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ABSTRACT 

Pantographic lattices are cellular solids comprised of continuous beam fibers intersecting 

at periodically spaced pivots. The pivots are simulated in the discrete finite element beam 

model as torsional springs with varied torsional stiffness across orders of magnitude. An 

important functional performance feature of pantographic lattices is their ability to 

undergo large deformation without inducing large stresses at the pivots. There is a need 

for predictive models of this nonlinear behavior.  In this study, parameter studies on the 

order of magnitude and nonlinear material behavior of the torsional stiffness at the pivots, 

combined with and without nonlinear geometric beam kinematic behavior is investigated. 

In this study, the mechanical response of pantographic lattice is analyzed for a series of 

elongation tests based on a set of kinematic assumptions. Finite element numerical results 

are presented for the axial bias test for in-plane stretch along the bisector of the beam 

fiber orientations. Strain energy distributions are used to analyze the stiffness of the 

deformed geometry behavior. Geometric nonlinearity is introduced to study the response 

for large deformation while a non-linear torsional spring expressed as a cubic polynomial 

function of relative beam rotations at connection nodes is utilized to model local pivot 

softening and stiffening effects. One use of the discrete frame model presented in the 

study is to serve as a validation tool for homogenized pantographic sheet models based 

on second gradient field theory in the case of light spring stiffness relative to the beam 

lengths and section properties, of order epsilon squared, where epsilon is a small-scale 

parameter measuring the ratio of a repeating unit cell size to the overall lattice size.  For 

epsilon of order one, the discrete beam model serves to validate homogenized models 
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based on the first gradient classical elasticity theory.  The discrete beam model of an 

orthogonally oriented lattice is constituted by torsional springs at intersection points 

which dictate the internal moments. At a joint, displacements of the nodes are rigidly 

constrained while rotational degrees of freedom are proportional to a local torsional 

stiffness for the lattice pivots. The torsional stiffness of the spring is varied from (perfect) 

zero to infinite limits to replicate a free and rigid connection respectively between the 

intersecting beams joints. For the nonlinear torsional pivot spring model, the torsional 

stiffness is not constant, instead of being a function of the magnitude of pivot rotations. 

The linear torsional springs are generated at the lattice pivots in the discrete mathematical 

model using constraints setup using Lagrange multipliers. Geometric nonlinearity has 

been introduced using the large deformation beam kinematics implemented within 

ABAQUS finite element software. The pantographic lattice is constituted by Euler 

Bernoulli beams connecting nodes along the designated fibers. A nonlinear relationship 

between moment and angle of rotation is utilized in Abaqus python scripting to develop 

nonlinear torsional spring behavior at the pivots. The effective material non-linearity 

considered is a function of two parameters and is driven by the relative angle of rotation 

of two beams connecting at the pivot.  A predictive model for the total energy of the 

lattice during a small stretch is also developed and verified in the case of the nonlinear 

material spring model at the pivots. 

In order to help understand the effects of different aspects of nonlinearity during lattice 

stretch, including, deformed shape, reaction force resultant, total strain, and energy 

distribution, several combinations are studied; small stretch, comparing linear vs. 
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nonlinear torsional spring stiffness at pivots, with and without beam geometric nonlinear 

kinematics, and large stretch, comparing linear vs. nonlinear pivot stiffness, with and 

without geometric nonlinearity. The analysis has also been extended to a 3D pantographic 

lattice where each pivot is constituted by three torsional springs connecting the three 

combinations of beam fiber pairs at each intersection joint. 
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Chapter 1 Introduction 
 

Periodic lattices are composed of a large number of small-sized unit cells sharing the same 

physical properties individually. The behavior of the lattice is dependent on the number, 

orientation, and size of the unit cells. Often the mechanical behavior of the unit cells is 

different from that of the overall lattice. Techniques have been developed to understand 

the micro and macro behavior of these periodic structures in simple, yet effective models. 

An aspect of the analysis of periodic lattice structures that is not as well understood is the 

correct model for the connection where the structures intersect. One objective of the present 

study is to verify the mechanical response of a pantographic lattice with different orders of 

torsional stiffness at beam intersections compared with simplified geometric linear and 

linear stiffness homogenized continuum models.  Another objective is to generalize and 

predict the lattice behavior to include geometric and material stiffness nonlinearity 

undergoing large lattice stretch and beam deformation.  To tool used for this analysis will 

be a discrete finite element frame model that accounts for material stiffness and geometric 

nonlinearities. The models and analysis will also be extended from 2D planar lattices to 

3D lattices.   

In the following, a literature review giving a brief overview of models developed for 

periodic lattice structures, and in particular, pantographic lattice structures with non-rigid 

beam connections is given in order to identify gaps in the literature and motivation the 

present study.  
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1.1 Literature Review 
  

 Engineering solutions have been inculcating novel design solutions by the 

application of heterogeneous cellular solids characterized by lightweight structures with 

constructions of thin-walled members with open and/or closed cellular geometry; the 

cells are typically ordered but can also have a more random distribution. In 3D, foams are 

often characterized as cellular solids.  Traditional homogeneous materials often have 

been successfully utilized to sustainably satisfy engineering needs in the past. However, 

the need for nonconventional solutions often necessitates material properties that can help 

deliver the required response. Materials with microscopic periodic structures are one 

class of cellular solid materials that have a wide range of applications.  In order to 

simplify the modeling and use continuum elasticity theories, analysis of cellular solids 

using various homogenization techniques has been utilized by many researchers, e.g. [1]–

[3], [6]-[14].  

The cellular solids studied in the work are materials with microscopic beams 

composed of periodic unit cells constituted by thin-walled members interconnected at 

edges or pivots. One of the simpler examples of these periodic lattices is honeycomb 

materials composed of thin-walled prismatic cells with a hexagonal shape. Figure 1-1 

illustrates honeycomb and some of the other simple 2D periodic lattices that are possible.  
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The applications of cellular materials are dependent on attributes such as 

geometry, size, and connection. Cellular solids are also capable of producing 

unconventional mechanical properties such as negative Poisson’s ratio [4]. The shape of 

the cells can be permutated with a variety of geometric orientations to produce such 

different characteristic features. However, the most influential property of cellular 

materials is relative mass density, which is defined as the ratio of the density of the 

Figure 1-1 Different periodic lattice structures 

(a) Orthogonal lattice (b) Triangular lattice 

(c) Honeycomb lattice 
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cellular structure to the density of the material that constitutes the cell walls [5]. The 

relative density can be varied depending upon the material and the lattice geometry. Due 

to their lightweight relative density, structure cellular solids also have found applications 

in fields of buoyancy and thermal insulations in lightweight applications. 

The mechanical behavior of the periodic lattices modeled with rigid node 

connections where both displacements and rotations of connected beams are assumed to 

be the same has been studied extensively in the literature. However, when the behavior of 

a material evaluated from examining the properties on a microscopic scale is significantly 

of a different order than the macroscopic scale, models based only on macroscale effects 

can diverge from the macroscopic behavior of the material under load. The 

heterogeneities in the material properties present in the microscopic scale often need to 

be homogenized or averaged accordingly to portray the macroscopic behavior accurately  

in a model based on a macroscopic continuum theory [1]. The heterogeneities arise due to 

the atypical local behavior in the microscopic scale. The macroscale properties of the 

lattice are not only a function of material properties, lattice size, and shape, but also 

depend on the local behavior of the interconnected fiber nodes at the microscale.  

Homogenized models can be understood as equivalent continuum models of the 

periodic lattices with a large number of unit cells and hence are the approximate 

mathematical models. On the other hand, discrete beam frame models of the periodic 

lattices are highly accurate and have been successfully devised to study the elastic and 

plastic behavior [6] within the beams and at their connections. Discrete material models 

although accurate, can be computationally expensive [7], requiring large data memory 
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and compute times. The homogenized material model approach has made progress as 

these models are simpler to solve as compared to the discrete models with local 

heterogeneities.   Consistent approximation model can be developed by introducing a 

small asymptotic parameter ε. The small length scale parameter, ε is the ratio of the 

characteristic length of the unit cell to the characteristic length of the lattice. The number 

of unit cells in the periodic structure dictates the length of each unit cell. For a fixed 

lattice size, as the number of unit cells increases, ε decreases, and as epsilon becomes 

smaller, in the limit ε → 0, the discrete beam lattice model can be accurately replaced by 

the homogenized continuum model for all the points in the domain. Alternatively, ε is a 

parameter to visualize the separation of scales in a periodic lattice. The small-scale 

parameter ε has also been defined with some variations in the literature [8]–[10].  

Homogenized material constitutive equations are developed by relating stress to 

strain to obtain relations between the microscopic parameters and the macroscopic 

behavior of the structure. For example, homogenized stiffness for a particular periodic 

domain can be obtained in terms of unit cell geometry and its parameters. 

Homogenization techniques can be categorized as either computational or analytical in 

nature. Representative Volume Element (RVE) based analysis is one of the 

computational-based approaches utilized to extract relations between macroscopic output 

behavior with the input cell boundary conditions of the RVE. RVE can be considered as 

the smallest volume element that can describe all the microstructural heterogeneities [1], 

[11]. The repetitive unit cell in a periodic lattice can be conveniently considered as an 

RVE.  Traditional RVE methods for homogenization assume the macroscopic behavior 
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can be represented by classical elasticity continuum theory.  However, it is possible to 

generalize RVE methods to generalized theories including micropolar theory.  

Similarly, an asymptotic analytical method is a homogenization technique that has 

been utilized with variations in many works of literature for periodic beam lattices [9], 

[12], [13]. When the lattice cell walls are considered to be comprised of beam elements, 

analytical formulas can then be derived in terms of the beam material properties such as 

Young’s Modulus, beam length, and beam section properties such as second area moment 

of inertia. In most of the studies found in the literature, standard beam connections are 

assumed rigid in nature, where the beams connecting at a node share the same bending 

moment and rotations.  

Besides the aforementioned techniques, several other techniques exist in the 

literature for homogenization, e.g., the Fourier Bloch wave method, energy method, two-

scale convergence method, etc. [14], [15].  Most of the RVE and these other 

homogenization techniques try to equate to classical elasticity theory but can also be 

generalized to include other continuum models such as micropolar theory.  

In order to better model the section rotation of the beams, homogenization for 

periodic lattices using the micropolar continuum model has also been studied extensively. 

In [6], 2D honeycomb cell topologies are studied by equating the micropolar continuum 

strain energy with the strain energy from the continuum approximation of the discrete 

beam model, utilizing the Taylor series of a central node to connected nodes in a patch of 

unit cells, to obtain micropolar elastic constants for Euler Bernoulli and Timoshenko 
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beam models. However, the stiffness constants obtained were limited to cell geometry 

that allowed for only a single joint type. In [12], asymptotic homogenization was 

performed to obtain homogenized moduli for a micropolar equivalent continuum limited 

to centrosymmetric lattices subjected to bending. Homogenization techniques have also 

been explored for estimating mechanical properties for auxetic cellular solids, e.g. the 

development of a compact framework that allows for varying complexity and geometry 

which can also be applied for wave-propagation problems [16].  

As evidenced by a wide range of literature for periodic solids, the asymptotic 

homogenization technique has provided reliable results for the estimation of the 

mechanical properties and has been considered more reliable than other techniques that 

rely on averaging. In the comparison of different homogenization techniques [5], relative 

density was used as a criterion to compare strength and stiffness properties to suggest the 

best homogenization technique alternatives for different cell topologies.  

One of the explored periodic structures, pantographic lattices, have been studied 

because of their high local heterogeneity, and because the corresponding homogenized 

models do not fit within classical or other generalized theories such as micropolar theory. 

In [17], the authors describe how many of the existing cellular models capture the lattice 

shape deformations well but not as well in capturing the net stored elastic energy, 

attributing the cause to be the assumptions of beams’ inextensibility in previous work. 

Inextensible beams fail to capture the energy stored due to the large deformations and 

hence require a very high-resolution small-scale model based on the first gradient 

approach that would be computationally very expensive. An improved approach utilizing 
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higher gradient theory considering torsion-free pivots to be infinitesimally small in 

dimensions was implemented by the authors for a planar extension bias test. Besides 

bending and extensional stiffness, the energy stored in these micro-pivots can be 

attributed to another elastic constant at the macroscale, the shear stiffness of the lattice. 

The study also remarks on the use of both geometric and material non-linearities 

concluding the inaccuracy of classical Cauchy models when non-linearities occur at 

microlevels. The convergence of the numerical and the experimental results confirms the 

confidence in the homogenization technique utilized for the large-scale non-linear beam 

deformations but also highlights the lack of experimental and numerical results for a 

variety of other tests.  Research on the buckling and post-buckling phenomenon of the 

lattice and out-of-plane loading was presented in [18] under the assumption of pivots 

being able to undergo only torsional deformation. The study utilizing COMSOL 

Multiphysics FEA showed equivalence when the strain energy density for the beam 

frame model compared with the 2D continuum model developed. Similarly, a discrete 

model of pantographic lattices was developed to study the planar deformations and serve 

as a validation tool for the corresponding homogenized models  [19]. 

 In [1], the RVE of a chiral auxetic lattice was decomposed to estimate stiffness 

parameters based on micropolar continuum theory. The presence of rotational stiffness at 

the lattice joints simulated as rotational springs was studied to relate the stiffness to the 

auxeticity of the lattice. The study also reflects the effect of rotational stiffness was also 

studied on the modulus of elasticity and the Poisson’s ratio of the lattice.  
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A 2D pantographic lattice is a periodic lattice composed of two continuous beam 

fibers along multiple directions; typically, the fibers are orthogonal in the undeformed 

configuration, but can also be skewed.  Each set of fibers is connected to the other set of 

beam fibers through a pivot with a rotational spring connecting the rotational degrees of 

freedom. Figure 1-2 [20] shows a traditional pantograph hinged at the intersecting nodes 

by a pin that may have torsional resistance due to the presence of friction between the pin 

and beam holes. 

 

 

 

 

 

 

 

In the case of a frictionless pin, the pivot can be approximated as two-dimensional 

by assuming the rotational springs at pivots to be infinitesimally small. The nodes 

constituting a joint are constrained to have equal displacements. The rotational degrees of 

freedom of the nodes are related to the rotational stiffness of the springs. For a 

hypothetical spring with zero stiffness, the rotational degree of freedom of the beams at 

the nodes of a joint would be independent of each other. Moreover, if the nodes share 

Figure 1-2 Joints of a pantograph at intersection of fibers  
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infinite rotational stiffness, the joints are assumed to be rigid in nature, sharing the same 

rotation. As discussed earlier, homogenized models have been developed to study large 

in-plane deformations for nonlinear beam models [17] of pantographic lattices assuming 

the limit of zero or very small torsional stiffness at the joints. These homogenized models 

employ second gradient (alternatively called strain gradient) theory to include local 

effects at the joints.  For these conditions, classical and micropolar homogenized 

equations cannot correctly model the behavior of the lattice.  

 In the recent work of [8], asymptotic homogenization was used to develop a 

continuum model for 2D pantographic lattices with varying orders of rotational resistance 

for small deformation planar load. The 2D linear pantographic sheet model was studied 

for orthogonally oriented fibers with free rotations at the lattice joints as in [9], but now 

generalized to different orders of torsional stiffness at the joints. Four different cases 

were considered, for small torsional stiffness of order epsilon squared, where epsilon is 

the small asymptotic parameter measuring the ratio of cell size to lattice size, the 

homogenized equations are consistent with second-gradient theory, similar to [9,15]. The 

authors developed a formulation for dimensionless torsional resistance as the ratio of 

torsional stiffness of the springs to the beam stiffness. The torsional resistance for the 

joints is then related to the small-scale parameter ε, to generate formulation for different 

scales of homogeneity. By systematically increasing the pivot stiffness to order one, and 

higher-order, without any other assumptions on beam rotations, it is shown that the 

consistent equations fit within classical first-gradient elasticity theory, and in the limit of 

infinite torsional stiffness, asymptotes to the rigid beam connection model.  Discrete 
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finite element based beam frame models are used and compared with experimental results 

reported in the literature to validate the homogenized continuum models. Although the 

study covers low and high order of torsional resistance, the linear model is limited to 

small beam deformation. The torsional springs which vary from a low order to a high 

order of rotational resistance are also limited to a linear mechanical response between 

beam node moments and rotations at pivots. In general, material behavior of the 

rotational resistance may be nonlinear, even under loading producing for small 

deformations.  A nonlinear material stiffness of the torsional stiffness of the pivots has 

not been studied previously in the literature.  

In this research, the homogenized continuum model for 2D pantographic lattice is 

validated by developing discrete frame linear FEM models in MATLAB and Abaqus 

Implicit. The 2D discrete models developed in MATLAB and Abaqus are based on 

Bernoulli beam theory undergoing small strains. Since the intersecting fibers constitute a 

joint with nonrigid behavior, the nodes are constrained to replicate the behavior of a 

torsional spring with a definite stiffness, 𝑘𝜃.  The constraints are set up utilizing Lagrange 

multiplier in MATLAB based discrete model. The same constraints are achieved in 

Abaqus Implicit using parametrized pre-existing set of PIN and spring constraints which 

are explained in detail in later sections. Nonlinear torsional springs with a magnitude of 

similar orders modeled in [8] for linear torsional springs are introduced at the lattice 

joints to study the material response under both small and large beam deformation under 

lattice elongation.  
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In [21], the 2D asymptotic homogenization has been extended to a 3D 

pantographic lattice modeled with three coincident pivots connecting the three 

combinations of beam rotation pairs.  This linear model assumes small strains and 

constant torsional spring stiffness at the three pivots and has been validated with a linear 

discrete beam frame model using MATLAB and Lagrange multipliers to enforce 

constraints at the beam node connections of the lattice.  

 In the present work, the presented 2D discrete frame Abaqus finite element beam 

model is extended to a three-dimensional in Abaqus Implicit which accommodates both a 

linear torsional spring as well as nonlinear spring model and includes either geometrically 

linear beam kinematic assumption or geometrically nonlinear beam deformation. For 

these studies, all unidirectional beam arrays are oriented orthogonal to each other. A joint 

in the 3D pantographic lattice comprises of three pivot nodes, assumed coincident, from 

the three different continuous beam fibers intersecting at a point. Hence, a joint 

comprises of three torsional springs each relating a pair of beam rotations at nodes. The 

discrete 3D pantographic lattice model is subjected to both small and large in-plane 

elongation with material linear torsional springs.  

As discussed in the Conclusions, the current research can be extended in the 

future by developing homogenized continuum models, similar to [8], [9], and elsewhere, 

for pantographic sheets with nonlinear torsional springs. The results produced in this 

research also serve as a validation tool for the homogenized continuum techniques for 

three-dimensional pantographic lattice models. 



13 

 

1.2 Motivation for Present Work and Goals 
 

 As discussed in the literature review, a variety of homogenization techniques have 

been utilized in the past for a range of 2D pantographic models to study the elastic 

properties of the lattice and develop simplified continuum models representing the discrete 

beam lattice. In [8] asymptotic homogenization was developed for pantographic lattices 

with varying order of torsional resistance at the lattice pivots and assuming linear 

deformation. These models were validated with discrete beam pantographic lattice finite 

element models subjected to linear in-plane deformations.  Motivated by this work and 

others, there is a need to understand the behavior of pantographic lattices with variable and 

nonlinear torsional stiffness at pivots, combined with, and without, large deformation beam 

kinematics. Hence, the goals for this research are to help answer the following research 

questions that have not been studied sufficiently in the literature:  

Question 1) How does including nonlinear geometry influence lattice behavior under the 

small and large deformation loads for pantographic lattice? 

Question 2) What is the change to total strain energy of the lattice of altering constant 

spring stiffness to a nonlinear spring stiffness dependent on the angle of rotation with 

different orders of magnitude? Can a simple analytical model for total lattice strain energy 

be developed for a 3rd order polynomial nonlinear material torsional spring model? 

Question 3) How much nonlinear behavior is attributed from geometric and material 

nonlinearity as reproduced to the global stiffness as indicated by the nonconstant slope of 
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the reaction force resultant to lattice elongation, and as indicated by the varying total strain 

energy curve from a quadratic curve in the linear case? 

Question 4) How do different orders of torsional stiffness impact the global stiffness and 

deformation energy as studied with the geometrically nonlinear and linear geometry model, 

for both linear and nonlinear torsional stiffness at pivots?  

Question 5) Can the 2D pantographic lattice model be extended to a similar 3D model? 

1.3 Thesis Overview 
 

Chapter 1 gives an introduction to the modeling of periodic lattices and their studies 

supported in the present literature. Pantographic lattices are introduced which include 

non-rigid beam connections. 

Chapter 2 provides a descriptive model of the pantographic lattice defining the small 

scale parameter as the ratio of cell size to overall lattice size. The beam model and the 

heterogeneous behavior of the lattice pivot torsional stiffness of different orders of the 

small scaling parameter relative to the beam properties, and limiting cases are discussed. 

The general boundary conditions for the simulated elongation tests and kinematic 

constraints at the lattice pivots are explained. 

Chapter 3 deals with linear static analysis of the discrete pantographic lattice model in 2D 

for small deformation and the linear torsional model relating beam moments and rotations 

at connecting nodes with constant torsional stiffness at different orders. The model is 

developed independently in MATLAB and Abaqus Standard. The chapter gives details of 
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the development of each model. The work also serves as a validation tool between the 

MATLAB model developed and the Abaqus model and also for the corresponding 

homogenized continuum models developed in [8] for the linear analysis. 

Chapter 4 studies the nonlinear response of the 2D pantographic sheets for both small and 

large beam deformation. Nonlinear spring behavior is also introduced to study the 

nonlinear material response of the lattice pivots interacting with nonlinear geometry. 

Chapter 5 further generalizes the effects of varying torsional stiffness for a discrete 3D 

pantographic model. The model is developed in Abaqus Standard and also implements 

nonlinear geometry.  In the special case of linear geometry assumption, the Abaqus 

model is also used to verify discrete frame models coded in MATLAB and corresponding 

homogenized second-gradient models developed in [21] for linear analysis.  
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Chapter 2 Pantographic Lattice 
 

2.1 The lattice model 
 

Pantographic Lattices consist of a network of two or more sets of continuous 

beam fibers which intersect at joints called pivots. In this study, the pantographic lattice 

is constituted by two sets of fibers for the 2D planar model, hence each pivot is modeled 

with two overlapping nodes tied by constraints.  The nodes compromising the pivots will 

always share the same translational degrees of freedom but can independent rotations. 

The overall mechanical behavior of the pantographic lattice depends upon the kinematic 

constraints applied at the pivots. To model variable pivot torsional stiffness, a varying 

magnitude torsional resistance between the two sets of fibers is introduced. In the limit of 

infinite torsional stiffness, the two coincident nodes rotate together and model a rigid 

connection.  At the other limit of zero torsional stiffness, the beam fibers remain 

continuous, but now represent connections with resistance-free pivots. It is to be noted 

that the lattice beam material properties are isotropic in nature.  

In general, the beam fibers can intersect at a variety of angles; however, in this 

study, the original angles prior to loading are 90 degrees representing 2D and 3D 

orthogonal pantographic lattice. In order to load the lattice network across the bisector of 

the orthogonal beam fibers, the overall lattice is oriented to an angle of 45 degrees to the 

horizontal axis. Essential displacement boundary conditions are established on the lattice 

edges for different loadings which are discussed in later sections. 
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The figure below shows horizontal and vertical orthogonal fiber arrays as developed in a 

discrete MATLAB beam model. 

 

 

 

 

 

 

 

 

 

 

 

 The pivot connections are established via various techniques in MATLAB and 

Abaqus Standard as will be discussed later. In general, a pivot can be considered to be 

comprised of a torsional spring that allows or restricts the rotational degree of freedom 

between two or more participating node pairs.  

Figure 2-1 Horizontal and Vertical fibers overlay to constitute the pantographic lattice 

Figure 2-2 3D representation of pivots connecting the beam fibers 
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Using a linear assumption of small deformation and linear material properties, torsional 

resistance for the pivots has been studied [8] for a wide range of magnitude and can be 

categorized into four cases depending upon the order of the pivot torsional stiffness 

magnitudes, relative to the beam dimensions, material properties, and ratio of repeating 

unit cell size to overall lattice domain size. As discussed earlier, in [8], asymptotic 

homogenized models for the four cases are developed.  For all the cases discussed, it is to 

be assumed that the beams are extensible in nature and are thin relative to their lengths 

such that small Bernoulli-Euler beam bending model assumptions on deformation is 

assumed valid. For small or zero limit torsional resistance at the pivots, it was shown that 

the homogenized equations fit within a generalized elasticity theory called second-order 

gradient or also called strain gradient theory.  When the torsional resistance at pivots is 

increased to order one, or order one divided by epsilon squared, where epsilon is a small 

parameter defined by the ratio of the repeating unit cell to the larger overall lattice size, 

the asymptotic homogenized models fit within classical elasticity theory equations.  In 

[cite Sai dissertation]; it is shown that when epsilon is small, corresponding to a large 

number of small unit cells, the homogenized models are accurate surrogate models 

compared to a discrete beam model of the lattice.   

Following the assumption used in [8], the pantographic lattice is modeled by 

beams based on the Euler Bernoulli beam theory. While the beams will have a thickness 

that is small relative to beam length, the beam stiffness is slightly overestimated 

compared to Timoshenko models which also account for transverse shear deformation of 

the beam section or general elasticity models for the beams.   
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Torsional resistance as obtained from the homogenized lattice model is defined 

relative to the beam stiffness properties and small-scale parameter, . 

𝐾𝜃 = 𝐸𝑏𝑛
3𝐾∗2𝑝𝑙2 

where E is the Modulus of Elasticity, K* is the dimensionless torsional resistance 

assumed order one, n = h/l is the slenderness ratio of beam thickness over length, h is the 

in-plane beam thickness, and 𝑏 is the out of plane thickness assuming a rectangular cross-

section, and 𝑙 is the length of the beam element between pivots. The above parameters are 

obtained from [8]. The beam section properties for the rectangular beams used are E = 

1600 MPa, b = 1.6 mm, n = 
ℎ

𝑙
  = 0.1, 𝑙 = 4.95 mm, h = 0.495 mm. 

 In the above, p, an integer ranging from negative to positive integers, is changed 

to define a different order of scale epsilon.  Small parameter, ε relates the characteristic 

length of the unit cell to that of the lattice. The figure below represents the lattice 

dimensions compared to that of a unit cell. 

 

 

 

 

 

 

𝑙 

𝑙 

ξ2𝑙  

Figure 2-3 Aspect ratio of the lattice 

(a)  

(b)  

𝐿1
′  

𝐿2
′  

(2.1) 
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Each side of the unit cell has a dimension of 𝑙′ = ξ2𝑙 units as depicted in Figure 2-3 (b). 

From the model dimensions of the problem considered the aspect ratio of the 

pantographic lattice, length: width is therefore 3:1. The lattice is 𝐿1
′ = 10ξ2𝑙  units wide 

and 𝐿2
′ = 30ξ2𝑙  units long. The smaller dimension 𝐿 

′ = min(𝐿1
′ , 𝐿2

′ ) of the lattice is 

used as the characteristic length for defining the small parameter, ε = 
𝑙′

𝐿 ′
  

Hence for the pantographic lattice studied, the small parameter, 

ε =
𝑙′

𝐿 ′
= 

ξ2𝑙

10ξ2𝑙
= 0.1 

To estimate the behavior of the continuum model to a very fine resolution, ε → 0, 

implying a greater number of unit cells in the same sample dimensions. 

  The different orders of torsional resistance can be primarily based on the 

parameter p from the equation (2.1); where p =1 and 0 for denoted case 2 and case 3, 

respectively. The 4 cases of different orders of torsional stiffness can be varied with 𝐾∗. 

These cases can be described as follows: 

1) For Case 1 p >1, implying the absence of any torsional resistance at the pivots 

signifying that the pivots do not share the rotational degree of freedom and are 

independent. Hence, 𝐾𝜃→ 0 

2) Case 2 implies a low magnitude of torsional resistance at the pivots. The torsional 

resistance can be calculated over a range using the below formula as p =1, 

(2.2) 
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𝐾𝜃 = 𝐸𝑏𝑛
3𝐾∗2𝑙2 

For small epsilon = 0.1, the torsional stiffness is small since for this case, proportional to 

epsilon squared.  

 

3) Case 3 implies a much higher magnitude of torsional resistance at the pivots. The 

torsional resistance can be calculated over a range of K* of order 1, using the 

below formula as p = 0, 

𝐾𝜃 = 𝐸𝑏𝑛3𝐾∗𝑙2 

4)  For Case 4, p <1 in the equation (2.1). Case 4 is of the order of lim
→0

1

2
 and thus 

for small epsilon, the torsional stiffness at the node connections is very large, and 

in the limit of epsilon tends to zero, implying an infinite torsional resistance at the 

pivots are constrained along the rotational degree of freedom. The pivots can be 

considered as a rigid joint connection. Hence, 𝐾𝜃→ ∞ 

It is to be noted that Case 1 and Case 4 are the extreme cases of Case 2 and Case 3, 

respectively.  

 

 

(2.3) 

(2.4) 
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2.2 Kinematic Constraints at of Pivots 

 The torsional resistance at pivots provides structural stiffness to the pantographic 

lattice.  Implementation of these pivots and attributing stiffness at these joints can be 

achieved via a variety of means in both, MATLAB and Abaqus. As discussed earlier, a 

pivot is a joint at the intersection point of the orthogonal beam fibers. Each fiber node 

consists of three degrees of freedom (two translational DOF, and one rotational DOF). 

The overlapping nodes are kinematically constrained as dictated by the order of 

resistance that is desired to achieve. Hence these pivots constituted by 2 nodes share the 

translational degrees of freedom and some torsional resistance across the rotational 

degrees of freedom. Since our 2D model is in the x-y plane, we are concerned about 

rotation along the z-axis only for a planar loading.  

 For 3D pantographic sheets, 3 orthogonally oriented beam fibers constitute a pivot 

at the point of intersection. The pivot hence consists of interactions between 3 node pairs 

corresponding to the 3 continuous beam fibers connecting to the pivot, and each 

connected with a rotational spring of stiffness orders defined by the discussed four cases. 

In a finite element model coded in for example MATLAB, multi-point constraints can be 

set up for pivots using Lagrange multipliers to achieve Pin-like behavior with an added 

torsional stiffness element connecting coincident nodes. While the same is accomplished 

in Abaqus Standard commercial finite element software using a combination of MPC-Pin 

and spring elements. 
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2.3 Constraint equations at pivots 
 

In the following a linear beam finite element stiffness model is described 

assuming small deformation and linear material properties to develop a finite model in 

MATLAB and also show the underlying equations used in a model in an Abaqus model. 

The MATLAB finite element model and Abaqus model will be compared in the linear 

analysis to validate modeling procedures.  

 

It is necessary to understand the 2D frame element before discussing the applied 

constraints at the intersection of the frame elements. A 2D frame element comprises of 2 

nodes, each with 3 degrees of freedom. Hence, for each element, the six degrees of 

freedom (DOF) vector can be described as 

𝑑𝑜𝑓 = [𝑢1 𝑣1 𝜃𝑧1 𝑢2 𝑣2 𝜃𝑧2] 

Figure 2-4 Representation of local displacements and rotations for a 2D frame element 
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Each node has 2 translational degrees of freedom and one rotational degree of freedom. 

For pantographic lattices, the displacement for the overlapping nodes at each pivot is 

constrained as 

𝑢1
1 − 𝑢1

2 = 0 

𝑣1
1 − 𝑣1

2 = 0 

In the above, the superscripts refer to the nodes from the two different beam fibers across 

which torsional spring is set up. The moment at the nodes at a pivot with a torsional 

stiffness, 𝑘𝜃 can be described by the following relation:  

[
𝑀1
𝑀2
] = 𝑘𝜃 [

1 −1
−1 1

] [
𝜃1
𝜃2
] 

For Case 1 with zero torsional resistance, 𝑘𝜃→0 

Case 2 and 3 deal with some torsional resistance 𝑘𝜃 and Moment at the pivots can be 

described as 

𝑀 = 𝑘𝜃(𝜃1 − 𝜃2) = 𝑘𝜃𝜃 

For the linear models studied in [8], the torsional spring 𝑘𝜃 is assumed constant with 

changes in rotation.  In this work, we will study both a linear spring 𝑘𝜃, as well as a non-

linear torsion spring model that changes stiffness with magnitude of beam rotation at the 

pivot nodes.  

 

 

(2.5) 

(2.6) 
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For Case 4 with infinite torsional resistance, 

𝑘𝜃 → ∞ 

Then, 

𝜃1 − 𝜃2 = 𝜃 = 0 

The above shows that the Case 4 limit enforces the beam nodes to rotate with the same 

rotation and corresponds to the rigid connections at pivots. 

 

2.4 Boundary Conditions and loadings 
 

 The 45-degree inclined lattice is constrained to two sets of boundary conditions 

along its longitudinal ends. The nodes at the edge of the southwest of the lattice are 

rigidly constrained by fixing all 6 degrees of freedom. Meanwhile, the opposite end is 

subjected to a series of linearly ramped displacement loads along the longer edge of the 

lattice as shown in Figure 2-4. The loaded edge is represented in blue while the rigidly 

constrained edge is represented in red. 
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The following essential boundary conditions are defined at the loaded edge, 

𝑢𝑥  =  𝑑 

𝑢𝑦  =  𝑑 

𝑢𝑧 = 0 

𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

The essential boundary conditions at the rigid ends are defined as 

𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0 

Figure 2-5 Essential boundary conditions on the edges of the lattice 
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𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

The applied displacement along the lattice is thus given by ξ2𝑑.   The essential boundary 

conditions at the rigid ends are defined as 

𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0 

𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

The amplitude of applied stretch along the bisector of the lattice beam fibers for the 

overall lattice defined by the applied displacement magnitude divided by lattice length 

L2’ is varied according to the small and large deformation tests performed. For the linear 

and nonlinear analysis for 2D and 3D pantographic lattice, the lattice stretch is varied 

from 0.33% to 19% to observe the behavior of lattice via energy contour plots of beam 

strain energy distribution. 
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Chapter 3 Linear Static Analysis of Pantographic Sheets in 2D 
 

 The linear static analysis of the beam model is done in Abaqus and MATLAB, 

both the studies are utilized to validate the modeling procedures used compared with each 

other, and with the homogenized continuum model as in [8].  

 

3.1 MATLAB Frame Model 
 

 Analysis of pantographic lattice consisting of orthogonally oriented fibers is 

performed using a 2D finite element frame model in MATLAB. Frame elements based on 

Euler – Bernoulli beam theory are used for the purpose; hence, the transverse shear strain 

is assumed to be negligible as thin beams are used. As discussed earlier, to simulate small-

linear deformation, a displacement load is applied along with one of the lattice edges along 

the bisector of the beam fibers. The opposite edge is constrained on all six degrees of 

freedom in the plane. 

3.1.1 Stiffness Matrix and Strain Energy 
 

 For an elastic beam model with linear deformation, strain deformation energy for 

each beam can be calculated as the sum of axial and flexural components,  

U =
1

2
∫ 𝐸𝐴𝜀0

2
𝐿

0

𝑑𝑥 + ∫ 𝐸𝐼𝑘2
𝐿

0

𝑑𝑥 (3.1) 
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In the above, L is the beam length, and A and I are the beam section area and moment of 

inertia respectively, and 𝜀0
  and 𝑘 is the extension strain and bending curvature of the 

beams. Since the area of frame elements is considered to be constant throughout, EA and 

EI are constants in the above equation [22]. The stress-strain material behavior of the 

lattice beams is assumed to follow Hooke’s law even for large lattice stretch. 

The stiffness equations relating the nodal axial forces to nodal displacements for a beam 

are given by  

𝐸𝐴

𝑙
[
1 −1
−1 1

] (
𝑢1

𝑒

𝑢2
𝑒) = [

𝐹1
𝑒

𝐹2
𝑒] + [

𝑓1
𝑒

𝑓2
𝑒] 

Where l is the element length, capital forces are internal, and small letter forces are any 

external applied nodal forces.  

The beam bending stiffness equations for each beam element relates the nodal 

perpendicular displacement to the beam length dimension and rotations at nodes, related 

to nodal shear forces and moments. 

𝐸𝐼

𝑙3
[

12 6𝑙 −12 6𝑙
6𝑙 4𝑙2 −6𝑙 2𝑙2

−12 −6𝑙 12 −6𝑙
6𝑙 2𝑙2 −6𝑙 4𝑙2

]

{
 

 
𝑣1
𝑒

𝜃1
𝑒

𝑣2
𝑒

𝜃2
𝑒}
 

 
=

{
 

 
𝑉1
𝑒

M1
𝑒

𝑉2
𝑒

M2
𝑒}
 

 
+

{
 

 
𝑞1
𝑒

m1
𝑒

𝑞2
𝑒

m2
𝑒}
 

 
 

 Combining the above two equations to form frame element stiffness relation accounting 

for both axial and bending stiffness defined in a local beam axis Cartesian coordinate 

system 

(3.2) 

(3.3) 
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𝐾𝑓

[
 
 
 
 
 
 
 
 
𝑘𝑙
𝐾𝑓

0 0 −
𝑘𝑙
𝐾𝑓

0 0

0 12 6𝑙 0 −12 6𝑙
0 6𝑙 4𝑙2 0 −6𝑙 2𝑙2

−
𝑘𝑙
𝐾𝑓

0 0
𝑘𝑙
𝐾𝑓

0 0

0 −12 −6𝑙 0 12 −6𝑙
0 6𝑙 2𝑙2 0 −6𝑙 4𝑙2 ]

 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝑢1
𝑒

𝑣1
𝑒

𝜃1
𝑒

𝑢2
𝑒

𝑣2
𝑒

𝜃2
𝑒}
 
 
 
 

 
 
 
 

=

{
 
 
 
 

 
 
 
 
𝐹1
𝑒

𝑉1
𝑒

M1
𝑒

𝐹2
𝑒

𝑉2
𝑒

M2
𝑒}
 
 
 
 

 
 
 
 

+

{
 
 
 
 

 
 
 
 
𝑓1
𝑒

𝑞1
𝑒

m1
𝑒

𝑓2
𝑒

𝑞2
𝑒

m2
𝑒}
 
 
 
 

 
 
 
 

 

𝐾𝑓 =
𝐸𝐼

𝑙3
 

𝐾𝑙 =
𝐸𝐴

𝑙
 

The degree of freedom at each node can be grouped together to form the frame element 

stiffness relation, 𝐾𝑒𝑑𝑒 = 𝑓𝑒 .  In the above, 𝐾𝑓and 𝐾𝑙represents a measure of the flexural 

and axial stiffness of the beam element.  

 For our discrete beam model, we also need to consider the rotational strain energy 

stored in the torsional spring elements connecting the 2 nodes at the pivots. At any pivot, 

the fibre rotations are in general independent of each other and connected by torsional 

stiffness 𝑘𝜃 at coincident nodes in relation with the respective moment at each fiber at the 

coincident nodes as 

[
𝑀1
𝑀2
] = 𝑘𝜃 [

1 −1
−1 1

] [
𝜃1
𝜃2
] 

With a nonzero, but finite 𝑘𝜃,  as in Case 2 and Case 3, the total frame energy can be 

evaluated as a sum of strain energy stored in individual frames and the strain energy 

stored in the torsional springs.  

(3.4) 
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𝑈𝑆𝑝𝑟𝑖𝑛𝑔
 =

1

2
𝑘𝜃(𝜃2 − 𝜃1)

2 

Summing over all frame elements, the strain energy of the beams is  

∑𝑈𝑓𝑟𝑎𝑚𝑒
𝑒

𝑒

=∑
1

2
𝑑𝑒
𝑇𝐾𝑒𝑑𝑒

𝑒

=∑(𝑈𝑎𝑥𝑖𝑎𝑙
𝑒 + 𝑈𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙

𝑒 )

𝑒

  

 Adding rotational spring energy for every spring element connecting coincident beam 

nodes at a pivot connection to obtain the new total strain energy for the deformed lattice, 

𝑈𝑡𝑜𝑡𝑎𝑙
 =∑𝑈𝑎𝑥𝑖𝑎𝑙

𝑒  

𝑒  

 

+∑𝑈𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙
𝑒

𝑒

+ ∑𝑈𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑠𝑒

𝑠𝑒

 

𝑈𝑎𝑥𝑖𝑎𝑙
𝑒 =

1

2
[𝑢1
𝑒 𝑢2

𝑒]𝑘𝑎𝑥𝑖𝑎𝑙
𝑒 [

𝑢1
𝑒

𝑢2
𝑒] 

𝑈𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙
𝑒 =

1

2
[𝑣1
𝑒 𝜃1

𝑒 𝑣2
𝑒 𝜃2

𝑒]𝑘𝑓𝑙𝑒𝑥𝑢𝑟𝑎𝑙
𝑒

[
 
 
 
𝑣1
𝑒

𝜃1
𝑒

𝑣2
𝑒

𝜃2
𝑒]
 
 
 

 

𝑈𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑠𝑒 =

1

2
[𝜃1 𝜃2] [

𝑘𝜃 −𝑘𝜃
−𝑘𝜃 𝑘𝜃

] [
𝜃1
𝜃2
] 

For a constant stiffness, the total strain energy is a quadratic function of the 

displacements. For a linear deformation model, the beam stiffness properties are constant, 

hence 𝐾𝑙  and 𝐾𝑓 are fixed, meanwhile, 𝑘𝜃 varies for each case as described in Section 2.1 

with order epsilon and for the different cases defined by different integer powers p. For 

nonlinear analysis, torsional stiffness, 𝑘𝜃 is defined as a function of rotation as discussed 

later in Section 4.2.  

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 
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3.1.2 Coordinate Transformation 

  For the frame elements, the element stiffness equation describes the behavior of 

the beams in their local coordinate axes. Since the orientation of beams in the frame 

model is different, we need to introduce a fixed global coordinate system to assemble the 

stiffness equations for all the frame elements in the connected lattice. 

The transformation relations from global to local coordinates are as follows for any node: 

[
𝑢
𝑣
𝜃
] =  [

cos(𝛼𝑒) sin(𝛼𝑒) 0

−sin(𝛼𝑒) cos(𝛼𝑒) 0
0 0 1

] [

𝑢𝑥
𝑣𝑦
𝜃
] 

Where alpha is the rotation angle between local and global coordinates. 

Symbolically, the above matrix equation can be expressed as, 𝐷𝑙𝑜𝑐𝑎𝑙 = 𝑅𝐷𝑔𝑙𝑜𝑏𝑎𝑙; R being 

an orthogonal matrix which implies 𝑅−1 = 𝑅𝑇 

The slope of the beam bending curve, equivalent to the section rotation 𝜃 in the 

Bernoulli-Euler beam model is the same in local and global coordinates for the 2D frame. 

Here 𝐷𝑙𝑜𝑐𝑎𝑙, R, and 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 represent local coordinates, transformation matrix, and global 

coordinates. From above, it follows taking the inverse and using the orthogonality of the 

coordinate rotation: 

𝐷𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑅𝑇𝐷𝑙𝑜𝑐𝑎𝑙 

Combining the above for the two end nodes for an element, 

[
𝑑1
𝑒̂

𝑑2
𝑒̂
] = [

𝑅𝑒 0
0 𝑅𝑒

] {
𝑑1
𝑒

𝑑2
𝑒} 

(3.10) 
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𝑑1
𝑒̂ = 𝑇𝑒𝑑𝑒 

𝑑𝑒 = 𝑇𝑒
𝑇𝑑1

𝑒̂  

as 𝑇𝑒
  is also an orthogonal matrix with 𝑇 

−1 = 𝑇𝑇  

Similarly, for force vector global to local transformation follows 

𝑓𝑒̂ = [𝑇𝑒]𝑓𝑒 

and can be reversed to local coordinates using, 

𝑓𝑒 = [𝑇𝑒]
𝑇 𝑓𝑒̂  

For assembly in the Global Coordinate system, the frame stiffness equations become 

[𝐾𝑒]𝑑
𝑒 = 𝑓𝑒  

Here, [𝐾𝑒] = 𝑇𝑒
𝑇𝑘𝑒̂𝑇

𝑒 and 𝑓𝑒 = 𝑇𝑒
𝑇𝑓𝑒̂, transform stiffness matrices and force vectors 

from local to global coordinates. 

In 2D, since the rotation in the global z and local z directions are the same, for rotational 

springs at the pivots, the torsional stiffness relations at the coincident nodes relating nodal 

rotations for the connected beams and nodal moments are the same in both the local and 

global coordinate system.   
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3.1.3 Pin connections via Lagrange Multipliers 
 

 To establish varying torsional resistance at the pivots, Lagrange multipliers are used 

to set up each lattice pivot as a constraint equation enforcing that the displacements at the 

connected nodes are the same, but rotations at nodes can be independent. In general, for N 

number of nodes participating in m number of constraint equations, 

                                                         𝐶𝑖𝑗𝑑𝑗 − 𝑄𝑖 = 0                      𝑖 ∈ [1,𝑚] & 𝑗 ∈ [1, 𝑁] 

where 𝑑𝑗 are degrees of freedom associated with nodes. For all nodes, the constraint 

equations can be summarized as 

𝐶(𝑚,𝑁)𝑑(𝑁,1) = 𝑄(𝑚,1) 

In the above relation, C is the set of constraint equation coefficients and Q is a column 

vector of any constants appearing in the constraint equation relations. Introducing 

Lagrange multipliers  for each constraint equation as a weighting factor, the below 

Lagrange equation to be minimized is   

𝐿 =
1

2
𝑑𝑇𝐾𝑑 − 𝑑𝑇𝐹 + 𝜆𝑇(𝐶𝑑 − 𝑄) 

 Setting the first variation of the above equation to be zero with respect to d and  𝜆 gives 

two coupled equation systems for displacement and Lagrange multiplier unknowns   

𝐿. 𝑑 = δ𝑑𝑇(𝐾𝑑 − 𝐹) + 𝜆𝑇(𝐶δ𝑑) = 0 

𝐿. 𝜆 = δ𝜆𝑇(𝐶𝑑 − 𝑄) = 0 

(3.11) 

(3.12) 

(3.13) 
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 The coupled equations for d and 𝜆 can be set up to solve in a matrix the formulation. 

[𝐾 𝐶𝑇

𝐶 0
] [
𝑑
𝜆
] = [

𝐹
𝑄
]  

Solving the above set of equations yields displacements for the deformed geometry of the 

lattice frame element model with the required constraints, together with the 

corresponding Lagrange multipliers. For the pantographic lattice, the constraint equations 

enforced by the Lagrange multipliers are that the displacements are equal at coincident 

nodes at the beam connections.  The rotational spring stiffness of the pivots is modeled in 

the frame stiffness using the nodal moment to rotation relations for the coincident nodes 

at the pivot connections.   A rigid connection can be modeled with a very large rotational 

stiffness, in the limit enforcing the coincident node beam rotations to match.  

Alternatively, a rigid connection can also be enforced using Lagrange multipliers to 

constrain the rotational degrees of freedom at the connection nodes to be equal.  

Furthermore, a rigid beam connection can also be modeled directly using standard finite 

element beam connections with a common connecting node and stiffness assembly which 

implicitly assumes beam displacements and rotations are the same for all beams 

connecting to the shared node. 

3.1.4 Numerical Results 
 

 The lattice structure was subjected to displacement loads along the XY plane on 

the nodes containing the top-right edge of the lattice structure as discussed in Section 2.4. 

The lattice was subjected to a displacement of 0.5 mm along global X and Y directions, 

(3.14) 
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resulting in a net longitudinal stretch of 0.7071 mm or 0.33% stretch along the long 

dimension of the lattice.  

𝑢𝑥  =  0.5 𝑚𝑚 

𝑢𝑦  =  0.5 𝑚𝑚 

𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ  =  √𝑢𝑥2 + 𝑢𝑦2  =  ξ2 ∗ 0.5 =  0.7071𝑚𝑚 

 The plots below show the stretched lattice and local deformation of the lattice structure 

in both undeformed and deformed shapes under small stretch.  

 

 

 

 

 

 

 

 

 

The lattice pivots are restricted to a constant torsional resistance of different magnitude 

order as per the four cases previously discussed. 

Figure 3-1 Deformed beam displacements compared to original lattice 
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 The deformation at each node helps to evaluate the strain energy for the lattice as 

formulated in Section 3.1.1. The strain energy of the beams in the lattice is plotted for the 

above-applied displacement for different orders of torsional resistance. The strain energy 

plotted in Figure 3-2 excludes the rotational strain energy and is plotted on the undeformed 

shape. 

 

  

(b) Case 2, 𝐾∗ = 0.1 (a) Case 1, 𝑘𝜃→ 0 

(c) Case 3, 𝐾∗ = 0.1 (d) Case 4, 𝑘𝜃→ ∞ 

Figure 3-2: Strain Energy distribution for planar extension test for the discrete MATLAB 

linear finite element beam lattice model (0.33% lattice stretch) 
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 The order of torsional stiffness increases from (a) to (d) in Figure 3-2. The 

absolute value of torsional resistance can be calculated from equation (2.1) for Case 2 

and Case 3. The torsional stiffness value for Case 1 is 0, while numerical order of 107 is 

used as torsional stiffness for Case 4 representing a near-infinite torsional resistance, 

corresponding to a rigid connection. The table below breaks the total strain energy into 

three components: beam axial and beam flexural strain energy and rotational deformation 

energy due to the rotational spring at the pivots. 

Table 1: Total Strain Energy Components for the discrete model (0.33% lattice stretch) 

 

 The total strain energy calculated is a sum of the axial, flexural and rotational 

strain energy stored in the discrete lattice structure under load. These results match 

closely with [8] and confirm that the beam deformation energy is dominated by bending 

compared to axial. The rotational strain energy for Case 1 with a zero torsional stiffness 

is zero as 𝑘𝜃 = 0. Both the axial and the flexural strain energy components grow with the 

torsional resistance. For Case 3, the rotational energy at the pivots is higher still than the 

 

 
Strain Energy (mJ) 

Case Axial Flexural Rotational Total 

1 4.1789e-05 0.0013 0 0.0014 

2 5.3401e-05 0.0013 0.0013 0.0027 

3 0.0017 0.0196 0.0774 0.0986 

4 0.0210 0.5099 1.5446e-06 0.5309 
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beam strain energies. For a very large stiffness value, we observed that the rotational 

degrees of freedom for the 2 nodes at the pivots are nearly the same as expected in a rigid 

connection.  As a result, the rotational energy for Case 4 is nearly zero showing that the 

rotations of the two beams at connecting nodes are nearly the same.  Figure 3-3 shows the 

total strain energy of the beams vs lattice stretch for Case 1. As expected for small 

deformation, the total strain energy is a quadratic function of the node displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Total Strain Energy vs lattice stretch for Case 1 linear geometric model 
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3.2 Abaqus Model 
 

 The finite element model for the pantographic lattice is created in Abaqus Implicit 

2D to validate the MATLAB discrete model. The same beam and material properties are 

used as discussed in Section 2.1. The figure below shows the beam profile orientation of 

the Euler-Bernoulli beam in the three-dimensional coordinate system. 

 

 

 

 

 

 The Abaqus model is developed using python scripting, while the boundary 

conditions are set-up in the CAE interface for the 2D model. The parametric study is 

conducted via python which makes it easier to study linear and nonlinear behavior of the 

pantographic sheets without starting simulations from the CAD model for every test. 

Abaqus has also been used for post-processing and visualization of the results along with 

MATLAB for graphing data. To construct the lattice in Abaqus CAE, two unidirectional 

beam arrays were created similar to Figure 2-1. Unlike MATLAB finite element program 

defining constraint equations and solving using Lagrange multipliers, Abaqus has 

convenient pre-predefined keywords for the user to establish the kinematic constraints 

between two overlapping nodes at a joint discussed in the next section.  

Figure 3-4 Beam profile for the 2D pantographic lattice model 
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 Since we have not considered the effects of the transverse shear deformation and 

the beam’s cross-sectional dimensions are small compared to the beam length, the Euler 

Bernoulli beam elements (B23) in Abaqus are used to be consistent with our MATLAB 

models [23].  

3.2.1 Implementing Torsional Resistance in Abaqus 
 

 In Abaqus CAE, one can establish Pin constraints which are predefined in the 

graphical interface via two methods: 

1) At the intersection, a Basic connector section in Abaqus can be used to implement 

a variety of combinations of predefined translatory and rotational constraints for 

two nodes. We have utilized the join type translational constraint and a rotation 

type rotational constraint. The join connection fixes the translational degree of 

freedom for the participating nodes by making the position of the second node 

equal to that of the first node. Meanwhile, the rotation connection provides a 

rotational connection between the two nodes. One can also define the behavior of 

the rotational degrees of stiffness in a Moment-rotation angle relationship within 

the rotation connection feature. The data can be input under the elasticity 

properties of the rotation connection in a table with a resolution of choice. If the 

relationship is not provided, the two nodes have unconstrained rotational degrees 

of freedom. This successfully replicates a Pin connection between two 

overlapping nodes with the flexibility to add rotational resistance as a relation for 

the rotation connection. 
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2) Similar to above, one can substitute the Basic connector with a direct Multipoint 

Constraint (MPC) – Pin connection which can serve the same purpose but 

requires a separate rotational spring definition.  

Using method 1, both a linear and nonlinear torsional spring can be implemented 

using the Abaqus GUI. We define a moment-rotation relationship assigned to the 

rotation connection in the basic connector pin model. The slope, 𝐾𝑠𝑙𝑜𝑝𝑒, of the 

moment – rotation relation defines the rotational stiffness at the pivots and can be 

defined by a constant slope linear spring model or defined with a table relating 

moment to change in rotation angle with a nonlinear slope to model a nonlinear 

torsional spring. Setting up method 1 in Abaqus Python is slow. On the other 

hand, method 2 is time-efficient while setting up in Abaqus Python. Also, due to 

some computational constraints, it is time inefficient to alter the constant stiffness 

value of the numerous spring elements in Abaqus GUI, and hence it is advised to 

use spring elements only with Abaqus Python. Moreover, method 1 is easier to set 

up in Abaqus GUI for both linear and nonlinear torsional spring models. 

Considering the nature of the modeling and parametric tests eased by the use of 

Abaqus Python, method 2 is more convenient to model the kinematic constraints. 

However, method 1 yields the same results and can be used if it is more 

convenient based on the above discussion. 

 Linear and nonlinear spring can also be enacted using method 2 as previously 

discussed. The pin connection established via this method requires a spring element to 

constraint the independent rotational degrees of freedom at pivots. The interaction 
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module in Abaqus GUI allows us to implement linear springs with a definite spring 

constant. To attribute nonlinear behavior to the spring element, the moment-rotation 

relationship can be provided. However, Abaqus does not allow for nonlinear spring 

elements in the graphical user interface and hence, manual Abaqus input scripts have to 

be set up to generate nonlinear spring behavior. The Moment-rotation angle relationship 

used in the rotation connection in method 1 can be used for the spring elements in 

method 2 as well. For the rotational spring with a variable stiffness, Abaqus Python 

scripting is necessary to input the stiffness relationship. 

 The difference between the above two approaches is that by using a basic 

connector in method 1, one can easily manipulate the torsional resistance for Cases 2, 3, 

and 4. The kinematic equations below depict the constraints between the degree of 

freedom for the participating nodes. 

Join Type Constraint for displacement at the pivots 

𝑢1 − 𝑢2 = 0        |             𝑣1 − 𝑣2 = 0 

Rotation Type Constraint for the moment at the pivots 

𝑀𝑟𝑜𝑡 = 𝐾𝑠𝑙𝑜𝑝𝑒(𝜃1 − 𝜃2) = 𝐾𝑠𝑙𝑜𝑝𝑒𝜃 

 Here, the rotation connection is provided with a Moment – rotation (𝑀𝑟𝑜𝑡 𝑣𝑠 𝜃) 

relationship. The slope, 𝐾𝑠𝑙𝑜𝑝𝑒, of the relation is the rotational stiffness at the connection. 

Hence, we can manipulate the stiffness of the rotation connection to achieve the torsional 

resistance of different orders at the lattice pivots. For method 2, after we have established 
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a pin constraint between the node pairs, some definite value of torsional stiffness can be 

attributed to the node pairs by means of a separate spring element.  

 For linear analysis, the stiffness of the rotation connection or the spring element is 

constant throughout the analysis. Alternatively, to establish torsional resistance between 

the pivots we introduced linear spring elements with constant stiffness (𝑘𝜃) which can be 

varied to simulate a torsional resistance of varying orders. The linear spring can be 

connected to any available degree of freedom between the nodes. For the 2D 

pantographic lattice, the connection is made between the rotational degree of freedom for 

the overlapping nodes viz D.O.F. 6 in Abaqus local coordinate system. 

The behavior of linear Spring Element with constant stiffness 𝑘𝜃 

𝑀 = 𝑘𝜃𝜃 

For 𝑘𝜃 = 0, the free torsional spring model resembles Case 1, meanwhile a lattice with a 

very large 𝑘𝜃 approximates the infinite limit of Case 4.  

Even though both the options are feasible, we have utilized method 1 for Abaqus 

simulations because of the easiness of setup Pin constraints and vary the torsional spring 

stiffness to achieve linear and nonlinear response at the pivots. For a 3D model, it is not 

feasible to create required connections manually hence Python has been extensively used. 

This makes any method more inclined towards scripting more feasible to make CAD, 

boundary conditions, and model lattice parameters. 
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3.2.2 Numerical Results 
 

The MATLAB frame model was verified with the Abaqus model discussed in the 

previous sections of this chapter. The strain energy contours for small deformation for the 

linear geometric model are presented below. The contours presented in Figure 3-5 show 

the total strain energy in the elements. The finite element mesh has one Euler-Bernoulli 

beam element between each node along the fiber directions. 

 

 

(a) Case 1, 𝑘𝜃→ 0 (b) Case 2, 𝐾∗ = 0.1 

(c) Case 3, 𝐾∗ = 0.1 (d) Case 4, 𝑘𝜃→ ∞ 

Figure 3-5 Total Strain Energy Distribution for the bias extension test (small 

deformation) 
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The contours have a deformation amplification of 40 for better visualizations. The table 

below provides an overview of total strain energy as calculated from Abaqus Standard. 

Table 2 Comparison of Total Strain Energy for the discrete models 

 

 

 

 

 

 

 The total elastic strain energy calculated from both the models is very similar and 

matches up to the 7 decimal places. This validates the Abaqus model developed under a 

specific set of constraints as discussed in section 3.1.3 to replicate the pivots constituted 

by torsional springs. The outcome of both the methods in section 3.1.3 was verified to be 

the same. The strain energy contours show the strain energy of each element in the 

visualized deformed geometry with the necking behavior. It is evident that the necking 

behavior is less pronounced when the stiffness at the pivots increase and the lattice 

approaches the rigid case scenario. Figure 3-5a shows the presence of high strain energy 

concentration in a sequence of bands that develop around two foci. The maximum energy 

is found to be aligned along the diagonals of the lattice for low orders of torsional 

stiffness. As the strain energy of each element increases in magnitude, the energy bands 

 Total Strain Energy (mJ) 

Case Abaqus Model MATLAB Model 

1 0.00135395 0.00135395 

2 0.00268078 0.00268077 

3 0.098635 0.098635 

4 0.530872 0.530872 
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diffuse from strict boundaries to a more homogenized distribution of bands, Fig 3-5b. 

The larger order of torsional stiffness has elements with higher strain energy along the 

edges of the lattice where necking is dominant. Pockets of high strain energy region are 

amplified as the stiffness is further increased to achieve the case 4 rigid lattice. The strain 

energy distribution for case 3 and case 4 is similar but the varies a lot in magnitude. It is 

evident that even for the higher orders of stiffness, the total strain energy can be 

decreased significantly by introducing some rotational mobility to the rigid lattice.  
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Chapter 4 Nonlinear Static Analysis of Pantographic Sheets in 2D 
 

  For loads that produce large deformations, the stiffness of the beam lattice 

changes with changes in geometry.  In this case, geometric nonlinear analysis is needed 

in which the beams undergo large strains. Materials tend to deviate from perfectly linear 

behavior because of inherent geometric and material responses. Hence, a nonlinear 

analysis is beneficial in describing the nonlinear force-displacement relations. A 

nonlinear analysis allows for the accommodation of smaller strains to be captured leading 

to more accurate models. In other terms, a nonlinear analysis accounts for a non-constant 

stiffness matrix for the material.  

 Necking in the pantographic lattice is a very common phenomenon significantly 

observable at higher strains. Such a geometric behavior can play a significant role in 

determining potential horizons for the application of similar models. Even based on the 

current applications of pantographic lattice models, a study of nonlinear deformation is 

needed to evaluate the changes in geometry and the strain energy bands. developed under 

large lattice stretch.  In this Chapter, the nonlinear behavior of the pantographic lattice is 

analyzed in Abaqus Implicit. 

4.1 Types of Nonlinearities 
 

 In general, there exist three major types of nonlinearities in mechanical systems: 

Geometric Nonlinearity, Material Nonlinearity, and Contact Nonlinearity. In this study, 

the pantographic sheet is studied for geometric and material nonlinearity of the beam 

joint connections through nonlinear rotational spring stiffness. 
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 Geometric nonlinearity can be attributed to a nonlinear change in structure 

geometry during the application of load usually resulting from large deformations. This 

could be a result of large displacements or rotations. Material nonlinearity due to the 

nonlinear torsional spring at the pivot can be attributed to a nonlinear stress-strain 

relation from deformation history, physical factors, or a varying rate of deformation.  

 Geometric Nonlinearity can be established in Abaqus by toggling ‘NLGEOM’ 

(nonlinear geometry) ON for the required steps in Abaqus GUI. Material Nonlinearity 

from the torsional spring behavior in Abaqus can be implemented via a non-linear 

response to the moment-beam rotation relationship as discussed below. We have utilized 

a moment-theta relation to establishing the non-linear behavior. The tabular data of 

moment as a function of the difference in angle of rotation (𝜃 =  𝜃2 − 𝜃1), at the beam 

connection pivot is based on the following cubic function: 

𝑀 = 𝑓(𝜃) = 𝑘𝜃  𝜃 +  𝜃3  

In the above, 𝑘𝜃, is the linear torsional spring constant, and  is a parameter that controls 

the amount of nonlinearity for the torsional spring. For  

 > 0 : Stiffening Behavior 

 <  0 : Softening Behavior 

Figure 4.1 shows an illustration of stiffening,  > 0, and softening behavior,  < 0. The 

above equation can also be rewritten as 

𝑀 = 𝑘𝜃(𝜃 + 


𝐾𝜃
𝜃3) 

(4.1) 
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Here, we introduce the parameter 𝛽, a measure of nonlinearity of the torsional springs 

relative to the constant spring stiffness. Define, 

𝛽 =


𝑘𝜃
 

such that, 

𝑀 = 𝑘𝜃  (𝜃 + 𝛽𝜃3) 

 For a material following the above relation the stored strain energy for the nonlinear 

spring can be expressed in even powers in the relative beam node rotation at the joint  

𝐸 = 𝑘𝜃  (
1

2
𝜃2 +

1

4
𝛽𝜃4) 

 Hence, using the above nonlinear spring model, the energy stored will always be positive 

for a positive 𝛽 since 𝑘𝜃 ≥ 0 is also positive. This nature of the equation puts limitations 

on a minimum allowable value of 𝛽 as energy has to be positive. Hence, 

𝐸 ≥ 0 

𝐸

𝐾𝜃
≥ 0 

𝜃2(2 + 𝛽𝜃2) ≥ 0 

𝛽 ≥ −
2

𝜃2
 

(4.3) 

(4.2) 

(4.4) 
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Since 𝜃2 ≥ 0  for all positive numbers, 𝛽 is limited for the softening case. Note that 

the magnitude of 𝜃 increases for increasing deformation, hence minimum 𝛽 is 

directly constrained by the applied stretch in an inverse relation to 𝜃2. 

 

 

For 𝛽 = 0, the original equation defining the linear relationship between moment and 

change in angle of rotation is retrieved for the case of constant torsional spring constant 

𝑘𝜃. 

 

 

 

 

 

 

 

Figure 4-1 Stiffening and softening of rotational spring 
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The torsional spring model is implemented in Abaqus using method 1 discusses in 

Section 3.2.1. The Moment-rotation relation is utilized to provide nonlinear spring 

behavior at the pivots. It is to be noted that nonlinear spring behavior cannot be 

implemented from Abaqus GUI and hence Abaqus Python is used to achieve the 

nonlinear spring behavior. In Abaqus Python, type Spring2 is used with the Moment -

rotation relationship table generated via MATLAB using the equation (4.2).  

 

4.2 Nonlinearity and Cases Studied 

 The parameter 𝛽 plays an important role in determining the non-linear behavior of 

the lattice pivots relative to the spring constant 𝑘𝜃. As discussed earlier, depending upon 

the permissible 𝜃, the lower limit of 𝛽 is restricted in each case, while the upper limit is 

unconstrained. This limits our exploration for softening cases to only small lattice stretch. 

 In the previous chapters, the deformations for small lattice stretch with linear 

geometry were studied. In this chapter, using the same lattice geometry and boundary 

condition setup, large displacement loads are applied to produce large lattice stretch and 

compared with linear and nonlinear geometry models. First, the lattice model with a low 

order of torsional resistance, or order 2 and high order of torsional resistance, or order 

−2, respectively labeled as Case 2 and Case 3, with a non-dimensional torsional 

resistance of 𝐾∗ = 0.1 are subjected to a displacement load of 40 mm for large lattice 

deformation. The nonlinear geometry is toggled in Abaqus Standard to test both, linear 

small strain beam deformation assumptions, compared to nonlinear geometric 
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assumptions with large beam strain assumptions. With the displacement load of 40 mm, 

the lattice reaches a maximum 19% stretch along the loaded edge under the same set of 

boundary conditions as discussed in Section 2.4. 

 The linear and nonlinear geometric models are studied for the response to the 

elongation bias test for stiffening, 𝛽 > 0, and softening, 𝛽 < 0, responses when the 

material nonlinearity of the pivot torsional stiffness is introduced.  Results will also be 

compared with the torsional spring model with 𝛽 = 0, where the moment-rotation 

relationship becomes linear with constant stiffness and such that the lattice is devoid of 

material nonlinearity. These conditions for the torsional spring are established within 

Abaqus using a Pin connection in combination with a rotational spring element of 

varying stiffness 𝑘𝜃 which varies as per equation 4.2.  

 

4.2.1 Cases Studied 

 The different combinations of geometric and torsion spring material nonlinearity 

studied are summarized in the following.  The simulations are carried out for the 

combinations of geometric and material nonlinearity outlined in Table 3. Case 2 and Case 

3 represent the small and large orders of torsional resistance respectively. Case 1 and 

Case 4 are the limits for the small and large order torsional resistance respectively. 
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Table 3 Test cases for combinations of geometric and torsional spring material 

nonlinearity 

 

Same as in the previous chapter, tests performed for Case 2 and Case 3 have the 

nondimensional torsional resistance, K* = 0.1 with the beam parameters defining the 

torsional stiffness 𝑘𝜃. Combination 1 in table 3 is studied in Chapter 3 for small lattice 

stretch while combination 2 is presented in section 4.4. For Cases 2 and 3, nonlinear 

behavior due the material nonlinearity is defined by the nonlinear Moment-Rotational 

Displacement relation of the torsional springs which can also be expressed in terms of a 

nonlinear spring function, 

𝑀 = 𝐾(∆𝜃) ∗ ∆𝜃 = (𝑘𝜃 +  𝜃2) ∗  ∆𝜃 

Here, 𝐾(∆𝜃) is the nonlinear function of ∆𝜃. 

For Case 1 and Case 4, the torsional stiffness limits to, 𝑘𝜃 → 0 and 𝑘𝜃 → ∞ , 

respectively.  

Combination  

Geometric 

Nonlinearity 

Pivot Torsional 

Spring Material 

Nonlinearity 

1 Case 1, 2, 3, and 4 No No 

2 Case 1, 2, 3, and 4 Yes No 

3 Case 2 and Case 3 No Yes 

4 Case 2 and Case 3 Yes Yes 

(4.5) 
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4.3 Magnitude of Stretch Studied 

 The numerical results below discuss the strain energy contours for large 

deformation comparing analysis with linear and nonlinear geometry. A series of tests 

were performed for total longitudinal displacements of 

𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ = [
1

ξ2
, 5, 10, 20, 40] 

The displacements are presented in mm. 

To observe the small stretch,  𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
1

ξ2
 mm is used which corresponds to 0.33% 

lattice stretch, same as discussed in the previous chapter. To observe the pronounced 

large deformation effects the longitudinal strain is chosen to be around 19%. The lattice 

was subjected to a displacement of 20ξ2 mm along global X and Y directions, resulting 

in a net longitudinal displacement of around 40 mm or19% stretch.  

𝑢𝑥  =  20ξ2 𝑚𝑚 

𝑢𝑦  =  20ξ2 𝑚𝑚 

𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ  =  √𝑢𝑥2 + 𝑢𝑦2  =   40𝑚𝑚 

The physical beam parameters used for large deformation elongation tests are the same as 

those used for small deformation. 

 



56 

 

4.4 Linear Spring with Large Stretch 

In this section, results are presented for the linear and nonlinear geometry tests for 19% 

lattice stretch performed with linear rotational springs connected at the lattice pivots.  

 

 

Figure 4-2 visualizes the nonlinear analysis through the force-displacement curve for 

Case 1 with large deformation. The linear model follows is a result of equilibrium 

equations with constant stiffness. As discussed, for the nonlinear model 𝐹 ≠ 𝐾𝑈 and 

Figure 4-2 Comparison of Reaction Force vs lattice stretch (19%) for with linear 

torsional springs, large stretch linear vs nonlinear geometry 

(a) Case 1, 𝑘𝜃→ 0 (b) Case 2, K* =0.1 

(c) Case 3, K* =0.1 (d) Case 4, 𝑘𝜃→ ∞ 
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hence finite element steps can show very high divergence from linear model especially 

for large stretch which can produce large beam strains. Later, in section 4.4.1, the same 

tests are performed with nonlinear rotational springs to compare the difference in the 

deformation and strain energy distribution across the lattice. For better visualization 

during large deformations, the deformed lattice plots are represented at an amplification 

factor of 0.7 that can be controlled in Abaqus.  

 

(a) Case 1, 𝑘𝜃→ 0, Linear Geometry (b) Case 1, K* = 0, Nonlinear Geometry 

(c) Case 2, K* = 0.1, Linear Geometry (d) Case 2, K* = 0.1, Nonlinear Geometry 
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(e) Case 3, K* = 0.1, Linear Geometry (f) Case 3, K* = 0.1, Nonlinear Geometry 

(g) Case 4, 𝑘𝜃→ ∞, Linear Geometry (h) Case 4, 𝑘𝜃→ ∞, Nonlinear Geometry 

Figure 4-3 Total Strain Energy Distribution for the bias extension test implemented with 

linear spring (large stretch, 19%) 
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 The results are presented for the four cases which define different orders of 

torsional stiffness at the lattice pivots. All four cases are presented for both, linear and 

nonlinear geometry for the large displacement load. The strain energy distribution for 

large deformation is similar to the distribution noticed for small deformation for linear  

 

   

  

(a) Case 1, 𝑘𝜃→ 0 (b) Case 2, K* =0.1 

(c) Case 3, K* =0.1 (d) Case 4, 𝑘𝜃→ ∞ 

 
Figure 4-4 Total Strain Energy vs lattice stretch (19%) for with linear torsional springs, 

linear vs nonlinear geometry 
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geometric model. However, we observe the necking is highly exaggerated when the large 

deformation is accounted for the geometric nonlinear model. Figures 4-3 (e) and (f) 

highlight the difference in the energy distribution which is amplified as the torsional 

stiffness is increased to reach a maximum value at case 4. The segregated bands of high 

strain energy diffuse entirely to a large area of necking dominated geometry with strain 

energy constituted by a constant order of magnitude, unlike the linear geometry model. 

The total strain energy as represented in Figure 4-4 shows the relative difference between 

the linear and nonlinear model widen aggressively past 3% lattice stretch. 

Axial bias test was also performed with small deformation (0.33% lattice stretch) loads 

with the linear and nonlinear geometric model. The linear geometry small stretch results 

are discussed in section 3.2.2. The strain energy distribution contours for the small stretch 

with nonlinear geometry are presented in Appendix 7.1. 

 

4.4 Torsional Spring Material Nonlinearity  
 

 The previous section only discussed the effects of only geometric nonlinearity for 

all four cases. Now, we introduce nonlinear springs at the pivots of the pantographic 

lattice which introduce nonlinear material behavior. Material nonlinearity introduced at 

pivot springs is a function of the parameter,  which is unconstrained for positive values 

as discussed previously. For a small lattice stretch, as approached here,  is varied to a 

wider range for linear and nonlinear geometry. A positive  signifies stiffening of the 

beam model while negative  values represent softening of the model. For both stiffening 
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and softening cases, the total strain energy is calculated for the deformed lattice. The 

model is invalidated if the total strain energy is negative. Graphically, extended 

decrement in the magnitude of  flattens out the strain energy curve below to a point 

where our model invalidates. By varying  from positive to negative values the nature of 

curve changes from concave up to convex. Hence, there is a mathematical limit on 

achieving the maximum softening behavior with the nonlinearity relation we have 

utilized. 

 

  For numerical results,  of order 10^3 is used to visualize significant nonlinear 

spring behavior. For the following numerical results, we define  

𝛽∗ =
𝛽

103
 

where 𝛽∗ is of order 1. 

 

 

 

 

 

 

Figure 4-5 Moment-rotation relationship utilized in Abaqus to generate nonlinear spring 

behavior for Case 2, K* =0.1  
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Figure 4-5 visualizes the moment-rotation relationship that is utilized in Abaqus 

constraints to generate nonlinear torsional spring behavior. The plot shows three curves 

for different 𝛽∗. The same relationship is used for case 2 with K* =0.1. The curve is 

steeper for the larger magnitude of 𝛽∗. 

4.4.1 Nonlinear Torsional Springs with Small Stretch 
 

 Small stretch extension tests are performed for pantographic lattice with small and 

large torsional resistance, viz. respectively Case 2 and Case 3. The study uses a small 

stretch of 0.33%. For both cases, the nondimensional torsional resistance, 𝐾∗ = 0.1 and 

the parameter 𝛽∗ is varied from -2 to 2 in 4 incremental steps. This allows us to study 

both the stiffening and softening behavior of the lattice due to the introduced nonlinear 

torsional springs. 𝛽 = 0 reflects to the Case 2 and Case 3 with no material nonlinearity 

as studied in section 4.4.1. 

 With the relatively small stretch of 0.33%, the strain energy distribution is 

compared with the introduction of nonlinear springs. For small stretch with nonlinear 

rotational spring behavior, the nonlinear geometry does not introduce any significant 

difference. Hence, the total strain energy is plotted against lattice stretch (%) for the 

geometric linear model only. For both case 2 and case 3, it is observed that the total strain 

energy increases with the spring stiffness. The total strain energy is a quadratic function 

of the strain. However, as the softening behavior is amplified, the total strain energy 

detracts and starts decreasing which is impossible and hence is a limit to our model. 
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Case 2, K*=0.1, 𝛽∗ = [-2, -1, 0, 1, 2] 

 

 

 

 

 

 

 

Case 3, K*=0.1, 𝛽∗ = [−2, −1, 0, 1, 2]  

 

 

 

 

 

 

 

Figure 4-6 Total Strain Energy with introduced nonlinear springs for Case 2 (a) and 

Case 3 (b) with small lattice stretch, K*=0.1, linear geometric model 

(a) 

(b) 
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The bar graphs below compare the total strain energy for the linear geometry model with 

nonlinear geometry. 

 

  

 The total strain energy increases slightly for the transformation from linear to 

nonlinear model for both the cases. Fig 4-7 (a) and (b) show that any changes in the 

torsional stiffness are more varied for low orders of torsional stiffness in comparison to 

the higher orders. In Fig 4-8 contours representing the total strain energy for 𝛽∗ =

 [−2, 0, 2] are compared for Case 2 and Case 3. 𝛽∗ = 0 reflects the constant spring 

stiffness. The plots presented have a deformation amplification of 40. While only minute 

differences are observed for Case 2, Case 3 strain energy distribution varies from focused 

high energy bands surrounding a homogeneous low energy region in the middle of the 

lattice which decreases as the lattice is stiffened. 

(a) (b) 

Figure 4-7 Strain Energy for Linear vs Nonlinear Geometry, Case 2 (a) and Case 3 (b) 

for small lattice stretch (0.33%) 
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Figure 4-8 Total Strain Energy Distribution for Case 2 (left) and Case 3 (right), K* =0.1 

with nonlinear springs and linear geometry model (small lattice stretch, 0.33%) 

(a) 𝛽∗= -2, Case 2  (b) 𝛽∗= -2, Case 3  

 

(c) 𝛽∗ = 0, Case 2  (d) 𝛽∗ = 0, Case 3 

(e) 𝛽∗ = 2, Case 2  (f) 𝛽∗ = 2, Case 3  
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4.4.1 Nonlinear Torsional Springs with Large Stretch 
 

 The small stretch test performed in section 4.4.1 is extended to study the large 

deformation for the linear geometric model keeping the remaining parameters the same. 

For a large stretch of 19%, we can see that the nonlinear spring behavior when coupled 

with the nonlinear geometry model produces highly varied strain energy distribution. The 

total strain energy of the lattice is also orders of magnitude larger for the nonlinear 

geometry model. Fig 4-11 shows the total strain energy of the model for stiffening cases. 

Since the order of stiffness is large, any variation in 𝛽∗ largely amplifies the total strain 

energy as a result. For large stretch, a limited softening behavior can be observed. Figure 

4-9 shows the difference in magnitude of the total strain energy for low order of torsional 

resistance with integrated softening and stiffening behavior. 

 

 

Figure 4-9 Total Strain Energy for Case 2 K*=0.1, linear(left) vs nonlinear 

geometry(right) with large lattice stretch, (19%) 
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The reaction force for Case 2 softening and stiffening is shown in Figure 4-10.  

 

 

 

Case 2, K*=0.1, 𝛽∗= [1, 2] 

  

 

 

  

Figure 4-11 Total Strain Energy with introduced nonlinear springs for Case 2 (large 

stretch, 19%), K*=0.1 

Figure 4-10 Comparison of Reaction Force vs lattice stretch Case 2 K*=0.1, linear (left) 

vs nonlinear geometry (right) with large lattice stretch, (19%) 
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 In Figure 4-12, the reaction force at the loaded lattice edge is plotted against the 

lattice stretch. Figure 4-13 shows the importance of nonlinear models for studying large 

deformations in the pantographic lattice. As in Figure 4-13d, the increased stiffening of 

the pivots results in a highly stretched zone of high strain energy is observed, while the 

linear model in Figure 4-13c suggests a comparatively larger pocket of less energy. 

It is evident that the strain energy is better captured by the nonlinear models. Figure 4-16 

shows that for the higher orders of stiffness, the bandgap between the linear and 

nonlinear models are significant. Unlike Case 2, the strain energy distribution does not 

differ significantly for 𝛽∗ =  and 𝛽∗ =  for both the linear and nonlinear models as 

evident from Figure 4-18. 

 

 

Figure 4-12 Comparison of Reaction Force vs lattice stretch for with nonlinear torsional 

springs for Case 2 with 𝛽∗ = 1 𝑎𝑛𝑑 2 (large stretch, 19%) 
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(b) 𝛽∗ =  Case 2, Nonlinear Geometry 

(c) 𝛽∗ =  Case 2, Linear Geometry (d) 𝛽∗ =  Case 2, Nonlinear Geometry 

(a) 𝛽∗ =  Case 2, Linear Geometry 

Figure 4-13 Total Strain Energy Distribution for Case 2, K* =0.1 with Linear (left) and 

Nonlinear (right) Geometry (large stretch, 19%) 
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Case 3, K*=0.1, 𝛽∗ = [1, 2] 

Figures 4-14 and 4-15 show the difference in the mechanical behavior of linear and 

nonlinear geometric models for Case 3 order of torsional resistance. Contrary to the 

nonlinear geometry model, the reaction force developed for softening cases in the linear 

model flattens out with increasing stretch.  

 

Figure 4-14 Total Strain Energy with introduced nonlinear springs for Case 3 (large 

stretch, 19%), K*=0.1 

Figure 4-15 Comparison of Reaction Force vs lattice stretch Case 3 K*=0.1, linear (left) 

vs nonlinear geometry (right) with large lattice stretch, (19%) 
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Figure 4-16 Total Strain Energy with introduced nonlinear springs for Case 3 (large 

deformation), K*=0.1 

Figure 4-17 Comparison of Reaction Force vs Strain for with nonlinear torsional springs 

for case 3 with 𝛽∗ = 1 𝑎𝑛𝑑 2 
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𝛽∗=  Case 3, Linear Geometry 

 

𝛽∗ =  Case 3, Nonlinear Geometry 

𝛽∗=  Case 3, Linear Geometry 𝛽∗=  Case 3, Nonlinear Geometry 

 

Figure 4-18 Total Strain Energy Distribution for Case 3, K* =0.1 with Linear (left) and 

Nonlinear (right) Geometry 
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4.5 Quantification of Nonlinearity for Lattice Energy 
 

This chapter discusses the comparative effects of engaging a nonlinear spring 

stiffness to a constant spring stiffness. The strain energy for the torsional spring elements 

can be calculated as 

𝐸𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑘𝜃  (
1

2
𝜃2 +

1

4
𝛽𝜃4) 

We can consider a similar relation between the total energy for the lattice and the 

total strain in the lattice to observe the effect of 𝛽 on the total strain energy of the lattice. 

Hence, we assume the total strain energy of the lattice as 

𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = 𝐴 (
1

2
𝑥2 +

1

4
𝐵𝑥4) 

 And utilize curve fitting techniques to study the parameter relating nonlinearity, B 

by equating the total lattice strain energy to the above-assumed relation. Here, 𝑥 is the 

axial displacement along the direction of the applied load. The coefficients evaluated 

were in a 95% confidence interval for the R-square values calculated in MATLAB curve 

fitting toolbox, cftool [24].  

 The R-squared values are calculated using a linear regression model that indicates 

a proportionate amount of variation in the dependent variable y explained by the 

independent variable x. For our mode, 𝐸𝑙𝑎𝑡𝑡𝑖𝑐𝑒 is the dependent variable and 𝑥 is the 

independent variable. R-square is a measure of the success of fit in accommodating the 

variation in the data sets. R-square can vary from 0 representing a poor fit to a maximum 

(4.6) 

(4.7) 
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of 1 for a good fit. For small stretch loading, with a nonlinear spring with Case 2 or Case 

3, using K* = 0.1, the coefficients A and B, the R-square was found to be 0.999 or greater 

suggesting a very good fit. The plots below relate the parameters B and 𝛽∗for small 

strain.  

 

 

 

 

 

 

The parameters obtained for the curve fit model show a high degree of coherence 

as can be inferred from the R-square values. The model is shown to be accurate for the 

overall lattice energy for small beam deformations with nonlinear spring behavior. This is 

very useful to predict the behavior of lattice for a finite range of 𝛽. However, for large 

geometric beam deformations, the confidence levels obtained for the curve fitting are not 

appropriate which makes this model not useful for predicting large stretch behavior. 

Figures 4-19 and 4-20 show the relationship between the nonlinear parameter 𝛽 and the 

curve-fit parameter for equation 4.7. For both cases, the curve closely follows a linear 

relation for small strain for linear and nonlinear models.  When 𝛽∗ = 0, the lattice model 

Figure 4-19 Nonlinearity parameter B vs 𝛽∗, small deformation (0.33%), Case 2, K* =0.1 
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has no torsional spring material nonlinearity. However, the model still predicts some 

nonlinearity which is introduced due to the geometric nonlinearity even at small 

deformations. This is observed for both Case 2 and 3. However, for large deformations, 

no concrete trend is observed in the relations between the computed parameters as can be 

observed in Figure 4-21. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20 Nonlinearity parameter B vs 𝛽∗,small deformation (0.33%), Case 3, K* =0.1 

Figure 4-21 Nonlinearity parameter B vs 𝛽∗, large deformation (19%), Case 3, K* =0.1 
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Chapter 5 3D pantographic Lattice 
 

The 2D pantographic sheets can be extended to the third dimension by the 

inclusion of a third continuous beam fiber array that runs perpendicular to the plane of 

the existing pantographic sheet. Since our pantographic sheet is modeled in an x-y plane, 

the array of perpendicular fiber runs in the +z direction connecting the parallel planar 

sheets. The beam profile for the 3D pantographic lattice is considered to be a square 

prism with the existing beam length as in the 2D model. 

 

 Pivots at the intersection are now constituted by 3 discrete spring connections 

which can be created to be independent of each other. Similar to the 2D pantographic 

lattice, the participating nodes of fibers at a pivot at all times are constrained in the 

translatory degree of freedom. The rotational degrees of freedom of these nodes behave 

Figure 5-1 3D Pantographic beam lattice model in Abaqus Standard 
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as per the spring stiffness and the constraints established as per the four cases discussed 

previously. 

 

 

 

 

 

 

 

 

 

 In this study, the 3D lattice model is constituted by six layers of 2D pantographic 

sheets interconnected by vertical beam fibers. The beam material properties for the 3D 

pantographic lattice are the same as discussed in section 2.1. However, the beam profile 

in 3D is assumed to be a square prism of dimensions b = 0.495 mm, 𝑙 = 4.95 mm, h = 

0.495 mm. Hence, the slenderness ratio, n = 
ℎ

𝑙
  = 0.1 is the same as for the 2D 

pantographic lattice model.  

  

Figure 5-2 Square beam profile for the 3D pantographic lattice 
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5.1 Degrees of freedom in three dimensions 
 

 For a point j in 3D space, there exist three translational degrees of freedom, each 

along the three axes in the coordinate system i.e., x, y, and z-axis. Correspondingly, there 

exist three rotational degrees of freedom which can be visualized as below: 

 

 

 

 

 

 

 

 

 

 

The direction of rotation can be found using the right-hand curl rule. The depicted 

directions of rotations in the above figure are positive.  

xj 

zj 

yj 

𝜃𝑥 

𝜃𝑦 

𝜃𝑧 

Figure 5-3 Degrees of freedom for a point in 3D space 
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Our frame elements comprise of two nodes, each with six degrees of freedom as 

understood above. For a two-node 3D frame element the nodal displacements and 

rotations can be represented as below.  

 

 

 

 

 

 

 

 

 

 

 

Here u, v, and w are the displacements along the local x, y, and z directions for the frame 

with nodes 1 and 2. 

5.2 Kinematic Constraints at the pivots in the 3D lattice model 
 

node 1 

node 2 

Figure 5-4 Representation of local displacements and rotations for a 3D frame element 
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 The beam connections in 2D pantographic sheets employed only one pivot across 

the two participating nodes of different beams. In 3D, the kinematic constraints are 

applied to 3 pivots at every beam connection. The set of kinematic constraints are the 

same as the previous. To recall, to achieve the generalized rotational stiffness at the joints 

of the pantographic lattice we have the following primary requirements: 

1) The pivots at a beam connection should share the same translatory motions i.e., 

the displacement across the nodes should be equal. 

2) The rotational degrees of freedom should be allowed to have some finite value of 

positive torsional resistance. The varying order of magnitude of torsional 

resistance at these pivots can be achieved as discussed in the 2D model.  

 In 2D, the beam connections are comprised of 2 nodes from different beam fibers. 

Similarly in 3D, the beam connections comprise of 3 pivots each from a different fiber. 

The MPC Pin connection in Abaqus allows for equal displacements for the connected 

nodes while leaving the rotational degree of freedom independent if they exist. Hence, an 

MPC Pin connection is sufficient to replicate Case 1 in 3D lattice too. To implement a 

finite torsional resistance between the pivots, a torsional spring is a setup connecting the 

degree of freedom we are interested in. The 3 pivot Pin setup and the torsional spring are 

explained in detail in the next section. 
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This section discusses the Abaqus implementation of the beam connections and the 

kinematic constraints employed to achieve torsional springs at the pivots. 

 

5.2.1 Multi-point Constraint Pin  
 

 

 

 

 

 

 

 

 

Figure 5-5b depicts the three PIN constraints for visual understanding as produced in 

Abaqus. While implementing the constraints in Abaqus only 2 are necessary as the third 

is followed automatically by Abaqus because of the nature of the constraint.  

Although the pivots constitute of 3 pairs of node-set [(1,2),(2,3),(3,1)], the driving 

constraints for a PIN joint can be conveyed via establishing relations between any two as 

𝜃12  =  𝜃2 − 𝜃1 

𝜃23 =  𝜃3 − 𝜃2 

z 
y 

x 

Figure 5-5 Representation of Multipoint constraints setup at a pivot constituted by three 

nodes in 3D space 
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Hence from the above two relations,  

𝜃31  =  𝜃3 − 𝜃1 = 𝜃23 + 𝜃12 

where 𝜃𝑖 is the rotation of fiber i at the joint of concern. 

Hence the third pair is dependent on the relations between the first two pairs. This can be 

utilized by constraining only 2 pairs of nodes of a joint in Abaqus using python scripts. 

 

5.2.2 Torsional Springs 

 

The Moment for a pair can be defined as 

𝑀𝑖𝑗 = 𝐾𝑖𝑗𝜃𝑖𝑗 

 

 

 

 

Figure 5-6 Representation of three torsional springs of stiffness k at a pivot constituted 

by three node pairs in 3D space 

(5.2) 

(5.1) 

(a) (b) 

z 
y 

x 
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 The PIN connections at a pivot are represented in figure 5-6a. The colored axes 

represent the corresponding rotational degrees of freedom that are constrained in the 

global coordinate system. The 3 linear springs created for 3 node pairs at a joint employs 

different degrees of freedom for each pair. For the beam fibers oriented along the x and 

y-axis, the torsional spring is set up along the global z-direction. Similarly, the torsional 

spring along the x-axis engages the beam fibers oriented along global y and z directions. 

Finally, the torsional spring along the y-axis is created in a similar manner between beam 

fibers oriented along global x and z directions. The linear torsional springs at all joints 

have the same spring stiffness. The spring stiffness is 𝑘𝜃 is the same for every spring 

similar to the assumption used for the 2D model. Hence for case 1, only the MPC Pin 

constraints are active throughout the lattice, meanwhile, for cases 2, 3, and 4, the springs 

are also activated along with the MPC Pin constraint.  

 The 4 cases differentiating the different orders of torsional resistance are 

implemented in the 3D model as well.  For the 2D pantographic lattice model, all degrees 

of freedom for nodes are constrained. However, if the kinematic constraints for the 2D 

model are replicated in the 3D model, nodes that do not lie on the longitudinal ends of the 

lattice remain with free degrees of freedom. To overcome this uniqueness problem, the 

nodes are set to have zero rotation along the longitudinal axis of the beam element to 

remove twisting as described in section 5.3. For all the cases the twisting deformation is 

neglected by implementing constraint equations.  

 In 2D, we approached case 4 by incrementing the stiffness of the rotational 

springs from case 3 to a very large magnitude. Case 4 in 2D reflects rigid joints at the 
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intersection of the beam fibers. In 3D, as twisting of the beams is homogenized using 

essential boundary conditions, Case 4 obtained via raising spring stiffness of Case 3 to a 

large magnitude does not exactly resemble the rigid pivots at the beam intersections, 

which equates both bending rotation and twist at the beam intersection node. A rigid 

connection can be set up by modeling only one node at the fiber intersections, with 

constraints that all three displacement components and all three rotation components are 

shared for all three beams at the connected nodes. The rigid model does not require any 

additional constraints to be set up to achieve rigid connection, all displacements and all 

rotations are the same at the beam connections and are implemented directly in the beam 

finite stiffness assembly process. 
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5.3 Boundary Conditions 
 

Similar to the 2D model, the 3D pantographic lattice is loaded along the bisector 

of planar arrays and perpendicular to the z-axis. The lattice is constrained to 3 sets of 

boundary conditions. The southwest end (red) of the lattice is rigidly constrained by 

fixing all 6 degrees of freedom. Meanwhile, the loaded end (blue) is subjected to a series 

of linearly ramped displacement loads along the longer edge of the lattice as depicted in 

Figure 5-7.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7 Essential Boundary conditions on the loaded  edges of the lattice 
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The essential boundary conditions are defined at the loaded edge, 

𝑢𝑥  =  𝑑 

𝑢𝑦  =  𝑑 

𝑢𝑧 = 0 

𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

The essential boundary conditions at the rigid end are defined as 

𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0 

𝜃𝑥 = 𝜃𝑦 = 𝜃𝑧 = 0 

 To avoid the twisting of beams, the 3D pantographic beam model also has a 

constrained rotational degree of freedom along the beam axis. The beam fiber oriented 

along the global x-axis has a fixed rotational degree of freedom along the x-axis. 

Similarly, fixed rotations are applied along the y and z-axis for lattice fibers that are 

oriented in the y and z-axis respectively. The remaining 2 degrees of freedom for each 

node are bound by the rotational springs as discussed in the previous section.  

For all nodes on fibers oriented along i axis: 

𝜃𝑖 = 0 

By constraining one rotational degree of freedom for case 4, the twisting deformation 

energy is removed. This is the contrast between case 4 and the rigid lattice model. The 
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rigid lattice model allows for twisting of the beams accounting for some small twisting 

deformation energy presented in the numerical results in section 5.4. 

For displacement component magnitude, d, along fiber directions in the x-y plane, the 

total displacement load (elongation stretch) along the bisector of the beam arrays is 

𝑢𝑑𝑖𝑠𝑝  =  √𝑢𝑥2 + 𝑢𝑦2 = √2𝑑 2 = 𝑑ξ2 

For a small stretch,  

𝑑 =
1

2
𝑚𝑚, 𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ =

1

ξ2
𝑚𝑚  (0.33% 𝑠𝑡𝑟𝑒𝑡𝑐ℎ) 

For a large stretch,  

𝑑 = 20ξ2𝑚𝑚, 𝑢𝑠𝑡𝑟𝑒𝑡𝑐ℎ = 40𝑚𝑚  (19% 𝑠𝑡𝑟𝑒𝑡𝑐ℎ) 

 The amplitude of stretch along the bisector of the lattice beam fibers is varied 

according to the small and large deformation tests. For the geometric linear and nonlinear 

analysis of 3D pantographic lattice, the stretch is varied from 0.33% to 19% to observe 

the response of the lattice joints via beam strain energy distribution contour plots.  

In summary, each pivot in the 3D lattice is constituted by 3 coincident nodes from 

different combinations of fiber pairs. A pivot is attributed by 18 degrees of freedom, 6 

from each node; 3 translational, and 3 rotational degrees of freedom. The translatory 

degrees of freedom are rigidly connected in the global coordinate system while beam 

bending rotational degrees of freedom are connected by pivots with torsional springs. For 

unique solutions to the 3D pantographic model, rotational degrees of freedom, about the 
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beam fiber axis, are set to zero. The remaining 6 rotational degrees of freedom are 

connected by 3 spring pairs at the 3 nodes at the beam intersection.  
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5.4 Numerical Results 
 

5.4.1 Linear Torsional Spring 
 

 A bias extension test is performed for the 3D pantographic lattice to observe the 

deformations for small and large displacement loads. The results are presented as strain 

energy distribution contours for the linear model in Figure 5-8. The side view enables 

observation of the strain energy distribution along the edges of the lattice. 

 

 

 

 

 

(a) Case 1, 𝑘𝜃→ 0 

 

(b) Case 2, K* =0.1 
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The strain energy distribution is similar to the results obtained for the 2D 

pantographic lattice. However, the total strain energy for the combined six-layered 3D 

lattice model with the same load as applied in 2D is lower for all orders of torsional 

resistance, indicating the 3D pantographic lattice has a global stiffness smaller than the 

Figure 5-8 Total Strain Energy distribution for varying orders of torsional stiffness at 

pivots for small lattice stretch (0.33%), linear geometry 

(c) Case 3, K* =0.1 

(d) Case 4, 𝑘𝜃→ ∞ 
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corresponding 2D lattice when the same beam parameters are used, refer Table 4. The 

behavior is observed for all ranges of lattice stretch studied in this research. Figure 5-9 

illustrates one such case with the development of reaction force for Case 2 for the 2D and 

the 3D model with small lattice stretch. The larger slope of the curve for the reaction 

force for the 2D model suggests larger global stiffness. 

 

 

 

 

 

 

 

Figure 5-8c shows that for Case 3 the beam strain is concentrated within local 

bands of the lattice. Unlike the 2D model, the low-energy region present in the center of 

the lattice has grown proportionately very small. When 𝑘𝜃→ ∞, the 2D pantographic 

model reflects rigid pivots, however, as discussed in Section 5.3, Case 4 does not 

represent a rigid connection for the 3D pantographic lattice model. The difference is 

small, attributed mostly to the negligible beam twist energy in the 3D pantographic lattice 

compared to the 3D rigid connection lattice which includes beam twist energy.  

Figure 5-9 Comparison of Reaction Force vs lattice stretch for with linear torsional 

springs for Case 2 with 𝐾∗ = 0.1  (small stretch, 0.33%) 
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For small strain, the linear model is sufficiently accurate compared with the 

model that accounts for nonlinear strains, as can be observed from Table 4. The relative 

difference is significantly less considering nonlinear models are computationally 

expensive. The total strain energy attributed to twisting deformation in a rigid model is 

comparatively very less. 

Table 4 Total Strain Energy comparison for the linear and nonlinear geometric model for 

small stretch (0.33%) 

 

 The bias extension test is extended to large strain with the respective strain energy 

distribution is presented in Figure 5-9. The nonlinear model for all the cases shows very 

high necking particularly around the middle of the lattice. Figure 5.9c shows a high strain 

at the corner elements of the lattice visible in the nonlinearly deformed model. In Figure 

5.9d, the nonlinearly deformed lattice is relived of the high strain regions that are 

dominant in the linear pantographic model. 

Case 

Total Strain Energy (mJ) Relative Difference 

(%) Linear Geometry Nonlinear Geometry  

1 0.002513 0.002528 0.593 

2 0.010333 0.01039 0.548 

3 0.410627 0.412675 0.496 

4 0.985433 0.99086 0.547 

Rigid 0.985434 0.990861 0.547 



93 

 

 

 

 

 

(b) Case 2, K* =0.1, Linear Geometry vs Nonlinear Geometry 

(a) Case 1, 𝑘𝜃→ 0, Linear Geometry vs Nonlinear Geometry 
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(c) Case 3, K* =0.1, Linear Geometry vs Nonlinear Geometry 

(d) Case 4, 𝑘𝜃→ ∞, Linear Geometry vs Nonlinear Geometry 

Figure 5-10 Total Strain Energy distribution for varying orders of torsional stiffness at 

pivots for large lattice stretch (19%) 
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 The total strain energy for the large strain model is presented in Table 5. The total 

strain energy obtained for Case 4 corresponds up to two decimal places for the rigid 3D 

pantographic model. The difference can be attributed to the small twisting deformation 

energy in the rigid model. Similarly, the difference obtained in the strain energy 

distribution for the rigid pivots and Case 4 model is negligible. 

Table 5 Total Strain Energy comparison for the linear and nonlinear geometric model for 

large deformations (19%) 

 

 

 

 

 

 

 

 Figure 5-10 shows the total strain energy against the lattice stretch for the linear 

and nonlinear geometric model. For small orders of torsional resistance, the relative 

difference between the total strain energy for the linear and nonlinear model is largest for 

Case 1 which represents lattice pivots with zero torsional resistance. The total strain 

energy for linear and nonlinear geometry varies by more than 3% even for lattice stretch 

as small as 3% signifying the importance of studying the more accurate nonlinear 

geometry models. 

Case Total Strain Energy (mJ) 

Linear Geometry Nonlinear Geometry 

1 8.042334 13.98481 

2 33.06401 54.47921 

3 1313.98 1977.69 

4 3153.327 5187.027 

Rigid 3153.33 5187.03 
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Figure 5-11 Total Strain Energy vs lattice stretch for varying orders of nonlinear 

torsional stiffness at pivots for large deformation load (19%) 

(a) Case 1, 𝑘𝜃→ 0 (b) Case 2, K* =0.1 

(c) Case 3, K* =0.1 (d) Case 4, 𝑘𝜃→ ∞ 
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5.4.2 Nonlinear Torsional Spring 
 

A nonlinear torsional spring is implemented similar to one utilized in the 2D 

pantographic model. The results are presented for a large lattice stretch of 19%. Figures 

below compare the total strain energy vs lattice stretch for linear and nonlinear geometry 

models. The 𝛽∗ is ranged from -0.001 to 0.001. The results are presented for the softening 

and stiffening of the lattice and compared with a constant torsional spring model. The 

difference in total strain energy widens for the nonlinear geometry model. Similar 

behavior is also observed in the 2D nonlinear geometry-lattice model.  

 

The reaction force for both linear and nonlinear geometry model flattens for the softening 

torsional spring model as observed in Figure 5-13. 

 

Figure 5-12 Total Strain Energy vs lattice stretch for Case 2 K*=0.1, linear(left) vs 

nonlinear geometry(right), large lattice stretch (19%) 
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For Case 3 order of torsional stiffness, the total strain energy is close-knit for both 

softening and stiffening cases. The reaction forces for the Case 3 model are larger 

compared to Case 2 for both linear and nonlinear geometry. 

 

  

Figure 5-13 Comparison of Reaction Force vs lattice stretch Case 2 K*=0.1, linear (left) 

vs nonlinear geometry (right) with large lattice stretch, (19%) 

Figure 5-14 Total Strain Energy vs lattice stretch for Case 3 K*=0.1, linear(left) vs 

nonlinear geometry(right), large lattice stretch (19%) 
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Unlike Case 2, the reaction forces at higher orders of torsional stiffness do not vary with 

softening or stiffening of the lattice as can be observed in Figure 5-15. The amplitude 

flattening observed for the Case 2 softening model is also absent for Case 3. 

The strain energy distribution presented in Figures 5-16 and 5-17 shows the prevalent 

difference in softening and stiffening cases prevalent only for high orders of torsional 

stiffness. 

 

Figure 5-15 Comparison of Reaction Force vs lattice stretch Case 3 K*=0.1, linear (left) 

vs nonlinear geometry (right) with large lattice stretch, (19%) 

Figure 5-156 Total Strain Energy distribution for nonlinear geometry Case 2 model with 

large lattice stretch (19%), 𝛽∗ = −0.001 (left) vs  𝛽∗ =  0.001 (right) 
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The high strain energy is also more varied in Case 3 around the center of the lattice where 

necking is more prevalent. In Case 2, the distribution of strain energy is more uniform 

around the center. 

 

 

 

 

 

 

 

 

 

  

Figure 5-16 Total Strain Energy distribution for nonlinear geometry Case 3 model with 

large lattice stretch (19%), 𝛽∗ = −0.001 (left) vs  𝛽∗ =  0.001 (right) 
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Chapter 6 Conclusion 
 

Discrete finite element frame models of pantographic lattice are developed in 

MATLAB and Abaqus Standard. The beam model developed in this study validates the 

homogenized continuum model developed by [8] for torsional springs exhibiting linear 

behavior undergoing small strains. The parametric study is automated using Python to 

obtain better computation performance. Different order of torsional stiffness at the lattice 

pivots are defined relative to the beam length and section properties in relation with a 

small scaling parameter ε defined as the ratio of cell size to overall lattice size. 

 Numerical results are also presented for standard elongation tests performed for 

different orders of torsional resistance in combination with a nonlinear geometry model 

using Abaqus. The tests are performed for a range of displacement loadings. The results 

are presented for a small lattice stretch of 0.33% and a large lattice stretch of 19%. The 

linear geometric model is developed in MATLAB and Abaqus for small deformation 

loads to validate the results presented in [8]. The results for nonlinear geometry start to 

show increasingly large deviations from the linear model beyond 3% lattice stretch 

during the elongation test. The total strain energy is found to be distributed over a wide 

region at the middle of the lattice as compared to localized bands of high energy as seen 

in the linear model. The torsional spring is also set up to reproduce nonlinear behavior at 

the lattice joints using the specific set of constraints available in Abaqus GUI and Abaqus 

Python. The resulting nonlinear stiffness is studied for both stiffenings and softening 

under increased deformation and also analyzed for its effects in combination with the 
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including of nonlinear geometry of the beam deformation. For small lattice stretch, a very 

small relative difference in the total strain energy is observed for both case 2 and case 3 

orders of torsional stiffness. For stiffness softening, both case 2 and case 3 models show 

enhanced necking at the middle of the lattice. Case 3 shows a more evenly distributed 

strain energy for a softened lattice model. For large lattice stretch, only a small amount of 

softening behavior can be replicated for both cases, case 2 and case 3, due to limitations 

of requiring positive energy. The strain energy distribution for the nonlinear geometry 

with nonlinear torsional springs shows high strain energy distributed more evenly than 

the linear geometry model.  

The research also presents an analytical model for the total strain energy for the lattice to 

capture the nonlinear behavior due to geometry and torsional spring introduced material 

nonlinearity. The model captures the small stretch nonlinear behavior and nonlinear 

spring as a predictive model for case 2 and case 3, however, for large stretch, this model 

is not accurate and cannot be used as a predictor of total lattice energy under stretch.  

The 3D pantographic model is developed in Abaqus Standard to study the strain energy 

distribution for standard elongation tests. The model is studied for small and large 

deformations. All four cases of torsional resistance from the 2D analysis are carried in 

3D.  In order to obtain unique solutions under the constraints of three pivots for the 3 

beam bending rotation pairs at the intersection of the three beams, the models set beam 

twisting to zero and thus do not include deformation energy in the beams due to beam 

torsion; however, for the orthogonal beam lattice, the energy due to local beam twist is 

very small compared to bending and axial strain energies.  For the same elongation load 
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and beam profile, the total strain energy for each layer of the 3D pantographic lattice 

model is found to be lesser when compared to the 2D pantographic model, indicating that 

the in-plane global stiffness for the 3D pantographic lattice is smaller when compared to 

the 2D pantographic lattice. The Case 4 limit of infinite torsional stiffness at the pivot 

nodes is compared with a rigid connection pantographic lattice to observe the small 

twisting deformation energy present for the rigid lattice, not present in the pantographic 

model.  

 Based on the results obtained, some related future research is suggested: 

• In the present work, the loadings are applied along the bisectors of orthogonal 

beam fibers. The automated python models can help toggle the in-plane directions 

for the boundary condition loadings. The direction and type of loadings to the 

beam fibers can be studied in more depth. In addition, the research only focuses 

on pantographic lattices with orthogonally oriented beam fibers which can be 

expanded to a variety of lattice cell topologies, including skewed and triangulated 

lattices. 

• The nonlinear spring behavior at pivots presented with different strain energy 

distributions for the lattice can be optimized by modeling the torsional stiffness of 

each pivot independently. 

• Design and manufacturing of pivot joints with variable torsional stiffness for 

experimental testing and application are needed.  
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• The 3D pantographic lattice model could also be introduced with nonlinear 

torsional springs to further investigate the behavior of the pantographic lattices 

under both small and large strain beam kinematic assumptions. 

• Further work is needed to generalize the asymptotic homogenization models for 

pantographic lattice with variable pivot stiffness to include large beam kinematics 

in geometric nonlinear analysis and also to include nonlinear torsional springs at 

the pivots.   

• Experimental testing is needed to help validate both the discrete frame and 

corresponding homogenized models for large deformation.  To date, there has 

been no experimental testing of the 3D pantographic model.  

• Comparisons of this linear material assumption with nonlinear stress-strain 

material for beams, such as hyper-elastic (neo-Hookean) region could be made for 

the case of large strain. 
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Chapter 7 Appendix 
 

 

7.1 Strain Energy Distribution (Small Stretch, Nonlinear Geometry) 
 

 

 

 

 

 

 

 

(a) Case 1, 𝑘𝜃→ 0 

(d) Case 4, 𝑘𝜃→ ∞ 

(b) Case 2, K* = 0.1 

(c) Case 2, K* = 0.1 

Figure 7-1 Total Strain Energy Distribution for a small lattice stretch of 0.33%  for 2D 

nonlinear geomtric model. 
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7.2 Strain Energy Distribution (Small Stretch, Linear Geometry) 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

(a) Case 1, 𝑘𝜃→ 0 

(d) Case 4, 𝑘𝜃→ ∞ 

 

(b) Case 2, K* =0.1 

(c) Case 3, K* =0.1 

Figure 7-2 Total Strain Energy distribution for varying orders of torsional stiffness at 

pivots for a small lattice stretch of 0.33% for the linear model (vertical view) 
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7.3 Strain Energy Distribution (Large Stretch) 

 

 

 

 

 

                

         

(a) Case 1, 𝑘𝜃→ 0 

(b) Case 2, K* =0.1 
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(c) Case 3, K* =0.1 

(d) Case 4, 𝑘𝜃→ ∞ 

 Figure 7-3 Total Strain Energy distribution comparison for linear and nonlinear 

geometry model for a large lattice stretch of 19% (vertical view) 
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