
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

December 2021

Soft Continuum Robotic Airbag Integrated with Passive Walker for Soft Continuum Robotic Airbag Integrated with Passive Walker for

Fall Mitigation Fall Mitigation

Jacob Andrew Thompson
Clemson University, jacobthompson127@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Thompson, Jacob Andrew, "Soft Continuum Robotic Airbag Integrated with Passive Walker for Fall
Mitigation" (2021). All Theses. 3650.
https://tigerprints.clemson.edu/all_theses/3650

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3650&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3650?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3650&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Soft Continuum Robotic Airbag Integrated with Passive
Walker for Fall Mitigation

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Electrical Engineering

by

Jacob Thompson

December 2021

Accepted by:

Dr. Ian Walker, Committee Chair

Dr. Ge Lv

Dr. Richard Groff

Abstract

This thesis describes the prototype and development of a soft continuum robotic airbag sys-

tem that is attached to a passive mobility walker. The system can deploy in multiple configurations:

to the front, left, or right of the walker depending on the direction of a detected fall. The continuum

component of the project is made of nylon fabric with thin cables, allowing it to be compactly stored

before deploying. The airbag is inflated in real time during a fall using a novel compression system.

Results of experiments with the prototype in each configuration are presented. The system deploys

consistently across falls, significantly reducing the g-force of impact.

ii

Acknowledgments

Firstly, I would like to thank Dr. Ian Walker for his support and guidance throughout this

project. His creativity and open-mindedness helped move this project forward and inspired me to

think outside the box on a multitude of other projects.

I would also like to thank Dr. Ge Lv and Dr. Richard Groff for taking the time out of

their busy schedules to serve on my defense committee. Additionally, I would like to thank all the

professors that I have had the pleasure of learning from as well as Clemson University for the many

opportunities it provides. I also want to thank both past and present members of our research group,

who have all been eager to share their knowledge with me.

Lastly, I want to thank my friends and family for their support throughout my educational

career. Their encouragement has been inspirational in keeping me motivated and determined to

further my academic goals. The tolerance of my roommates for this project’s footprint and clutter

was generous and greatly appreciated.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Tables . v

List of Figures . vi

1 Introduction . 1
1.1 Overview . 1
1.2 Background and Related Work . 1
1.3 Thesis Overview . 5

2 System Design and Prototyping . 6
2.1 Preliminary Inflation Research and Development . 6
2.2 Arm and Bladder Construction . 10
2.3 Mechanical and Hardware . 16
2.4 Integration with Walker and Actuators . 18
2.5 Electrical Design and Build . 26
2.6 Software . 37

3 Results Using the Prototype . 41
3.1 Preliminary Deploy Tests . 41
3.2 Final Deploy Tests . 55
3.3 Variable Weight Tests . 62

4 Conclusions and Discussion . 65
4.1 Future Work . 66

Appendices . 67
A Alternative Inflation Methods . 68
B Software Details . 74

Bibliography . 86

iv

List of Tables

2.1 Major electronic components . 26
2.2 Encoder values to engage brakes for different arm configurations 39

3.1 Summary of experimental results - peak g-force measured during each fall 62
3.2 Summary of variable weight results - peak g-force measured during the initial impact

with the ground for each fall . 64

v

List of Figures

1.1 Early smart walker systems with disc brakes (left) and center of gravity positioning
(right) . 2

1.2 JAIST Active Robotic Walker (left) and ISR-AIWALKER (right) that each help with
maneuverability and obstacle avoidance . 2

1.3 Hit-Air inflatable pull-cord vest (left) and Helite wearable airbag for cycling (right) . 3
1.4 Human airbag systems deploying . 4
1.5 Several pneumatic continuum robots . 5

2.1 Prototype using bungees to squish bladder between two rigid plates 7
2.2 Prototype with a square rod spun by a drill . 8
2.3 Deflection in prototype with 3/8′′ rod . 9
2.4 Prototype with 3/4′′ rod and spacers . 9
2.5 Small-scale prototype deploy test . 10
2.6 Adhesive side of the fabric (left) and uncoated side (right) 11
2.7 Identical fabric pieces cut out for the arm and bladder 11
2.8 Air nozzle sealed to the arm . 12
2.9 First full inflation of the fabric arm and air bladder 14
2.10 Components of the end of the arm . 15
2.11 Relative dimensions and positions of fabric arm components 16
2.12 Front view of the whole system . 17
2.13 Cutting the slots for straps (left) and finished front plate on the walker (right) . . . 18
2.14 Smooth guides for the webbing straps on the 3D printer (left) and partially installed

on the front plate (right) . 19
2.15 Adapter with embedded hex bit for connecting drill and square rod 19
2.16 Spinning shaft components labeled . 20
2.17 Overview of walker rear side . 22
2.18 The completed motor assembly for one arm cable . 23
2.19 All motor assemblies mounted on the walker . 24
2.20 Main electrical control systems for the project on the right side of the walker frame . 27
2.21 Voltage regulation circuit diagram . 28
2.22 Overall microcontroller pinout diagram . 29
2.23 Electrical control panel . 30
2.24 The wiring diagram of a power drill trigger. A SPDT switch selects the forward or

reverse direction, a potentiometer controls the speed, and a SPST switch signals if
the trigger is pulled or not. 31

2.25 Drill trigger replacement circuit diagram . 32
2.26 X9C102 digital potentiometer block diagram . 32
2.27 GPIO expander circuit diagram . 33
2.28 Electromagnetic motor brakes circuit diagram . 34
2.29 Inside the electrical control box with relays and digital potentiometers to interface

with the brakes and drill. 34

vi

2.30 DRV8825 motor driver pinout for our system . 35
2.31 Encoder and level shifter circuit diagram . 35
2.32 Cable assemblies as referenced in the software . 38

3.1 Deploy test with speed set to 2 and clutch on maximum. There is still air in the
bladder that should be forced into the arm, but the drill stopped spinning before the
arm was sufficiently pressurized. 42

3.2 Force diagram of the drill when it spins clockwise (top) vs counterclockwise (bottom).
Later tests were run with the drill spinning counterclockwise so that the force pushed
the handle into the wood instead of pulling on the thin plastic zip ties. 43

3.3 Deploying by driving the motors to position (left) vs letting the arm pull them to
position (right). This shows the motors can move faster than the arm pulls them out,
so either deploy method is an option. 44

3.4 Motor cables tangled and wrapped up after driving the motors to position at max speed 45
3.5 Encoder positions using hybrid deploy method . 46
3.6 Improved motor assembly with dual-shaft stepper, electromagnetic brake, and stronger

mount . 46
3.7 Encoder values after upgraded motor assembly . 47
3.8 Spiral cable wrap spacers . 48
3.9 Selection of different configurations that the arm with spacers can achieve 49
3.10 Data collection modes in Physics Toolbox app . 50
3.11 Phone mount locations for impact data collection . 51
3.12 G-Force data from baseline tests of just the dummy with ankle weights falling onto

the futon cushion . 52
3.13 G-Force data from baseline tests with the walker and the dummy, showing worse

results than without the walker . 53
3.14 Separation at time of impact causing worse impact with the walker than without the

walker . 54
3.15 Data logging - g-forces experienced by the dummy during baseline left tests 56
3.16 Progression of typical baseline left fall . 57
3.17 Baseline forward tests g-forces . 57
3.18 Progression of typical baseline forward fall . 58
3.19 Left deploy g-forces over five tests . 59
3.20 Progression of a left fall with the system deploying. 59
3.21 Right deploy g-forces over five tests . 60
3.22 Progression of a right fall with the system deploying. 60
3.23 Forward deploy g-forces over five tests . 61
3.24 Progression of a forward fall with the system deploying. 61
3.25 Weighted tests with 25 pounds added to the dummy 63
3.26 Weighted tests with 50 pounds added to the dummy 63
3.27 Progression of a forward fall with additional weight in the backpacks 64

A.1 Size comparison of compressed gas cartridges . 70

vii

Chapter 1

Introduction

1.1 Overview

Falls are the second leading cause of injury deaths worldwide [1], and the leading cause of

injury and death in older adults in the United States [2]. In 2018, 27.5% of U.S. adults aged 65

years or over reported at least one fall in the past year (35.6 million falls). Over 10% (8.4 million)

reported a fall-related injury, resulting in an estimated 3 million emergency department visits, more

than 950,000 hospitalizations, and approximately 32,000 deaths [3]. More than 95% of hip fractures

are caused by falls [2]. Fear of falls has been found to be a significant risk factor limiting activity in

the elderly [4].

Falls are more likely, and often more critical, for those individuals who are fragile and use

walkers. In a recent study, it was found that people using a walker were 7 times more likely to be

injured by a fall compared to those using a cane [5]. Passive walkers help provide stability for such

individuals during ambulation, but offer no protection in the event of a fall. This thesis discusses

the augmentation of a passive walker with a robotic airbag system to mitigate the effect of falls.

1.2 Background and Related Work

The concept of creating robotic versions of passive walkers, or “smart walkers,” is not new.

An early smart walker was a modified rollator walker developed by the Dublin Institute of Technology

using hydraulic disc brakes [6]. This system used a high-speed linear actuator to vary the pressure

1

Figure 1.1: Early smart walker systems with disc brakes (left) and center of gravity positioning
(right)

on the braking disk. The brake activated if the user moved too fast or if the walker sensed the

user wanted to stop. Another rollator walker with pneumatic brakes on the wheels [7] simulated

three different falling situations - freezing of limbs, stumble, and loss of balance. Another walker

that implements fall prevention is the RT Walker [8], which focuses on calculating the user’s center

of gravity in real time. When the user’s center of gravity is detected to be outside the region of

stability, brakes are enabled. These systems are illustrated in Figure 1.1. One drawback of these

braking systems is that they do not address cases when the walker is tilting or falling to the left or

the right.

Some smart walkers aim to help the user in a more subtle way. A robotic walker developed by

the Japan Advanced Institute of Science and Technology (JAIST) autonomously adjusts its direction

and speed according to the user’s walking movements [9]. It does not require any user input, instead

using a pair of laser range finders to detect the user’s legs and any obstacles in the environment.

Figure 1.2: JAIST Active Robotic Walker (left) and ISR-AIWALKER (right) that each help with
maneuverability and obstacle avoidance

2

The walker uses a trio of Mecanum wheels to drive the walker away from obstructions in an indoor

environment, while still following the general direction the user wants to go. This robotic walker

provides a measure of fall prevention by avoiding obstacles or drop-offs that could unbalance the

user, but in the case of a fall it simply locks up the wheels.

A similar robotic walker platform is the ISR-AIWALKER. A model built to loosely resemble

a standard walker, it uses two motorized wheels and two castor wheels to drive around. The system

infers user intention through a pair of force-sensitive handles, Leap Motion sensors, and several other

sensors for gait analysis. All of these inputs are aggregated and used to maneuver the walker in

tandem with the user’s intents. These smart walker systems can be seen in Figure 1.2.

Several groups have worked on “human airbags” - wearable devices which deploy when the

wearer is falling. These devices come in many forms such as vests, belts [10], jackets, or harnesses

[11]. Helite is a company that has made wearable airbag vests for skiing [12] and cycling [13]. The

Hit-Air inflatable air vest [14] is a body-worn airbag with a pull cord marketed towards equestrians,

where the rip cord is attached to the horse’s saddle and is pulled if they fall off the horse. See

Figure 1.3. These commercially available products demonstrate a need for personal fall protection

in a variety of environments.

Figure 1.3: Hit-Air inflatable pull-cord vest (left) and Helite wearable airbag for cycling (right)

Many human airbag systems for fall protection are designed as a belt or fanny pack that

the user must wear all the time. For example, the system discussed in [15] involves a belt with a

microcontroller, inertial measurement unit (IMU), compressed CO2 cylinder, and actuation mecha-

nism with airbags around the user’s hip. When the IMU detects the person is falling, it punctures

the gas cylinder and rapidly inflates the small airbag in front of the user’s hip within 333ms. A

demonstration of this device is shown in Figure 1.4a. A similar human airbag worn as a belt ws

3

designed in [16], and built in [17] with a focus on microelectromechanical systems (MEMS) to detect

the fall. The MEMS detection based system is shown deploying in Figure 1.4b.

(a) Small hip airbag deploying (b) MEMS based human airbag deploying

Figure 1.4: Human airbag systems deploying

However, these systems are static, in the sense that the deployed system remains the same

regardless of the specific fall endured by the individual. In this thesis, we introduce a novel al-

ternative: a reconfigurable robotic airbag system featuring the ability to deploy the airbag system

in the direction most needed. This provides the unique ability to tailor the response to the sit-

uation encountered, e.g. maximizing the volume of airbag between the falling individual and the

environment.

The key objective in this work was to develop a novel airbag deployment system, integrated

with a walker, which is not static but instead robotic, i.e. with programmable configurability, varying

to meet the deployment needs of a specific fall. The goal was for the airbag to be stowed in one face

of the walker, but be deployable in real time, as a function of the direction of a detected fall, across

the range of a semi-cylindrical region from the left side of, around the front of, and to the right side

of, the walker.

In order to address the above specifications, the core element of the design selected was

an inflatable continuum arm, actuated (configured) in real time by remotely actuated tendons.

Continuum (continuous backbone) robots have been the subject of much interest and research in

the past few years [18]. Continuum robots have been successfully applied to a variety of medical

procedures [19]. Inspired in large part by emerging research in soft robotics [20], [21], [22], researchers

have been exploring the shaping of soft air-filled volumes using tendons to create continuum robots

[23].

Numerous tendon-actuated pneumatic continuum robots have been demonstrated [24], [25].

4

Kinetic Sciences Inc. (KSI) developed a robot (Figure 1.5a) powered by pneumatic bellows and

electric motors with cable guides [26]. Researchers at Clemson developed the Air-Octor (Figure

1.5b), which used pneumatically pressurized central chambers to provide structure for the arm while

tendons attached to an exterior section controlled the curvature [27]. One pneumatic robot (Figure

1.5c) navigates its environment through pressure-driven eversion [28]. One chamber is pressurized

more than the other chamber, and the robot bends away from the higher pressure chamber. The

design described in this paper expands on our experience in the area of continuum robotics [27]. It

is the first application of continuum robotics to airbag technology.

(a) KSI Tentacle Robot (b) Air-Octor (c) Navigate through Growth

Figure 1.5: Several pneumatic continuum robots

1.3 Thesis Overview

The chapters that follow describe the journey of designing, building, improving, and testing

the soft airbag system on a walker frame. Chapter two describes the construction of the fabric part

of the system, along with early prototype tests for the actuation method. The final hardware and

software of the finished system are presented. Chapter three discusses improvements on the design

and data collection methods of the system, and presents the results of a set of experiments. Chapter

four contains conclusions reached about the project as a whole and suggestions for future work.

5

Chapter 2

System Design and Prototyping

In this chapter, we discuss the iterative development process of building our final system.

First, we cover early prototypes, the construction of the fabric arm, and finally the hardware and

software in the final system.

2.1 Preliminary Inflation Research and Development

Before building any prototypes, a variety of air deployment methods were investigated.

We considered using CO2, high pressure air (HPA), and vehicle airbags. Detailed calculations and

discussions for these alternate inflation methods is in Appendix A. Each of these methods have their

own merits, but each had significant drawbacks for the prototyping of a continuum system. Using

CO2 canisters would have cost around $8 per deploy, and it would have been challenging to make a

system that perfectly inflated upon cartridge puncture but that did not over-inflate (and explode) or

under-inflate (and not effectively catch the user). Similar issues exist with HPA, along with concerns

of the time required to release a sufficient volume of HPA into the arm. Airbag cartridges are very

dangerous, produce toxic chemicals, and expensive ($200+ per deploy).

Consequently, we selected a method of inflation based on volume displacement. We planned

to construct one section that would hold the air before the system deployed, and have that section

be continuous with the arm section of the system. The arm would deploy when air was pushed from

one place to another inside the sealed container.

6

2.1.1 Early deployment methods considered

The first prototype of the system with the above concept used bungee cords to pull two

plates together with an air bladder between them as shown in Figure 2.1. It used a 6.0′′ (15.2 cm)

tall tower at each corner of the squish plates to hold the plates apart. Each tower had a servo motor

attached to a metal rod which extended under the plate. The servo motors simultaneously pulled

the rods out from under the plates and the bungees rapidly pulled the two plates together, forcing

the air from between the plates to the section of the air container outside of the plates. This system

deployed very quickly and was able to initially inflate the volume. However, the bungees applied

the most force when they were under the most tension at the very beginning of deployment. Our

application needs the most force at the end of the deployment when the user is falling on the arm

or the arm is pushing off an object to stabilize the walker. Additionally, this prototype was very

heavy (more than 20 lbs (9 kg)) because its frame was made of 4040 aluminum extrusion. Future

iterations of this might have used square aluminum tubing or 90° aluminum pieces for the frame of

the rigid plates and an inelastic material in the middle, but would still ultimately be fairly heavy

because of the stiffness requirements for the four towers and the constraint that the two plates have

to be larger than the air bladder. These drawbacks led us to investigate other deployment methods.

Servo motor

Bungees

Air bladder substitute

Holding pin/rod

Figure 2.1: Prototype using bungees to squish bladder between two rigid plates

One option considered was to attach the inflated air bladder to a shaft and roll up the

bladder itself. An advantage of this method is simplicity. However, we conjectured that attaching

the bladder to a shaft would result in a very uneven force distribution. Further, attaching the

inelastic fabric to the strap seemed likely to damage the fabric when spinning.

After the non-success of the bungee method, we investigated other methods to rapidly

7

compress a flexible container. We came up with the concept of putting a “cage” of straps around

the air bladder and tightening the cage to compress it. We settled on a design that has a spinning

shaft that wraps up the straps, which tightens the straps around the air bladder and forces air from

the bladder to the arm.

2.1.2 Initial testing of drill spinning shaft design

Figure 2.2: Prototype with a square rod spun by a drill

The first mock-up of the shaft spinning design used a 3/4′′ (19 mm) square wooden dowel

spun by a power drill. An adapter was printed to attach a 3/8′′ (9.5 mm) aluminum rod to the shaft

for mounting in the drill chuck. Plastic duct support straps [29] were stapled to the square rod. The

system is shown in Figure 2.2 without the drill or anything being compressed. This design showed

promise, but it was limited in the force it could apply by its square (non-rounded) shape. Once the

rod was flat against the wood it would not turn any more and could not apply any more force.

The next iteration of this design replaced the square rod with a 3/8′′ round wooden dowel,

which was small enough to fit directly in the drill chuck without needing an adapter. A mount was

3D printed for each end of the rod to constrain the rod while it spun, and the straps were routed

8

Figure 2.3: Deflection in prototype with 3/8′′ rod

through a gap between two 2x4 boards. Tests with this round-rod prototype showed that the shaft

was able to apply some force to the objects, but it quickly warped as shown in Figure 2.3. The

design struggled to crush a thin cardboard granola bar box, but easily squished a couch pillow.

(a) Bottom view (b) Front view

Figure 2.4: Prototype with 3/4′′ rod and spacers

To fix the deflection issue, the next prototype was built with a 3/4′′ wooden dowel and with

3D printed mounts between every plastic strap as shown in Figure 2.4. Testing with this mock-up

was encouraging. It squeezed a couch cushion to the point that some stitches snapped, exploded a

Thunder Stick [30], and was able to deploy a continuum arm prototype made of a Thunder stick

and a larger inflatable cylinder [31] as shown in Figure 2.5. The wood on this setup started cracking

9

and splitting after a few tests, indicating that subsequent prototypes should use a stronger rod

material such as metal. These tests suggested that the drill method would be fast enough to deploy

in real-time as the user fell.

Figure 2.5: Small-scale prototype deploy test

The final prototype discussed above gave us confidence to move forward with the power drill

and strap deployment method.

2.2 Arm and Bladder Construction

The fabric portion of the system was constructed out of Heat Sealable 200 Denier Oxford

Nylon [32]. This material was chosen because in a similar inflatable continuum arm project [24] it

could withstand the most pressure of all the materials tested. The fabric has a coating on one side

similar to a very thin layer of hot glue. When two layers of the fabric are laid on top of each other so

that each glue-layer side is facing each other, a soldering iron can be used to seal them together for

a very tight seal. We also tested sealing the two sides with layers facing the same way (glue down

for both, so that one glue layer was trying to seal to the non-glue side of the other piece) but this

approach did not adhere nearly as well. We found that a temperature of 240°C paired with a large

knife-style soldering iron tip worked best for sealing the sheets of fabric together.

10

Figure 2.6: Adhesive side of the fabric (left) and uncoated side (right)

The fabric was sealed together by dragging a soldering iron pressed against the material

at a very slow pace of about 3 seconds per millimeter. During testing, we found that moving the

soldering iron too slowly can result in the iron melting through the material. Moving the soldering

iron too quickly however can result in the material not forming a strong bond or any bond at all.

Similarly, using the soldering iron at too high a temperature will melt the material before a seal can

form, and too low a temperature requires an impractically slow speed or does not form a seal at all.

We also found there is no increase in bond strength when using a large, flat soldering iron surface

versus using the sharp part of the tip. If anything, the sharp part worked better because it pressed

down with more force and sealed the arm more consistently.

Arm Fabric
(x2)

Bladder Fabric
(x2)

Figure 2.7: Identical fabric pieces cut out for the arm and bladder

11

The fabric assembly of the project was made of two parts - the arm and the air bladder,

each of which was made from two identical cuts of fabric as shown in Figure 2.7. The arm was made

from two pieces that were 60′′ by 20′′ (152 cm by 50 cm), and the bladder was made with two pieces

that were 30′′ by 20′′ (76 cm by 51 cm). These sizes were chosen to leave approximately 1′′ (25 mm)

of space on any edge of the fabric for the two pieces to be sealed together.

The soldering iron was used to seal down one side of the arm, then the top, and then down

the other long side. These first two sides had minimal issues with wrinkles, but on the second long

side wrinkles occurred every 14′′ (35 cm) or so due to the fabric not being secured very well while

the first two sides were being sealed. Where the fabric did wrinkle, extra time was spent sealing

up the wrinkle by pressing and holding the wide part of the soldering iron tip on the material and

also making a few extra parallel lines that linked up with the main side lines. The act of sealing

the system up by hand was not perfect - it proved easy for the top layer to be dragged across the

bottom layer a fraction, and it took little of this to cause wrinkles. Luckily the methods for sealing

up the wrinkles proved effective and there were minimal issues with air leakage throughout testing.

Figure 2.8: Air nozzle sealed to the arm

An air nozzle from an inflatable cylinder toy [31] was added to the arm as shown in Figure

2.8 to provide an easy way to increase or decrease the amount of air in the system between tests.

The same soldering iron heat-sealing technique was used as on the rest of the arm, with the adhesive

side of the fabric pressed against the tube fabric. The nozzle was attached before flipping the arm

inside out.

The arm was flipped inside out so that the adhesive coated side was facing outwards, while

12

the air bladder had the adhesive coating on the inside. The arm slid inside the air bladder and was

sealed in place with the same soldering iron sealing method, which required many parallel passes to

ensure a strong bond. The assembled bladder and arm can be seen inflated in Figure 2.9.

There are several ways in which the manufacturing process could be improved. Researchers

of fabric soft poly limbs used a CNC machine with a soldering iron attached to manufacture parts

from nylon fabric [24]. This was important for consistency of that project, which required dozens of

small pillows to be made identically. The size of our project was too large to fit on a desktop sized

CNC machine; however, a common size for large CNC machines is 4′ by 8′ (122 cm by 244 cm) which

would easily fit the arm herein. Using a CNC machine would require thorough testing of temperature,

speed, pressure, and work-piece holding, but could result in a much more dimensionally accurate arm.

Any way to apply consistent pressure on the soldering iron would be a huge improvement. We tested

some 3D printed holders for the soldering iron and considered other approaches such as mounting the

soldering iron stationary and moving the fabric beneath it like with a sewing machine. Eventually

we decided that multiple passes manually was effective enough for creating our prototype. Other

tools for applying heat could be explored, such as using a hair straightener or heat sealer machine

[33].

13

Figure 2.9: First full inflation of the fabric arm and air bladder

14

2.2.1 Actuator Cable and Other Attachments

Top of Arm “Crown”

Fabric Slot for Straps

Cable Guide

Flexible Strap

Cable Crimp

Spiral Cable Wrap

Figure 2.10: Components of the end of the arm

An important aspect of the arm’s construction was the fusion of numerous 3D printed parts

to the arm as shown in Figure 2.10. The arm shape was configured using four tendons, running

longitudinally down the arm, and terminated at its tip. The tendons were equally spaced radially by

90 degrees. These tendons needed guides to keep them routed along the arm surface. Consequently,

the arm had 32 individual cable guides printed in black PLA filament [34] in addition to 4 cable

guides integrated in the pieces at each end of the arm. A 25′′ (64 cm) long thin strap 3D printed

with flexible black NinjaFlex filament [35] was passed through slots in the arm that held the cable

guides in place.

A “crown” was located at the end of the arm where all four cables are attached, and this was

also held in place with a flexible strap through strap guides. The crown weighed 122 grams before

the cables were attached. The crown was originally printed in PLA, but that version broke during

testing and was reprinted using semi-flexible TPU filament [36]. The 9 rows of cable guides were

spaced every 5.6′′ (14.2 cm), leaving 5′′ (12.7 cm) between each cable guide. We added a 2.5′′ (6.4

cm) section of spiral cable wrap [37] between each cable guide to improve the bending consistency of

15

the arm. Prior to the spiral cable wrap addition, the cables guides were not evenly distributed along

the cable - several guides became pressed against each other, then only the last few guides close to

the end would be the full 5 inch spacing apart. Figure 2.11 illustrates the relative dimensions and

locations of the fabric system components.

5”

30”

20”

60”

10”

Figure 2.11: Relative dimensions and positions of fabric arm components

2.3 Mechanical and Hardware

Given the experience gained from the previously discussed initial testing, we proceeded to

develop a full system integrated to a walker using the spinning shaft design. In this section, we

will discuss the construction of the mechanical aspects of the systems integrating our novel inflation

method, using a power drill spinning a shaft with straps to compress the air reservoir/bladder

and inflate the arm. We attached the system to the frame of a walker and integrated it with the

components that would change the shape of the arm within the time frame of a fall. The completed

system is shown in Figure 2.12.

2.3.1 Selected Walker and Hardware

The system in this thesis was built around a Drive Medical 10210-1 Deluxe 2-Button Folding

Walker with Wheels [38]. This walker was chosen because it was inexpensive, commonly used (more

than 20,000 Amazon reviews), and not very stable compared to other walker styles. A Teensy

4.1 microcontroller [39] was used as the controller for the entire project. The other electronics

components of the project are discussed in section 2.5 below.

16

Figure 2.12: Front view of the whole system

17

2.4 Integration with Walker and Actuators

2.4.1 Frame

Figure 2.13: Cutting the slots for straps (left) and finished front plate on the walker (right)

The front plate was cut from 3.0 mm AluPOLY [40] to a size of 30′′ by 20′′ (75 cm by

50 cm) to fit on the front of the walker. A jigsaw was used to cut slots where the walker frame

bowed outward, allowing the plate to sit flush against the front face of the walker. Oval slots for

the nylon webbing straps to pass through were cut using a Dremel and a 3D printed cutting guide.

The completed front plate is shown in Figure 2.13.

The edges of the AluPOLY slots were fairly rough and posed a risk of snagging the webbing

straps. Figure 2.14 shows a 3D printed part with a smooth edge for the webbing straps to slide

against. This part was installed on each side of the oval slot on the front plate. This greatly reduced

the friction of the strap sliding against the edge.

The main spinning shaft was a 3/4′′ (19 mm) square aluminum rod, which was larger than

would fit in the drill chuck. The drill was therefore attached to the rod via a 3D printed adapter

shown in Figure 2.15 that had an 8 mm hex bit [41] inside it. The hexagonal shank of the hex bit

could be securely locked in the drill chuck, and the 8 mm head of the bit was fit snugly inside the

printed plastic piece. Two M3 bolts were installed on the sides of the hex bit, so the force should be

18

Figure 2.14: Smooth guides for the webbing straps on the 3D printer (left) and partially installed
on the front plate (right)

Figure 2.15: Adapter with embedded hex bit for connecting drill and square rod

19

translated from the metal of the 8 mm bit to the metal of the M3 bolts into the metal of the square

tubing, without relying solely on the strength of the 3D printed part at any time. The adapter had

M4 bolts that went through the outside of the adapter, through the square tubing, and into the

inside of the adapter.

Shaft Encoder

“Bearing”

Webbing Strap

Square Rod

Mount to Plate

Figure 2.16: Spinning shaft components labeled

The next step was to integrate the straps with the drill and bladder/arm. Each webbing

strap was held in place by two 3D printed pieces mounted on the square rod. These pieces were

round on the outside, turning the square shaft effectively into a 40 mm (1.6′′) round tube. M4 bolts

were passed through the printed piece, webbing strap, and into a threaded hole in the aluminum

square shaft. The two mounting holes in the webbing strap were made by pressing a hot soldering

iron to the webbing strap, forming a 5 mm (0.2′′) hole with melted edges that prevented fraying.

20

There was a “bearing” between every two webbing straps, which consisted of a 3D printed

part that was square on the inside and round on the outside. This bearing helped distribute the

forces on the rod and minimized the deflection of the rod. A small amount of SuperLube Synthetic

Multi-Purpose Grease [42] was applied to each bearing after installation. The bottom bearing had

a flat part on the bottom that held all the shaft weight when the shaft was vertical, as it would be

during normal walker use. The bottom bearing also had an 8 mm rod sticking out from the end of

the shaft into another AMT102 rotary encoder. These parts are shown and labeled in Figure 2.16.

The rod assembly was attached to the main plate by several 3D printed mounts. The mounts

were attached to the main plate with M4 bolts and threaded holes. The mounts had a cap that

fit around the shaft bearing with a 2 mm tolerance to allow for free spinning when accounting for

small assembly errors.

The inflation system’s method of actuation was based on a R860054 brushless drill [43]

which spun a shaft that wrapped up the nylon webbing straps to squeeze air from the bladder into

the arm. We chose to use a drill instead of a conventional geared DC motor for several reasons. First,

drills have a gearbox with two speed settings (1 and 2) built in, with more torque but lower speed

available on speed 1 than speed 2. Drills have an adjustable clutch for changing the maximum torque

output, which helped us protect (not burst) the air bladder or arm during initial testing. Drills have

overcurrent protection and stall protection built in, along with a battery system that can provide

the necessary instantaneous current for the drill. Drills have a large metal chuck on the end that can

securely hold many different shaft shapes and sizes. All these features are advantages that a drill

has over creating a custom solution with a basic DC motor and gearbox. The drill solution worked

well for our system, in which torque and speed were more important than precision or accuracy.

The drill was mounted to a 3D printed plate with six zip ties. The drill was programmed to deploy

spinning in the counterclockwise direction so the forces pressed the drill against the 3D printed plate

instead of pulling against the zip ties.

A rear view of the final overall system is shown in Figure 2.17. Along with the mechanical

components discussed previously, this figure shows several boxes which hold electrical components

of the system which will be discussed in the next section.

21

Figure 2.17: Overview of walker rear side

22

Encoder

Flange Adapter

Cable Spool

Stepper Motor

Stepper Brake

Motor Mount

Figure 2.18: The completed motor assembly for one arm cable

23

2.4.2 Arm Motors and Spools

With the airbag deployment method completed, we next developed hardware that would

control the curvature of the continuum arm when the system was deployed. Each steel cable tendon

on the arm was stored in a cable reel or spool that was on a stepper motor shaft. When the cable

was pulled out to the desired location, the motor would apply a braking force to stop the cable from

being pulled out any further.

The motor assembly was constructed as shown in figure 2.18. A dual-shaft NEMA 17 stepper

motor [44] was attached to a 3D printed mount. An AMT102-V rotary encoder [45] was attached

to the front of the same mount. An electromagnetic stepper motor brake [46] was mounted to the

rear side of the stepper motor. A stainless steel flange adapter [47] was connected to the motor

shaft, and the cable spool assembly was mounted to the flange adapter. The cable was threaded

through a hole on the inside of the motor spool and locked in place by a M4 bolt, then the excess

length of cable could be held on the outside of the spool (between the green piece and white piece

in figure 2.18). The steel motor flange was manually threaded to use M4 bolts to provide better

holding strength than the M3 threads it originally was supplied with.

Figure 2.19: All motor assemblies mounted on the walker

This motor and spool assembly was then mounted to the outside of an arm ring using M4

bolts. The arm ring had an internal path that guides the cable from vertical to horizontal. The arm

24

ring mounted to the angled plate that was offset from the walker to provide an adequate bending

radius for the fabric of the arm. Holes were drilled into the angled plate and threaded for M4 bolts

to reduce the need for nuts, however if any holes were accidentally stripped a M4 nut could be

attached to the back of the bolt to hold it securely. The angled plate was originally held in place

by an adjustable hinge, but once a distance from the walker and angle was finalized a stronger,

non-adjustable mounting piece was printed and installed. The final assembly is shown in Figure

2.19.

25

2.5 Electrical Design and Build

In this section we describe the electrical aspects of the system. The prototype developed

in this project was completely untethered - everything ran off batteries, and all required electronics

were mounted on the walker frame. Several of the electrical systems can be seen mounted to

the outside right of the walker frame in Figure 2.20 including the control panel (top), voltage

regulation (bottom left), motor drivers, and microcontroller (bottom right). The key components

of the electronics aspect of the system are listed in table 2.1. In addition to the items listed in

the table, numerous standard electronic components were used including push-buttons, switches,

assorted connectors (XT-60, JST-XH, Dupont, 5.5 mm barrel jack), 22-AWG solid core wire, screw

terminals, and breadboards.

Part Specs/Details Quantity

Teensy 4.1 Teensy 4.1 Development Board[39] 1
GPIO expander Adafruit AW9523 [48] 1

Battery Floureon 6S 4500mAh 45C [49] 1
Battery display Voltage+current display meter [50] 1

5V regulator Pololu D36V50F5 5V 5.5A [51] 1
12V regulator Pololu D24V150F12 12V 15A [52] 1

Fuses Inline fuse holders + fuse 2
Motor drivers DRV8825 with heat sink 4

Stepper motors Dual shaft NEMA 17 2.1A [44] 4
Motor brakes DC electromagnetic brake 24V [46] 4

Drill Ridgid R860054 drill/driver [43] 1
Digital potentiometer HiLetgo X9C104 40-100 kΩ [53] 2

Relays Mechanical relay modules 6
9-DOF IMU Sparkfun ICM-20948 [54] 1
Level shifters TXS0108E 3.3V 5V bi-directional [55] 2
Knob encoder Grayhill 61C optical encoder [56] 1

Rotary encoder AMT102-V [45] 5
LCD display 16x2 LCD with I2C/SPI adapter 1
LED strip 5V WS2812 with 4 LEDs 1

Table 2.1: Major electronic components

26

Figure 2.20: Main electrical control systems for the project on the right side of the walker frame

27

2.5.1 Voltage Regulation

VBAT (22.8V 25.2V)

10A Fuse

~24V To Motor Brakes

Voltage Regulator
12V 15A

(D24V150F12)

5A Fuse

12V Out

5V Out

Li
Po

 B
at

te
ry

 6
S

45
C

Switch

Switch

Voltage and Current
Meter + Display

Voltage Regulator
5V 5.5A

(D36V50F5)

Figure 2.21: Voltage regulation circuit diagram

The system was powered by a 6S 22.2V 4500mAh 45C LiPo Battery [49]. Lithium-ion

Polymer (LiPo) batteries have a relatively large voltage swing from fully charged to empty. In this

case the fully charged voltage was around 25.2V and the fully discharged voltage was around 22.8V.

Figure 2.21 shows the voltage regulation circuitry for the project. A voltage and current display [50]

was placed in line with the ground connection of the battery and was powered by the positive battery

connection. One connection from the battery went directly to the electromagnetic motor brakes

switch since they required 24V ±10% to run. A Pololu D24V150F12 12V 15A voltage regulator

stepped down the battery voltage to 12V for the stepper motor drivers. A Pololu D36V50F5 5V

5.5A voltage regulator provided a steady 5V for the Teensy 4.1 and a variety of other components

that require 5V to function. Each output from the voltage regulator had a fuse for overcurrent

protection and a switch for easy control built in.

2.5.2 Microcontroller

A Teensy 4.1 Development Board was the sole microcontroller for the system. The Teensy

4.1 board was based on the ARM Cortex-M7 processor running at 600 MHz. It had 41 I/O pins

easily accessible on the sides of the board, 27 of which were PWM capable and all of which have

external interrupt capability. Figure 2.22 shows the function of each pin on the Teensy board in

this project. Most pin locations were selected for convenience of wiring, since all digital pins on the

Teensy 4.1 can be inputs, outputs, and hardware interrupts.

28

COLOR KEY
Red = 3.3V Maroon = 5V Brown = Ground Blue = Stepper Motor Driver
Green = Encoder Purple = Button or Switch Black = Other

GND
0
1
2
3
4
5
6
7
8
9

10
11
12

3.3V
24
25
26
27
28
29
30
31
32

23
22
21
20
19
18
17
16
15
14
13
GND
41
40
39
38
37
36
35
34
33

(LED)

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

A17
A16
A15
A14

Vin (3.6 to 5.5 volts)
GND
3.3V (250 mA max)

CRX1
CTX1

SCK

MISO1
CS1
CS
CS

CS1
MISO1

CS
MOSI
MISO

MOSI1
SCK1

OUT2
LRCLK2
BCLK2
IN2
OUT1D
OUT1A
IN1
OUT1C
MQSR

MQSL

OUT1B

MCLK1

BCLK1
LRCLK1

OUT1A
IN1

MCLK2

RX1
TX1

PWM
PWM

PWM
PWM

PWM
PWM
PWM

PWM
PWM

PWM

Alldigitalpinshave
Interruptcapability.

PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM
PWM

PWM
PWM

PWM
PWM

RX2
TX2

TX6
RX6

RX7
TX7

CRX2
CTX2

CTX1

SCL2
SDA2

CRX3
CTX3

SCL
SDA
SDA1
SCL1

S/PDIF IN
S/PDIF OUT

RX5
TX5

TX4
RX4
RX3
TX3

TX8
RX8

A10
A11
A12
A13

(Ground)
DEPLOY LED
WS2812 LED
SHAFT_ENCODER_A
SHAFT_ENCODER_B
KNOB_ENCODER_A
KNOB_ENCODER_B
S1_ENCODER_A
S1_ENCODER_B
S2_ENCODER_A
S2_ENCODER_B
S3_ENCODER_A
S3_ENCODER_B

(3.3V out)
S4_ENCODER_A
S4_ENCODER_B
DUAL_A_1_PIN
DUAL_A_2_PIN
DUAL_C_1&2_PIN
DUAL_B_1&2_PIN
DEPLOY BUTTON PIN
ARMSW PIN
KNOB_BUTTON_PIN

5V IN
(Ground)
(3.3V out)
S1 STEP
S2 STEP
S1 DIR
S2 DIR
SCL for GPIO Expander
SDA for GPIO Expander
SDA for IMU and LCD
SCL for IMU and LCD
S3 STEP
S4 STEP
<Built-in LED >
(Ground)
S3 DIR
S4 DIR
S1 ENABLE
S2 ENABLE
S3 ENABLE
S4 ENABLE
Pot1Increment
POWER SW PIN
Pot2Increment

Figure 2.22: Overall microcontroller pinout diagram

Two separate I2C buses were used because the project had I2C devices in two separate

physical locations on the walker. Initial testing used ribbon cables for the I2C wires, but issues with

noise on the signal arose. I2C is a protocol designed for short-distance communication, typically with

wires just a few inches long. The cables in our project were several feet long and travelled by some

high-noise components such as motor drivers and motor chips. The problem was resolved by using

CAT5e cable for the I2C connections. CAT5e cable is a standard cable type used in networking, and

it uses twisted pairs of wires to help cancel out electromagnetic interference from external sources.

2.5.3 Control Panel

The control panel for the system is shown in Figure 2.23. The three switches were used to

switch to a mode that controls the drill, stepper motors, or motor brakes. The rotary knob was

used to turn the various motors in the specified direction (clockwise or counterclockwise). The green

switch labeled “ARM” was used to arm the system in preparation for deploying. Some items on the

control panel were not wired up, such as the silver buttons in the middle. These items were included

in the initial control panel design in case a need for more inputs arose during the development of

the system.

29

(a) Front view

(b) Rear view

Figure 2.23: Electrical control panel

30

2.5.4 Drill Trigger Replacement

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Reverse (CCW)

Forward (CW)

Switch

Ground
Speed

+3.3V

+18V (Vbat)

Trigger Internal Wiring
Diagram

Drill PCB Connections

Figure 2.24: The wiring diagram of a power drill trigger. A SPDT switch selects the forward or
reverse direction, a potentiometer controls the speed, and a SPST switch signals if the trigger is
pulled or not.

The trigger on the drill was replaced with our own electrical components so that we could

control the drill using the microcontroller. The trigger was connected to the drill with a 7-pin

connector as shown in Figure 2.24. The leftmost switch on the diagram is single pole single throw

(SPST) and is triggered when the trigger is slightly pulled in. The single pole double throw (SPDT)

switch selects the direction of forward (clockwise, CW) or reverse (counterclockwise, CCW), and

the potentiometer value controls the speed to move the drill faster as the trigger is pulled in further.

For our drill, the potentiometer was 300 Ω before the trigger was pressed in, and was 32.5 kΩ when

the trigger was pulled completely.

The direction switch and trigger switch were replaced with mechanical relays, and the po-

tentiometer for speed control was replaced with a pair of digital potentiometers. These replacements

allowed us to control the drill with the microcontroller.

The XC1902 digital potentiometers consisted of an array of 99 resistors, wiper switches,

a control selection, and memory [57]. The wiper changed when the increment (INC) input was

toggled with the corresponding direction input for the up down pin (U/D). The memory could

store the last position of the potentiometer so that it returned to that position on the following

startup. A block diagram of the digital potentiometer (Figure 2.26) shows the resistor array within

the chip. There was a library written to control these digital potentiometers that had convenient

31

Connector 7
(+VBAT 18V)

Connector 1
(SW)

Connector 2
(REV)

Connector 3
(FWD)

Connector 4
(Ground)

Direction
Switch

Trigger
Switch

Connector 6
(3.3V)

Connector 5
(Speed)

Connector 4
(Ground)

Speed Control
(Trigger

Potentiometer)

5V
IN2 from GPIO Expander 15
IN1 from GPIO Expander 14
Ground

5V
Ground
INC from Teensy 33
UD2 from GPIO Expander 6
CS2 from GPIO Expander 5

5V
Ground
INC from Teensy 35
UD1 from GPIO Expander 3
CS1 from GPIO Expander 2

Drill Gnd

Drill wiper
Drill 3.3V

1

2
X9C103 Digital

Potentiometer 0 10KΩ

Figure 2.25: Drill trigger replacement circuit diagram

functions for increasing, decreasing, or setting the value (0-99) of the potentiometer [58]. Each

digital potentiometer resistance could only go up to 10 kΩ, but the drill trigger needed around 20

kΩ to run at full speed. Two digital potentiometers were placed in series to combine their resistance

to reach the required 20 kΩ for full drill speed. The connections for the replacement drill trigger

system are shown in Figure 2.25.

7-BIT
UP/DOWN
COUNTER

7-BIT
NON-VOLATILE

MEMORY

STORE AND
RECALL

CONTROL
CIRCUITRY

ONE
OF

HUNDRED
DECODER

RESISTOR
ARRAY

RL/VL

RW/VW

RH/VH
U/D
INC
CS

TRANSFER

VCC

ONE-

GATES

99

98

97

96

2

1

0GND

DETAILED

Figure 2.26: X9C102 digital potentiometer block diagram

The Adafruit AW9523 GPIO expander provided 16 I/O pins through a single I2C connec-

32

tion. It was installed inside the drill control box along with six relays and two X9C102 digital

potentiometers. Figure 2.27 shows the functionality of each pin as they were used in this project.

We used the Adafruit AW9523 library for Arduino to interface with the expander over I2C [59].

SDA
SCL
Ground
5V

4Relay IN4
4Relay IN3
4Relay IN2
4Relay IN1

2Relay IN1
2Relay IN2

DigiPot CS1
DigiPot UD1

DigiPot CS2
DigiPot UD2

Figure 2.27: GPIO expander circuit diagram

The increment pin for the digital potentiometer was wired directly to a Teensy pin instead

of a pin on the GPIO expander. Each digital read or write on the GPIO expander used a I2C

command, which took more than 1ms per command. The potentiometers changed their resistance

up by one step every time the increment pin was set high and low, so changing both potentiometers

from spot 0 to 99 took 600 ms on the GPIO expander. The same action took 8 ms using a Teensy

pin directly for the increment signal.

2.5.5 Brakes

Each stepper motor had a 24V electromagnetic brake [46] attached to the rear of it. The

brake increased the holding torque and stopping torque of the motor so that it could stop the cable

spool at the desired location as the arm inflated. Each brake was controlled by a mechanical relay as

shown in figure 2.28. The brakes were engaged (applying braking force) when no voltage is applied,

and released when 24V ±10% was applied. The set of four brakes drew 800mA at 24V when they

were enabled.

The components described above (relays for motor brakes, relays and digital potentiometers

for drill control, and GPIO expander) can be seen in Figure 2.29. The box was 3D printed with

mounting holes for the components and cutouts for the wires to pass through. There is a switch on

the lid of the control box for switching the 24V directly from the LiPo battery.

33

5V
4Relay IN4 from GPIO Expander 11
4Relay IN3 from GPIO Expander 10
4Relay IN2 from GPIO Expander 9
4Relay IN1 from GPIO Expander 8
Ground

B1
Ground
from LiPo

Switch
24V from LiPo

B2 Ground

B3
Ground

B4
Ground

Figure 2.28: Electromagnetic motor brakes circuit diagram

Figure 2.29: Inside the electrical control box with relays and digital potentiometers to interface with
the brakes and drill.

34

2.5.6 Motor Drivers

S#_ENABLE
Ground
Ground
Ground

3.3V
3.3V

S#_STEP
S#_DIR

Stepper Blue
Stepper Red
Stepper Black
Stepper Green

12V
Ground

Ground

Figure 2.30: DRV8825 motor driver pinout for our system

The DRV8825 stepper motor drivers were wired according to the DRV8825 tutorial at the

Last Minute Engineers website [60]. Figure 2.30 shows the motor driver wiring for our system

using 12V as the motor voltage, 3.3V as the logic voltage, and the correct colored stepper motor

wire in each output for our specific stepper motors. The microstep selection pins M0, M1, and M2

are all grounded so the motor driver is in full-step mode and is not microstepping. Microstepping

is used to provide greater accuracy (steps per revolution), but the maximum speed and holding

torque are both reduced in microstep mode. The potentiometer on the motor driver was adjusted

following the “Current limiting, Method 1” on the website to set the reference voltage (Vref to

1.05V, corresponding to a current limit of 2.1A. The connections labeled S# ENABLE, S# STEP,

and S# DIR went directly to the Teensy microcontroller pins for each stepper motor (1-4).

2.5.7 Encoders

AMT102
Encoder

+5V
VB (5V) ------

5V Side

----- VA (3.3V)

3.3V Side

----- OE (3.3V)

Teensy

TXS0108E

Figure 2.31: Encoder and level shifter circuit diagram

35

The AMT102-V quadrature incremental encoders support 16 different resolutions, from 48

pulse per revolution (PPR) to 2048 PPR. We determined that 48 PPR would be adequate for our

system and would place the least burden on our microcontroller, and the appropriate DIP switches

were set before the encoders were mounted in their respective locations. The encoders were powered

with 5V (VDD), resulting in an output high level of VDD − 0.8 = 4.2V according to the datasheet.

However, the Teensy 4.1 microcontroller can only handle up to 3.3V on its input pins, so the output

(A and B) from each encoder was put through a TXS0108E level shifter before going to the Teensy

as shown in Figure 2.31. The TXS0108E has a voltage range of 1.2V-3.6V for the V CCA side, and

a voltage range of 1.65V-5.5V for the V CCB side. For our system, we used 3.3V on the V CCA side

and 5V on the V CCB side.

36

2.6 Software

In this section, the system’s control logic and flow is discussed. The full code for the project

can be found in the GitHub repository [61], and a few functions are detailed in Appendix B.

The Teensy 4.1 microcontroller was programmed using the Arduino IDE 1.8.15 in a Windows

10 environment. Arduino code is similar to C or C++, but with many extra libraries that can be

installed for interfacing with various hardware. Arduino programs have a setup() function that runs

once when the microcontroller is powered up or reset, and has a loop() function that loops infinitely.

Our system was set up as a finite-state machine (FSM) that can only be in one state at a given time.

The code checks the value of the control panel inputs and determines which state to run.

For example, if the lower right switch on the control panel is toggled, the system goes into “Drill

Control” mode where turning the rotary knob turns the drill in the same direction. Similarly, the

middle right switch enters “Stepper Control” modes where each click of the rotary knob turns a

single stepper 90° if the switch is in position 1, or it turns all four motors 90° if the switch is in

position 2. The LCD display shows the current mode in the top row and the current direction of

the motors in the bottom row.

An important part of any airbag system is that it must only deploy when necessary and

expected. Our system only arms the system if the “ARM” switch is toggled on and all other switches

are off. The system also requires the ARM switch to be toggled off upon microcontroller reset, to

prevent the case where the walker is turned on while laying on the ground and the airbag would

immediately attempt to deploy.

2.6.1 System Arming

When the ARM switch was toggled on, the system became ready to deploy. Several things

occurred when the ARM switch was flipped to prepare for deploying:

• All the stepper motors were turned on so they held the cables in place. They could still be

controlled with the “tuning” features on the control panel or could be manually forced by

hand.

• Electromagnetic brakes were released.

• The system saved the IMU value at the time of system arming as the “flat ground” value.

37

Further IMU measurements would be compared to this initial value.

• The drill was turned slightly to the deploy direction (CCW). When the drill changed direction

from CCW to CW it took approximately 500ms, so turning it slightly in the correct direction

ensured it did not take that extra time to deploy.

After these initial steps the system was considered armed. The IMU monitored changes in

tilt, and if the walker tilted beyond a threshold in a certain direction (left, right, or forward) the arm

would deploy in that direction. The deploy button on the control panel was used in initial testing

before the IMU functionality was integrated with the system.

2.6.2 Deploy

Tendon-driven continuum robots typically bend by shortening tendons on the side the robot

is meant to bend towards. Our system works on a similar principle, except our tendon (steel cable) is

shortened by applying the brake at a certain time. The motor assemblies are numbered in the code

according to Figure 2.32. To bend the arm to the right side of the image, the cables on assemblies

1 and 4 would need to be shorter than cables 2 and 3.

4

12

3

Figure 2.32: Cable assemblies as referenced in the software

The fall directions of left, right, and forward were referenced in the software as being from

the perspective of the user, i.e. cables 1 and 4 are on the left side and cables 2 and 3 are on the

38

right side. Table 2.2 shows the encoder spot at which the brake and motor driver were engaged to

stop its respective cable for each bending location.

Bend Direction Encoder 1 Encoder 2 Encoder 3 Encoder 4
Left 50 1500 500 50
Right 1500 50 10 900
Forward Up 1200 1200 50 50
Forward Down 150 10 900 900

Table 2.2: Encoder values to engage brakes for different arm configurations

When the IMU tilt value exceeded the threshold in a particular direction, the system de-

ployed. The deploy function was set up as a blocking function that would run completely without

interruption, even if one of the control switches was accidentally toggled during the fall. Deploying

followed these steps:

1. All stepper motors drivers were disabled and brakes disengaged.

2. The drill spun at full speed CCW, wrapping the straps and forcing air from the bladder into

the arm.

3. Once an encoder was in the desired end location, the motor driver was enabled and the brake

was engaged to stop the cable spool and hold the cable in place. This occurred separately for

each of the four cable systems.

4. The drill was stopped after 700 ms or 3.5 full revolutions, whichever occurred first.

5. The deploy was considered completed after 2000 ms (2 seconds), and the system completed a

few steps to “un-deploy” or relax the system:

(a) The motor drivers were disabled and the motor brakes were disengaged.

(b) The drill spun in the opposite direction (CW) at a slower speed for approximately 1

revolution to release some pressure on the arm.

(c) A CSV log file was saved to the micro SD card about encoder, IMU, and digital I/O

values throughout the deploy.

(d) The system waited for the ARM switch to be reset.

The system would not deploy again until the ARM switch was toggled off and then back

on, to ensure the system never tried to deploy consecutively.

39

The system needed to be manually reset after each deployment, similar to vehicle airbags.

The resetting process included:

• Using the control panel to turn the drill to its starting position where the straps were not

applying pressure to the bladder.

• Adding a small amount of air to replace that which had leaked out during deploying.

• Pushing air from the arm back into the air bladder.

• Ensuring all cables were on their cable spools and not tangled anywhere.

• Inspecting the system for damage.

• Rewinding each cable spool to the starting position where every spacer is touching the cable

guide before and after it.

40

Chapter 3

Results Using the Prototype

When the system assembly and programming were complete, we evaluated the system’s

functionality through dozens of individual tests. This section describes the testing process and

discusses some improvements we made to the hardware and data collection process during testing.

Then, a complete set of final results is presented, including comparisons between baseline falls and

deploy falls in each direction (forward, left, and right).

3.1 Preliminary Deploy Tests

3.1.1 Speed and Clutch Settings

The first several tests were conducted to see what drill settings would be needed to fully

deploy the arm, i.e. fully force air from the air bladder into the continuum arm. During these tests

the motors and cable spools were allowed to spin freely, so the arm should have just deployed forward

with no bending. Before testing, we anticipated the drill would be powerful enough to deploy the

system on the speed 2 setting (faster speed, lower torque) and perhaps with a clutch setting below

maximum. We found with the clutch set to any setting below maximum, the drill stopped spinning

very early on, before almost any air could be forced into the arm. With the clutch set to maximum

and speed set to 2 the system worked slightly better, but still only partially pushed air into the arm.

This result can be seen in Figure 3.1 - the drill stopped spinning before the arm was inflated to a

useful amount.

41

Figure 3.1: Deploy test with speed set to 2 and clutch on maximum. There is still air in the bladder
that should be forced into the arm, but the drill stopped spinning before the arm was sufficiently
pressurized.

The first deploy test that sufficiently pressurized the arm was done with the drill set to

speed 1 (lower speed, higher torque) and the clutch set to maximum. This test inflated the arm

rapidly and completely. However, this test broke several components of the system. In these first

tests, the drill was set to spin in the clockwise direction while deploying. The clockwise force on the

spinning shaft results in a counterclockwise force on the drill handle, which pulls on the zip ties in

the setup. An illustration of these forces is shown in Figure 3.2.

During this successful deploy test at maximum torque settings, the drill snapped all three

zip ties and tore loose several of the trigger wires from the digital potentiometers and relays in the

system. After repairs, we reprogrammed the system to deploy in the counterclockwise direction so

the handle force was pushing into the wooden mounting plate instead of pulling on the zip ties. We

also increased the number of zip ties holding the drill in place from 3 to 7 for good measure.

42

(a) Forces when drill spins clockwise

(b) Forces when drill spins counter-clockwise

Figure 3.2: Force diagram of the drill when it spins clockwise (top) vs counterclockwise (bottom).
Later tests were run with the drill spinning counterclockwise so that the force pushed the handle
into the wood instead of pulling on the thin plastic zip ties.

43

3.1.2 Cable Deploy Method

For this thesis, “driving” a motor to a position refers to using the driver and step signals to

move the motor a certain number of steps. This is a simple method of actively moving the motor

to a desired position. The other way the motors were moved in the system was by the steel cables

pulling on the cable spools attached to the motors as the airbag deployed, which spun the motors.

When a motor driver is enabled it applies the maximum amount of holding torque to its motor.

Some motor drivers have a programmatically variable holding torque, but our DRV8825 do not have

that feature. Initial testing showed that the motors had significantly less braking force when the

driver was enabled while the cable was moving the motor, so we anticipated that driving them to

position and then stopping them would be more effective than enabling the driver while the motor

was already being pulled by the cable.

0 200 400 600 800 1000 1200
Time [ms]

0

250

500

750

1000

1250

1500

1750

2000

En
co

de
r V

al
ue

Encoder 1
Encoder 2
Encoder 3
Encoder 4
Shaft
Stop

(a) Driving motors to position

0 200 400 600 800 1000 1200
Time [ms]

0

250

500

750

1000

1250

1500

1750

2000
En

co
de

r V
al

ue
Encoder 1
Encoder 2
Encoder 3
Encoder 4
Shaft
Stop

(b) Motors free spinning

Figure 3.3: Deploying by driving the motors to position (left) vs letting the arm pull them to position
(right). This shows the motors can move faster than the arm pulls them out, so either deploy method
is an option.

We performed several tests using different methods to stop the cables at their desired po-

sitions. Figure 3.3 shows a comparison between the two methods across the entire 2 seconds of the

arm deployment. In the left image, the motors are actively driven to their goal position as soon

as the system deploys (walker detected as falling, or the deploy button was pressed) and then stop

there. In the right image, the motor drivers are not enabled until the steel cable pulls the motor the

same number of revolutions. The slope of the left graph (motors driving) is steeper than the slope

on the right graph (pulled out), showing that the motors are able to move faster than the arm pulls

the cables.

The diamonds on the images show where the motor driver is enabled and applying the

44

holding torque. The motors should have stopped at or soon after the motor driver was enabled.

However, in the right image the motors continue to be dragged out by the arm deploying until they

are all a similar length meaning the arm is straight.

Figure 3.4: Motor cables tangled and wrapped up after driving the motors to position at max speed

We quickly discovered a serious issue with the method of actively driving the motors to

their positions. The steel cables tended to unspool faster than the arm pulled them out, so in many

cases they ended up tangled or wrapped around the cable spool or motor flange. This resulted in

the cables bending the arm earlier than desired because the cable would be tangled and could not

spin the motor at all. This issue is shown in video screenshots in Figure 3.4.

Next, we tried a hybrid solution where the motors were driven to their position but only

started driving after the arm pulled them a few steps. We hoped that by delaying the motor starting

time the motors would drive to position just slightly earlier than the cables spooled out, eliminating

tangling. A plot of the encoder positions over time with the hybrid deploy method is shown in Figure

3.5. The play symbol on each encoder line shows when the motor started to drive to its position,

and the diamond shows when the motor stopped and was applying maximum holding torque.

The hybrid deploy method was implemented as designed; however, the motors alone did

not have enough holding torque to hold the arm cables in place during deployment. Each motor

attempted to stop the cable at its commanded position, but by 800 ms all four motors had been

dragged out and the arm was deployed straight (not the commanded configuration).

Consequently, we installed a 24V Electromagnetic Brake [46] on the back of each stepper

motor to improve the holding torque. These brakes have a spring pressing two friction plates

together, so when no power is supplied the motor is very difficult to turn. When 24V is applied,

45

0 200 400 600 800 1000 1200
Time [ms]

0

250

500

750

1000

1250

1500

1750

2000
En

co
de

r V
al

ue

Encoder 1
Encoder 2
Encoder 3
Encoder 4
Shaft
Stop
Start

Figure 3.5: Encoder positions using hybrid deploy method

Figure 3.6: Improved motor assembly with dual-shaft stepper, electromagnetic brake, and stronger
mount

46

the magnet pulls the friction plates apart and the motor spins freely as if the brake was not present.

These brakes were designed to mount to dual-shaft stepper motors, so we also swapped out each

stepper motor for the dual-shaft version and made the motor mounts stronger to support the added

weight. The upgraded motor assembly without the cable spool or flange is shown in Figure 3.6 on

a scale - each assembly without the flange or cable spool weighs 719 g (1.59 lbs).

0 200 400 600 800 1000 1200
Time [ms]

0

200

400

600

800

1000

En
co

de
r V

al
ue

Encoder 1
Encoder 2
Encoder 3
Encoder 4
Shaft
Stop

Figure 3.7: Encoder values after upgraded motor assembly

The motor performance results after the discussed changes were satisfactory - an example

can be seen in Figure 3.7. The cable is pulled out to its desired position and then the brake is

applied and the motor driver is enabled. The combination of these two subsystems working together

was successfully able to stop the cable pulling during full-speed deploys.

3.1.3 Spacers to Improve Bending Performance

The first version of the arm did not have any spacers on the steel cable between the cable

guides. We noticed that the cable guides often bunched up and the arm would not bend predictably

or smoothly as a result. The guides would bunch up and cause the arm to make a sharp bend instead

of the desired smooth bend. Therefore, we added a 2.5′′ (6.35 cm) section of 4 mm spiral cable wrap

[37] between each cable guide. There is 5′′ (12.7 cm) between each cable guide, so the spacer was

47

Figure 3.8: Spiral cable wrap spacers

cut to be half that distance. The cut spacers before being installed on the arm can be seen in Figure

3.8.

48

(a) Forward Up (b) Forward Curl Up

(c) Left (d) Right

Figure 3.9: Selection of different configurations that the arm with spacers can achieve

49

3.1.4 Fall Data Collection Methods

We needed a reliable way to collect data on the severity of the fall with and without the

airbag arm deploying in order to evaluate the effectiveness of the system. We made good use of an

app called Physics Toolbox Sensor Suite [62] that uses internal smartphone sensors to collect, log,

and export data files to CSV (comma separated values) files. This app can collect data from dozens

of sensors inside a smartphone, but we were most interested in the g-force and linear acceleration

data collection. The app also has some combination data collection modes where it can collect

data from multiple sensors at the same time, such as Roller Coaster mode that logs g-force, linear

acceleration, gyroscope, and barometer data all at the same time. Screenshots from the app in the

g-force mode and roller coaster mode are shown in Figure 3.10.

(a) g-Force meter (b) Roller Coaster mode

Figure 3.10: Data collection modes in Physics Toolbox app

The phone we used with the data collection is a OnePlus 8, which can collect g-force data

50

up to ±16 g’s at 400 Hz and linear acceleration at 200 Hz according to the app. We found that in

combination modes it only logs the data to 2 decimal places, whereas in the singular data logging

modes it logs to 4 decimal places. The 2 decimal places in the combination modes led to many

repeated data points and inconsistent values for the forces at time of impact, so we chose to do the

tests using single data collection modes.

We used a plastic mannequin (dummy) to simulate the mass distribution of a human user

[63]. The dummy was 6′0” (183 cm) tall and weighed 12 lbs (5.4 kg). The phone was attached to the

dummy using an old phone case glued to a 3D printed mount. The phone case allowed the phone

to easily be attached and removed throughout testing, and the 3D printed mount securely held the

phone case on the dummy.

The first mount (see Figure 3.11a) attached to the back of the dummy’s neck using double

sided tape and zip ties. The neck location gave clear data for the time of impact, but we determined

that the lower back location would give more accurate data for the acceleration and g-forces on the

dummy than the neck location. The lower back was closer to the center of mass for the dummy and

better approximated the impact on the user’s hip.

(a) Back of neck (b) Lower back

Figure 3.11: Phone mount locations for impact data collection

Several baseline fall tests were conducted with the dummy falling onto a futon cushion.

These tests provided very consistent results as shown in Figure 3.12. For all of these baseline tests

we attached a pair of ankle weights to the dummy’s ankles totalling 8.2 lbs (3.7 kg) in order to

minimize the rotation of the dummy as it fell. The tests were conducted without the arms attached

to the dummy to improve consistency and to avoid damaging the shoulder socket and connection

51

piece from repeated falls. The initial impact is the tallest peak on the graph, and then the smaller

peaks afterwards show the effect of the dummy bouncing on the cushion.

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (13.2 g's)
Fall 2 (12.9 g's)
Fall 3 (13.6 g's)
Fall 4 (14.2 g's)
Fall 5 (13.4 g's)
Fall 6 (13.8 g's)
Fall 7 (13.7 g's)

Figure 3.12: G-Force data from baseline tests of just the dummy with ankle weights falling onto the
futon cushion

We also ran baseline tests with the dummy within the falling walker, but without the airbag

deploying. The g-force or acceleration from these tests was much less consistent, and resulted in a

larger impact or acceleration than the dummy falling alone. The data from these initial baseline

tests with the walker are shown in Figure 3.13.

Detailed video analysis of the baseline fall with the walker showed that the walker fell

faster than the dummy, resulting in more than a foot of separation between the dummy’s chest and

the walker frame before impact. This separation is shown in the video snapshot in Figure 3.14.

The walker’s fall was lessened by the futon cushion, but the dummy (with the data logging phone

attached) hit the stationary walker and was not cushioned nearly as much. The dummy is a rigid

body (plastic blow mold) and does not weigh a significant amount relative to the walker (12 lbs),

so it did not push the walker down significantly on impact from the dummy’s weight. The result

was that our tests with the walker produced similar data to pushing the dummy over onto the hard

floor instead of onto the futon cushion. This made it potentially difficult to compare the walker’s

performance when deploying the arm versus not deploying the arm.

52

−400 −200 0 200 400 600 800
Time From Peak [ms]

0

5

10

15

20
G-

Fo
rc

e
[g

's]
Fall 1 (22.2 g's)
Fall 2 (22.0 g's)
Fall 3 (19.7 g's)
Fall 4 (19.5 g's)
Fall 5 (18.5 g's)

Figure 3.13: G-Force data from baseline tests with the walker and the dummy, showing worse results
than without the walker

Our solution to this separation issue was to wrap a bungee around the dummy’s upper legs

and the walker frame. This bungee kept the dummy and walker together during the fall (much closer

to what we would anticipate in a real human/walker fall), and resulted in much improved data.

At this stage, we were ready to begin testing of the overall system, deploying the airbag and

measuring its performance. To summarize the changes we made while refining the system in early

testing:

• Drill speed set to 1 (high torque, lower speed) and clutch at maximum

• Drill spun in the counterclockwise direction during deployment

• Added an electromagnetic brake to each motor

• Motors pulled to desired position and then brake engaged and driver enabled for holding torque

• Added spiral cable wrap spacers to the steel cables

53

Figure 3.14: Separation at time of impact causing worse impact with the walker than without the
walker

54

3.2 Final Deploy Tests

The improvements and fine-tuning described in the previous section culminated in a robust

robotic prototype with consistent and quantitatively measurable results. In order to qualitatively

and quantitatively evaluate the system, we conducted 5 trials in each direction of fall the airbag was

designed to mitigate the effects of (forward, left, right). This number of trials was determined to be

a reasonable number of trials based on other human-airbag experiments reported in the literature.

For example, a wearable hip-airbag system for fall protection [64] was deployed 3 times but the group

did not report any data on the effectiveness of the device. Similarly, the authors of [64] conducted

4 tests but only reported data on the inflation time and fall time, not the effectiveness of the device

as an airbag. Other groups performed 1 test [15], no tests [65], [66], [67], or only simulated results

[68]. Given there appears to be no standard number of trials or testing procedure for human-airbag

fall protection system, we chose to perform 5 tests in each fall direction, and developed the testing

procedure described below.

3.2.1 Testing Procedure

In each trial set, the walker was tipped forwards, left, and right. In each case the system

was tested both with the airbag un-deployed (baseline test) and fully deployed. It was assumed

throughout testing that real-time detection of the timing and direction and the falls was available.

There is a fairly extensive literature on fall detection, e.g. [69], and fall detection was not the goal

of this research. Therefore, the system was manually armed before the test and triggered when the

IMU detected a tilt beyond a threshold. The arm configuration was chosen by the software based

on the direction of fall imparted to the walker.

The dummy was attached to the walker using bungee cords to simulate the mass distribution

of a human user. Attached to the dummy was the cell phone running the Physics Toolbox Sensor

Suite measuring the g-force experienced by the phone. The robotic system logged data from the

encoders and other key events (drill stopped, brakes engaged). Each test was recorded on video at

60 frames per second (FPS).

55

3.2.2 Baseline Tests

Baseline tests were conducted only for the left and forward directions. During the baseline

tests, the dummy and walker were pushed over onto a futon cushion without the arm deploying. The

g-forces measured during the left baseline tests can be seen in Figure 3.15, and a typical progression

images from the fall can be seen in Figure 3.16. Note the consistency of the results across tests.

The walker and dummy impacted the surface at approximately the same time (0 ms on the figure),

bounced slightly (100 ms to 300 ms), then settled onto the surface.

Baseline tests in the right direction were presumed to be equivalent to baseline left tests. We

chose to refrain from performing baseline tests in the right direction out of concern for the electronic

components attached to the right side of the walker.

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (17.4 g's)
Fall 2 (18.8 g's)
Fall 3 (18.3 g's)
Fall 4 (17.2 g's)
Fall 5 (16.6 g's)

Figure 3.15: Data logging - g-forces experienced by the dummy during baseline left tests

Baseline tests in the forward direction were conducted in the same fashion. The results

of the forward tests (Figure 3.17) were less consistent than the baseline left tests. Video analysis

showed this was likely because the walker rolled forward and the dummy’s head region impacted

the ground in front of the cushion. The roll, impact, and any subsequent impacts were slightly

more varied than the baseline left tests. Further, the peak impact for the baseline forward tests

occurred when the dummy’s head impacted the floor, instead of the initial impact of the walker on

the cushion. A typical progression from video screenshots during a baseline forward fall is shown in

56

Figure 3.16: Progression of typical baseline left fall

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (9.8 g's)
Fall 2 (14.5 g's)
Fall 3 (16.5 g's)
Fall 4 (18.5 g's)
Fall 5 (19.4 g's)

Figure 3.17: Baseline forward tests g-forces

57

Figure 3.18: Progression of typical baseline forward fall

Figure 3.18. The peak g-force from forward fall 1 was significantly lower than the other tests, likely

because the walker did not tip forward far enough for the dummy’s head to hit the ground.

The baseline tests resulted in an average peak g-force of 17.7 g’s in the left direction, and

15.7 g’s in the forward direction. It is important to note that the actual peak g-force of most baseline

tests was higher than our system could measure - the phone’s sensors could only detect ±16.0 g’s

in each axis (x, y, z), and most baseline tests maxed out an axis at 16.0 g’s. The peak g-force

listed is the peak total g-force (
√
x2 + y2 + z2) and for most tests only one axis changes significantly

throughout the fall, but other axis of measurement have slight variations between the tests. This

explains why there is slight variation between the baseline tests despite an axis being maxed out at

±16.0 g’s. With that in mind, the relative performance of the system during deploys versus baseline

is better than our data shows.

When the baseline tests were complete and showed consistent data, we moved on to conduct-

ing tests with the system deploying in the desired direction. The same test procedure was followed,

but the system was armed before the test and deployed in real-time.

For the left-sided and right-sided fall tests, the arm was augmented with a small inflatable

ring. This aided in stabilizing the dummy following the fall. Future versions of the walker could

feature a redesigned arm that includes a larger end section that inflates with the rest of the system.

Preliminary tests showed similar performance when the arm was bent upward versus down-

ward for the forward tests. All of the forward tests were completed with the arm deploying forward

and bent upward.

58

3.2.3 Left Deploy

The results of the left deploy tests are shown in Figure 3.19. A progression of images during

a typical left fall and deploy test are shown in Figure 3.20.

The left tests resulted in a maximum peak g-force of 8.9 g’s, and a minimum peak g-force

of 5.8 g’s. The average peak g-force from the left fall tests was 7.2 g’s.

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (5.8 g's)
Fall 2 (8.8 g's)
Fall 3 (8.9 g's)
Fall 4 (6.7 g's)
Fall 5 (5.9 g's)

Figure 3.19: Left deploy g-forces over five tests

Figure 3.20: Progression of a left fall with the system deploying.

59

3.2.4 Right Deploy

The results of the right deploy tests are shown in Figure 3.21. A progression of images

during a typical right fall and deploy test are shown in Figure 3.22.

The right tests resulted in a maximum peak g-force of 8.8 g’s, and a minimum peak g-force

of 6.6 g’s. The average peak g-force from the left fall tests was 7.8 g’s.

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (8.8 g's)
Fall 2 (7.5 g's)
Fall 3 (8.2 g's)
Fall 4 (6.6 g's)
Fall 5 (7.9 g's)

Figure 3.21: Right deploy g-forces over five tests

Figure 3.22: Progression of a right fall with the system deploying.

60

3.2.5 Forward Deploy

The results of the forward deploy tests are shown in Figure 3.23. A progression of images

during a typical forward fall and deploy test are shown in Figure 3.24.

The forward tests resulted in a maximum peak g-force of 8.1 g’s, and a minimum peak

g-force of 6.0 g’s. The average peak g-force from the forward fall tests was 7.3 g’s.

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (8.1 g's)
Fall 2 (7.4 g's)
Fall 3 (7.3 g's)
Fall 4 (7.6 g's)
Fall 5 (6.0 g's)

Figure 3.23: Forward deploy g-forces over five tests

Figure 3.24: Progression of a forward fall with the system deploying.

61

Baseline
Left

Baseline
Forward

Deploy
Left

Deploy
Right

Deploy
Forward

Test 1 17.4 9.8 5.8 8.8 8.1
Test 2 18.8 14.5 8.8 7.5 7.4
Test 3 18.3 16.5 8.9 8.2 7.3
Test 4 17.2 18.5 6.7 6.6 7.6
Test 5 16.6 19.4 5.9 7.9 6.0

Average 17.7 15.7 7.2 7.8 7.3

Table 3.1: Summary of experimental results - peak g-force measured during each fall

3.2.6 Summary of Results

Table 3.1 summarizes overall quantitative testing results, using data from the five represen-

tative tests of the system. On average, the measured maximum g-force of the deployed system in the

forward falls is 46% of that for the baseline, i.e. undeployed, case. The average measured maximum

g-force for the deployed system in left/right falls is 42% of that for the baseline case. The reduction

in measured impact demonstrates the effectiveness of the airbag system.

3.3 Variable Weight Tests

After completing the set of tests with the dummy alone, we conducted tests with additional

weight on the dummy to more closely simulate the mass of a human user. We added a backpack

to each of the front and the back of the dummy and put weights inside of the backpacks. As with

previous tests, the dummy also had 8 pounds of ankle weights attached to its ankles and was attached

to the walker with bungees. We conducted these tests in the forward direction.

We ran two tests with 25 pounds (11.3 kg) total in the backpacks (Figure 3.25), then ran

two tests with 50 pounds (22.7 kg) total in the backpacks (Figure 3.26). A progression of images

during a forward fall with the weighted backpacks is shown in Figure 3.27.

62

−400 −200 0 200 400 600 800
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
G-

Fo
rc

e
[g

's]
Fall 1 (4.0 g's)
Fall 2 (4.1 g's)

Figure 3.25: Weighted tests with 25 pounds added to the dummy

−1000 −750 −500 −250 0 250 500 750 1000
Time From Peak [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G-
Fo

rc
e

[g
's]

Fall 1 (8.2 g's)
Fall 2 (16.6 g's)

Figure 3.26: Weighted tests with 50 pounds added to the dummy

63

Figure 3.27: Progression of a forward fall with additional weight in the backpacks

The additional weight improved the system performance in the 25 pound tests. In the

weighted tests, the dummy had sufficient mass and momentum to push back against the deployed

arm, resulting in a smoother slowdown than in the earlier experiments, when the lightweight dummy

was effectively ”punched” by the arm and rapidly stopped.

The peak g-force from Test 1 of the 50 pound tests was similar to the unweighted test. Test

2 had a much lower initial peak impact of 3.7 g’s as seen at time -450 ms in Figure 3.26, but the

dummy and walker rolled forward and the dummy impacted the bare ground. This impact without

any cushioning caused a peak of 16.6 g’s as measured by the phone app. This rolling forward was

partially due to the weight distribution on the dummy - all the weight was on the dummy’s upper

body, resulting in a top-heavy system that rolled forward.

Table 3.2 summarizes the weighted test results. On average, the measured maximum g-force

of the deployed system in the 25 pound weighted forward falls is 26% of that for the baseline forward

case. The average measured peak g-force of the initial impact was 5.9 g’s which is 38% of that for

the baseline forward case. The additional weight resulted in improved system performance.

Weighted
25 pounds

Weighted
50 pounds

Test 1 4.0 8.2
Test 2 4.1 3.7

Table 3.2: Summary of variable weight results - peak g-force measured during the initial impact
with the ground for each fall

64

Chapter 4

Conclusions and Discussion

In this thesis, a soft robotic airbag whose configuration can be controlled in real time to

deploy in the direction of a forward or sideways fall was introduced. The core of the robotic airbag

system was an air-filled, tendon-configured, continuum arm-like structure. The airbag was integrated

into a conventional passive walker. A novel single motor system was used to deploy the airbag by

transferring air from a reservoir into the arm in real time. Tests with a prototype demonstrated the

effectiveness of the system in deploying through the desired range of configurations. The g-forces

of impact were significantly and consistently reduced across the configuration space of the system.

A paper based on this thesis was submitted to the International Conference on Soft Robotics 2022

[70].

The research represents the first airbag system that is robotic in the sense that the shape

of a single deployed airbag can be selected based on the sensed direction of a fall. As such, it

represents a novel contribution to the literature on robotic walkers. In creating and demonstrating

the first continuum robotic airbag, the work is also a novel contribution to continuum robotics

research. Overall, this thesis, in demonstrating the potential of a novel approach to protect the

users of passive walkers from falls, represents a small but significant step towards the development

of new robotic technology that can enable safer lives for the elderly and infirm.

65

4.1 Future Work

The key areas for improving the applicability of our system relate to weight and size. The

final system with the walker weighs 36.2 lbs (16.9 kg). The original walker weighs 7.5 lbs (3.4 kg)

according to the Amazon product page, meaning our system adds 28.7 lbs (13.5 kg) to the walker.

Most users of mobility walkers would struggle to lift our system over any bump or obstacle. One

place weight could be reduced is the cable braking mechanism (stepper motor and electromagnetic

brake). Each motor assembly (brake, motor, encoder, 3D printed mount) weighs 1.6 lbs (0.73

kg), which for the four assemblies adds up to 6.4 lbs (2.9 kg) of the robotic system. A custom

braking mechanism could greatly reduce this weight. The AluPoly sheets attached to the walker

contributed a similar amount, weighing 5.5 lbs (2.5 kg) total. These pieces could be replaced with

more lightweight material.

The size of the complete system is also not ideal - the air reservoir and other components

take up a large amount of space on the front of the walker, and they are not visually appealing.

Switching to a different deploy method such as CO2 or HPA could improve this issue, resulting in a

less conspicuous design. The arm could be folded up in a discrete pouch before deploying.

Additionally, alternative geometries of the continuum arm should be explored. The arm

could be redesigned to include a large end piece to minimize roll after a fall, and/or to better wrap

around the user for a left or right fall. Different shapes or additions to the arm could enhance

the performance of the system. The number and arrangement of tendons configuring the airbag

should be also be investigated. The method of manufacturing the fabric arm of the system could

be improved upon to reduce variability in speed and tool-path when guiding the soldering iron by

hand.

In additional to improvements in the components of the existing system, its the core func-

tionality could be modified to act more as a helping hand than a vehicle airbag. The system could

be modified so it deploys more slowly and can push off against walls or environmental obstacles.

Potentially, the arm could even propel the walker around by sequentially inflating and deflating,

pushing off the ground in front of it and driving the walker backwards. Walkers are used by many

people across the globe, and ways in which a walker could be modified to improve the user’s life

have a huge potential market and impact.

66

Appendices

67

Appendix A Alternative Inflation Methods

This section describes the details and related calculations of some of our explorations of

alternative methods to fully inflate the continuum arm from an uninflated initial state. The volume

of air in the air bladder of our ultimate prototype is not considered because an air bladder is not

needed if you use a different deploy method such as compressed air.

The arm in our system is 135 cm long, and measures 63 cm in circumference when fully

inflated. The radius of the arm is calculated with:

r =
63 cm

2 ∗ π
= 10.02 cm ≈ 10 cm (1)

The cross-sectional area (A) of the arm is

A = π ∗ r2 = π ∗ 102 = 314.2 cm2 (2)

Using a radius of 10 cm, the volume (V) of air in the inflated arm is calculated by:

V = 135 cm ∗ 314.2 cm2 = 42417 cm3 (3)

This volume is equivalent to 0.0424 m3 or 2588 in3 or 1.50 ft3. For visualization, one cubic

foot is approximately equal to 7.5 gallons, so to fill up our arm with water would take 11.25 gallons

of water.

A.1 Compressed CO2

A common method to inflate human airbags in research is by puncturing a compressed

carbon dioxide (CO2) cartridge as discussed in the Background section. These canisters contain

highly compressed CO2 in liquid form. As the liquid CO2 is released it turns into a gas, and the

energy required for this phase change makes the metal CO2 cartridge very cold [71]. These cartridges

are sold based on the weight of liquid CO2 in grams - a 12-gram cartridge has 12 g of liquid CO2

inside of it. We can use the ideal gas law to calculate the volume of the gas once it expands. For

these calculations we will neglect any effects on the change of temperature on the volume of the gas.

68

The ideal gas law is

p ∗ V = n ∗R ∗ T (4)

In the above equation, p is the pressure of the system. V is the volume. n is the number of

moles. R is the ideal gas constant. T is the temperature of the system.

Rearranging to solve for volume:

V =
1 ∗ n ∗R ∗ T

p
(5)

We can use the above equation to calculate the resultant gas volume (V) in liters from 1

gram of pressurized liquid CO2.

The molar mass of CO2 is 44.01 g/mol [72]. For x grams of CO2, the number of moles (n) is

x/44.01. In the following, we use a room temperature (T) of 72◦F ≈ 295K and a standard pressure

(p) of 1 atm. R is the ideal gas constant, 0.0821L ∗ atm/(mol ∗K). Plugging these values into the

equation:

V =
0.0821 L*atm/(mol*K) ∗ 295K

44.01 g/mol ∗ 1 atm
∗ 1 cm3

0.001 L
= 550.3 cm3/g (6)

To calculate the grams of CO2 to fill the 42417 cubic centimeters of our arm:

xg =
42417cm3

550.3 cm3/g
= 77.08 g CO2 (7)

A common size of CO2 cartridges near this size is 88g-90g cartridges, implying we would

only need one cartridge per deploy. The 88-gram cartridges are approximately 1′′ diameter by 6′′

long and cost around $8 per cartridge [73] [74] . A size comparison of different compressed gas

cartridges can be seen in Figure A.1.

You could also obtain the required 77 grams of CO2 by triggering three 25-gram cartridges

(≈ $4.40/cartridge, $13.20 per deploy), five 16-gram cartridges (≈$1.70/cartridge, $8.50 per deploy)

or seven 12-gram cartridges (≈$0.95/cartridge, $6.65 per deploy). Each cartridge would need its

own puncture mechanism and air tubes routed to the arm. We conducted around 80 full deploy

tests with the prototype in this thesis, which would have cost $640 in cartridges at $8 per deploy.

The cost of the cartridge would possibly not be an issue for a commercial product deploying once,

69

Figure A.1: Size comparison of compressed gas cartridges

but was an important factor to consider here for research costs and feasibility.

Refillable CO2 tanks are commonplace in paintball, as small as 12 oz (340 g) [75]. It was

not clear however whether the tanks could release the required volume of air for our continuum arm

all at once. It was possible that the tank’s pin valve might freeze up before it can release a quarter

of the tank. The release system would also need to have a way to stop releasing CO2 after the arm

is fully inflated, or the arm would need to be designed with a pressure release valve.

A.2 High Pressure Air

A form of compressed air called High Pressure Air (HPA) is a common alternative to CO2

used in paintball. The HPA tanks are filled with air at the tank’s rated pressure from 3000 to 4500

pounds per square inch (psi), then is released out of a regulator on the tank typically at 850 psi [76].

HPA tanks are categorized by their Cubic Inches (ci) and their max PSI rating. A common tank

size and pressure combination is 13/3000 (13 in3 when compressed at 3000 psi).

To estimate the uncompressed volume of air comparable to deploying, we use Boyle’s Law

which states that the volume of a gas changes proportionally to the pressure of the gas:

paVa = pcVc (8)

Setting pc (pressure compressed) to 3000 psi and volume compressed (Vc) to 13 cubic inches,

we use 1 atmosphere as the pressure uncompressed (pa) which is 14.7 psi. Substituting these values

70

and rearranging terms we obtain

pa =
3000 psi ∗ 13 in3

14.7 psi
= 2653 in3 (9)

This is slightly more than the volume of air calculated in (3) above. This shows that if the

entire HPA tank could be released during the deploy of the arm, it would be sufficient to fully inflate

the arm. There are also larger tanks sold up to 48 cubic inches when compressed, so the volume

of air can be provided by selecting an appropriate tank or tanks. (This calculation is not exact,

because it does not take into account moisture content of the compressed air.)

Practically, there are several potentially problematic issues to using high pressure air. The

850 psi regulator would limit the release pressure to 850 psi instead of the full 3000 psi, likely

keeping the tank from releasing the full volume of air within the 500 ms needed for deployment as

the user falls. This could potentially be compensated for by putting several HPA tanks in parallel

and releasing them at the same time. The tanks are not designed to release more than a puff of air

at one time however, so significant care would need to be taken when prototyping with compressed

air tanks to make sure the tanks did not explode.

We chose not to use HPA (or CO2) for our project due to the physical danger to the

researchers and the potential damage to the continuum arm if too much air was accidentally released

at one time. A design using HPA would need to implement pressure valves and other safety measures

for over-pressure events.

A.3 Vehicle Airbags

Airbags in vehicles lower the impact of a crash by stretching out over a longer period of

time and by spreading the physical impact of a larger area of the body. Vehicle airbags deploy

within 35 ms of an accident. Vehicle airbag systems consist of an accelerometer, a heating element,

an ignition compound, the main propellant, and the airbag itself. In the event of an accident, the

heating element rapidly heats up and ignites the ignition compound. The heat from the ignition

compound burning starts the decomposition of the main propellant - sodium azide (NaN3). The

chemical equation for the reaction when sodium azide is heated is:

2 NaN3 2 Na + 3 N2 (10)

71

This reaction produces a large volume of nitrogen gas from a small amount of solid sodium

azide. A standard front passenger airbag has an inflated volume of around 140 L (140000cm3),

which is approximately 3.3 times larger than our continuum arm [77]. A variety of other chemicals

are mixed in with the sodium azide to form nontoxic compounds from the sodium (Na) [78].

To compare this inflation method to the other methods we can calculate the amount of solid

sodium azide needed to fully inflate a standard airbag. NaN3 has a molar mass of 65.0 g/mol, and

the standard molar volume of NaN3 is 22.4 L/mol at STP. Thus, the amount of nitrogen gas needed

to fully inflate the standard airbag is:

140 L

22.4 L/mol
= 6.25 mol N2 (11)

Substituting 6.25 moles into equation 10, we can calculate the mass of solid sodium azide

as follows:

6.25 N2 ∗
2 NaN3

3 N2
∗ 65.0 g

NaN3
= 270.8 g NaN3 (12)

It therefore would take 270.8 g of solid sodium azide to inflate a standard 140 L car airbag.

With a density of 1.85 g/cm3, 271 g would take up 147 cm3 (0.147 L). This volume is significantly

less than the volume of HPA or CO2 to inflate a similar volume. Airbag systems come in a variety

of shapes and sizes to fit different areas of the vehicle (frontal airbags, side torso airbags, curtain

airbags, knee airbags) and an appropriate size could be chosen for a given project.

Each replacement airbag costs $200 to $700 not including labor [79]. We deployed our

project dozens of times while refining our system. Buying a new airbag for every deployment would

have been cost-prohibitive during development.

Even though vehicle airbags could feasibly provide the needed inflation volume, we felt they

were too dangerous to be safely experimented with. Airbags are not designed to be used outside

of a vehicle, and there are very few resources available online relating to using airbags in any other

application. The manufacturing and sale of commercial airbags is highly regulated, and typically

they are only sold for installation in a specific vehicle. The reaction and deployment of vehicle

airbags is explosive in nature and would be dangerous to experiment without appropriate training

and safeguards in place. The speed at which they deploy could have caused issues for the continuum

aspect of this project, since the hardware would need to be able to stop a cable deploying at a very

72

rapid speed if it was inflated with a vehicle airbag.

73

Appendix B Software Details

Select code functions are listed below. The full Arduino code used for this project can be

found at https://github.com/jakabo27/Walker-Continuum-Robot-Airbag

Along with the main program with all systems integrated, several “Tester” programs are

listed in the library. These programs test an isolated part of the system, such as printing the value

of the buttons and switches to help determine which inputs need to be inverted or which switches

aren’t wired correctly.

74

https://github.com/jakabo27/Walker-Continuum-Robot-Airbag

B.1 Deploy

The function DeployingNow() deploys the continuum arm.

1 void DeployingNOW()
2 {
3 // Trigger drill relays to start the drill accelerating
4 DrillSetSpeed(deployDrillSpeed);
5 DrillSwitchON();
6 DrillCCW();
7
8 // Read shaft encoder and reset it to 0.
9 // (Other encoders set in ArmedAndReady.ino with homing

functionality)
10 shaftEncoder.readAndReset();
11
12 // Release all stepper motors to spin freely
13 AllStepperMotorsOFF();
14 BrakesAllOFF();
15
16 // LED strips to red
17 setAll(RED); leds.show(); digitalWrite(DEPLOY_LED, LOW);
18
19 // Update LCD
20 lcd.clear();
21 lcd.setCursor(0,0);
22 lcd.print("Deploying ");
23 lcd.setCursor(0,1);
24 lcd.print(fallDirNames[fallDirection]);
25 LCDUpdate = 0; //Reset Timer
26
27 // Timers intialize
28 elapsedMillis sinceDeployStart;
29 elapsedMillis printTimer; //For printing to serial monitor
30 elapsedMicros logTimer; //For data logging
31 elapsedMillis IMUTimer;
32
33 // Zero the data logging array
34 memset(logData, 0, sizeof(logData));
35 logCounter = 0;
36
37 // Determine the ENCODER end value for each stepper motor.
38 int E1endValue = goalEncoderSpots[fallDirection-1][0];
39 int E2endValue = goalEncoderSpots[fallDirection-1][1];
40 int E3endValue = goalEncoderSpots[fallDirection-1][2];
41 int E4endValue = goalEncoderSpots[fallDirection-1][3];
42
43 // Stepper to encoder conversion for driving motors to their spot
44 // Account for movement after "home" spot
45 int S1endValue = (E1endValue - encoderS1.read()) * 200/EncoderCPR;
46 int S2endValue = (E2endValue - encoderS2.read()) * 200/EncoderCPR;

75

47 int S3endValue = (E3endValue - encoderS3.read()) * 200/EncoderCPR;
48 int S4endValue = (E4endValue - encoderS4.read()) * 200/EncoderCPR;
49
50 // Spot to drive each motor after
51 int E1driveValue = encoderS1.read() + deployWhenEncoderMoves;
52 int E2driveValue = encoderS2.read() + deployWhenEncoderMoves;
53 int E3driveValue = encoderS3.read() + deployWhenEncoderMoves;
54 int E4driveValue = encoderS4.read() + deployWhenEncoderMoves;
55
56 //Variables to keep track of if a stepper is driving or not
57 bool S1driving = 0; bool S2driving = 0;
58 bool S3driving = 0; bool S4driving = 0;
59 bool S1Braked = 0; bool S2Braked = 0;
60 bool S3Braked = 0; bool S4Braked = 0;
61
62 // Deploy logic
63 bool stillDeploying = 1;
64 bool drillTriggerReleased = 0;
65 bool drillUnwinding = 0;
66 bool drillCompletelyDone = 0;
67
68 //Variables to keep the encoder values in
69 int E1val = 0; int E2val = 0;
70 int E3val = 0; int E4val = 0;
71 int EShaftval = 0;
72
73 // Reset deploy timer to zero
74 sinceDeployStart = 0;
75
76 while(stillDeploying)
77 {
78
79 //Read encoders
80 E1val = encoderS1.read(); E2val = encoderS2.read();
81 E3val = encoderS3.read(); E4val = encoderS4.read();
82 EShaftval = shaftEncoder.read();
83
84 //Turn on and lock each stepper as it spools out to the goal

location
85 if(E1val >= E1endValue) {digitalWrite(S1_ENABLE, 0); S1driving = 0;

if(!S1Braked){BrakeON(1); S1Braked = 1;}} else {};
86 if(E2val >= E2endValue) {digitalWrite(S2_ENABLE, 0); S2driving = 0;

if(!S2Braked){BrakeON(2); S2Braked = 1;}} else {};
87 if(E3val >= E3endValue) {digitalWrite(S3_ENABLE, 0); S3driving = 0;

if(!S3Braked){BrakeON(3); S3Braked = 1;}} else {};
88 if(E4val >= E4endValue) {digitalWrite(S4_ENABLE, 0); S4driving = 0;

if(!S4Braked){BrakeON(4); S4Braked = 1;}} else {};
89
90 //Stop spinning the drill if it’s spun X rotations
91 if(EShaftval <= shaftStepsBeforeStopping && !drillTriggerReleased)
92 {

76

93 DrillSetSpeed(0);
94 DrillSwitchOFF();
95 drillTriggerReleased = 1; // Only run this block once.
96 }
97
98 //Stop the drill after 500ms
99 if(sinceDeployStart > drillMaxDeployTime && !drillTriggerReleased)

100 {
101 DrillSetSpeed(0);
102 DrillSwitchOFF();
103 aw.digitalWrite(DRILL_DIR_PIN, 1);
104 drillCurrentDir = 1;
105 drillTriggerReleased = 1; // Only run this block once.
106 }
107
108 //Log data
109 if(logTimer >= logPeriod)
110 {
111 logTimer = 0; //Reset timer
112
113 logData[logCounter][0] = sinceDeployStart;
114
115 // Motor Encoders
116 logData[logCounter][1] = E1val; logData[logCounter][2] = E2val;
117 logData[logCounter][3] = E3val; logData[logCounter][4] = E4val;
118
119 // Drill
120 logData[logCounter][5] = EShaftval;
121 logData[logCounter][6] = drillTriggerReleased;
122
123 // Cable Stopped
124 logData[logCounter][7] = S1Braked;
125 logData[logCounter][8] = S2Braked;
126 logData[logCounter][9] = S3Braked;
127 logData[logCounter][10] = S4Braked;
128 logData[logCounter][11] = S1driving;
129 logData[logCounter][12] = S2driving;
130 logData[logCounter][13] = S3driving;
131 logData[logCounter][14] = S4driving;
132
133 // IMU data
134 logData[logCounter][15] = IMU_LR_RAW; // Tilt L/R
135 logData[logCounter][16] = IMU_FB_RAW; // Tilt F/B
136 logData[logCounter][17] = Axyz[2]; // Acceleration L/R
137 logData[logCounter][18] = Axyz[0]; // Acceleration F/B
138 logData[logCounter][19] = Axyz[1]; // Acceleration Z(?)
139
140 logCounter++;
141 }
142
143 //Update IMU data every few ms

77

144 if(IMUTimer >= 2)
145 {
146 if (imu.dataReady())
147 {
148 refreshIMUData();
149 IMUTimer = 0;
150 }
151 }
152
153 //Stop deploying after X seconds
154 if (sinceDeployStart > 1400)
155 stillDeploying = false;
156 }
157
158 Serial.println("\n###### DONE DEPLOYING ######\n");
159
160 //LEDs to green
161 setAll(GREEN);
162 leds.show();
163
164 //Release all the cable spools
165 AllStepperMotorsOFF();
166 BrakesAllOFF();
167
168 //Unwind the drill a bit
169 if(!drillTriggerReleased)
170 { // Can’t change direction while trigger pulled in
171 DrillSetSpeed(0);
172 DrillSwitchOFF();
173 delay(30);
174 }
175 DrillClockwise();
176 DrillSwitchON();
177 DrillSetSpeed(20);
178 delay(500);
179 DrillSwitchOFF();
180 DrillSetSpeed(0);
181
182 //Lastly, say we already deployed and need to be reset
183 alreadyDeployed = 1;
184 state = DEPLOYED_WAIT_FOR_RESET;
185 newStateFirstTime = 1; oldState = state;
186
187 PrintLog();
188
189 DeployedWaitForReset();
190
191 }

78

B.2 Check Inputs

The CheckInputs() function reads the input from the buttons, switches, and the IMU and

stores them in global variables. A rolling average is applied to the IMU data to help smooth out

outliers and voltage spikes.

1 void CheckInputs()
2 {
3 // Dual Switch A (Middle Switch)
4 if(!digitalRead(DUAL_A_2_PIN))
5 dualA_State = 1;
6 else if (!digitalRead(DUAL_A_1_PIN))
7 dualA_State = 2;
8 else
9 dualA_State = 0;

10
11 // Dual Switch B (Bottom Switch)
12 // Wired so either position (1 or 2) is ON, middle is OFF
13 if(!digitalRead(DUAL_B_12_PIN))
14 dualB_State = 1;
15 else
16 dualB_State = 0;
17
18 // Dual Switch C (Top Switch)
19 // Wired so either position (1 or 2) is ON, middle is OFF
20 if(!digitalRead(DUAL_C_12_PIN))
21 dualC_State = 1;
22 else
23 dualC_State = 0;
24
25 // ArmSwitch
26 armSw_State = !digitalRead(ARMSW_PIN);
27 if(armSw_State == 0)
28 alreadyDeployed = 0; //Only fully reset after armSw goes back to 0.
29
30 // Power Switch
31 powSw_State = !digitalRead(POWSW_PIN);
32
33 // Deploy button
34 deployButton.update();
35 deployButton_State = deployButton.isPressed();
36
37 // Rotory Knob Button
38 knobButton.update();
39 knobButton_State = knobButton.isPressed();
40
41 //IMU
42 if (imu.dataReady())
43 {
44 imu.getAGMT();

79

45 get_scaled_IMU(Axyz, Mxyz); // In HelperFunctions.ino
46 Mxyz[1] = -Mxyz[1]; // Align magnetometer with accelerometer
47 Mxyz[2] = -Mxyz[2]; // (reflect Y and Z)
48
49 //Save the raw non-averaged data
50 IMU_LR_RAW = Mxyz[2];
51 IMU_FB_RAW = Mxyz[0];
52
53 //Filter the IMU data with a rolling average
54 // Subtract the last reading
55 IMU_LR_total = IMU_LR_total - IMU_LR_readings[readIndex];
56 IMU_FB_total = IMU_FB_total - IMU_FB_readings[readIndex];
57
58 // Read from the sensor
59 IMU_LR_readings[readIndex] = Mxyz[2];
60 IMU_FB_readings[readIndex] = Mxyz[0];
61
62 // Add the reading to the total
63 IMU_LR_total = IMU_LR_total + IMU_LR_readings[readIndex];
64 IMU_FB_total = IMU_FB_total + IMU_FB_readings[readIndex];
65
66 // Advance to the next position in the array
67 readIndex = readIndex + 1;
68 // Calculate the average
69 if (readIndex >= numReadings) { readIndex = 0; }
70 IMU_LR_average = IMU_LR_total / numReadings;
71 IMU_FB_average = IMU_FB_total / numReadings;
72
73 // Update global variables
74 IMU_LeftRight = IMU_LR_average;
75 IMU_ForwardBack = IMU_FB_average;
76 }
77 }

80

B.3 Determine Fall Direction

The system determines which direction it is falling by comparing the IMU readings to

threshold values. The system saves the most recent IMU average at the time the system is armed

as the “Stable” value, and compares all subsequent readings to that value.
The global variables related to the IMU thresholding are initialized before the setup()

function:

1 // Globals for most recent IMU reading
2 float IMU_LeftRight = 0;
3 float IMU_ForwardBack = 0;
4
5 //Used for saving the "Stable" value at the time the system is armed
6 float IMU_Stable_LR = 0;
7 float IMU_Stable_FB = 0;
8
9 //How much change in that direction to count as falling.

10 float FallLeftDelta= 0.08;
11 float FallRightDelta = 0.11;
12 float FallForwardDelta = 0.10;

The determineFallDirection() function then compares the most recent IMU average to
the stable value to determine if the system is falling in a particular direction.

1 //Figure out which way the walker is falling (or not)
2 int determineFallDirection()
3 {
4 fallDirection = STABLE;
5
6 if(IMU_LeftRight < (IMU_Stable_LR - FallRightDelta))
7 {
8 fallDirection = FALL_RIGHT;
9 }

10 else if(IMU_LeftRight > (IMU_Stable_LR + FallLeftDelta))
11 {
12 fallDirection = FALL_LEFT;
13 }
14 else if(IMU_ForwardBack < (IMU_Stable_FB - FallForwardDelta))
15 {
16 fallDirection = FALL_FORWARD;
17 }
18 }

81

B.4 Determine System State

The DetermineState() function determines the overall system state (such as Armed,

Standby, MotorTuning, etc.) based on the status of the system (previously deployed or not) and the

state of the switches. The state determination is purposefully designed so that some states will be

selected before others. For instance, the system will go into the MotorTune state even if the ARM

switch is toggled on and the walker is tilting sideways. This setup helps prevent accidental deploys

of the system before it is desired.

1 void DetermineState()
2 {
3 // Update global variables
4 CheckInputs();
5 determineFallDirection();
6
7 // Motor tuning functions
8 if (dualA_State == 1)
9 state = TUNE_ONE_STEPPER;

10 else if (dualA_State == 2)
11 state = TUNE_ALL_STEPPERS;
12 else if (dualB_State != 0)
13 state = TUNE_DRILL_MOTOR;
14
15 // Require resetting the ARM switch upon boot
16 // (alreadyDeployed is set to 1 in the setup file)
17 else if (alreadyDeployed == 1 && armSw_State == 1)
18 state = DEPLOYED_WAIT_FOR_RESET;
19
20 else if (armSw_State == 1 && dualA_State == 0 &&
21 dualB_State == 0 && alreadyDeployed == 0)
22 state = ARMED_AND_READY; //Listening to IMU sensor for falling.
23
24 else if (armSw_State == 0 && dualA_State == 0 && dualB_State == 0)
25 state = STANDBY;
26 else
27 state = UNDEFINED;
28
29 //Keep track of if it’s the first time in the Arm state or not
30 if(state != ARMED_AND_READY)
31 armedReadyFirstTime = 1;
32
33 if(state != oldState)
34 {Serial.println("New State: " + String(state));
35 newStateFirstTime = 1; }
36
37 oldState = state;
38 }

82

B.5 Loop

The loop() function uses the previously determined state to run the correct function for

the system. In Arduino programs, the loop() function is required and loops infinitely as long as the

microcontroller is powered.

1 void loop()
2 {
3 DetermineState();
4
5 switch (state) {
6 case STANDBY:
7 Standby(); //keep alive function basically
8 break;
9 case TUNE_ALL_STEPPERS:

10 TuneAllSteppers();
11 break;
12 case TUNE_ONE_STEPPER:
13 TuneOneStepper();
14 break;
15 case TUNE_DRILL_MOTOR:
16 TuneDrillMotor();
17 break;
18 case ARMED_AND_READY:
19 ArmedAndReady();
20 break;
21 case DEPLOYING:
22 DeployingNOW(); //blocking function
23 break;
24 case DEPLOYED_WAIT_FOR_RESET:
25 DeployedWaitForReset();
26 break;
27 case UNDEFINED:
28 //continue to check the switches until a valid state exists
29 break;
30 default:
31 //same as UNDEFINED.
32 break;
33 }
34 }

83

B.6 Drill

Power drills are programmed to turn off after a certain period of inactivity to conserve

battery. For our particular drill, it turned off after 10 seconds of inactivity. To circumvent this

feature, our system moved the drill every 8 seconds. The speed was set very slow (4/100) so it

was not noticeable that the drill moved, and the direction was inverted after every toggle so that

the drill would not creep and slowly wrap up the cables. The KeepDrillAwake() function below

implements this functionality.

1 void KeepDrillAwake()
2 {
3 DrillSwitchON();
4 SetDrillSpeed(4);
5 delay(40);
6 SetDrillSpeed(0);
7 delay(50);
8
9 //Flip direction (unless armed and ready to deploy CCW)

10 if(!armSw_State)
11 {
12 DrillFlipDirection();
13 }
14 }

B.7 Data Logging

Logging the encoder values during initial testing was essential to the debugging of the

system. We logged data by saving the values into an array while the system deployed, and then

writing the values to the Serial monitor and/or a micro SD card after the system finished deploying.

This minimized delays imposed on the system by logging data. The logData array and a few other

variables were initialized as global variables before the setup() function:

1 int logPeriod = 5000; //micro seconds between each log entry (5ms)
2 String logHeaders[] = {"timeSinceDeploy","E1","E2","E3","E4","Shaft",
3 "DrillSwitch",
4 "S1Enable","S2Enable","S3Enable","S4Enable",
5 "S1Driving","S2Driving","S3Driving","S4Driving",
6 "IMU_LR","IMU_FB","IMU_LR_Accel","IMU_FB_Accel",
7 "IMU_Other_Accel"};
8 const int logDataRows = 401; //= MaxDeployTime / logPeriod + 1
9 const byte logDataCols = 20; // Number of columns

10 float logData[logDataRows][logDataCols];
11 int logCounter = 0; // Row number to save new data to

84

See the Deploy code above where the data is saved to the array during the system deploy.

The PrintLog() function below saves the log to the micro SD card and printed it to the Serial

monitor. Printing the data to the Serial monitor was convenient when initial tests were performed

with the system tethered to the computer.

1 void PrintLog()
2 {
3 Serial.println("Fall Direction: " + String(fallDirection));
4 Serial.println("Data log of that run:");
5
6 File dataFile = SD.open("walklog.csv", FILE_WRITE);
7
8 for(byte i = 0; i < logDataCols-1; i++)
9 {

10 Serial.print(logHeaders[i]);
11 Serial.print(",");
12
13 dataFile.print(logHeaders[i]);
14 dataFile.print(",");
15 }
16 Serial.println(logHeaders[logDataCols-1]);
17 dataFile.println(logHeaders[logDataCols-1]);
18
19 //Data
20 for (int i = 0; i < logDataRows; i++) {
21 for(byte j = 0; j< logDataCols - 1; j++)
22 {
23 if(j >= 14)
24 {
25 // Save the IMU columns with 5 decimal places
26 Serial.print(logData[i][j], 5);
27 dataFile.print(logData[i][j], 5);
28 }
29 else
30 {
31 Serial.print(logData[i][j]);
32 dataFile.print(logData[i][j]);
33 }
34
35 Serial.print(",");
36 dataFile.print(",");
37 }
38 // Save the IMU columns with more 5 places
39 Serial.println(logData[i][logDataCols-1], 5);
40 dataFile.println(logData[i][logDataCols-1], 5);
41
42 delay(2);
43 }
44 dataFile.close();
45 Serial.println("\nLog printing done!");
46 }

85

Bibliography

[1] World Health Organization, “Falls.” https://www.who.int/news-room/fact-sheets/
detail/falls, 2021. [Online; accessed 18-October-2021].

[2] C. for Disease Control and Prevention, “Keep on your feet: Preventing older adult falls.”
https://www.cdc.gov/injury/features/older-adult-falls/index.html, 2020.
[Online; accessed 18-October-2021].

[3] B. Moreland, R. Kakara, and A. Henry, “Trends in Nonfatal Falls and Fall-Related Injuries
Among Adults Aged ≥ 65 Years — United States, 2012–2018,” July 2020.

[4] J.E. Walker and J. Howland, “Falls and Fear of Falling Among Elderly Persons Living in the
Community: Occupational Therapy Interventions,” 1991.

[5] C. Eustice, “Elderly Falls Tied to Canes and Walkers.” https://www.verywellhealth.
com/elderly-falls-tied-to-canes-and-walkers-2552063, April 2020. [Online;
accessed 18-October-2021].

[6] E. Coyle, A. O’Dwyer, E. Young, K. Sullivan, and A. Toner, “Controlled breaking scheme
for a wheeled walking aid,” IFAC Proceedings Volumes, vol. 39, no. 21, pp. 21–25, 2006. IFAC
Workshop on Programmable Devices and Embedded Systems PDeS 2006, Brno, Czech Republic,
February 14-16, 2006.

[7] M. Azqueta-Gavaldon, I. Azqueta-Gavaldon, M. Woiczinski, K. Bötzel, and E. Kraft, “Auto-
matic braking system and fall detection mechanism for rollators,” in Proceedings of the 6th
International Conference on Bioinformatics and Biomedical Science, ICBBS ’17, (New York,
NY, USA), p. 158–161, Association for Computing Machinery, 2017.

[8] Y. Hirata, S. Komatsuda, and K. Kosuge, “Fall prevention control of passive intelligent walker
based on human model,” in 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1222–1228, 2008.

[9] G. Lee, E.-J. Jung, T. Ohnuma, N. Chong, and B.-J. Yi, “Jaist robotic walker control based
on a two-layered kalman filter,” Proceedings - IEEE International Conference on Robotics and
Automation, pp. 3682 – 3687, 06 2011.

[10] Weiss, C.C., “Helite’s airbag belt gives wearers a hip check.” https://newatlas.com/
helite-hipair-wearable-airbag/52867/, January 2018. [Online; accessed 11-October-
2021].

[11] Tucker, Matthew, “Free fall tool harness and airbag system.” https://www.behance.net/
gallery/11232605/Free-Fall-Tool-Harness-and-Airbag-System, Oct 2013.
[Online; accessed 11-October-2021].

86

https://www.who.int/news-room/fact-sheets/detail/falls
https://www.who.int/news-room/fact-sheets/detail/falls
https://www.cdc.gov/injury/features/older-adult-falls/index.html
https://www.verywellhealth.com/elderly-falls-tied-to-canes-and-walkers-2552063
https://www.verywellhealth.com/elderly-falls-tied-to-canes-and-walkers-2552063
https://newatlas.com/helite-hipair-wearable-airbag/52867/
https://newatlas.com/helite-hipair-wearable-airbag/52867/
https://www.behance.net/gallery/11232605/Free-Fall-Tool-Harness-and-Airbag-System
https://www.behance.net/gallery/11232605/Free-Fall-Tool-Harness-and-Airbag-System

[12] Weiss, C.C., “Helite readies wearable skiing airbag for 2014 winter olympics.” https://
newatlas.com/helite-airbag-skiing/26190/, February 2013. [Online; accessed 11-
October-2021].

[13] Coxworth, Ben, “Airbag-equipped cycling vest instantly inflates when accidents hap-
pen.” https://newatlas.com/helite-bsafe-airbag-cycling-vest/58050/, Jan-
uary 2021. [Online; accessed 11-October-2021].

[14] Hit-Air, Amazon, “Hit-air inflatable air vest sv2 model in black size s.” https:
//www.amazon.com/Hit-Air-inflatable-vest-model-Black/dp/B00E40JJQ8/,
2021. [Online; accessed 11-October-2021].

[15] G. Shi, C. S. Chan, W. J. Li, K.-S. Leung, Y. Zou, and Y. Jin, “Mobile human airbag system
for fall protection using mems sensors and embedded svm classifier,” IEEE Sensors Journal,
vol. 9, no. 5, pp. 495–503, 2009.

[16] J. Li, “Wearable and controllable protective system design for elderly falling,” in 2020 6th Inter-
national Conference on Mechanical Engineering and Automation Science (ICMEAS), pp. 187–
194, 2020.

[17] G. Shi, C.-s. Chan, Y. Luo, G. Zhang, W. J. Li, P. H. W. Leong, and K.-s. Leung, “Development
of a human airbag system for fall protection using mems motion sensing technology,” in 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4405–4410, 2006.

[18] D. Trivedi, C. Rahn, W. Kier, and I. Walker, “Soft robotics: Biological inspiration, state of the
art, and future research,” Applied Bionics and Biomechanics, vol. 5, pp. 99–117, 10 2008.

[19] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical applications:
A survey,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261–1280, 2015.

[20] H. Lipson, “Challenges and opportunities for design, simulation, and fabrication of soft robots,”
Soft Robotics, vol. 1, no. 1, pp. 21–27, 2014.

[21] C. Majidi, “Soft robotics: A perspective—current trends and prospects for the future,” Soft
Robotics, vol. 1, no. 1, pp. 5–11, 2014.

[22] S. G. Nurzaman, F. Iida, L. Margheri, and C. Laschi, “Soft robotics on the move: Scientific
networks, activities, and future challenges,” Soft Robotics, vol. 1, no. 2, pp. 154–158, 2014.

[23] I. D. Walker, H. Choset, and G. S. Chirikjian, Snake-Like and Continuum Robots, pp. 481–498.
Cham: Springer International Publishing, 2016.

[24] P. H. Nguyen, I. I. B. Mohd, C. Sparks, F. L. Arellano, W. Zhang, and P. Polygerinos, “Fabric
soft poly-limbs for physical assistance of daily living tasks,” 2019.

[25] A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft
and continuously deformable 2d robotic manipulation system,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2189–2196, May 2014.

[26] G. Immega and K. Antonelli, “The ksi tentacle manipulator,” in Proceedings of 1995 IEEE
International Conference on Robotics and Automation, vol. 3, pp. 3149–3154 vol.3, 1995.

[27] W. McMahan, B. Jones, and I. Walker, “Design and implementation of a multi-section contin-
uum robot: Air-octor,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 2578–2585, 2005.

87

https://newatlas.com/helite-airbag-skiing/26190/
https://newatlas.com/helite-airbag-skiing/26190/
https://newatlas.com/helite-bsafe-airbag-cycling-vest/58050/
https://www.amazon.com/Hit-Air-inflatable-vest-model-Black/dp/B00E40JJQ8/
https://www.amazon.com/Hit-Air-inflatable-vest-model-Black/dp/B00E40JJQ8/

[28] E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura, “A soft robot that
navigates its environment through growth,” Science Robotics, vol. 2, no. 8, p. eaan3028, 2017.

[29] Lowes, “Plastic stud support bracket.” https://www.lowes.com/pd/Plastic-Stud-
Support-Bracket/3574056, 2021. [Online; accessed 11-October-2021].

[30] POPLAY, Amazon, “Poplay thunder sticks, 100pcs inflatable sticks bam bam thunder
sticks noise makers for sporting events.” https://www.amazon.com/POPLAY-Thunder-
Cheerleading-Inflatable-Noisemakers/dp/B01NA837I2, 2021. [Online; accessed
11-October-2021].

[31] TMORU, Amazon, “Tmoru 4 pcs pool inflatable sticks, 41in outdoor water games
toy.” https://www.amazon.com/TMORU-Inflatable-Sticks-Outdoor-Water/dp/
B09CL12MVT, 2021. [Online; accessed 11-October-2021].

[32] Rockywoods SCA, “Heat sealable 200 denier oxford nylon - blue.” https://www.
rockywoods.com/Heat-Sealable-200-Denier-Oxford-Nylon-Blue, 2021. [Online;
accessed 11-October-2021].

[33] HotJaw, Amazon, “Hotjaw kf-150cst 6in portable hand held heat sealer, 6 inch,
black.” https://www.amazon.com/Portable-Sealer-Model-KF-150CST-
Storage/dp/B003HO30TE, 2021. [Online; accessed 11-October-2021].

[34] HATCHBOX, Amazon, “Hatchbox pla 3d printer filament, dimensional accuracy +/- 0.03
mm, 1 kg spool, 1.75 mm, black, pack of 1.” https://www.amazon.com/HATCHBOX-
3D-Filament-Dimensional-Accuracy/dp/B00J0ECR5I, 2021. [Online; accessed 11-
October-2021].

[35] Ninjatek, “Ninjaflex 3d printer filament (85a).” https://ninjatek.com/shop/
ninjaflex/, 2021. [Online; accessed 11-October-2021].

[36] SAINSMART, Amazon, “Sainsmart - tpu-blu-0.25kg1.75 sainsmart 1.75mm 250g flexible tpu 3d
printing filament, dimensional accuracy +/- 0.05 mm (blue).” https://www.amazon.com/
SAINSMART-Flexible-Printing-Filament-Dimensional/dp/B071SJ8SDQ/, 2021.
[Online; accessed 11-October-2021].

[37] XHF, Amazon, “Xhf 4mm(wrapping range:1.5mm-10mm) spiral cable wrap spiral wire wrap
cord for computer electrical wire organizer sleeve hose rohs black (dia 4mm length 20m).”
https://www.amazon.com/dp/B07JNRL843, 2021. [Online; accessed 11-October-2021].

[38] Drive Medical, Amazon, “Drive medical 10210-1 deluxe 2-button folding walker with wheels.”
https://www.amazon.com/dp/B001HOM4U2/, 2021. [Online; accessed 11-October-2021].

[39] Teensy PJRC, “Teensy 4.1 development board.” https://www.pjrc.com/store/
teensy41.html, 2021. [Online; accessed 11-October-2021].

[40] Piedmont Plastics, “Aluminum composite material.” https://www.piedmontplastics.
com/products/acm, 2021. [Online; accessed 11-October-2021].

[41] Neiko, “Neiko 01148a hex allen power bit set, 11-piece metric sizes 1.5mm to 8mm — magnetic
hex head bits — 3 quick release shanks — premium s2 steel — compatible with power drills and
impact drivers.” https://www.amazon.com/gp/product/B086RJW49Q/, 2021. [Online;
accessed 28-October-2021].

[42] Super Lube, Amazon, “Super lube-21030 synthetic multi-purpose grease, 3 oz..” https:
//www.amazon.com/Super-Lube-21030-Synthetic-Grease/dp/B000XBH9HI,
2021. [Online; accessed 11-October-2021].

88

https://www.lowes.com/pd/Plastic-Stud-Support-Bracket/3574056
https://www.lowes.com/pd/Plastic-Stud-Support-Bracket/3574056
https://www.amazon.com/POPLAY-Thunder-Cheerleading-Inflatable-Noisemakers/dp/B01NA837I2
https://www.amazon.com/POPLAY-Thunder-Cheerleading-Inflatable-Noisemakers/dp/B01NA837I2
https://www.amazon.com/TMORU-Inflatable-Sticks-Outdoor-Water/dp/B09CL12MVT
https://www.amazon.com/TMORU-Inflatable-Sticks-Outdoor-Water/dp/B09CL12MVT
https://www.rockywoods.com/Heat-Sealable-200-Denier-Oxford-Nylon-Blue
https://www.rockywoods.com/Heat-Sealable-200-Denier-Oxford-Nylon-Blue
https://www.amazon.com/Portable-Sealer-Model-KF-150CST-Storage/dp/B003HO30TE
https://www.amazon.com/Portable-Sealer-Model-KF-150CST-Storage/dp/B003HO30TE
https://www.amazon.com/HATCHBOX-3D-Filament-Dimensional-Accuracy/dp/B00J0ECR5I
https://www.amazon.com/HATCHBOX-3D-Filament-Dimensional-Accuracy/dp/B00J0ECR5I
https://ninjatek.com/shop/ninjaflex/
https://ninjatek.com/shop/ninjaflex/
https://www.amazon.com/SAINSMART-Flexible-Printing-Filament-Dimensional/dp/B071SJ8SDQ/
https://www.amazon.com/SAINSMART-Flexible-Printing-Filament-Dimensional/dp/B071SJ8SDQ/
https://www.amazon.com/dp/B07JNRL843
https://www.amazon.com/dp/B001HOM4U2/
https://www.pjrc.com/store/teensy41.html
https://www.pjrc.com/store/teensy41.html
https://www.piedmontplastics.com/products/acm
https://www.piedmontplastics.com/products/acm
https://www.amazon.com/gp/product/B086RJW49Q/
https://www.amazon.com/Super-Lube-21030-Synthetic-Grease/dp/B000XBH9HI
https://www.amazon.com/Super-Lube-21030-Synthetic-Grease/dp/B000XBH9HI

[43] RIDGID, Home Depot, “Ridgid 18-volt lithium-ion cordless brushless drill/driver and impact
driver combo kit w/(2) 1.5 ah batteries, charger, and bag-r9603.” https://www.homedepot.
com/p/301853891, 2021. [Online; accessed 11-October-2021].

[44] Stepperonline OMC, “Dual shaft nema 17 bipolar 1.8deg 65ncm (92.3oz.in) 2.10a 3.36v
42x42x60mm 4 wires.” https://www.omc-stepperonline.com/nema-17-stepper-
motor/Dual-Shaft-Nema-17-Bipolar-18deg-65Ncm-923ozin-210A-336V-
42x42x60mm-4-Wires.html, 2021. [Online; accessed 11-October-2021].

[45] CUI Devices, Digikey, “Amt102-v.” https://www.digikey.com/en/products/detail/
cui-devices/AMT102-V/827015, 2021. [Online; accessed 11-October-2021].

[46] Stepperonline OMC, “Dc electromagnetic brake 24v 0.25nm(35.4oz.in) for nema 17 step-
per motor.” https://www.omc-stepperonline.com/dc-electromagnetic-brake-
24v-025nm354ozin-for-nema-17-stepper-motor-swb-01.html, 2021. [Online; ac-
cessed 11-October-2021].

[47] ANCIRS, Amazon, “4 pack 4mm flange coupling connector, rigid guide steel model coupler
accessory, shaft axis fittings for diy rc model motors, high hardness coupling connector-
silver.” https://www.amazon.com/Coupling-Connector-Accessory-Fittings-
Connector-Silver/dp/B07PDYV4P3, 2021. [Online; accessed 11-October-2021].

[48] Adafruit, “Adafruit aw9523 gpio expander and led driver breakout - stemma qt / qwiic.”
https://www.adafruit.com/product/4886, 2021. [Online; accessed 11-October-2021].

[49] Floureon, Amazon, “Floureon 2 packs 6s 22.2v 4500mah 45c lipo battery with
xt60 plug.” https://www.amazon.com/Floureon-4500mAh-Quadcopter-Airplane-
Helicopter/dp/B01AW7CKLW, 2021. [Online; accessed 11-October-2021].

[50] HiLetgo, Amazon, “Hiletgo 2pcs digital voltmeter ammeter dc 100v 10a amp voltage current
meter tester 0.56 inch 3 bits blue + red dual led display panel with connect wires.” https:
//www.amazon.com/dp/B072BY4XZ7, 2021. [Online; accessed 11-October-2021].

[51] Pololu, “5v, 5.5a step-down voltage regulator d36v50f5.” https://www.pololu.com/
product/4091, 2021. [Online; accessed 11-October-2021].

[52] Pololu, “Pololu 12v, 15a step-down voltage regulator d24v150f12.” https://www.pololu.
com/product/2885, 2021. [Online; accessed 11-October-2021].

[53] HiLetgo, “Hiletgo 2pcs x9c104 digital potentiometer module 5v 40r-100k adjust bridge bal-
ance for arduino.” https://www.amazon.com/gp/product/B01MTU9FSK, 2021. [Online;
accessed 27-October-2021].

[54] SparkFun Electronics, “Sparkfun 9dof imu breakout - icm-20948 (qwiic).” https://www.
sparkfun.com/products/15335, 2021. [Online; accessed 11-October-2021].

[55] HiLetgo, “Icstation txs0108e 8 channel logic level converter 3.3v 5v bi-directional high speed
shifter for arduino raspberry pi iic i2c spi.” https://www.amazon.com/gp/product/
B06XWVZHZJ, 2021. [Online; accessed 27-October-2021].

[56] HiLetgo, “Grayhill 61c series optical encoder 61c22-01-04-02.” https://www.digikey.
com/en/products/detail/grayhill-inc/61C22-01-04-02/98658, 2021. [Online;
accessed 27-October-2021].

[57] RENESAS, “Renesas x9c102, x9c103, x9c104 x9c503 digitally controlled potentiome-
ter (xdcp) datasheet.” https://www.renesas.com/us/en/document/dst/x9c102-
x9c103-x9c104-x9c503-datasheet, 2021. [Online; accessed 18-October-2021].

89

https://www.homedepot.com/p/301853891
https://www.homedepot.com/p/301853891
https://www.omc-stepperonline.com/nema-17-stepper-motor/Dual-Shaft-Nema-17-Bipolar-18deg-65Ncm-923ozin-210A-336V-42x42x60mm-4-Wires.html
https://www.omc-stepperonline.com/nema-17-stepper-motor/Dual-Shaft-Nema-17-Bipolar-18deg-65Ncm-923ozin-210A-336V-42x42x60mm-4-Wires.html
https://www.omc-stepperonline.com/nema-17-stepper-motor/Dual-Shaft-Nema-17-Bipolar-18deg-65Ncm-923ozin-210A-336V-42x42x60mm-4-Wires.html
https://www.digikey.com/en/products/detail/cui-devices/AMT102-V/827015
https://www.digikey.com/en/products/detail/cui-devices/AMT102-V/827015
https://www.omc-stepperonline.com/dc-electromagnetic-brake-24v-025nm354ozin-for-nema-17-stepper-motor-swb-01.html
https://www.omc-stepperonline.com/dc-electromagnetic-brake-24v-025nm354ozin-for-nema-17-stepper-motor-swb-01.html
https://www.amazon.com/Coupling-Connector-Accessory-Fittings-Connector-Silver/dp/B07PDYV4P3
https://www.amazon.com/Coupling-Connector-Accessory-Fittings-Connector-Silver/dp/B07PDYV4P3
https://www.adafruit.com/product/4886
https://www.amazon.com/Floureon-4500mAh-Quadcopter-Airplane-Helicopter/dp/B01AW7CKLW
https://www.amazon.com/Floureon-4500mAh-Quadcopter-Airplane-Helicopter/dp/B01AW7CKLW
https://www.amazon.com/dp/B072BY4XZ7
https://www.amazon.com/dp/B072BY4XZ7
https://www.pololu.com/product/4091
https://www.pololu.com/product/4091
https://www.pololu.com/product/2885
https://www.pololu.com/product/2885
https://www.amazon.com/gp/product/B01MTU9FSK
https://www.sparkfun.com/products/15335
https://www.sparkfun.com/products/15335
https://www.amazon.com/gp/product/B06XWVZHZJ
https://www.amazon.com/gp/product/B06XWVZHZJ
https://www.digikey.com/en/products/detail/grayhill-inc/61C22-01-04-02/98658
https://www.digikey.com/en/products/detail/grayhill-inc/61C22-01-04-02/98658
https://www.renesas.com/us/en/document/dst/x9c102-x9c103-x9c104-x9c503-datasheet
https://www.renesas.com/us/en/document/dst/x9c102-x9c103-x9c104-x9c503-datasheet

[58] Mehran Maleki, “Interfacing x9c103s digital potentiometer module with arduino.”
https://electropeak.com/learn/interfacing-x9c103s-10k-digital-
potentiometer-module-with-arduino/, 2021. [Online; accessed 24-October-2021].

[59] Adafruit, Github, “Adafruit aw9523.” https://github.com/adafruit/Adafruit_
AW9523, 2021. [Online; accessed 24-October-2021].

[60] Last Minute Engineers, “Control stepper motor with drv8825 driver module &
arduino.” https://lastminuteengineers.com/drv8825-stepper-motor-driver-
arduino-tutorial/, 2021. [Online; accessed 24-October-2021].

[61] Jacob Thompson, “Walker-continuum-robot-airbag.” https://github.com/jakabo27/
Walker-Continuum-Robot-Airbag, 2021.

[62] Vieyra Software, “Physics toolbox sensor suite.” https://play.google.com/store/
apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en_US&gl=
US, 2021. [Online; accessed 15-October-2021].

[63] Wish, “K3 male straight hand straight foot body model mannequin skin color.” https://www.
wish.com/product/598c009b6b0da50c499b63e2?hide_login_modal=true, 2021.
[Online; accessed 27-October-2021].

[64] Q. Zhang, H. Q. Li, Y. Ning, D. Liang, and G. R. Zhao, “Design and realization of a wearable
hip-airbag system for fall protection,” Applied Mechanics and Materials, vol. 461, pp. 667 –
674, 2013.

[65] R. Salomon, M. Lüder, and G. Bieber, “ifall - case studies in unexpected falls,” in 2010 IEEE
International Symposium on Industrial Electronics, pp. 1645–1650, 2010.

[66] B.-J. Jo, Y. Lee, J. Kim, S. Y. Jung, D. Yang, J. Lee, and J. Hong, “Design of wearable airbag
with injury reducing system,” in ICT4AgeingWell, 2017.

[67] S. Sankaran, A. P. Thiyagarajan, A. D. Kannan, K. Karnan, and S. R. Krishnan, “Design and
development of smart airbag suit for elderly with protection and notification system,” in 2021
6th International Conference on Communication and Electronics Systems (ICCES), pp. 1273–
1278, 2021.

[68] L. Chen, D. Mao, and Q. Gao, Design and Analysis of the Human Airbag, pp. 133–138. Springer
International Publishing, 01 2021.

[69] Z. Zhong, F. Chen, Q. Zhai, Z. Fu, J. P. Ferreira, Y. Liu, J. Yi, and T. Liu, “A real-time pre-
impact fall detection and protection system,” in 2018 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), pp. 1039–1044, 2018.

[70] J. Thompson and I.D. Walker, “Soft Continuum Robot Airbag Integrated with Passive Walker
for Fall Mitigation.” Submitted to IEEE RoboSoft Conference, 2022.

[71] Genuine Innovations, “Why do co2 cartridges get so cold?.” https://www.
genuineinnovations.com/blogs/learn-about-our-tech/why-do-co2-
cartridges-get-so-cold, 2021. [Online; accessed 27-October-2021].

[72] Wikipedia contributors, “Carbon dioxide — Wikipedia, the free encyclopedia.” https://en.
wikipedia.org/w/index.php?title=Carbon_dioxide&oldid=1048899486, 2021.
[Online; accessed 11-October-2021].

90

https://electropeak.com/learn/interfacing-x9c103s-10k-digital-potentiometer-module-with-arduino/
https://electropeak.com/learn/interfacing-x9c103s-10k-digital-potentiometer-module-with-arduino/
https://github.com/adafruit/Adafruit_AW9523
https://github.com/adafruit/Adafruit_AW9523
https://lastminuteengineers.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://lastminuteengineers.com/drv8825-stepper-motor-driver-arduino-tutorial/
https://github.com/jakabo27/Walker-Continuum-Robot-Airbag
https://github.com/jakabo27/Walker-Continuum-Robot-Airbag
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en_US&gl=US
https://play.google.com/store/apps/details?id=com.chrystianvieyra.physicstoolboxsuite&hl=en_US&gl=US
https://www.wish.com/product/598c009b6b0da50c499b63e2?hide_login_modal=true
https://www.wish.com/product/598c009b6b0da50c499b63e2?hide_login_modal=true
https://www.genuineinnovations.com/blogs/learn-about-our-tech/why-do-co2-cartridges-get-so-cold
https://www.genuineinnovations.com/blogs/learn-about-our-tech/why-do-co2-cartridges-get-so-cold
https://www.genuineinnovations.com/blogs/learn-about-our-tech/why-do-co2-cartridges-get-so-cold
https://en.wikipedia.org/w/index.php?title=Carbon_dioxide&oldid=1048899486
https://en.wikipedia.org/w/index.php?title=Carbon_dioxide&oldid=1048899486

[73] Discount Paintball, “Umarex 88 gram prefilled co2 cartridge high grade 2 pack.”
https://www.discountpaintball.com/umarex-88-gram-prefilled-co2-
cartridge-2-pack.html, 2021. [Online; accessed 11-October-2021].

[74] JT Paintball, “Jt paintball 90gr pre-filled co2 air cartridges 2 pack.” https://www.
walmart.com/ip/JT-Paintball-90gr-Pre-Filled-CO2-Air-Cartridges-2-
Pack/103804944, 2021. [Online; accessed 29-October-2021].

[75] Discount Paintball, “Tippmann 12 oz aluminum co2 tank for paintball.” https:
//www.discountpaintball.com/tippmann-12oz-aluminum-co2-tank-for-
paintball.html, 2021. [Online; accessed 11-October-2021].

[76] ANSgear, “Difference between co2 vs. compressed air for paintball?.” https://www.
ansgear.com/CO2_Vs_Compressed_Air_s/4835.htm, 2021. [Online; accessed 27-
October-2021].

[77] Alex Smith, “What is the volume of an airbag when fully inflated?.” https:
//rehabilitationrobotics.net/what-is-the-volume-of-an-airbag-when-
fully-inflated/, 06 2021. [Online; accessed 18-October-2021].

[78] HELLA TECH WORLD - The Workshop’s Friend, “Car airbag system.” https://www.
hella.com/techworld/us/Technical/Car-electronics-and-electrics/Car-
airbag-system-3083/, 2021. [Online; accessed 18-October-2021].

[79] Tom Harbidd, “How much does airbag replacement cost.” https://www.cashcarsbuyer.
com/airbag-replacement-cost, 2020. [Online; accessed 18-October-2021].

91

https://www.discountpaintball.com/umarex-88-gram-prefilled-co2-cartridge-2-pack.html
https://www.discountpaintball.com/umarex-88-gram-prefilled-co2-cartridge-2-pack.html
https://www.walmart.com/ip/JT-Paintball-90gr-Pre-Filled-CO2-Air-Cartridges-2-Pack/103804944
https://www.walmart.com/ip/JT-Paintball-90gr-Pre-Filled-CO2-Air-Cartridges-2-Pack/103804944
https://www.walmart.com/ip/JT-Paintball-90gr-Pre-Filled-CO2-Air-Cartridges-2-Pack/103804944
https://www.discountpaintball.com/tippmann-12oz-aluminum-co2-tank-for-paintball.html
https://www.discountpaintball.com/tippmann-12oz-aluminum-co2-tank-for-paintball.html
https://www.discountpaintball.com/tippmann-12oz-aluminum-co2-tank-for-paintball.html
https://www.ansgear.com/CO2_Vs_Compressed_Air_s/4835.htm
https://www.ansgear.com/CO2_Vs_Compressed_Air_s/4835.htm
https://rehabilitationrobotics.net/what-is-the-volume-of-an-airbag-when-fully-inflated/
https://rehabilitationrobotics.net/what-is-the-volume-of-an-airbag-when-fully-inflated/
https://rehabilitationrobotics.net/what-is-the-volume-of-an-airbag-when-fully-inflated/
https://www.hella.com/techworld/us/Technical/Car-electronics-and-electrics/Car-airbag-system-3083/
https://www.hella.com/techworld/us/Technical/Car-electronics-and-electrics/Car-airbag-system-3083/
https://www.hella.com/techworld/us/Technical/Car-electronics-and-electrics/Car-airbag-system-3083/
https://www.cashcarsbuyer.com/airbag-replacement-cost
https://www.cashcarsbuyer.com/airbag-replacement-cost

	Soft Continuum Robotic Airbag Integrated with Passive Walker for Fall Mitigation
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Background and Related Work
	Thesis Overview

	System Design and Prototyping
	Preliminary Inflation Research and Development
	Arm and Bladder Construction
	Mechanical and Hardware
	Integration with Walker and Actuators
	Electrical Design and Build
	Software

	Results Using the Prototype
	Preliminary Deploy Tests
	Final Deploy Tests
	Variable Weight Tests

	Conclusions and Discussion
	Future Work

	Appendices
	Alternative Inflation Methods
	Software Details

	Bibliography

