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Abstract

This paper presents three new ways to generate each type of b-nomial numbers: We
develop ordinary generating functions, we find a whole new set of recurrence relations,
and we identify each b-nomial number as a single binomial coefficient or as an alter-
nating sum of products of two binomial coefficients.
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1 Introduction

Throughout this paper, we let b be an integer greater than 1 and g = b−1. We let Σb be the
set {0, 1, 2, . . . , g} and Σ∗b be the set of all finite strings consisting of digits in Σb, including
the empty string, which contains no digits, denoted by ε [8].

Definition 1.1. [1] For any string x and any digit ai ∈ Σb with x = anan−1 · · · a1, the digit
ai is called indispensable in x if ai = ai−1 = ai−2 = · · · = ai−k+1 > ai−k for some positive
integer k ≤ i+ 1, considering a0 = 0, and dispensable, otherwise.
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For example, in the string 23̇3̇1̇0223̇ in Σ∗4, the dotted digits 3, 3, 1, and 3 are indispensable
and the digits 2, 0, 2, and 2 are dispensable.

Definition 1.2. For any nonnegative integers n and k, we define
(
n
k

)
b3

as the number of
strings in Σ∗b of length n with k indispensable digits.

The sequences A330381 and A330509 in [9] are for
(
n
k

)
33

and
(
n
k

)
43

, respectively.
When b = 2, Σb = {0, 1}. Since 1 > 0, the digit 0 is dispensable and the digit 1 is

indispensable in any binary string. Hence, the number
(
n
k

)
23

counts the number of binary

strings of length n with k digit 1’s, so
(
n
k

)
23

is the (n, k)-th binomial coefficient:(
n

k

)
23

=

(
n

k

)
.

Hence, we can easily generate the number
(
n
k

)
b3

when b = 2. However, when b > 2, we have
to use the definition to find the number. For example, when b = 3, we have 9 ternary strings
of length 3 with 1 indispensable digits:

001̇, 002̇, 01̇0, 012̇, 02̇0, 1̇00, 112̇, 12̇0, and 2̇00,

and thus, the number
(
3
1

)
33

= 9. Since it is not ideal to sort and count such strings for large

n, we look for other ways to generate this number
(
n
k

)
b3

.
To simplify further discussion, we denote lb(m) and sb(m) as the length and the digit sum

of the base-b representation of a nonnegative integer m, respectively. For any nonnegative
integer m, the digit sum of the base b-representation of the multiple g · m satisfies the
following equation:

sb(g ·m) = g · k,

where k is the number of indispensable digits in the base-b representation of m [1]. Hence,
we can redefine the number

(
n
k

)
b3

as (iii) in the following definition.

Definition 1.3. [2] Let n and k be any nonnegative integers.

(i) The (n, k)-th b-nomial number of type 1, denoted by
(
n
k

)
b1

, is the number of nonnegative
integers m’s with lb(m) ≤ n and sb(m) = k.

(ii) The (n, k)-th b-nomial number of type 2, denoted by
(
n
k

)
b2

, is the number of nonnegative
integers m’s with lb(m) = n+ 1 and sb(m) = k + 1.

(iii) The (n, k)-th b-nomial number of type 3, denoted by
(
n
k

)
b3

, is the number of nonnegative
integers m’s with lb(m) ≤ n and sb(gm) = gk.

(iv) The (n, k)-th b-nomial number of type 4, denoted by
(
n
k

)
b4

, is the number of nonnegative
integers m’s with lb(m) = n+ 1 and sb(gm) = g(k + 1).

For a convention, we define
(−1

k

)
bp

= 1 if k = −1 and
(−1

k

)
bp

= 0 otherwise for p = 2 and 4.



Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2 3

Since the b-nomial numbers of types 3 and 4 are relatively new, we do not have a good
tool to generate those numbers. In this paper, we find a generating function and a recurrence
relation for each type of b-nomial numbers, and we express each b-nomial number in terms
of binomial coefficients.

In Section 2, we provide a combinatorial interpretation to construct a recurrence relation
for b-nomial numbers of type 3. In Section 3, we summarize the previous studies on b-nomial
numbers and binomial coefficients. In Section 4, we find an ordinary generating function for
each type of b-nomial numbers. In Section 5, we identify each b-nomial number as a single
binomial coefficient or as an alternating sum of products of two binomial coefficients. In
Section 6, we find a recurrence relation for each type of b-nomial numbers algebraically.

2 Preview

Since the digit 0 is the smallest and the digit g is the largest in Σb, we have the following
dispensability of the digit 0 and indispensability of the digit g:

Note 2.1. The digit 0 is dispensable and the digit g is indispensable in any string in Σ∗b .

To find a recurrence relation for b-nomial numbers of type 3, we investigate a string x in
Σ∗b of length n with k indispensable digits. Let ai ∈ Σb such that x = a1a2a3 . . . an. Then,
we have two cases:

[1A] The digit a1 is dispensable in x so the string a2a3 · · · an has k indispensable digits;

[1B] The digit a1 is indispensable in x so the string a2a3 · · · an has k−1 indispensable digits.

By the definition, the number of choices for the substring a2a3 · · · an in [1A] and [1B] are(
n−1
k

)
b3

and
(
n−1
k−1

)
b3

, respectively. By Note 2.1, the digit a1 6= g for [1A] and the digit a1 6= 0
for [1B]. That is,

a1 is in {0, 1, 2, . . . , g − 1} for [1A]; a1 is in {1, 2, . . . , g} for [1B].

Thus, the leading digit a1 has g choices for each case. Hence, if we can ignore the digit a1’s
dispensability or indispensability, the following expression counts these two cases:(

g

1

)[(
n− 1

k

)
b3

+

(
n− 1

k − 1

)
b3

]
. (1)

For example, when b = 2, g = 1 so we always have a1 = 0 for [1A] and a1 = 1 for [1B]. Thus,
the digit a1’s dispensability and indispensability are automatically satisfied. Hence, we find
a recurrence relation for 2-nomial numbers of type 3 as follows:(

n

k

)
23

=

(
1

1

)[(
n− 1

k

)
23

+

(
n− 1

k − 1

)
23

]
.

The digit a1’s dispensability or indispensability depends on the relation between a1 and the
following string a2a3 · · · an. Hence, in general,(

n

k

)
b3

≤
(
g

1

)[(
n− 1

k

)
b3

+

(
n− 1

k − 1

)
b3

]
.

To change this to an equation, we have to subtract the following cases:
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[2A] a1 is in {0, 1, . . . , g− 1}, a1 is indispensable, and a2a3 · · · an has k indispensable digits;

[2B] a1 is in {1, 2, . . . , g}, a1 is dispensable, and a2a3 · · · an has k − 1 indispensable digits.

By Note 2.1, the digit a1 is in {1, 2, . . . , g−1} for both cases. Hence, considering the digit a2’s
indispensability, we subtract the following cases instead: The digit a1 is in {1, 2, . . . , g − 1}
and

[2A1] a1 is indispensable, a2 is dispensable, and a3 · · · an has k indispensable digits;

[2A2] a1 is indispensable, a2 is indispensable, and a3 · · · an has k − 1 indispensable digits;

[2B1] a1 is dispensable, a2 is dispensable, and a3 · · · an has k − 1 indispensable digits;

[2B2] a1 is dispensable, a2 is indispensable, and a3 · · · an has k − 2 indispensable digits;

If a1 is indispensable, a1 ≥ a2, and if a1 is dispensable, a1 ≤ a2. Since a digit cannot be
dispensable and indispensable at the same time, a1 6= a2 for [2A1] and [2B2]. Hence, we can
rewrite each case as follows: The digit a1 is in {1, 2, . . . , g − 1} and

[2A1] a1 > a2, a2 is dispensable, and a3 · · · an has k indispensable digits;

[2A2] a1 ≥ a2, a2 is indispensable, and a3 · · · an has k − 1 indispensable digits;

[2B1] a1 ≤ a2, a2 is dispensable, and a3 · · · an has k − 1 indispensable digits;

[2B2] a1 < a2, a2 is indispensable, and a3 · · · an has k − 2 indispensable digits;

We count the cases [2A1] and [2B2] first. By the definition, the number of choices for the
substring a3 · · · an in [2A1] and [2B2] are

(
n−2
k

)
b3

and
(
n−2
k−2

)
b3

, respectively. To count strings
for a1a2, we notice the following conditions:

g − 1 ≥ a1 > a2 ≥ 0 for [2A1]; 1 ≤ a1 < a2 ≤ g for [2B2].

Thus, we choose two distinct digits from {0, 1, 2, . . . , g − 1} for [2A1] and {1, 2, . . . , g} for
[2B2], and then, assign them to a1 and a2 according to each inequality. Hence, there are(
g
2

)
choices for the string a1a2 in each case. If we can ignore the digit a2’s dispensability or

indispensability, the following expression counts the cases [2A1] and [2B2]:(
g

2

)(
n− 2

k

)
b3

+

(
g

2

)(
n− 2

k − 2

)
b3

. (2)

The other two cases [2A2] and [2B1] have the same number of choices for the substring
a3 · · · an as

(
n−2
k−1

)
b3

, and the substring a1a2 satisfies the following conditions:

for [2A2], g − 1 ≥ a1 ≥ a2 and a2 is indispensable so g − 1 ≥ a1 ≥ a2 ≥ 1;

for [2B1], 1 ≤ a1 ≤ a2 and a2 is dispensable so 1 ≤ a1 ≤ a2 ≤ g − 1.

Thus, we choose two digits from the set {1, 2, . . . g− 1} with repetition allowed and arrange
them to a1 and a2 according to each inequality. Since the number of multisets of size 2 from



Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2 5

a (g − 1)-set is
((

g−1
2

))
=
(
g−1+2−1

2

)
, we have

(
g
2

)
choices for the string a1a2 in each case.

However, we do not double this number to count these two cases, because [2A2] requires the
digit a2 to be indispensable and [2B1] requires the digit a2 to be dispensable. If the digit
a1 = a2, these two cases are complementary to each other so that

(
g
2

)
is the exact number

of choices for the strings a1a2 in [2A2] and [2B1] together. Hence, if a1 = a2, the following
expression counts the cases [2A2] and [2B1] together:(

g

2

)(
n− 2

k − 1

)
b3

. (3)

Therefore, if this property a1 = a2 always holds for [2A2] and [2B1] and if we can ignore
the digit a2’s dispensability or indispensability for [2A1] and [2B2], the following expression
counts all of the four cases to subtract from (1):(

g

2

)[(
n− 2

k

)
b3

+

(
n− 2

k − 1

)
b3

+

(
n− 2

k − 2

)
b3

]
. (4)

For example, when b = 3, g = 2 so we have only one choice for the string a1a0 in each case:

a1a0 = 10 for [2A1]; a1a2 = 11 for [2A2] and [2B1]; a1a2 = 12 for [2B2].

Then, the digit a2’s dispensability and indispensability are automatically satisfied for [2A1]
and [2B2] by Note 2.1, and the property a1 = a2 holds for [2A2] and [2B1]. Hence, by
subtracting (4) from (1), we find a recurrence relation for 3-nomial numbers of type 3 as
follows:(
n

k

)
33

=

(
2

1

)[(
n− 1

k

)
33

+

(
n− 1

k − 1

)
33

]
−
(

2

2

)[(
n− 2

k

)
33

+

(
n− 2

k − 1

)
33

+

(
n− 2

k − 2

)
33

]
.

If a1 6= a2, we have restrictions on the digit a3: The digit a3 cannot be equal to a2 and
dispensable for [2A2], because if so, the digit a2’s dispensability does not hold. Similarly,
the digit a3 cannot be equal to a2 and indispensable for [2B1]. Moreover, if the difference
|a1 − a2| > 1, there is a digit a such that a1 > a > a2 for [2A2] and a1 < a < a2 for
[2B1]. Then, the digit a3 cannot be equal to a, because if so, the digit a2’s dispensability or
indispensability holds for neither [2A2] nor [2B1]. Since the number

(
n−2
k−1

)
b3

counts the strings
of length n − 2 with k − 1 indispensable digits without any restriction, this expression (3)
counts more than we want. Since we also have a restriction on the digit a2’s dispensability
and indispensability for [2A1] and [2B2], the expression (2) counts more than we want. Hence,
in general,(
n

k

)
b3

≥
(
g

1

)[(
n− 1

k

)
b3

+

(
n− 1

k − 1

)
b3

]
−
(
g

2

)[(
n− 2

k

)
b3

+

(
n− 2

k − 1

)
b3

+

(
n− 2

k − 2

)
b3

]
.

We continue this process to find the recurrence relation for b-nomial numbers of type 3 in
Theorem 6.4 (iii).



Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2 6

3 Previous studies

By the definition, the binomial coefficients are generalized by any type of b-nomial numbers,
because (

n

k

)
2p

=

(
n

k

)
for any p = 1, 2, 3, and 4,

and the b-nomial numbers of type 1 are identified as the extended binomial coefficients or
polynomial coefficients [2]. Hence, we can generate b-nomial numbers of type 1 by the
following generating function and identity [4]:

(xg +xg−1 + · · ·+x+ 1)n =
∑
k

(
n

k

)
b1

xk;

(
n

k

)
b1

=
∑
i≥0

(−1)i
(
n

i

)(
n+ k − ib− 1

n− 1

)
. (5)

We can also generate b-nomial numbers of type 1 and 2 using the following recurrence relation
[3, 2]: (

n

k

)
bp

=

g∑
i=0

(
n− 1

k − i

)
bp

for p = 1, 2. (6)

The following relations among b-nomial numbers are to simplify further discussion.

Lemma 3.1. [2] For any nonnegative integers n and k,

(i)
(
n
k

)
b2

=
(
n+1
k+1

)
b1
−
(

n
k+1

)
b1

;

(ii)
(
n
k

)
b3

=
(
n+1
gk+1

)
b1
−
(

n
gk+1

)
b1

;

(iii)
(
n
k

)
b4

=
(
n+1
k+1

)
b3
−
(

n
k+1

)
b3

;

(iv)
(
n
k

)
b1

=
(

n
gn−k

)
b1

;

(v)
(
n
k

)
b2

=
(

n
g(n+1)−(k+1)

)
b2

;

(vi)
(
n
k

)
b4

=
(

n
n−k

)
b4

.

By Lemma 3.1 (i) and (ii), we can obtain the following relation.

Lemma 3.2. For any nonnegative integers n and k,(
n

k

)
b3

=

(
n

gk

)
b2

.

The following identities of binomial coefficients are to simplify calculations throughout
this paper.

Lemma 3.3. For any nonnegative integers r, m, n, and k,

(i)
∑k

i=r

(
i
r

)
=
(
k+1
r+1

)
;

(ii)
∑m

i=0

(
m
i

)(
n

r−i

)
=
(
m+n
r

)
;
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(iii)
(
r
m

)(
m
k

)
=
(
r
k

)(
r−k
m−k

)
;

(iv)
(
r
m

)(
m
k

)
=
(

r
r−(m−k)

)(
r−(m−k)

k

)
;

(v)
(
r
m

)(
r−m
k

)
=
(
r
k

)(
r−k
m

)
;

(vi)
(
r
m

)(
r−m
k

)
=
(

r
m+k

)(
m+k
m

)
;

(vii)
∑g

i=0(−1)i
(
g
i

)(
n−i
k

)
=
(
n−g
k−g

)
.

Proof. (i) is the hockey stick identity [5]; (ii) is Vandermonde’s identity [6]; (iii) is also
well-known [6]. (iv) is obtained by (iii):(
r

m

)(
m

k

)
=

(
r

k

)(
r − k
m− k

)
=

(
r

r − k

)(
r − k
m− k

)
=

(
r

m− k

)(
r − (m− k)

r −m

)
=

(
r

r − (m− k)

)(
r − (m− k)

k

)
.

(v) and (vi) are obtained, because

r!

k!(r − k!)
· (r − k!)

m!(r − k −m)!
=

r!

m!(r −m)!
· (r −m)!

k!(r −m− k)!
=

r!

(m+ k)!(r −m− k)!
· (m+ k)!

m!k!
.

(vii) is obtained by applying m = g, j = g − i, and s = n − g to the following alternating
sum identity of the product of binomial coefficients [6]:

m∑
j=0

(−1)m−j
(
m

j

)(
s+ j

k

)
=

(
s

k −m

)
.

If n− g ≥ 0 and k − g < 0, the number
(
n−g
k−g

)
= 0. Hence, Lemma 3.3 (vii) provides the

following identity.

Corollary 3.4. For any nonnegative integers n ≥ g and k < g,

g∑
i=0

(−1)i
(
g

i

)(
n− i
k

)
= 0. (7)

4 Generating functions

It is straightforward to find a generating function for b-nomial numbers of type 2 from type
1 and type 4 from type 3, respectively, by Lemma 3.1 (i) and (iii). However, for b-nomial
numbers of type 3, we need elaborate preparations.

When b = 3, g = 2. Suppose f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · · is a generating function
for 3-nomial numbers of type 2 so that the coefficient ak =

(
n
k

)
32

. Then, by Lemma 3.2,∑
k

(
n

k

)
33

xk =
∑
k

(
n

2k

)
32

xk = a0 + a2x+ a4x
2 + a6x

3 + · · · .
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Thus, to find a generating function for 3-nomial numbers of type 3, we need to remove all
odd terms from f(x) and adjust the power of x. Hence, we calculate the following average:

1

2

(
f(x

1
2 ) + f(−1 · x

1
2 )
)

= a0 + a2x+ a4x
2 + a6x

3 + · · · =
∑
k

(
n

k

)
33

xk.

In general, Lemma 3.2 indicates to eliminate all terms except the terms with xgk from
the generating function for b-nomial numbers of types 2 for type 3. Hence, we consider a

g-th primitive complex root of unity, ξ = e
2π
g
i, since it has the following property [7]:

g∑
i=1

ξsi =

{
0, if s 6≡ 0 (mod g);

g, if s ≡ 0 (mod g).
(8)

We present an ordinary generating function for each type of b-nomial numbers as follows.

Theorem 4.1. Let Φg(x) = xg−1 + xg−2 + · · ·+ x+ 1, Φb(x) = xg + xg−1 + · · ·+ x+ 1, and

ξ = e
2π
g
i. Then, for any nonnegative integer n,

(i)
∑
k≥0

(
n

k

)
b1

xk = [Φb(x)]n =
(xb − 1)n

(x− 1)n
;

(ii)
∑
k≥0

(
n

k

)
b2

xk = Φg(x) [Φb(x)]n =
(xg − 1)(xb − 1)n

(x− 1)n+1
;

(iii)
∑
k≥0

(
n

k

)
b3

xk =
1

g

g−1∑
t=0

Φg(ξ
tx

1
g )
[
Φb(ξ

tx
1
g )
]n

=
x− 1

g

g−1∑
t=0

(ξtx
b
g − 1)n

(ξtx
1
g − 1)n+1

;

(iv)
∑
k≥0

(
n

k

)
b4

xk =
1

gx

g−1∑
t=0

ξtx
1
g

[
Φg(ξ

tx
1
g )
]2 [

Φb(ξ
tx

1
g )
]n

=
(x− 1)2

gx

g−1∑
t=0

ξtx
1
g (ξtx

b
g − 1)n

(ξtx
1
g − 1)n+2

.

Proof. (i) is obtained by the generating function in (5).
(ii) is obtained by (i) and Lemma 3.1 (i): Since

(
n+1
0

)
b1

= 1 =
(
n
0

)
b3

,

∑
k≥0

(
n

k

)
b2

xk =
∑
k≥0

[(
n+ 1

k + 1

)
b1

−
(

n

k + 1

)
b1

]
xk =

∑
k≥1

[(
n+ 1

k

)
b1

−
(
n

k

)
b1

]
xk−1

=
1

x

∑
k≥0

[(
n+ 1

k

)
b1

−
(
n

k

)
b1

]
xk =

1

x

{
[Φb(x)]n+1 − [Φb(x)]n

}
=

1

x
[Φ(x)b − 1] [Φb(x)]n =

1

x
[x · Φ(x)g] [Φb(x)]n = ·Φ(x)g [Φb(x)]n .

(iii) Let f(x) = Φg(x) [Φb(x)]n and ak =
(
n
k

)
b2

. Then, by (ii),

f(x) =
∑
i≥0

aix
i = a0 + a1x+ a2x

2 + · · ·+ agx
g + · · ·+ a2gx

2g + · · · .
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Since
(
n
k

)
b3

=
(
n
gk

)
b2

by Lemma 3.2, we want to make ai = 0 if i 6= gk for any integer k and

agk as the coefficient of xk so that∑
i≥0

(
n

k

)
b3

xi = a0 + agx+ a2gx
2 + a3gx

3 + · · · .

Thus, we replace x with ξtx
1
g in f(x):

f(ξtx
1
g ) =

∑
i≥0

aiξ
itx

i
g = a0 + a1ξ

tx
1
g + a2ξ

2tx
2
g + · · ·+ agξ

gtx
g
g + · · ·+ a2gξ

2gtx
2g
g + · · · .

Then, we calculate the average of all f(ξtx
1
g ) for t = 0, 1, 2, . . . , g − 1:

1

g

g−1∑
t=0

f(ξix
1
g ) =

1

g

g−1∑
t=0

∑
i≥0

aiξ
itx

i
g =

∑
i≥0

ai

(
1

g

g−1∑
t=0

ξit

)
x
i
g .

By (8), we have

1

g

g−1∑
t=0

ξit =

{
1, if i = gk for any integer k;

0, otherwise.

Hence,

1

g

g−1∑
t=0

f(ξix
1
g ) =

∑
k≥0

agk · 1 · x
gk
g =

∑
k≥0

agkx
k =

∑
k≥0

(
n

gk

)
b2

xk =
∑
k≥0

(
n

k

)
b3

xk.

(iv) is obtained by (iii) and Lemma 3.1 (iii): Since
(
n+1
0

)
b3

= 1 =
(
n
0

)
b3

,

∑
k≥0

(
n

k

)
b4

xk =
1

x

∑
k≥0

[(
n+ 1

k + 1

)
b3

−
(

n

k + 1

)
b3

]
xk+1 =

1

x

∑
k≥0

[(
n+ 1

k

)
b3

−
(
n

k

)
b3

]
xk

=
1

gx

g−1∑
t=0

Φg(ξ
tx

1
g )

[[
Φb(ξ

tx
1
g )
]n+1

−
[
Φb(ξ

tx
1
g )
]n)

=
1

gx

g−1∑
t=0

Φg(ξ
tx

1
g )
(

Φb(ξ
tx

1
g )− 1

) [
Φb(ξ

tx
1
g )
]n

=
1

gx

g−1∑
t=0

Φg(ξ
tx

1
g )
(
ξtx

1
g · Φg(ξ

tx
1
g )
) [

Φb(ξ
tx

1
g )
]n
.
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Example 4.2. When b = 3, we have g = 2 and ξ = −1. Hence, we have∑
k≥0

(
n

k

)
31

xk =
(
x2 + x+ 1

)n
;

∑
k≥0

(
n

k

)
32

xk = (x+ 1)
(
x2 + x+ 1

)n
;

∑
k≥0

(
n

k

)
33

xk =
1

2

[
(x

1
2 + 1)(x+ x

1
2 + 1)n + (−x

1
2 + 1)(x− x

1
2 + 1)n

]
;

∑
k≥0

(
n

k

)
34

xk =
1

2x
1
2

[
(x

1
2 + 1)2(x+ x

1
2 + 1)n − (−x

1
2 + 1)2(x− x

1
2 + 1)n

]
.

5 Using binomial coefficients

We identify each b-nominal number as an alternating sum of products of binomial coefficients
as follows.

Theorem 5.1. For any nonnegative integers n and k,

(i)

(
n

k

)
b1

=

b kb c∑
i=0

(−1)i
(
n

i

)(
n+ k − ib− 1

n− 1

)
;

(ii)

(
n

k

)
b2

=

b k+1
b c∑

i=0

(−1)i
[(
n

i

)(
n+ k − ib

n

)
+

(
n

i− 1

)(
n+ k − ib+ 1

n

)]
;

(iii)

(
n

k

)
b3

=

b kg+1
b c∑

i=0

(−1)i
[(
n

i

)(
n+ kg − ib

n

)
+

(
n

i− 1

)(
n+ kg − ib+ 1

n

)]
;

(v)

(
n

k

)
b4

=

b kg+bb c∑
i=0

(−1)i
[(
n

i

)(
n+ (k + 1)g − ib

n+ 1

)
+ 2

(
n

i− 1

)(
n+ (k + 1)g − ib+ 1

n+ 1

)
+

(
n

i− 2

)(
n+ (k + 1)g − ib+ 2

n+ 1

)]
.

Proof. (i) is obtained by the identity in (5).
(ii) is obtained by (i) and Lemma 3.1 (i):(

n

k

)
b2

=

(
n+ 1

k + 1

)
b1

−
(

n

k + 1

)
b1

=

b k+1
b c∑

i=0

(−1)i
[(
n+ 1

i

)(
n+ k − ib+ 1

n

)
−
(
n

i

)(
n+ k − ib
n− 1

)]
,
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and by the recurrence relation for the binomial coefficients,(
n+ 1

i

)(
n+ k − ib+ 1

n

)
−
(
n

i

)(
n+ k − ib
n− 1

)
=

[(
n

i

)
+

(
n

i− 1

)](
n+ k − ib+ 1

n

)
−
(
n

i

)(
n+ k − ib
n− 1

)
=

(
n

i

)[(
n+ k − ib+ 1

n

)
−
(
n+ k − ib
n− 1

)]
+

(
n

i− 1

)(
n+ k − ib+ 1

n

)
=

(
n

i

)(
n+ k − ib

n

)
+

(
n

i− 1

)(
n+ k − ib+ 1

n

)
.

(iii) is obtained by (ii) and Lemma 3.2.
(iv) is obtained by (iii) and Lemma 3.1 (iii): Since (k + 1)g + 1 = kg + b,(

n

k

)
b4

=

(
n+ 1

k + 1

)
b3

−
(

n

k + 1

)
b3

=

b kg+bb c∑
t=0

(−1)i
[(
n+ 1

i

)(
n+ (k + 1)g − ib+ 1

n+ 1

)
+

(
n+ 1

i− 1

)(
n+ (k + 1)g − ib+ 2

n+ 1

)]

−
b kg+bb c∑
t=0

(−1)i
[(
n

i

)(
n+ (k + 1)g − ib

n

)
+

(
n

i− 1

)(
n+ (k + 1)g − ib+ 1

n

)]
.

Since
(
n+1
i

)
=
(
n
i

)
+
(

n
i−1

)
and

(
n+1
i−1

)
=
(

n
i−1

)
+
(

n
i−2

)
,(

n

k

)
b4

=

b kg+bb c∑
t=0

(−1)i
{(

n

i

)[(
n+ (k + 1)g − ib+ 1

n+ 1

)
−
(
n+ (k + 1)g − ib

n

)]
+

(
n

i− 1

)[(
n+ (k + 1)g − ib+ 2

n+ 1

)
−
(
n+ (k + 1)g − ib+ 1

n

)]
+

(
n

i− 1

)(
n+ (k + 1)g − ib+ 1

n+ 1

)
+

(
n

i− 2

)(
n+ (k + 1)g − ib+ 2

n+ 1

)}
,

which is simplified as (iv).

By this theorem and the symmetric properties of b-nomial numbers, we identify each of
the following nonzero b-nomial numbers as a single binomial coefficient.

Corollary 5.2. For any nonnegative integers n and k,

(i)

(
n

k

)
b1

=

(
n

gn− k

)
b1

=

(
n+ k − 1

k

)
for k ≤ g;

(ii)

(
n

k

)
b2

=

(
n

g(n+ 1)− (k + 1)

)
b2

=

(
n+ k

k

)
for k < g;

(iii)

(
n

n

)
b3

=

(
n+ g − 1

g − 1

)
and

(
n

0

)
b3

=

(
n

0

)
;

(iv)

(
n

0

)
b4

=

(
n

n

)
b4

=

(
n+ g

g − 1

)
.
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Proof. (i) and (ii) are obtained by Theorem 5.1 and 3.1 (iv) and (v), respectively. (iii) is
obtained by (ii) and Lemma 3.2:(

n

n

)
b3

=

(
n

gn

)
b2

=

(
n

g(n+ 1)− (gn+ 1)

)
b2

=

(
n

g − 1

)
b2

=

(
n+ g − 1

g − 1

)
.

(iv) is obtained by Theorem 5.1 and 3.1 (vi): Since
(
n−1
n+1

)
= 0 =

(
n

n+1

)
,(

n

0

)
b4

=

(
n

0

)(
n+ g

n+ 1

)
−
[(
n

1

)(
n+ g − b
n+ 1

)
+ 2

(
n

0

)(
n+ g − b+ 1

n+ 1

)]
=

(
n+ g

n+ 1

)
.

6 Recurrence relations

In Section 2, we previewed a recurrence relation for b-nomial numbers of type 3 combina-
torially. In this section, we find and justify a recurrence relation for each type of b-nomial
numbers algebraically.

To simplify further discussion, we construct the following identity.

Lemma 6.1. For any 0 ≤ n ≤ g and k > 0,

g∑
i=0

(
g

i

)(
n− i
t− i

)(
(k − t− 1)g + n− t

n− i− 1

)
=

g∑
i=0

(−1)i
(
g

i

)(
n− i
t

)(
(k − t)g + n− t− i

n− i− 1

)
.

(9)

Proof. Since the left-hand side of the equation (9) is the same as

g∑
i=0

(
g

i

)[(
n− i− 1

n− t

)
+

(
n− i− 1

n− t− 1

)](
(k − t− 1)g + n− t

n− i− 1

)
,

we use Lemma 3.3 (iii) to have(
(k − t− 1)g + n− t

n− i− 1

)(
n− i− 1

n− t

)
=

(
(k − t− 1)g + n− t

n− t

)(
(k − t− 1)g

t− 1− i

)
;(

(k − t− 1)g + n− t
n− i− 1

)(
n− i− 1

n− t− 1

)
=

(
(k − t− 1)g + n− t

n− t− 1

)(
(k − t− 1)g + 1

t− i

)
.

By Vandermonde’s identity in Lemma 3.3 (ii), we have

g∑
i=0

(
g

i

)(
(k − t− 1)g

t− 1− i

)
=

(
(k − t)g
t− 1

)
;

g∑
i=0

(
g

i

)(
(k − t− 1)g + 1

t− i

)
=

(
(k − t)g + 1

t

)
.

Since
(
(k−t−1)g+n−t

n−t

)
=
(
(k−t−1)g+n−t

(k−t−1)g

)
and

(
(k−t−1)g+n−t

n−t−1

)
=
(
(k−t−1)g+n−t
(k−t−1)g+1

)
, the left-hand side

of (9) is equal to(
(k − t− 1)g + n− t

(k − t− 1)g

)(
(k − t)g
t− 1

)
+

(
(k − t− 1)g + n− t

(k − t− 1)g + 1

)(
(k − t)g + 1

t

)
. (10)
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Since the right-hand side of the equation (9) is the same as

g∑
i=0

(−1)i
(
g

i

)[(
n− i− 1

t− 1

)
+

(
n− i− 1

t

)](
(k − t)g + n− t− i

n− i− 1

)
,

we use Lemma 3.3 (iv) to have(
(k − t)g + n− t− i

n− i− 1

)(
n− i− 1

t− 1

)
=

(
(k − t)g + n− t− i

(k − t)g

)(
(k − t)g
t− 1

)
;(

(k − t)g + n− t− i
n− i− 1

)(
n− i− 1

t

)
=

(
(k − t)g + n− t− i

(k − t)g + 1

)(
(k − t)g + 1

t

)
.

By Lemma 3.3 (vii), we have

g∑
i=0

(−1)i
(
g

i

)(
(k − t)g + n− t− i

(k − t)g

)
=

(
(k − t− 1)g + n− t

(k − t− 1)g

)
;

g∑
i=0

(−1)i
(
g

i

)(
(k − t)g + n− t− i

(k − t)g + 1

)
=

(
(k − t− 1)g + n− t

(k − t− 1)g + 1

)
.

Hence, the right-hand side of (9) is also equal to (10).

Then, we find the following identity for some particular b-nomial numbers of type 1.

Lemma 6.2. For any integers n and k, if n = g or k = k′g+ 1 for some positive integer k′,

g∑
i=0

(−1)i
(
g

i

)(
n− i
k

)
b1

=

g∑
i=0

(−1)i
(
g

i

)(
n− i

k − (i+ 1)g

)
b1

. (11)

Proof. By Theorem 5.1 (i) and Lemma 6.1, if k > 0,

g∑
i=0

(−1)i
(
g

i

)(
n− i
kg + 1

)
b1

=
∑
i

(−1)i
(
g

i

)∑
t

(−1)t
(
n− i
t

)(
n− i+ kg + 1− tb− 1

n− i− 1

)

=
∑
t

(−1)t

[∑
i

(−1)i
(
g

i

)(
n− i
t

)(
(k − t)g + n− t− i

n− i− 1

)]

=
∑
t

(−1)t

[∑
i

(
g

i

)(
n− i
t− i

)(
(k − t− 1)g + n− t

n− i− 1

)]

=
∑
t

(−1)t+i
∑
i

(
g

i

)(
n− i
t

)(
(k − t− i− 1)g + n− t− i

n− i− 1

)
=
∑
i

(−1)i
(
g

i

)∑
t

(−1)t
(
n− i
t

)(
n− i+ (k − i− 1)g − tb

n− i− 1

)
=
∑
t

(−1)i
(
g

i

)(
n− i

kg + 1− (i+ 1)g

)
b1

.
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Hence, when k = k′g + 1 for some positive integer k′, the identity (11) holds.
Now we consider n = g. Then, by Theorem 5.1 (i) and Lemma 3.3 (v) and (vii), we have

g∑
i=0

(−1)i
(
g

i

)(
n− i
k

)
b1

=
∑
i

∑
t

(−1)i(−1)t
(
g

i

)(
g − i
t

)(
g − i+ k − tb− 1

k − tb

)
=
∑
i

∑
t

(−1)i(−1)t
(
g

t

)(
g − t
i

)(
g − i+ k − tb− 1

k − tb

)
=
∑
t

(−1)t
(
g

t

)∑
i

(−1)i
(
g − t
i

)(
g + k − tg − t− 1− i

k − tg − t

)
=
∑
t

(−1)t
(
g

t

)(
k − tg − 1

k − tg − g

)
.

By Theorem 5.1 (i) and Lemma 3.3 (vi) and (ii), we have

g∑
i=0

(−1)i
(
g

i

)(
n− i

k − ig − g

)
b1

=
∑
i

∑
t

(−1)t+i

(
g

i

)(
g − i
t

)(
g − i+ k − ig − g − tb− 1

g − i− 1

)
.

=
∑
i

∑
t

(−1)t+i

(
g

t+ i

)(
t+ i

i

)(
k − (t+ i)g − (t+ i)− 1

g − i− 1

)
=
∑
i

∑
t

(−1)t
(
g

t

)(
t

i

)(
k − tg − t− 1

g − i− 1

)
=
∑
t

(−1)t
(
g

t

)∑
i

(
t

i

)(
k − tg − t− 1

g − 1− i

)
=
∑
t

(−1)t
(
g

t

)(
k − tg − 1

g − 1

)
=
∑
t

(−1)t
(
g

t

)(
k − tg − 1

k − tg − g

)
.

Therefore, the identity (11) holds for n = g as well.

Adding more terms to both sides in the identity (11), we find the following identity.

Corollary 6.3. For any nonnegative integers n and k, if n = g or k = k′g + 1 for some
positive integer k′,

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

= 0. (12)

Proof. The proof is done by mathematical induction on
⌊
k
g

⌋
. If

⌊
k
g

⌋
= 0, 0 ≤ k < g. Thus,

k 6= k′g + 1 for any k′ > 0 so n = g. Hence, the base case holds by Corollary 5.2 and
Corollary 3.4.

Induction Hypothesis: Assume

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

= 0 for

⌊
k

g

⌋
< m.
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Suppose
⌊
k
g

⌋
= m. Then,

⌊
k−g
g

⌋
= m − 1 so

∑g
i=0(−1)i

(
g
i

)∑i
j=0

(
n−i

k−g−jg

)
b1

= 0 by the

induction hypothesis. Hence, by Lemma 6.2, we have

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

=

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

−
g∑

i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i

k − g − jg

)
b1

=

g∑
i=0

(−1)i
(
g

i

)[(
n− i
k

)
b1

+
i∑

j=1

(
n− i
k − jg

)
b1

−
i−1∑
j=0

(
n− i

k − g − jg

)
b1

−
(

n− i
k − (i+ 1)g

)
b1

]

=

g∑
i=0

(−1)i
(
g

i

)(
n− i
k

)
b1

−
g∑

i=0

(−1)i
(
g

i

)(
n− i

k − (i+ 1)g

)
b1

= 0.

By solving for
(
n
k

)
b1

from (12), we find a recurrence relation for some particular b-nomial
numbers of type 1:(

n

k

)
b1

=

g∑
i=0

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

for n = g or k = k′g + 1 > g. (13)

We extend the range of n in (13), and find a recurrence relation for each type of b-nomial
numbers as follows.

Theorem 6.4. For any nonnegative integers n and k,

(i)

(
n

k

)
b1

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

for n ≥ g or k = k′g + 1 > g;

(ii)

(
n

k

)
b2

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − jg

)
b2

for n ≥ g or k = k′g ≥ g;

(iii)

(
n

k

)
b3

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − j

)
b3

for n ≥ g or k > 0;

(iv)

(
n

k

)
b4

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − j

)
b4

.

Proof. (i) Because of (13), we just need to show when n ≥ g. The proof is done by mathe-
matical induction on n. The base case is shown in (13).

Induction Hypothesis: Assume that (i) holds when n < N .
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Supposes n = N . Then, (i) is obtained by the recurrence relation in (6) and the induction
hypothesis:(

n

k

)
b1

=

g∑
t=0

(
n− 1

k − t

)
b1

=

g∑
t=0

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− 1− i
k − t− jg

)
b1

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
g∑

t=0

(
n− i− 1

k − jg − t

)
b1

)

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

.

(ii) is obtained by (i) and Lemma 3.1 (i): If k = k′g ≥ g, k+ 1 = k′g+ 1 > g. Hence, for
any integers n and k with n ≥ g or k = k′g ≥ g,(

n

k

)
b2

=

(
n+ 1

k + 1

)
b1

−
(

n

k + 1

)
b1

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n+ 1− i
k + 1− jg

)
b1

−
g∑

i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i

k + 1− jg

)
b1

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

[(
n− i+ 1

k − jg + 1

)
b1

−
(

n− i
k − jg + 1

)
b1

]

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − jg

)
b2

.

(iii) is obtained by (ii) and Lemma 3.2: If k > 0, kg ≥ g. Hence, for n ≥ g and k > 0,(
n

k

)
b3

=

(
n

kg

)
b2

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
kg − jg

)
b2

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − j

)
b3

.

(iv) is obtained by (iii) and Lemma 3.1 (iii): If k ≥ 0, the inequality k + 1 > 0 always
holds. Hence, for any nonnegative integers n and k,(

n

k

)
b4

=

(
n+ 1

k + 1

)
b3

−
(

n

k + 1

)
b3

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n+ 1− i
k + 1− j

)
b3

−
g∑

i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i

k + 1− j

)
b3

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

[(
n− i+ 1

k − j + 1

)
b3

−
(

n− i
k − j + 1

)
b3

]

=

g∑
i=1

(−1)i+1

(
g

i

) i∑
j=0

(
n− i
k − j

)
b4

.
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Notice that when b = 2, every recurrence relation in Theorem 6.4 is identified as the
famous recurrence relation for the binomial coefficients:(

n

k

)
2p

=

(
n− 1

k

)
2p

+

(
n− 1

k − 1

)
2p

for all p = 1, 2, 3, and 4.

We can also simplify the recurrence relations as the following identities.

Corollary 6.5. For any nonnegative integers n and k,

(i)

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b1

= 0 for n ≥ g or k = k′g + 1 > g;

(ii)

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − jg

)
b2

= 0 for n ≥ g or k = k′g ≥ g;

(iii)

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − j

)
b3

= 0 for n ≥ g or k > 0;

(iv)

g∑
i=0

(−1)i
(
g

i

) i∑
j=0

(
n− i
k − j

)
b4

= 0.
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