower levels of

similarity across neighboring time-steps and lower quality for those time-steps.

Next, we analyze the average throughput of each sampling method. Overall, our spatiotem-

poral sampling method is generally bounded by the minimum throughput of the base method of

gathering samples. This trend is shown in Figure 6.6, as we detail the throughput (MB/s) of each

sampling algorithm. Since we add the process of checking similarity between time-steps, the fastest

our algorithm can be is the slowest the base method is. This trend is further explored in Section 6.3.

However, the cost of checking for similarity is offset if the number of regions to be reused is high.

37

0.5% 1.0% 2.0%
Sample Ratio

0.0%

10.0%

20.0%

30.0%

Bl
oc

ks
 R

eu
se

d

Non Histogram Error

(a) Average Overall ExaAM

0.5% 1.0% 2.0%
Sample Ratio

0.0%

10.0%

20.0%

30.0%

Bl
oc

ks
 R

eu
se

d

Non Histogram Error

(b) Average Overall Isabel

0.5% 1.0% 2.0%
Sample Ratio

0.0%

10.0%

20.0%

30.0%

40.0%

Bl
oc

ks
 R

eu
se

d

Non Histogram Error

(c) Average Overall Asteroid

Figure 6.5: Average percentage of regions reused over varying sample rates.

When a region is reused, we do not take new samples for that data; we reuse the samples from the

previous time-step. Therefore, we do not have to run the costly sampling algorithm to take new

samples. If the number of reused regions is high, then the overall throughput is increased. This

trend is found in Figure 6.5a in correlation to the resulting throughputs in Figure 6.6a with the

histogram-based reuse method. This trend is also partially seen with the Impact dataset. How-

ever, with the Isabel dataset, the histogram-based method reuses fewer regions, so the histogram

similarity overhead is not offset.

When analyzing the difference in throughput between the histogram-reuse and error-reuse

methods, we find that overall, the error-based reuse method is the slowest. This is primarily due

to step 5 (Region Comparison and Reuse). This step is slower for the error similarity metric than

the histogram metric, as seen in Figure 6.7. The main slowdowns of our spatiotemporal sampling

method, regardless of similarity metric, are found in steps 5 (Region Comparison and Reuse) and

7 (Gathering Sample Data) as shown in Figure 6.7 and described in Section 4.3. Step 5 can be

trivially parallelized, as each region can be compared to its corresponding chronological neighbor

independently of all of the other regions. Doing so would result in no effect on quality, but a

significant increase in throughput. Step 7 can also be parallelized, where each sample is gathered

from the selection specified in the previous step. Each sample value and location in the global array

index can be gathered independently, concurrently.

6.3 Core Sampling Algorithm Exchange

The novelty of our spatiotemporal sampling method is that it takes some samples from the

current time-step in some regions but has the ability to reuse samples from previous time-steps in

38

0.5% 1.0% 2.0%
Sample Ratio

150

200

250

Sa
m

pl
in

g
Th

ro
ug

hp
ut

 (M
B/

s)

Non Histogram Error

(a) ExaAM.

0.5% 1.0% 2.0%
Sample Ratio

0

50

100

150

200

Sa
m

pl
in

g
Th

ro
ug

hp
ut

 (M
B/

s)

Non Histogram Error

(b) Isabel.

0.5% 1.0% 2.0%
Sample Ratio

100

150

200

250

Sa
m

pl
in

g
Th

ro
ug

hp
ut

 (M
B/

s)

Non Histogram Error

(c) Impact.

Figure 6.6: Average bandwidth of sampling process.

1E-3
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 G

B/
s

Sampling Sub-Step
 ExaAM Isabel Impact

(a) Non-Reuse.

1E-3
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 G

B/
s

Sampling Sub-Step
 ExaAM Isabel Impact

(b) Histogram Reuse.

1E-3
1E-2
1E-1
1E+0
1E+1
1E+2
1E+3
1E+4

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 G

B/
s

Sampling Sub-Step
 ExaAM Isabel Impact

(c) Error Reuse.

Figure 6.7: Average bandwidth of sampling sub-processes.

other regions, capitalizing on similarities between chronological neighbors. The process by which we

gather these samples, however, is independent of our sampling method. We refer to this base method

as the “Core Sampling Algorithm” (CSA). Our spatiotemporal sampling method uses the CSA when

gathering samples for the first time-step and in regions that do not reuse previous samples.

Since our method works independently of CSA, we have the ability to change the CSA to any

existing sampling algorithm. Thus giving our method the ability to maintain relevance as the data

reduction field grows. To show the variance and usefulness of this ability, we use our histogram-based

and error-based reuse methods with three different CSAs: Simple Random, Importance-Based [7],

and Multi-Criteria Importance-Based Sampling [6]. Simple random sampling selects a data point

into the sample by pure randomness. Importance-Based sampling uses the distribution of data

values to give a bias to more unique data values. Multi-Criteria Importance-Based sampling uses

the distribution of values and local gradient to give a bias based on rare value and abrupt change.

The differences in the locations of samples with a 0.5% sample ratio can be seen in Figure 6.8.

Simple random sampling produces a uniformly distributed sample set, while the importance-based

methods bias the rare values in the region of interest. The multi-criteria sampling method yields the

39

(a) Random Samples (b) Importance-Based Samples (c) Multi-Criteria Samples

Figure 6.8: ExaAM samples gathered by different sampling algorithms

most samples in the region of interest, as it gives a bias to data points that have both rare values

and abrupt changes in gradients. The location of samples heavily affects the post-reconstruction

quality. Since the regions of interest have the most variance, they need more samples to ensure

a higher level of quality. However, fewer data points outside of this region need to be saved, as

they can be sufficiently represented by a fewer number and still maintain relatively high quality.

Thus, in general, the more samples taken in the region of interest, the higher the overall average

post-reconstruction quality. This trend is seen in Figure 6.9a, in relation to Figure 6.8, where the

multi-criteria method has the most samples in the region of interest and, in turn, has the highest

average quality. We use signal-to-noise ratio (Equation 6.1) for this evaluation to be consistent with

their previous results. We also include the error bars as the standard deviation of the difference in

quality between each time-step. The amount of variance seen in these error bars is dependent on

the CSA used. The non-reuse version of multi-criteria sampling has a lower variance than the other

methods; thus, our spatiotemporal reuse methods also have lower variance.

SNR = 20 ∗ log10
σraw
σnoise

(6.1)

Even though the multi-criteria algorithm yields the highest quality, it is not necessarily the

best overall algorithm. In general, more sophisticated algorithms yield a better sample, but at the

cost of more data assessment. Thus, the better the quality of samples, the lower the throughput.

This trade-off is presented in Figure 6.9b, whereas the sampling process becomes more rigorous, the

slower the overall algorithm.

6.4 Summary

In this section, we have shown that we enable higher performance by using our configuring

pre-processing step. This is a critical step in the overall process, as the number of bins, error

40

0

5

10

15

20

25

30

Random Importance Multi-Criteria

Q
ua

lit
y

(S
N

R)

Core Sampling Algorithm

Non-Reuse
Histogram Reuse
Error Reuse

(a) Quality.

0

5

10

15

20

25

30

35

40

Random Importance Multi-Criteria

Ba
nd

w
id

th
 (M

B/
s)

Core Sampling Algorithm

Non-Reuse

Histogram Reuse

Error Reuse

(b) Bandwidth.

Figure 6.9: ExaAM evaluation of varying core sampling algorithms

threshold, and region size heavily affect both the quality and throughput of each sampling method.

By introducing the slight temporal overhead of the steps to configure the input parameters, both

quality and throughput can be closer to what the user wants for their situation. Overall, our

spatiotemporal sampling algorithm yields higher quality than other sampling methods at the same

reduction rate. However, it does so at the cost of some loss in throughput. Lastly, we show that

our algorithm can be applied to any existing and future sampling methods, allowing our method to

stay relevant as the field of data sampling grows.

41

Chapter 7

Conclusions and Future Work

7.1 Conclusions and Contributions

The improvements in High-Performance computation power yield larger, more detailed sim-

ulations and datasets. Since the storage size and transfer speeds have not improved at the same rate,

there is a bottleneck in the overall scientific simulation pipeline. To avoid this bottleneck, others

have studied, analyzed, and presented various forms of reducing the data before writing to memory.

Existing work has previously studied the process of reducing the size of data by leveraging spatial

or temporal redundancies within the data series. However, few works combine both aspects of the

data to utilize the most redundancy possible. This research aimed to identify and leverage spatial

and temporal redundancies within a data series to yield higher post-reconstruction quality at the

same rate of reduction. We show that by reusing samples from neighboring time-steps in certain

regions, we achieve improvement in quality both in the overall dataset and within the regions of

interest. We study how various configurations of our spatiotemporal sampling algorithm, including

the similarity metric, number of bins, error threshold, and region size, can affect the overall results.

Based on the criticalness of these parameters, we also design and provide a set of pre-processing

steps to aid the user in selecting an optimal input configuration to yield the levels of quality and/or

throughput they desire. We also study the ability to interchange the base sampling algorithm that

our method uses to gather samples such that any existing or future algorithm can be enhanced by

appending our spatiotemporal reuse method.

42

7.2 Theoretical Implications

The major contribution of this research was to provide a data reduction algorithm that

improves the post-reconstruction quality of existing data sampling methods. We accomplish this

by introducing a temporal reuse aspect that can be applied to any other form of data sampling.

The process of analyzing time-steps to find temporal redundancies by use of histograms or error can

enhance any sampling algorithm. Specifically, we find our method achieves a 31.3% higher post-

reconstruction quality while only introducing a 37% degradation in throughput, on average. Thus,

as future sampling algorithms become faster or achieve higher qualities, our spatiotemporal method

can continue to be applied, allowing us to maintain relevance as the field grows. By creating a data

reduction method that is very customizable to specific constraints, we are able to greatly reduce

the size of large datasets while maintaining higher levels of quality than the initial base sampling

algorithm used. This improves the overall field of data sampling and makes any algorithm more

efficient in terms of quality. Thus, our spatiotemporal sampling method is important in solving the

issue of reducing the size of data to avoid the I/O and storage bottlenecks without loss of data

fidelity.

7.3 Future Work

An area for future work includes further investigations of other aspects of the data to

leverage. Currently, our method finds redundancies in the data values relative to their spatial and

temporal locations. We utilize these redundancies to further reduce the size of data. However,

other possible aspects of the data series that can be exploited, including inter-variable relationships.

For example, there is a strong correlation between the variables in the Hurricane Isabel dataset,

specifically within the region of interest. In the hurricane eye, the pressure is the lowest, and the

wind speeds are low. We can use the correlation between these variables to reuse more information,

like the locations of samples, to introduce more reduction.

Our method currently leverages two forms of existing data reduction schemes: data sampling

and temporal selection. It reduces data by gathering a selection of samples that represent each time-

step. This list of sample values is a highly lossily compressible list of floats and their locations are a

list of highly losslessly compressible integers. Thus, instead of competing with other forms of data

reduction, we can leverage compression to further reduce the size of the data while maintaining the

43

same level of data quality.

Another suggestion for future work has a focus on the reconstruction portion of the overall

process. In this work, we use generic linear interpolation to convert the samples to full resolution.

Even though this process yields higher quality than other methods, like nearest neighbors, it suffers

from lower throughputs. As this is an equally important part of the process as the reduction step, it

needs to have a more in-depth study. Creating a reconstruction algorithm specific to our sampling

process may yield a resulting quality equivalent to or higher than currently available and may also

address the throughput constraints.

44

Bibliography

[1] Top500 list. https://top500.org/lists/top500/2021/06/, 2021.

[2] Hiroshi Akiba, Nathaniel Fout, and Kwan-Liu Ma. Simultaneous classification of time-varying
volume data based on the time histogram. In EuroVis, volume 6, pages 1–8, 2006.

[3] Hiroshi Akibay and Kwan-Liu May. A tri-space visualization interface for analyzing time-
varying multivariate volume data. In Proceedings of the 9th Joint Eurographics/IEEE VGTC
conference on Visualization, pages 115–122, 2007.

[4] Allison H Baker, Haiying Xu, John M Dennis, Michael N Levy, Doug Nychka, Sheri A Mick-
elson, Jim Edwards, Mariana Vertenstein, and Al Wegener. A methodology for evaluating the
impact of data compression on climate simulation data. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing, pages 203–214, 2014.

[5] James Belak, John Turner, and ExaAM Team Team. Exaam: Additive manufacturing process
modeling at the fidelity of the microstructure. APS, 2019:C22–010, 2019.

[6] Ayan Biswas, Soumya Dutta, Earl Lawrence, John Patchett, Jon C. Calhoun, and James
Ahrens. Probabilistic data-driven sampling via multi-criteria importance analysis. IEEE Trans-
actions on Visualization and Computer Graphics, page 1–1, 2020.

[7] Ayan Biswas, Soumya Dutta, Jesus Pulido, and James Ahrens. In situ data-driven adaptive
sampling for large-scale simulation data summarization. In Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - ISAV ’18, page
13–18. ACM Press, 2018.

[8] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao, Chun Hong
Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. Use cases of lossy compression
for floating-point data in scientific data sets. The International Journal of High Performance
Computing Applications, 33(6):1201–1220, 2019.

[9] S. Di and F. Cappello. Fast error-bounded lossy hpc data compression with sz. In 2016
IEEE International Parallel and Distributed Processing Symposium (IPDPS), page 730–739,
May 2016.

[10] Paul Daniel Dumitru, Marin Plopeanu, and Dragos Badea. Comparative study regarding the
methods of interpolation. Recent advances in geodesy and Geomatics engineering, 1:45–52, 2013.

[11] Veronika Eyring, Sandrine Bony, Gerald A Meehl, Catherine A Senior, Bjorn Stevens, Ronald J
Stouffer, and Karl E Taylor. Overview of the coupled model intercomparison project phase 6
(cmip6) experimental design and organization. Geoscientific Model Development, 9(5):1937–
1958, 2016.

45

https://top500.org/lists/top500/2021/06/

[12] Yi Gu and Chaoli Wang. Transgraph: Hierarchical exploration of transition relationships in
time-varying volumetric data. IEEE Transactions on Visualization and Computer Graphics,
17(12):2015–2024, 2011.

[13] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and Katrin Heit-
mann. Hacc: extreme scaling and performance across diverse architectures. In SC’13: Pro-
ceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 1–10. IEEE, 2013.

[14] James W Hurrell, Marika M Holland, Peter R Gent, Steven Ghan, Jennifer E Kay, Paul J Kush-
ner, J-F Lamarque, William G Large, D Lawrence, Keith Lindsay, et al. The community earth
system model: a framework for collaborative research. Bulletin of the American Meteorological
Society, 94(9):1339–1360, 2013.

[15] Hurricane ISABEL Simulation Data. http://vis.computer.org/vis2004contest/data.

html, 2019. Online.

[16] Rob J Hyndman. The problem with sturges’ rule for constructing histograms. Monash Univer-
sity, pages 1–2, 1995.

[17] Zach Jibben. truchas-pbf. https://gitlab.com/truchas/truchas-pbf/, 2020.

[18] Sian Jin, Pascal Grosset, Christopher M Biwer, Jesus Pulido, Jiannan Tian, Dingwen Tao, and
James Ahrens. Understanding gpu-based lossy compression for extreme-scale cosmological sim-
ulations. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 105–115. IEEE, 2020.

[19] James P Kossin and Wayne H Schubert. Mesovortices in hurricane isabel. Bulletin of the
American Meteorological Society, 85(2):151–153, 2004.

[20] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello. Error-controlled
lossy compression optimized for high compression ratios of scientific datasets. In 2018 IEEE
International Conference on Big Data (Big Data), pages 438–447, 2018.

[21] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2674–2683, Dec 2014.

[22] Aidong Lu and Han-Wei Shen. Interactive storyboard for overall time-varying data visualization.
In 2008 IEEE Pacific visualization symposium, pages 143–150. IEEE, 2008.

[23] William G Madow and Lillian H Madow. On the theory of systematic sampling, i. The Annals
of Mathematical Statistics, 15(1):1–24, 1944.

[24] Dirk Meister, Jurgen Kaiser, Andre Brinkmann, Toni Cortes, Michael Kuhn, and Julian Kunkel.
A study on data deduplication in hpc storage systems. In SC’12: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Analysis, pages
1–11. IEEE, 2012.

[25] Sheri Mickelson, Alice Bertini, Gary Strand, Kevin Paul, Eric Nienhouse, John Dennis, and
Mariana Vertenstein. A new end-to-end workflow for the community earth system model (ver-
sion 2.0) for the coupled model intercomparison project phase 6 (cmip6). Geoscientific Model
Development, 13(11):5567–5581, 2020.

[26] Bao D Nguyen, Ngan VT Nguyen, Vung Pham, and Tommy Dang. Visualization of data from
hacc simulations by paraview. In 2019 IEEE Scientific Visualization Conference (SciVis), pages
31–32. IEEE, 2019.

46

http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
https://gitlab.com/truchas/truchas-pbf/

[27] B. Nouanesengsy, J. Woodring, J. Patchett, K. Myers, and J. Ahrens. Adr visualization: A
generalized framework for ranking large-scale scientific data using analysis-driven refinement.
In 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pages 43–50,
2014.

[28] Palmetto Cluster, Clemson University. http://citi.clemson.edu/palmetto/, 2021. [Online;
accessed 24-June-2021].

[29] John Patchett and Galen Gisler. Deep water impact ensemble data set. Technical report, Los
Alamos National Laboratory, 2017. LA-UR-17-21595.

[30] Veronika Solteszova, Noeska N Smit, Sergej Stoppel, Renate Grüner, and Stefan Bruckner.
Memento: Localized time-warping for spatio-temporal selection. In Computer Graphics Forum,
volume 39, pages 231–243. Wiley Online Library, 2020.

[31] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng Liao, and Alok
Choudhary. Data compression for the exascale computing era-survey. Supercomputing frontiers
and innovations, 1(2):76–88, 2014.

[32] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and error-controlled quan-
tization. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
page 1129–1139, May 2017.

[33] Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and error-controlled quan-
tization. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1129–1139. IEEE, 2017.

[34] KE Taylor, RJ Stouffer, GA Meehl, KE Taylor, RJ Stouffer, and GA Meehl. An overview of
cmip5 and the experiment design, b. am. meteorol. soc., 93, 485–498, 2012.

[35] S Crusan V Vishwanath and K Harms. Parallel i/o on mira, 2019.

[36] Tzu-Hsuan Wei, Soumya Dutta, and Han-Wei Shen. Information guided data sampling and
recovery using bitmap indexing. In 2018 IEEE Pacific Visualization Symposium (PacificVis),
pages 56–65. IEEE, 2018.

[37] D Whalen and ML Norman. Competition data set and description. 2008 IEEE Visualization
Design Contest, 2008.

[38] Jonathan Woodring, J Ahrens, J Figg, Joanne Wendelberger, Salman Habib, and Katrin Heit-
mann. In-situ sampling of a large-scale particle simulation for interactive visualization and
analysis. In Computer Graphics Forum, volume 30, pages 1151–1160. Wiley Online Library,
2011.

[39] Bo Zhou and Yi-Jen Chiang. Key time steps selection for large-scale time-varying volume
datasets using an information-theoretic storyboard. In Computer Graphics Forum, volume 37,
pages 37–49. Wiley Online Library, 2018.

47

http://citi.clemson.edu/palmetto/

	Dynamic Reduction of Scientific Data Through Spatiotemporal Properties
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Related Work
	Data Compression
	Time-Step Selection
	Data Sampling
	Summary of Our Contributions

	Background
	Simple Random Sampling
	Importance-Based Sampling
	Temporal Selection
	Data Reconstruction
	Data Quality

	Spatiotemporal Sampling
	Overall Concept
	Configuring Parameters
	Sampling Process
	Summary

	Experimental Setup
	Evaluating Our Sampling Method
	Configuring Parameters
	Overall Spatiotemporal Sampling
	Core Sampling Algorithm Exchange
	Summary

	Conclusions and Future Work
	Conclusions and Contributions
	Theoretical Implications
	Future Work

	Bibliography

