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Abstract
This paper presents three new ways to generate each type of b-nomial numbers: We
develop ordinary generating functions, we find a whole new set of recurrence relations,

and we identify each b-nomial number as a single binomial coefficient or as an alter-
nating sum of products of two binomial coefficients.
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1 Introduction

Throughout this paper, we let b be an integer greater than 1 and g = b—1. We let >, be the
set {0,1,2,...,g} and X} be the set of all finite strings consisting of digits in %, including
the empty string, which contains no digits, denoted by € [8].

Definition 1.1. [1] For any string x and any digit a; € ¥, with z = a,a,_1 - - - a1, the digit
a; is called indispensable in z if a; = a;_1 = a;_9 = -+ = a;_p11 > a;_ for some positive
integer k < i+ 1, considering ag = 0, and dispensable, otherwise.
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For example, in the string 23310223 in 35, the dotted digits 3, 3, 1, and 3 are indispensable
and the digits 2, 0, 2, and 2 are dispensable.

Definition 1.2. For any nonnegative integers n and k, we define (Z) y3 a8 the number of
strings in 3} of length n with £ indispensable digits.

The sequences A330381 and A330509 in [9] are for (Z) 53 and (Z) 43 Tespectively.

When b = 2, ¥, = {0,1}. Since 1 > 0, the digit 0 is dispensable and the digit 1 is
indispensable in any binary string. Hence, the number (Z) 53 counts the number of binary
strings of length n with £ digit 1’s, so (Z) ,3 18 the (n, k)-th binomial coefficient:

n\  (n
k)y \k)
Hence, we can easily generate the number (Z) ys When b= 2. However, when b > 2, we have

to use the definition to find the number. For example, when b = 3, we have 9 ternary strings
of length 3 with 1 indispensable digits:

001, 002,010,012, 020,100, 112, 120, and 200,

and thus, the number (‘;’) 43 = 9. Since it is not ideal to sort and count such strings for large
n, we look for other ways to generate this number (Z)

To simplify further discussion, we denote [,(m) and s,(m) as the length and the digit sum
of the base-b representation of a nonnegative integer m, respectively. For any nonnegative
integer m, the digit sum of the base b-representation of the multiple g - m satisfies the

following equation:

Sb(g'm) :gk7
where k is the number of indispensable digits in the base-b representation of m [1]. Hence,
we can redefine the number (7) y3 @ (iil) in the following definition.

Definition 1.3. [2] Let n and k be any nonnegative integers.

(i) The (n,k)-th b-nomial number of type 1, denoted by ()
integers m’s with l,(m) < n and s,(m) = k.

y1» 18 the number of nonnegative

(ii) The (n, k)-th b-nomial number of type 2, denoted by (})
integers m’s with i,(m) =n + 1 and s,(m) =k + 1.

40 18 the number of nonnegative

(iii) The (n, k)-th b-nomial number of type 3, denoted by (Z)
integers m’s with [,(m) < n and s,(gm) = gk.

pa0 18 the number of nonnegative

(iv) The (n, k)-th b-nomial number of type 4, denoted by (Z) "
integers m’s with [,(m) =n + 1 and s,(gm) = g(k + 1).

is the number of nonnegative

For a convention, we define (_kl)bp =1if k= —1and (_kl) = 0 otherwise for p = 2 and 4.

bp



Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2 3

Since the b-nomial numbers of types 3 and 4 are relatively new, we do not have a good
tool to generate those numbers. In this paper, we find a generating function and a recurrence
relation for each type of b-nomial numbers, and we express each b-nomial number in terms
of binomial coefficients.

In Section 2, we provide a combinatorial interpretation to construct a recurrence relation
for b-nomial numbers of type 3. In Section 3, we summarize the previous studies on b-nomial
numbers and binomial coefficients. In Section 4, we find an ordinary generating function for
each type of b-nomial numbers. In Section 5, we identify each b-nomial number as a single
binomial coefficient or as an alternating sum of products of two binomial coefficients. In
Section 6, we find a recurrence relation for each type of b-nomial numbers algebraically.

2 Preview

Since the digit 0 is the smallest and the digit ¢ is the largest in >, we have the following
dispensability of the digit 0 and indispensability of the digit g¢:

Note 2.1. The digit 0 is dispensable and the digit ¢ is indispensable in any string in ;.
To find a recurrence relation for b-nomial numbers of type 3, we investigate a string = in

¥, of length n with k indispensable digits. Let a; € ¥} such that 2 = ajasas...a,. Then,
we have two cases:

[1A] The digit a; is dispensable in x so the string asas - - - a,, has k indispensable digits;

[1B] The digit a; is indispensable in x so the string asag - - - a,, has k—1 indispensable digits.

By the definition, the number of choices for the substring asas---a, in [1A] and [1B] are

(”;1)b3 and (Zj) ,3» Tespectively. By Note 2.1, the digit a; # g for [1A] and the digit a; # 0

for [1B]. That is,
ap isin {0,1,2,...,g — 1} for [1A]; ap isin {1,2,...,¢g} for [1B].

Thus, the leading digit a; has g choices for each case. Hence, if we can ignore the digit a;’s
dispensability or indispensability, the following expression counts these two cases:

1), G20 0

For example, when b = 2, g = 1 so we always have a; = 0 for [1A] and a; = 1 for [1B]. Thus,
the digit a;’s dispensability and indispensability are automatically satisfied. Hence, we find
a recurrence relation for 2-nomial numbers of type 3 as follows:

(.- O, G

The digit a;’s dispensability or indispensability depends on the relation between a; and the
following string asas - - - a,. Hence, in general,

=060

To change this to an equation, we have to subtract the following cases:
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[2A] ayisin {0,1,...,g— 1}, a; is indispensable, and asas - - - a,, has k indispensable digits;
[2B] ay isin {1,2,...,g}, a; is dispensable, and asas - - - a,, has k — 1 indispensable digits.

By Note 2.1, the digit a; isin {1,2,...,g—1} for both cases. Hence, considering the digit ay’s
indispensability, we subtract the following cases instead: The digit a; is in {1,2,...,9 — 1}
and

[2A1] a; is indispensable, ay is dispensable, and as - - - a,, has k indispensable digits;

[2A5] a, is indispensable, as is indispensable, and a3 - - - a,, has k — 1 indispensable digits;
[2B;] ay is dispensable, as is dispensable, and as - - - a,, has k — 1 indispensable digits;
[2Bs] ay is dispensable, as is indispensable, and a3 - - - a,, has k — 2 indispensable digits;

If a1 is indispensable, a; > as, and if a; is dispensable, a; < ay. Since a digit cannot be
dispensable and indispensable at the same time, a; # ag for [2A;] and [2B,]. Hence, we can
rewrite each case as follows: The digit a; is in {1,2,...,¢9 — 1} and

[2A1] a; > a9, ay is dispensable, and a3 - - - a,, has k indispensable digits;

[2A5] a; > ag, ay is indispensable, and a3 - - - a,, has k — 1 indispensable digits;
[2B4] a; < ag, as is dispensable, and a3 - - - a,, has k — 1 indispensable digits;
[2Bs] a1 < ag, as is indispensable, and a3 - - - a,, has k — 2 indispensable digits;

We count the cases [2A;] and [2Bs] first. By the definition, the number of choices for the
substring as - - - a, in [24] and [2B,] are (".?) y3 and (1) ,3» respectively. To count strings
for aias, we notice the following conditions:

g—12>a; > ay >0 for [2A4]; 1 <a <ay < g for [2By].

Thus, we choose two distinct digits from {0,1,2,...,g — 1} for [2A4] and {1,2,...,g} for
[2Bs], and then, assign them to a; and ay according to each inequality. Hence, there are
(g) choices for the string ajas in each case. If we can ignore the digit as’s dispensability or
indispensability, the following expression counts the cases [2A;] and [2B,]:

0, (62, @

The other two cases [2As] and [2B;] have the same number of choices for the substring
as---a, as (”_2) - and the substring a,a, satisfies the following conditions:

k—1
for [2As)], g—12>a; > ay and ay is indispensable so g —12>a; > ay > 1;
for [2B4], 1 < a; < ay and as, is dispensable so 1<a1<ay<g-—1.

Thus, we choose two digits from the set {1,2,...g9 — 1} with repetition allowed and arrange
them to a; and as according to each inequality. Since the number of multisets of size 2 from
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a (g —1)set is ((%,") = (*”'2*7"), we have (J) choices for the string ajas in each case.
However, we do not double this number to count these two cases, because [2A,] requires the
digit ay to be indispensable and [2B;] requires the digit ay to be dispensable. If the digit
a1 = ag, these two cases are complementary to each other so that (g) is the exact number
of choices for the strings ajas in [2A5] and [2B4] together. Hence, if a; = as, the following

expression counts the cases [2A5] and [2B4] together:

(550, ®

Therefore, if this property a; = as always holds for [2A5] and [2B;] and if we can ignore
the digit ay’s dispensability or indispensability for [2A;] and [2Bs], the following expression
counts all of the four cases to subtract from (1):

GO, G2), Goa)) @

For example, when b = 3, g = 2 so we have only one choice for the string a,aq in each case:
ajag = 10 for [2A4]; ajay = 11 for [2A,5] and [2B4]; ajay = 12 for [2B,].

Then, the digit as’s dispensability and indispensability are automatically satisfied for [2A]
and [2Bs] by Note 2.1, and the property a; = as holds for [2A,] and [2B;]. Hence, by
subtracting (4) from (1), we find a recurrence relation for 3-nomial numbers of type 3 as
follows:

(), =), o) O, G, - G2), )

If a1 # as, we have restrictions on the digit as: The digit a3 cannot be equal to a, and
dispensable for [2A,], because if so, the digit as’s dispensability does not hold. Similarly,
the digit az cannot be equal to as and indispensable for [2B;]. Moreover, if the difference
la; — as| > 1, there is a digit a such that a; > a > ay for [2A] and a3 < a < ay for
[2B;]. Then, the digit ag cannot be equal to a, because if so, the digit as’s dispensability or
indispensability holds for neither [2A,] nor [2B4]. Since the number (7_7) ,3 counts the strings
of length n — 2 with k£ — 1 indispensable digits without any restriction, this expression (3)
counts more than we want. Since we also have a restriction on the digit as’s dispensability
and indispensability for [2A,] and [2Bs], the expression (2) counts more than we want. Hence,

in general,

()2 ), G- @), G0, G2 )

We continue this process to find the recurrence relation for b-nomial numbers of type 3 in
Theorem 6.4 (iii).
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3 Previous studies

By the definition, the binomial coefficients are generalized by any type of b-nomial numbers,

because
(n) = (n) for any p=1,2,3, and 4,
k 2 k

and the b-nomial numbers of type 1 are identified as the extended binomial coefficients or
polynomial coefficients [2]. Hence, we can generate b-nomial numbers of type 1 by the
following generating function and identity [4]:

(@429 1) = Zk: (Z)blx'“; (Z)bl = ;(—D«?) (n i i:ilb - 1). (5)

1

We can also generate b-nomial numbers of type 1 and 2 using the following recurrence relation

3, 2):
(1), =% (), e §

=0
The following relations among b-nomial numbers are to simplify further discussion.

Lemma 3.1. [2] For any nonnegative integers n and k,
(i) (1) = (

(i) (s = (i) = (i)
(i11) (s = Git)is = (r1)us
() () = (gnei) 1’

() (Do = (nsry o) o

(vi) (Z) b (nik)bz;'

By Lemma 3.1 (i) and (ii), we can obtain the following relation.

n+1)

k+1 (k’-i—l)bl’

b2

Lemma 3.2. For any nonnegative integers n and k,

(1), = ().

The following identities of binomial coefficients are to simplify calculations throughout
this paper.

Lemma 3.3. For any nonnegative integers r, m, n, and k,
(i) X, () = ()
(i) 3% (7)) = (77):
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" m) <;> (")
) = L) ()
(vii) Zﬁ’:o(—w(f) (") = (G9)-

Proof. (i) is the hockey stick identity [5]; (ii) is Vandermonde’s identity [6]; (iii) is also
well-known [6]. (iv) is obtained by (iii):

) -0 -GG
(al ) ) = ) C57)

(v) and (vi) are obtained, because

r! (r— k! B 7!  (r=m)! r! (m+k)!

Elr — k) ml(r—k—m)l  ml(r—m)!l Kl(r—m—Fk)!  (m+k)lr—m—k)! mlkl

(vii) is obtained by applying m = g, j = g — i, and s = n — g to the following alternating
sum identity of the product of binomial coefficients [6]:

S0 (1) - ()

If n—g>0and k— g <0, the number (Z:g) = 0. Hence, Lemma 3.3 (vii) provides the
following identity.

Corollary 3.4. For any nonnegative integers n > g and k < g,

L)) - ™

=0

4 Generating functions

It is straightforward to find a generating function for b-nomial numbers of type 2 from type
1 and type 4 from type 3, respectively, by Lemma 3.1 (i) and (iii). However, for b-nomial
numbers of type 3, we need elaborate preparations.

When b = 3, g = 2. Suppose f(z) = ag+ a7+ ax? + azz®+ - - - is a generating function
for 3-nomial numbers of type 2 so that the coefficient a5 = (Z) 4+ Lhen, by Lemma 3.2,

n n
Z wk:Z ¥ = ag + apr + ayr® + agx® + - -
k) 33 & 2k ) 39

k
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Thus, to find a generating function for 3-nomial numbers of type 3, we need to remove all
odd terms from f(x) and adjust the power of x. Hence, we calculate the following average:

s (@

In general, Lemma 3.2 indicates to eliminate all terms except the terms with 29 from
the generating function for b-nomial numbers of types 2 for type 3. Hence, we consider a

K\J\)—'

)+ f(=1- ;)>zao+a2m+a4x2+a6x3+---zz<n) "
k k 33

g-th primitive complex root of unity, £ = 62?”, since it has the following property [7]:

if” )0, if s#0 (mod g); (8)
— g, ifs=0 (mod yg).
We present an ordinary generating function for each type of b-nomial numbers as follows.

Theorem 4.1. Let Py(x) = a9 '+ 292+ +o+1, Op(z)=a9+29 '+ 42 +1, and

E=-e9". Then, for any nonnegative integer n,

(ii) ; (Z) b2$k = ®y(z) [Py(2)]" = (1:9(; 1_)(11;”:1 1)”;

(iii) ;() T _;Zq’gf [@bé )} :a:—1gz_: (5t:§§_1)n

A (TR

(iv) Z (Z) k= _Zf [ ¢l )]2 [(I)b(étxé)]n _ (x —1)? Hi §t$5(§tx5 — 1)n.

k>0 gr =5 (§lrs — 1)nt2

Proof. (i) is obtained by the generating function in (5).

(ii) is obtained by (i) and Lemma 3.1 (i): Since (”gl)bl =1= (7).

0Bl I,

SB[, ), ooy

1 1

=~ [2(2)p = 1 [2o(@)]" = — [z - D(2),] [21(2)]" = - P () [Ps()]"

(iii) Let f(z) = ®g(z) [Pp(2)]" and ar = (}),,- Then, by (ii),

' 2 2
= E a;x" = agp+ a1 x + ax” + -+ agr? + - Faggr + -
i>0
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Since (2) by = (;ﬂ) b by Lemma 3.2, we want to make a; = 0 if i # gk for any integer k£ and
agr, as the coefficient of 2* so that

n i 2 3
T = Qg + Qg + Q24T" + Q34T + - - .
>0 b3

i>

Thus, we replace x with ftazé in f(x):

. Q 2
f(ftxé) = Zaiéﬂtﬁ = ag + a'w +axt®zo o+ g€ T + -t a2 4

>0

Then, we calculate the average of all f(ftx%) fort=0,1,2,...,9g— 1:

13, it ity -
ACUE D WL I WA RS
=0 t=0 i>0 i>0 =0
By (8), we have
lgz_i{it = 1, if ¢ = gk for any integer k;
9= 0, otherwise.

Hence,

—1
1% 1 gk n n
- E f(&'z9) = E agr - 1- zs = agt" = g < k) z* = <k) zF.
R k>0 k>0 k>0 95/ b2 k>0 b3

n

(iv) is obtained by (iii) and Lemma 3.1 (iii): Since (”gl)b3 =1= (),

S0 ElE () )l -0
— gix g O, () “‘I’b(ftﬂﬁ;)rﬂ B [Cbb(&tl‘;)]n)

- gi%g@g(ftm‘l’) (q)b(ftxé) - 1) [éb(ftﬁ)]n
= LS (et et [t

gr t=0
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Example 4.2. When b = 3, we have g = 2 and £ = —1. Hence, we have

) = (2 +2+1)";
31

k>0(
n 2 n
i =(z+1)(z*+z+1)";
k:>0 32
k>0<

1
) xk—§ ;pz+1)(x+x%+1)n+(—$%+1)(x—$%+1)n}?
33
K 1 1 9 1 n 1 2 L n
S (F) = [@d e ad b1 (et 402 a1y
k>0 34 2%

5 Using binomial coefficients

We identify each b-nominal number as an alternating sum of products of binomial coefficients
as follows.

Theorem 5.1. For any nonnegative integers n and k,
n (n\ (n+k—ib—1
. _ 1y ‘
00ty
i n\ (n+k—ib n n+k—ib+1\|
b i—1 n ’

-(n>(n+k9—zb> ('f1>(n+k‘g—ib+1)};
- (1) (n (n+ (k+1)g —zb)+2<.ﬁ1)(n+(/€+1)g—ib—l—1)

n—+1 n—+1

+( 2) (n+(k—i;h)Lgl—ib+2)]'

Proof. (i) is obtained by the identity in (5).
(ii) is obtained by (i) and Lemma 3.1 (i):

(1) =) - (),
L)

_ Z@ (—1)’ K”jl) (Hk;ibﬂ) - @ (”Z’i?bﬂ
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and by the recurrence relation for the binomial coefficients,
n+1\/n+k—ib+1\ (n\/ n+k—ib
? n 1 n—1
n n n+k—ib+1 n\ (n+k—1ib
= )+ — 1.
1 1—1 n 1 n—1
(n) Kn+k_@'b+1) (n+k—z’b)] ( n >(n—|—k¢—ib+1)
= (" — +1.
1 n n—1 1—1 n
(n)(n—i—k—ib) ( n ><n—|—kz—z’b+1)
=1 . + 1. .
1 n 1—1 n

(iii) is obtained by (ii) and Lemma 3.2.
(iv) is obtained by (iii) and Lemma 3.1 (iii): Since (k+ 1)g+ 1 = kg + b,

( ) - (Zﬂ) B (kil)bg

Ic

Z i[(nH) (n+(k:tllJ)rgl—ib+1) . (7;11) (n+(/<r+nl+)gl—ib+2ﬂ

> (_1)i[(i)(n+(k;) _ib)+<¢ﬁ1)(n+(k+1¢)bg_ib+l)}'

Since ("77) = (7) + (") and (717) = (7)) + (7).

[452]

(Z)M ; (_1)1{(73 KnJr(k:—i;Llj)Lgl.ibJrl)(n+(k—;1)g.ib>}
+(¢7_11> Knﬂkt}l}rg;lwﬂ)_(n+(k+1ig_lb+l)1
N (i111><n+(ktll—ig1—zb+l>+<i22)<n+(k—i;ll—i)_gl—zb+2)}7

which is simplified as (iv). O

By this theorem and the symmetric properties of b-nomial numbers, we identify each of
the following nonzero b-nomial numbers as a single binomial coefficient.

Corollary 5.2. For any nonnegative integers n and k,

PG e
0 (oGt )y e
<:z>b3 () -0)
o ().-0),-()

0

b4
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Proof. (i) and (ii) are obtained by Theorem 5.1 and 3.1 (iv) and (v), respectively. (iii) is
obtained by (ii) and Lemma 3.2:

(Z)bg - (gyjl)bg - (g(n+1) : (gn+1))b2 - (gﬁl)w - (n;rgz 1)'

(iv) is obtained by Theorem 5.1 and 3.1 (vi): Since (Z:) =0= (nil),

T G e B [ (s K (5 (i | B G4 ]

6 Recurrence relations

In Section 2, we previewed a recurrence relation for b-nomial numbers of type 3 combina-
torially. In this section, we find and justify a recurrence relation for each type of b-nomial
numbers algebraically.

To simplify further discussion, we construct the following identity.

Lemma 6.1. For any 0 <n < g and k > 0,

SO =S () ()
(9)

Proof. Since the left-hand side of the equation (9) is the same as

(O[5 G ()

)

we use Lemma 3.3 (iii) to have
(k—t—1g+n—t\(n—i-1\ [((b—t—1g+n—t\[(k—t—1)g\
n—i—1 n—t ) n—t t—1—i )’
(k—t—Dg+n—t\(n—i-1\ [((k—t—1)g+n—t\[(k—t—1)g+1
n—i—1 n—t—1) n—t—1 t—1i ‘
By Vandermonde’s identity in Lemma 3.3 (ii), we have
Zf’: 9\ ((k=t=1)g\ _ ((k—1t)g\, Zf’: g\ ((k—t=1g+1\ _ ((k—t)g+1
i)\ t—1-i t-1 ) &\ t—i t ‘

: k—t—1)g+n—t\ __ k—t—1)g+n—t k—t—1)g+n—t\ __ k—t—1)g+n—t .
Since (( nlgt ) = (( (kft)j’l)g ) and (( nft)fl ) = (((/chtf)lg)g+1 ), the left-hand side

of (9) is equal to

() Gt )
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Since the right-hand side of the equation (9) is the same as
zg:(—l)i(g) [(n—i— 1> N (n—i— 1)} ((k—t)g%—.n—t—i)’
— { t—1 t n—1i—1

we use Lemma 3.3 (iv) to have
(k—t)g+n—t—i\(n—i—1 (k—=t)g+n—t—1i\[((k—1)g\
-,
n—i—1 / (k—1t)g+1 / '
()

By Lemma 3.3 (vii), we have
S ) -G

Hence, the right-hand side of (9) is also equal to (10). O

Then, we find the following identity for some particular b-nomial numbers of type 1.

Lemma 6.2. For any integers n and k, if n = g or k = k'g+ 1 for some positive integer k',

g(_l)i@) (" . Z) - g(_l)iG) (k —Tl(z'_—l—il)g) . (11)

Proof. By Theorem 5.1 (i) and Lemma 6.1, if & > 0,

() (), S (s ()

7 t

-S| () (IS,

-S| 26T

S0

e () st
o

(1)
kg+1—(i+1)g/,,

Il
Q
[u—
~.
7 N
. QO
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Hence, when k = k’g + 1 for some positive integer k', the identity (11) holds.
Now we consider n = g. Then, by Theorem 5.1 (i) and Lemma 3.3 (v) and (vii), we have
—i4+k—1b— 1)

L)), - ERerer ()
SR
e () e () ()

(i)

By Theorem 5.1 (i) and Lemma 3.3 (vi) and (ii), we have

Zf;—lv(f)(kz;ig)ma o)),
t—:z) (k— (t +gi)_gi—_(t1+ i) — 1)

=;amﬁmx—§:v

eSO

- (I =2 () ()

Therefore, the identity (11) holds for n = g as well. O
Adding more terms to both sides in the identity (11), we find the following identity.
Corollary 6.3. For any nonnegative integers n and k, if n = g or k = k'g + 1 for some

positive integer k',
g i .
(g n—1
()2 (0)) ~o (12)
; ’ ; k =39/ u

Proof. The proof is done by mathematical induction on EJ If EJ =0,0 <k <g. Thus,

k # kK'g+ 1 for any k' > 0 so n = g. Hence, the base case holds by Corollary 5.2 and
Corollary 3.4.

g i .
; — k
Induction Hypothesis: Assume E (—1)1(“;7) E (kn— ng> =0 for L—J <m.
j=0 bl

=0
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Suppose EJ = m. Then, {@J =m—1s0 Y7 (-1)(9 Z; (o )b = 0 by the

g i =0 \k—g—jg/ b1
induction hypothesis. Hence, by Lemma 6.2, we have

é—vi(g-)i(; ),

(B, S (S0,
2(3) 1
' (?)

OM“ I Mm I M@

[(n ’; Z) ; (kn—_jig> - ;:0 (k _n 9_—i jg) - (k —n(i_j 1)9) m]
9

(), 2 O, -

By solving for (}),, from (12), we find a recurrence relation for some particular b-nomial
numbers of type 1:

’L

O

i

(), "2 ()5 (00y), mnmserkmrriza

=0 =0 =39/ w

We extend the range of n in (13), and find a recurrence relation for each type of b-nomial
numbers as follows.

Theorem 6.4. For any nonnegative integers n and k,

() (Z>b1 _ Zi(—w'“ (i’) ]Zo (kn—_jig)bl forn>gork=Kg+l>g,
i ;) - i(—l)i*l () Z ([)) fornzgork=tazg
(iif) (Z) = g(—l)”l (f) ; (Z:j)bg forn>g ork > 0;

o (1), -5 ()2 60,

Proof. (i) Because of (13), we just need to show when n > g. The proof is done by mathe-
matical induction on n. The base case is shown in (13).

Induction Hypothesis: Assume that (i) holds when n < N.
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Supposes n = N. Then, (i) is obtained by the recurrence relation in (6) and the induction
hypothesis:

(0, -2,

)

I
M)

Seu (O (000

0 i=1 =0

() Z (Z (W) >
1 (1) (f) Z (kn—_j;) o

Jj=0

I
AMQ

I
AMQ

)

(ii) is obtained by (i) and Lemma 3.1 (i): If k = kg > g, k+1 =k g+ 1 > g. Hence, for
any integers n and k withn > gor k=kg > g,

(1.7 (), ()
k b2_ k+1 bl k+1 bl

0> (AR Dol )

J=

e (S50, (),
>

j=0

()56,

(iii) is obtained by (ii) and Lemma 3.2: If k > 0, kg > g. Hence, for n > g and k > 0,

(), - (), -2 ()= (07s) - e ()2 (7)),

=0

(iv) is obtained by (iii) and Lemma 3.1 (iii): If £ > 0, the inequality £+ 1 > 0 always
holds. Hence, for any nonnegative integers n and k,

(), ()~ ()
k) o4 E+1),, E+1),,
J g : n+1—1 J g ! n—iq
Y )2 ()50 )
, (=1) 7 ]Z E+1—13)s 121( ) i) = E+1—=17/s

)5
SR, (),
)5
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Notice that when b = 2, every recurrence relation in Theorem 6.4 is identified as the
famous recurrence relation for the binomial coefficients:

(”) :(”_1) +<”_1) for all p = 1,2,3, and 4.
k) k o)y \k—1/,

We can also simplify the recurrence relations as the following identities.

Corollary 6.5. For any nonnegative integers n and k,

g .
0 ()X (1) <0 srnzgork=kgrisg
=0 7=0 J9 bl
g 7 .
(ii) Z(—l)Z(‘?) (kn—;) =0 forn>gork=Fkg=>y;
i=0 L0 \V T J9) b
g 7 .
(iii) Z(—l)i <g) <n Z) =0 forn>gork>0;
i=0 v 0 k=73/w
g A .
(g n—1i
w Yev () () o
; e =3/
References

[1] J. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math. 25
no. 2 (2019), 40-48.

[2] J. Choi, Digit sums generalizing the binomial coefficients, J. Integer sequences 22 (2019),
Article 19.8.3.

[3] J. E. Freund, Restricted occupancy theory—a generalization of Pascal’s triangle, Amer.
Math. Monthly 63 (1956), 20-27.

[4] S. Eger, Restricted weighted integer compositions and extended binomial coefficients, J.
Integer Sequences 16 (2013), Article 13.1.3.

[5] C. H. Jones, Generalized Hockey Stick Identities and N-Dimensional Block Walking,
Fibonacci Quart. 34 (1996), 280-288.

6] D. E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms
(1997), Addison-Wesley.

[7] W. Ladermann, Complez Numbers (1960), Routledge & Kegan Paul.

[8] J. Shallit, A Second Course in Formal Languages and Automata Theory (2009), Cam-
bridge University Press.

[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, https://oeis.org.


https://oeis.org

	Introduction
	Preview
	Previous studies
	Generating functions
	Using binomial coefficients
	Recurrence relations

