

GENERATING b -NOMIAL NUMBERS

Ji Young Choi[∗]¹

¹Department of Mathematics, Shippensburg University of Pennsylvania

First submitted: September 3, 2021 Accepted: December 26, 2021 Published: January 7, 2022

Abstract

This paper presents three new ways to generate each type of b-nomial numbers: We develop ordinary generating functions, we find a whole new set of recurrence relations, and we identify each b-nomial number as a single binomial coefficient or as an alternating sum of products of two binomial coefficients.

Keywords: b-nomial, generalized binomial, indispensable MSC 2020: 05A10, 11A63

1 Introduction

Throughout this paper, we let b be an integer greater than 1 and $g = b-1$. We let Σ_b be the set $\{0, 1, 2, \ldots, g\}$ and Σ_b^* be the set of all finite strings consisting of digits in Σ_b , including the *empty string*, which contains no digits, denoted by ϵ [\[8\]](#page-16-0).

Definition 1.1. [\[1\]](#page-16-1) For any string x and any digit $a_i \in \Sigma_b$ with $x = a_n a_{n-1} \cdots a_1$, the digit a_i is called *indispensable* in x if $a_i = a_{i-1} = a_{i-2} = \cdots = a_{i-k+1} > a_{i-k}$ for some positive integer $k \leq i + 1$, considering $a_0 = 0$, and *dispensable*, otherwise.

[∗] jychoi@ship.edu

For example, in the string $2\dot{3}\dot{3}1022\dot{3}$ in Σ_4^* , the dotted digits 3, 3, 1, and 3 are indispensable and the digits 2, 0, 2, and 2 are dispensable.

Definition 1.2. For any nonnegative integers n and k, we define $\binom{n}{k}$ $\binom{n}{k}_{b3}$ as the number of strings in Σ_b^* of length n with k indispensable digits.

The sequences A330381 and A330509 in [\[9\]](#page-16-2) are for $\binom{n}{k}$ $\binom{n}{k}_{33}$ and $\binom{n}{k}$ $\binom{n}{k}_{43}$, respectively.

When $b = 2$, $\Sigma_b = \{0, 1\}$. Since $1 > 0$, the digit 0 is dispensable and the digit 1 is indispensable in any binary string. Hence, the number $\binom{n}{k}$ $\binom{n}{k}_{23}$ counts the number of binary strings of length *n* with *k* digit 1's, so $\binom{n}{k}$ ${k \choose k}_{23}$ is the (n, k) -th binomial coefficient:

$$
\binom{n}{k}_{23} = \binom{n}{k}.
$$

Hence, we can easily generate the number $\binom{n}{k}$ $\binom{n}{k}_{b3}$ when $b = 2$. However, when $b > 2$, we have to use the definition to find the number. For example, when $b = 3$, we have 9 ternary strings of length 3 with 1 indispensable digits:

 $001, 002, 010, 012, 020, 100, 112, 120, \text{ and } 200,$

and thus, the number $\binom{3}{1}$ $_{1}^{3}$ $_{33}$ = 9. Since it is not ideal to sort and count such strings for large n, we look for other ways to generate this number $\binom{n}{k}$ $\binom{n}{k}_{b3}$.

To simplify further discussion, we denote $l_b(m)$ and $s_b(m)$ as the length and the digit sum of the base-b representation of a nonnegative integer m , respectively. For any nonnegative integer m, the digit sum of the base b-representation of the multiple $q \cdot m$ satisfies the following equation:

$$
s_b(g \cdot m) = g \cdot k,
$$

where k is the number of indispensable digits in the base-b representation of m [\[1\]](#page-16-1). Hence, we can redefine the number $\binom{n}{k}$ $\binom{n}{k}_{b3}$ as (iii) in the following definition.

Definition 1.3. [\[2\]](#page-16-3) Let n and k be any nonnegative integers.

- (i) The (n, k) -th *b*-nomial number of type 1, denoted by $\binom{n}{k}$ $\binom{n}{k}_{b1}$, is the number of nonnegative integers m's with $l_b(m) \leq n$ and $s_b(m) = k$.
- (ii) The (n, k) -th *b*-nomial number of type 2, denoted by $\binom{n}{k}$ ${k \choose k}_{b2}$, is the number of nonnegative integers m's with $l_b(m) = n + 1$ and $s_b(m) = k + 1$.
- (iii) The (n, k) -th b-nomial number of type 3, denoted by $\binom{n}{k}$ $\binom{n}{k}_{b3}$, is the number of nonnegative integers m's with $l_b(m) \leq n$ and $s_b(gm) = gk$.
- (iv) The (n, k) -th b-nomial number of type 4, denoted by $\binom{n}{k}$ $\binom{n}{k}_{b4}$, is the number of nonnegative integers m's with $l_b(m) = n + 1$ and $s_b(gm) = g(k + 1)$.

For a convention, we define $\binom{-1}{k}_{bp} = 1$ if $k = -1$ and $\binom{-1}{k}_{bp} = 0$ otherwise for $p = 2$ and 4.

Since the b-nomial numbers of types 3 and 4 are relatively new, we do not have a good tool to generate those numbers. In this paper, we find a generating function and a recurrence relation for each type of b-nomial numbers, and we express each b-nomial number in terms of binomial coefficients.

In Section [2,](#page-2-0) we provide a combinatorial interpretation to construct a recurrence relation for b-nomial numbers of type 3. In Section [3,](#page-5-0) we summarize the previous studies on b-nomial numbers and binomial coefficients. In Section [4,](#page-6-0) we find an ordinary generating function for each type of b-nomial numbers. In Section [5,](#page-9-0) we identify each b-nomial number as a single binomial coefficient or as an alternating sum of products of two binomial coefficients. In Section [6,](#page-11-0) we find a recurrence relation for each type of b-nomial numbers algebraically.

2 Preview

Since the digit 0 is the smallest and the digit g is the largest in Σ_b , we have the following dispensability of the digit θ and indispensability of the digit q :

Note 2.1. The digit 0 is dispensable and the digit g is indispensable in any string in Σ_b^* .

To find a recurrence relation for b-nomial numbers of type 3, we investigate a string x in Σ_b^* of length n with k indispensable digits. Let $a_i \in \Sigma_b$ such that $x = a_1 a_2 a_3 \dots a_n$. Then, we have two cases:

[1A] The digit a_1 is dispensable in x so the string $a_2a_3\cdots a_n$ has k indispensable digits;

[1B] The digit a_1 is indispensable in x so the string $a_2a_3\cdots a_n$ has $k-1$ indispensable digits.

By the definition, the number of choices for the substring $a_2a_3\cdots a_n$ in [1A] and [1B] are $\binom{n-1}{k}$ $\binom{-1}{k}$ _{b3} and $\binom{n-1}{k-1}$ $\binom{n-1}{k-1}_{b3}$, respectively. By Note [2.1,](#page-2-1) the digit $a_1 \neq g$ for [1A] and the digit $a_1 \neq 0$ for [1B]. That is,

$$
a_1
$$
 is in $\{0, 1, 2, ..., g-1\}$ for [1A]; a_1 is in $\{1, 2, ..., g\}$ for [1B].

Thus, the leading digit a_1 has g choices for each case. Hence, if we can ignore the digit a_1 's dispensability or indispensability, the following expression counts these two cases:

$$
\binom{g}{1} \left[\binom{n-1}{k}_{b3} + \binom{n-1}{k-1}_{b3} \right]. \tag{1}
$$

For example, when $b = 2$, $g = 1$ so we always have $a_1 = 0$ for [1A] and $a_1 = 1$ for [1B]. Thus, the digit a_1 's dispensability and indispensability are automatically satisfied. Hence, we find a recurrence relation for 2-nomial numbers of type 3 as follows:

$$
\binom{n}{k}_{23} = \binom{1}{1} \left[\binom{n-1}{k}_{23} + \binom{n-1}{k-1}_{23} \right].
$$

The digit a_1 's dispensability or indispensability depends on the relation between a_1 and the following string $a_2a_3\cdots a_n$. Hence, in general,

$$
\binom{n}{k}_{b3} \leq \binom{g}{1} \left[\binom{n-1}{k}_{b3} + \binom{n-1}{k-1}_{b3} \right].
$$

To change this to an equation, we have to subtract the following cases:

[2A] a_1 is in $\{0, 1, \ldots, g-1\}$, a_1 is indispensable, and $a_2a_3\cdots a_n$ has k indispensable digits;

[2B] a_1 is in $\{1, 2, \ldots, g\}$, a_1 is dispensable, and $a_2a_3\cdots a_n$ has $k-1$ indispensable digits.

By Note [2.1,](#page-2-1) the digit a_1 is in $\{1, 2, \ldots, g-1\}$ for both cases. Hence, considering the digit a_2 's indispensability, we subtract the following cases instead: The digit a_1 is in $\{1, 2, \ldots, g-1\}$ and

[2A₁] a_1 is indispensable, a_2 is dispensable, and $a_3 \cdots a_n$ has k indispensable digits;

[2A₂] a_1 is indispensable, a_2 is indispensable, and $a_3 \cdots a_n$ has $k-1$ indispensable digits;

[2B₁] a_1 is dispensable, a_2 is dispensable, and $a_3 \cdots a_n$ has $k-1$ indispensable digits;

[2B₂] a_1 is dispensable, a_2 is indispensable, and $a_3 \cdots a_n$ has $k-2$ indispensable digits;

If a_1 is indispensable, $a_1 \ge a_2$, and if a_1 is dispensable, $a_1 \le a_2$. Since a digit cannot be dispensable and indispensable at the same time, $a_1 \neq a_2$ for [2A₁] and [2B₂]. Hence, we can rewrite each case as follows: The digit a_1 is in $\{1, 2, \ldots, g-1\}$ and

[2A₁] $a_1 > a_2$, a_2 is dispensable, and $a_3 \cdots a_n$ has k indispensable digits;

[2A₂] $a_1 \ge a_2$, a_2 is indispensable, and $a_3 \cdots a_n$ has $k-1$ indispensable digits;

[2B₁] $a_1 \le a_2$, a_2 is dispensable, and $a_3 \cdots a_n$ has $k-1$ indispensable digits;

[2B₂] $a_1 < a_2$, a_2 is indispensable, and $a_3 \cdots a_n$ has $k-2$ indispensable digits;

We count the cases $[2A_1]$ and $[2B_2]$ first. By the definition, the number of choices for the substring $a_3 \cdots a_n$ in [2A₁] and [2B₂] are $\binom{n-2}{k}$ ${k-2 \choose k}$ _{b3} and $\binom{n-2}{k-2}$ $\binom{n-2}{k-2}_{b3}$, respectively. To count strings for a_1a_2 , we notice the following conditions:

$$
g-1 \ge a_1 > a_2 \ge 0
$$
 for $[2A_1]$; $1 \le a_1 < a_2 \le g$ for $[2B_2]$.

Thus, we choose two distinct digits from $\{0, 1, 2, \ldots, g-1\}$ for $[2A_1]$ and $\{1, 2, \ldots, g\}$ for $[2B_2]$, and then, assign them to a_1 and a_2 according to each inequality. Hence, there are $\left(\begin{smallmatrix} g \\ g \end{smallmatrix}\right)$ ⁹/₂) choices for the string a_1a_2 in each case. If we can ignore the digit a_2 's dispensability or indispensability, the following expression counts the cases $[2A_1]$ and $[2B_2]$:

$$
\binom{g}{2}\binom{n-2}{k}_{b3} + \binom{g}{2}\binom{n-2}{k-2}_{b3}.\tag{2}
$$

The other two cases $[2A_2]$ and $[2B_1]$ have the same number of choices for the substring $a_3 \cdots a_n$ as $\binom{n-2}{k-1}$ $\binom{n-2}{k-1}_{b3}$, and the substring a_1a_2 satisfies the following conditions:

for
$$
[2A_2]
$$
, $g-1 \ge a_1 \ge a_2$ and a_2 is indispensable so $g-1 \ge a_1 \ge a_2 \ge 1$;
for $[2B_1]$, $1 \le a_1 \le a_2$ and a_2 is dispensable so $1 \le a_1 \le a_2 \le g-1$.

Thus, we choose two digits from the set $\{1, 2, \ldots g-1\}$ with repetition allowed and arrange them to a_1 and a_2 according to each inequality. Since the number of multisets of size 2 from

a $(g-1)$ -set is $\left(\binom{g-1}{2}\right) = \binom{g-1+2-1}{2}$ $\binom{+2-1}{2}$, we have $\binom{g}{2}$ $\binom{g}{2}$ choices for the string a_1a_2 in each case. However, we do not double this number to count these two cases, because $[2A_2]$ requires the digit a_2 to be indispensable and $[2B_1]$ requires the digit a_2 to be dispensable. If the digit $a_1 = a_2$, these two cases are complementary to each other so that $\binom{g}{2}$ $2 \choose 2$ is the exact number of choices for the strings a_1a_2 in [2A₂] and [2B₁] together. Hence, if $a_1 = a_2$, the following expression counts the cases $[2A_2]$ and $[2B_1]$ together:

$$
\binom{g}{2}\binom{n-2}{k-1}_{b3}.\tag{3}
$$

Therefore, if this property $a_1 = a_2$ always holds for $[2A_2]$ and $[2B_1]$ and if we can ignore the digit a_2 's dispensability or indispensability for [2A₁] and [2B₂], the following expression counts all of the four cases to subtract from [\(1\)](#page-2-2):

$$
\binom{g}{2} \left[\binom{n-2}{k}_{b3} + \binom{n-2}{k-1}_{b3} + \binom{n-2}{k-2}_{b3} \right]. \tag{4}
$$

For example, when $b = 3$, $g = 2$ so we have only one choice for the string a_1a_0 in each case:

 $a_1a_0 = 10$ for $[2A_1]$; $a_1a_2 = 11$ for $[2A_2]$ and $[2B_1]$; $a_1a_2 = 12$ for $[2B_2]$.

Then, the digit a_2 's dispensability and indispensability are automatically satisfied for [2A₁] and $[2B_2]$ by Note [2.1,](#page-2-1) and the property $a_1 = a_2$ holds for $[2A_2]$ and $[2B_1]$. Hence, by subtracting [\(4\)](#page-4-0) from [\(1\)](#page-2-2), we find a recurrence relation for 3-nomial numbers of type 3 as follows:

$$
\binom{n}{k}_{33} = \binom{2}{1} \left[\binom{n-1}{k}_{33} + \binom{n-1}{k-1}_{33} \right] - \binom{2}{2} \left[\binom{n-2}{k}_{33} + \binom{n-2}{k-1}_{33} + \binom{n-2}{k-2}_{33} \right].
$$

If $a_1 \neq a_2$, we have restrictions on the digit a_3 : The digit a_3 cannot be equal to a_2 and dispensable for $[2A_2]$, because if so, the digit a_2 's dispensability does not hold. Similarly, the digit a_3 cannot be equal to a_2 and indispensable for $|2B_1|$. Moreover, if the difference $|a_1 - a_2| > 1$, there is a digit a such that $a_1 > a > a_2$ for $[2A_2]$ and $a_1 < a < a_2$ for [2B₁]. Then, the digit a_3 cannot be equal to a, because if so, the digit a_2 's dispensability or indispensability holds for neither [2A₂] nor [2B₁]. Since the number $\binom{n-2}{k-1}$ $\binom{n-2}{k-1}_{b3}$ counts the strings of length $n-2$ with $k-1$ indispensable digits without any restriction, this expression [\(3\)](#page-4-1) counts more than we want. Since we also have a restriction on the digit a_2 's dispensability and indispensability for $[2A_1]$ and $[2B_2]$, the expression [\(2\)](#page-3-0) counts more than we want. Hence, in general,

$$
{n \choose k}_{b3} \geq {g \choose 1} \left[{n-1 \choose k}_{b3} + {n-1 \choose k-1}_{b3} \right] - {g \choose 2} \left[{n-2 \choose k}_{b3} + {n-2 \choose k-1}_{b3} + {n-2 \choose k-2}_{b3} \right].
$$

We continue this process to find the recurrence relation for b -nomial numbers of type 3 in Theorem [6.4](#page-14-0) (iii).

3 Previous studies

By the definition, the binomial coefficients are generalized by any type of b-nomial numbers, because

$$
\binom{n}{k}_{2p} = \binom{n}{k}
$$
 for any $p = 1, 2, 3$, and 4,

and the b-nomial numbers of type 1 are identified as the extended binomial coefficients or polynomial coefficients [\[2\]](#page-16-3). Hence, we can generate b-nomial numbers of type 1 by the following generating function and identity [\[4\]](#page-16-4):

$$
(x^g + x^{g-1} + \dots + x + 1)^n = \sum_k \binom{n}{k}_{b1} x^k; \qquad \binom{n}{k}_{b1} = \sum_{i \ge 0} (-1)^i \binom{n}{i} \binom{n+k-ib-1}{n-1}.
$$
 (5)

We can also generate b-nomial numbers of type 1 and 2 using the following recurrence relation [\[3,](#page-16-5) [2\]](#page-16-3):

$$
\binom{n}{k}_{bp} = \sum_{i=0}^{g} \binom{n-1}{k-i}_{bp} \text{ for } p = 1, 2.
$$
 (6)

The following relations among b-nomial numbers are to simplify further discussion.

Lemma 3.1. [\[2\]](#page-16-3) For any nonnegative integers n and k,

- (i) $\binom{n}{k}$ ${k \choose k}$ _{b2} = ${{n+1} \choose {k+1}}$ _{b1} - ${{n \choose k+1}}$ _{b1}; (ii) $\binom{n}{k}$ $\binom{n}{k}_{b3} = \binom{n+1}{gk+1}_{b1} - \binom{n}{gk+1}_{b1};$ (iii) $\binom{n}{k}$ ${k \choose k}$ _{b4} = ${{n+1} \choose {k+1}}$ _{b3} - ${{n \choose k+1}}$ _{b3}; (iv) $\binom{n}{k}$ $\binom{n}{k}_{b1} = \binom{n}{gn}$ $_{gn-k}^{n}$ _{b1};^{*}
- (v) $\binom{n}{k}$ ${k \choose k}_{b2} = {n \choose g(n+1)-(k+1)}_{b2};$
- (vi) $\binom{n}{k}$ $\binom{n}{k}_{b4} = \binom{n}{n-1}$ $\binom{n}{n-k}_{b4}.$

By Lemma [3.1](#page-5-1) (i) and (ii), we can obtain the following relation.

Lemma 3.2. For any nonnegative integers n and k ,

$$
\binom{n}{k}_{b3} = \binom{n}{gk}_{b2}.
$$

The following identities of binomial coefficients are to simplify calculations throughout this paper.

Lemma 3.3. For any nonnegative integers r , m , n , and k ,

(i)
$$
\sum_{i=r}^{k} {i \choose r} = {k+1 \choose r+1};
$$

(ii) $\sum_{i=0}^{m} {m \choose i} {n \choose r-i} = {m+n \choose r};$

$$
(iii) \binom{r}{m} \binom{m}{k} = \binom{r}{k} \binom{r-k}{m-k};
$$

\n
$$
(iv) \binom{r}{m} \binom{m}{k} = \binom{r}{r-(m-k)} \binom{r-(m-k)}{k};
$$

\n
$$
(v) \binom{r}{m} \binom{r-m}{k} = \binom{r}{k} \binom{r-k}{m};
$$

\n
$$
(vi) \binom{r}{m} \binom{r-m}{m} = \binom{r}{m+k};
$$

$$
(vi) \binom{r}{m} \binom{r-m}{k} = \binom{r}{m+k} \binom{m+k}{m};
$$

(vii)
$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k} = {n-g \choose k-g}.
$$

Proof. (i) is the hockey stick identity [\[5\]](#page-16-6); (ii) is Vandermonde's identity [\[6\]](#page-16-7); (iii) is also well-known $[6]$. (iv) is obtained by (iii):

$$
\binom{r}{m}\binom{m}{k} = \binom{r}{k}\binom{r-k}{m-k} = \binom{r}{r-k}\binom{r-k}{m-k}
$$

$$
= \binom{r}{m-k}\binom{r-(m-k)}{r-m} = \binom{r}{r-(m-k)}\binom{r-(m-k)}{k}.
$$

(v) and (vi) are obtained, because

$$
\frac{r!}{k!(r-k!)} \cdot \frac{(r-k!)}{m!(r-k-m)!} = \frac{r!}{m!(r-m)!} \cdot \frac{(r-m)!}{k!(r-m-k)!} = \frac{r!}{(m+k)!(r-m-k)!} \cdot \frac{(m+k)!}{m!k!}.
$$

(vii) is obtained by applying $m = g$, $j = g - i$, and $s = n - g$ to the following alternating sum identity of the product of binomial coefficients [\[6\]](#page-16-7):

$$
\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} \binom{s+j}{k} = \binom{s}{k-m}.
$$

If $n - g \geq 0$ and $k - g < 0$, the number $\binom{n-g}{k-g}$ $\binom{n-g}{k-g} = 0.$ Hence, Lemma [3.3](#page-5-2) (vii) provides the following identity.

Corollary 3.4. For any nonnegative integers $n \geq g$ and $k < g$,

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k} = 0.
$$
\n⁽⁷⁾

4 Generating functions

It is straightforward to find a generating function for b-nomial numbers of type 2 from type 1 and type 4 from type 3, respectively, by Lemma [3.1](#page-5-1) (i) and (iii). However, for b-nomial numbers of type 3, we need elaborate preparations.

When $b = 3$, $g = 2$. Suppose $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots$ is a generating function for 3-nomial numbers of type 2 so that the coefficient $a_k = \binom{n}{k}$ ${k \choose k}_{32}$. Then, by Lemma [3.2,](#page-5-3)

$$
\sum_{k} {n \choose k}_{33} x^{k} = \sum_{k} {n \choose 2k}_{32} x^{k} = a_{0} + a_{2}x + a_{4}x^{2} + a_{6}x^{3} + \cdots
$$

Thus, to find a generating function for 3-nomial numbers of type 3, we need to remove all odd terms from $f(x)$ and adjust the power of x. Hence, we calculate the following average:

$$
\frac{1}{2}\left(f(x^{\frac{1}{2}})+f(-1 \cdot x^{\frac{1}{2}})\right)=a_0+a_2x+a_4x^2+a_6x^3+\cdots=\sum_k {n \choose k}_{33}x^k.
$$

In general, Lemma [3.2](#page-5-3) indicates to eliminate all terms except the terms with x^{gk} from the generating function for b-nomial numbers of types 2 for type 3. Hence, we consider a g-th primitive complex root of unity, $\xi = e^{\frac{2\pi}{g}i}$, since it has the following property [\[7\]](#page-16-8):

$$
\sum_{i=1}^{g} \xi^{si} = \begin{cases} 0, & \text{if } s \not\equiv 0 \pmod{g}; \\ g, & \text{if } s \equiv 0 \pmod{g}. \end{cases}
$$
 (8)

We present an ordinary generating function for each type of b-nomial numbers as follows. **Theorem 4.1.** Let $\Phi_g(x) = x^{g-1} + x^{g-2} + \cdots + x + 1$, $\Phi_b(x) = x^g + x^{g-1} + \cdots + x + 1$, and $\xi = e^{\frac{2\pi}{g}i}$. Then, for any nonnegative integer n,

(i)
$$
\sum_{k\geq 0} {n \choose k}_{b1} x^k = [\Phi_b(x)]^n = \frac{(x^b - 1)^n}{(x - 1)^n};
$$

(ii)
$$
\sum_{k\geq 0} {n \choose k}_{b2} x^k = \Phi_g(x) \left[\Phi_b(x)\right]^n = \frac{(x^g - 1)(x^b - 1)^n}{(x - 1)^{n+1}};
$$

(iii)
$$
\sum_{k\geq 0} \binom{n}{k}_{b3} x^k = \frac{1}{g} \sum_{t=0}^{g-1} \Phi_g(\xi^t x^{\frac{1}{g}}) \left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^n = \frac{x-1}{g} \sum_{t=0}^{g-1} \frac{(\xi^t x^{\frac{b}{g}} - 1)^n}{(\xi^t x^{\frac{1}{g}} - 1)^{n+1}};
$$

$$
\text{(iv)} \quad \sum_{k\geq 0} \binom{n}{k}_{b4} x^k = \frac{1}{gx} \sum_{t=0}^{g-1} \xi^t x^{\frac{1}{g}} \left[\Phi_g(\xi^t x^{\frac{1}{g}}) \right]^2 \left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^n = \frac{(x-1)^2}{gx} \sum_{t=0}^{g-1} \frac{\xi^t x^{\frac{1}{g}} (\xi^t x^{\frac{b}{g}} - 1)^n}{(\xi^t x^{\frac{1}{g}} - 1)^{n+2}}.
$$

Proof. (i) is obtained by the generating function in (5) .

(ii) is obtained by (i) and Lemma [3.1](#page-5-1) (i): Since $\binom{n+1}{0}$ $\binom{+1}{0}_{b1} = 1 = \binom{n}{0}$ $\binom{n}{0}_{b3},$

$$
\sum_{k\geq 0} \binom{n}{k}_{b2} x^k = \sum_{k\geq 0} \left[\binom{n+1}{k+1}_{b1} - \binom{n}{k+1}_{b1} \right] x^k = \sum_{k\geq 1} \left[\binom{n+1}{k}_{b1} - \binom{n}{k}_{b1} \right] x^{k-1}
$$

$$
= \frac{1}{x} \sum_{k\geq 0} \left[\binom{n+1}{k}_{b1} - \binom{n}{k}_{b1} \right] x^k = \frac{1}{x} \left\{ \left[\Phi_b(x) \right]^{n+1} - \left[\Phi_b(x) \right]^{n} \right\}
$$

$$
= \frac{1}{x} \left[\Phi(x)_{b} - 1 \right] \left[\Phi_b(x) \right]^{n} = \frac{1}{x} \left[x \cdot \Phi(x)_{g} \right] \left[\Phi_b(x) \right]^{n} = \cdot \Phi(x)_{g} \left[\Phi_b(x) \right]^{n}.
$$

(iii) Let $f(x) = \Phi_g(x) [\Phi_b(x)]^n$ and $a_k = {n \choose k}$ $\binom{n}{k}_{b2}$. Then, by (ii),

$$
f(x) = \sum_{i \ge 0} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_g x^g + \dots + a_{2g} x^{2g} + \dots
$$

Since $\binom{n}{k}$ $\binom{n}{k}_{b3} = \binom{n}{g k}_{b2}$ by Lemma [3.2,](#page-5-3) we want to make $a_i = 0$ if $i \neq g k$ for any integer k and a_{gk} as the coefficient of x^k so that

$$
\sum_{i\geq 0} {n \choose k}_{b3} x^i = a_0 + a_g x + a_{2g} x^2 + a_{3g} x^3 + \cdots
$$

Thus, we replace x with $\xi^t x^{\frac{1}{g}}$ in $f(x)$:

$$
f(\xi^t x^{\frac{1}{g}}) = \sum_{i \geq 0} a_i \xi^{it} x^{\frac{i}{g}} = a_0 + a_1 \xi^t x^{\frac{1}{g}} + a_2 \xi^{2t} x^{\frac{2}{g}} + \cdots + a_g \xi^{gt} x^{\frac{g}{g}} + \cdots + a_{2g} \xi^{2gt} x^{\frac{2g}{g}} + \cdots
$$

Then, we calculate the average of all $f(\xi^t x^{\frac{1}{g}})$ for $t = 0, 1, 2, \ldots, g - 1$:

$$
\frac{1}{g} \sum_{t=0}^{g-1} f(\xi^i x^{\frac{1}{g}}) = \frac{1}{g} \sum_{t=0}^{g-1} \sum_{i \ge 0} a_i \xi^{it} x^{\frac{i}{g}} = \sum_{i \ge 0} a_i \left(\frac{1}{g} \sum_{t=0}^{g-1} \xi^{it} \right) x^{\frac{i}{g}}.
$$

By (8) , we have

$$
\frac{1}{g} \sum_{t=0}^{g-1} \xi^{it} = \begin{cases} 1, & \text{if } i = gk \text{ for any integer } k; \\ 0, & \text{otherwise.} \end{cases}
$$

Hence,

$$
\frac{1}{g} \sum_{t=0}^{g-1} f(\xi^i x^{\frac{1}{g}}) = \sum_{k \ge 0} a_{gk} \cdot 1 \cdot x^{\frac{gk}{g}} = \sum_{k \ge 0} a_{gk} x^k = \sum_{k \ge 0} {n \choose gk}_{b2} x^k = \sum_{k \ge 0} {n \choose k}_{b3} x^k.
$$

(iv) is obtained by (iii) and Lemma [3.1](#page-5-1) (iii): Since $\binom{n+1}{0}$ $\binom{+1}{0}_{b3} = 1 = \binom{n}{0}$ $\binom{n}{0}_{b3}$

$$
\sum_{k\geq 0} \binom{n}{k}_{b4} x^k = \frac{1}{x} \sum_{k\geq 0} \left[\binom{n+1}{k+1}_{b3} - \binom{n}{k+1}_{b3} \right] x^{k+1} = \frac{1}{x} \sum_{k\geq 0} \left[\binom{n+1}{k}_{b3} - \binom{n}{k}_{b3} \right] x^k
$$

\n
$$
= \frac{1}{gx} \sum_{t=0}^{g-1} \Phi_g(\xi^t x^{\frac{1}{g}}) \left[\left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^{n+1} - \left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^n \right]
$$

\n
$$
= \frac{1}{gx} \sum_{t=0}^{g-1} \Phi_g(\xi^t x^{\frac{1}{g}}) \left(\Phi_b(\xi^t x^{\frac{1}{g}}) - 1 \right) \left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^n
$$

\n
$$
= \frac{1}{gx} \sum_{t=0}^{g-1} \Phi_g(\xi^t x^{\frac{1}{g}}) \left(\xi^t x^{\frac{1}{g}} \cdot \Phi_g(\xi^t x^{\frac{1}{g}}) \right) \left[\Phi_b(\xi^t x^{\frac{1}{g}}) \right]^n.
$$

Example 4.2. When $b = 3$, we have $g = 2$ and $\xi = -1$. Hence, we have

$$
\sum_{k\geq 0} \binom{n}{k}_{31} x^k = (x^2 + x + 1)^n ;
$$
\n
$$
\sum_{k\geq 0} \binom{n}{k}_{32} x^k = (x + 1) (x^2 + x + 1)^n ;
$$
\n
$$
\sum_{k\geq 0} \binom{n}{k}_{33} x^k = \frac{1}{2} \left[(x^{\frac{1}{2}} + 1)(x + x^{\frac{1}{2}} + 1)^n + (-x^{\frac{1}{2}} + 1)(x - x^{\frac{1}{2}} + 1)^n \right];
$$
\n
$$
\sum_{k\geq 0} \binom{n}{k}_{34} x^k = \frac{1}{2x^{\frac{1}{2}}} \left[(x^{\frac{1}{2}} + 1)^2 (x + x^{\frac{1}{2}} + 1)^n - (-x^{\frac{1}{2}} + 1)^2 (x - x^{\frac{1}{2}} + 1)^n \right]
$$

5 Using binomial coefficients

We identify each *b*-nominal number as an alternating sum of products of binomial coefficients as follows.

Theorem 5.1. For any nonnegative integers n and k ,

$$
\textbf{(i)} \quad \binom{n}{k}_{b1} = \sum_{i=0}^{\left\lfloor \frac{k}{b} \right\rfloor} (-1)^i \binom{n}{i} \binom{n+k-ib-1}{n-1};
$$

$$
\begin{aligned}\n\text{(ii)} \quad & \binom{n}{k}_{b2} = \sum_{i=0}^{\left\lfloor \frac{k+1}{b} \right\rfloor} (-1)^i \left[\binom{n}{i} \binom{n+k-ib}{n} + \binom{n}{i-1} \binom{n+k-ib+1}{n} \right]; \\
& \text{(iii)} \quad & \binom{n}{b} = \sum_{i=0}^{\left\lfloor \frac{k+1}{b} \right\rfloor} \binom{n+k-ib}{i} + \binom{n}{i-1} \binom{n+k-ib+1}{n} \right].\n\end{aligned}
$$

$$
\textbf{(iii)} \quad \binom{n}{k}_{b3} = \sum_{i=0}^{\left\lfloor \frac{kg+1}{b} \right\rfloor} (-1)^i \left[\binom{n}{i} \binom{n+kg-ib}{n} + \binom{n}{i-1} \binom{n+kg-ib+1}{n} \right];
$$

$$
\begin{aligned} \text{(v)} \quad & \binom{n}{k}_{b4} = \sum_{i=0}^{\left\lfloor \frac{kg+b}{b} \right\rfloor} (-1)^i \left[\binom{n}{i} \binom{n+(k+1)g-ib}{n+1} + 2 \binom{n}{i-1} \binom{n+(k+1)g-ib+1}{n+1} + \binom{n}{i-2} \binom{n+(k+1)g-ib+2}{n+1} \right]. \end{aligned}
$$

Proof. (i) is obtained by the identity in [\(5\)](#page-5-4).

(ii) is obtained by (i) and Lemma [3.1](#page-5-1) (i):

$$
\binom{n}{k}_{b2} = \binom{n+1}{k+1}_{b1} - \binom{n}{k+1}_{b1} = \sum_{i=0}^{\left\lfloor \frac{k+1}{b} \right\rfloor} (-1)^i \left[\binom{n+1}{i} \binom{n+k-ib+1}{n} - \binom{n}{i} \binom{n+k-ib}{n-1} \right],
$$

.

and by the recurrence relation for the binomial coefficients,

$$
\begin{aligned}\n\binom{n+1}{i}\binom{n+k-ib+1}{n} & -\binom{n}{i}\binom{n+k-ib}{n-1} \\
& = \left[\binom{n}{i} + \binom{n}{i-1} \right] \binom{n+k-ib+1}{n} - \binom{n}{i} \binom{n+k-ib}{n-1} \\
& = \binom{n}{i} \left[\binom{n+k-ib+1}{n} - \binom{n+k-ib}{n-1} \right] + \binom{n}{i-1} \binom{n+k-ib+1}{n} \\
& = \binom{n}{i} \binom{n+k-ib}{n} + \binom{n}{i-1} \binom{n+k-ib+1}{n}.\n\end{aligned}
$$

(iii) is obtained by (ii) and Lemma [3.2.](#page-5-3)

(iv) is obtained by (iii) and Lemma [3.1](#page-5-1) (iii): Since $(k + 1)g + 1 = kg + b$,

$$
\binom{n}{k}_{b4} = \binom{n+1}{k+1}_{b3} - \binom{n}{k+1}_{b3}
$$
\n
$$
= \sum_{t=0}^{\lfloor \frac{kg+b}{b} \rfloor} (-1)^i \left[\binom{n+1}{i} \binom{n+(k+1)g-ib+1}{n+1} + \binom{n+1}{i-1} \binom{n+(k+1)g-ib+2}{n+1} \right]
$$
\n
$$
- \sum_{t=0}^{\lfloor \frac{kg+b}{b} \rfloor} (-1)^i \left[\binom{n}{i} \binom{n+(k+1)g-ib}{n} + \binom{n}{i-1} \binom{n+(k+1)g-ib+1}{n} \right].
$$
\n
$$
c e \binom{n+1}{i} = \binom{n}{i} + \binom{n}{i-1} \text{ and } \binom{n+1}{i-1} = \binom{n}{i-1} + \binom{n}{i-2},
$$

Sinc $\binom{+1}{i} = \binom{n}{i}$ $\binom{n}{i}$ $\binom{n}{i-1}$ and $\binom{n+1}{i-1} = \binom{n}{i-1}$ $\binom{n}{i-2}$

$$
\binom{n}{k}_{b4} = \sum_{t=0}^{\lfloor \frac{kg+b}{b} \rfloor} (-1)^i \left\{ \binom{n}{i} \left[\binom{n+(k+1)g-ib+1}{n+1} - \binom{n+(k+1)g-ib}{n} \right] + \binom{n}{i-1} \left[\binom{n+(k+1)g-ib+2}{n+1} - \binom{n+(k+1)g-ib+1}{n} \right] + \binom{n}{i-1} \binom{n+(k+1)g-ib+1}{n+1} + \binom{n}{i-2} \binom{n+(k+1)g-ib+2}{n+1} \right\},
$$
\nwhich is simplified as (iv).

which is simplified as (iv) .

By this theorem and the symmetric properties of b-nomial numbers, we identify each of the following nonzero b-nomial numbers as a single binomial coefficient.

Corollary 5.2. For any nonnegative integers n and k ,

(i)
$$
\binom{n}{k}_{b1} = \binom{n}{gn-k}_{b1} = \binom{n+k-1}{k} \quad \text{for } k \leq g;
$$

\n(ii)
$$
\binom{n}{k}_{b2} = \binom{n}{g(n+1)-(k+1)}_{b2} = \binom{n+k}{k} \quad \text{for } k < g;
$$

\n(iii)
$$
\binom{n}{n}_{b3} = \binom{n+g-1}{g-1} \quad \text{and} \quad \binom{n}{0}_{b3} = \binom{n}{0};
$$

\n(iv)
$$
\binom{n}{0}_{b4} = \binom{n}{n}_{b4} = \binom{n+g}{g-1}.
$$

Proof. (i) and (ii) are obtained by Theorem [5.1](#page-9-1) and [3.1](#page-5-1) (iv) and (v), respectively. (iii) is obtained by (ii) and Lemma [3.2:](#page-5-3)

$$
{\binom{n}{n}}_{b3} = {\binom{n}{gn}}_{b2} = {\binom{n}{g(n+1) - (gn+1)}}_{b2} = {\binom{n}{g-1}}_{b2} = {\binom{n+g-1}{g-1}}.
$$

(iv) is obtained by Theorem [5.1](#page-9-1) and [3.1](#page-5-1) (vi): Since $\binom{n-1}{n+1} = 0 = \binom{n}{n+1}$,

$$
\binom{n}{0}_{b4} = \binom{n}{0} \binom{n+g}{n+1} - \left[\binom{n}{1} \binom{n+g-b}{n+1} + 2 \binom{n}{0} \binom{n+g-b+1}{n+1} \right] = \binom{n+g}{n+1}.
$$

6 Recurrence relations

In Section [2,](#page-2-0) we previewed a recurrence relation for b-nomial numbers of type 3 combinatorially. In this section, we find and justify a recurrence relation for each type of b-nomial numbers algebraically.

To simplify further discussion, we construct the following identity.

Lemma 6.1. For any $0 \le n \le g$ and $k > 0$,

$$
\sum_{i=0}^{g} {g \choose i} {n-i \choose t-i} {k-t-1} g + n-t \choose n-i-1} = \sum_{i=0}^{g} (-1)^i {g \choose i} {n-i \choose t} {k-t} g + n-t-i \choose n-i-1}.
$$
\n(9)

Proof. Since the left-hand side of the equation [\(9\)](#page-11-1) is the same as

$$
\sum_{i=0}^{g} {g \choose i} \left[{n-i-1 \choose n-t} + {n-i-1 \choose n-t-1} \right] { (k-t-1)g+n-t \choose n-i-1},
$$

we use Lemma [3.3](#page-5-2) (iii) to have

$$
\binom{(k-t-1)g+n-t}{n-i-1}\binom{n-i-1}{n-t} = \binom{(k-t-1)g+n-t}{n-t}\binom{(k-t-1)g}{t-1-i};
$$

$$
\binom{(k-t-1)g+n-t}{n-i-1}\binom{n-i-1}{n-t-1} = \binom{(k-t-1)g+n-t}{n-t-1}\binom{(k-t-1)g+1}{t-i}.
$$

By Vandermonde's identity in Lemma [3.3](#page-5-2) (ii), we have

$$
\sum_{i=0}^{g} {g \choose i} {k-t-1)g \choose t-1-i} = {k-t)g \choose t-1}; \qquad \sum_{i=0}^{g} {g \choose i} {k-t-1)g+1 \choose t-i} = {k-t)g+1 \choose t}.
$$

Since $\binom{(k-t-1)g+n-t}{n-t}$ $\binom{-1}{n-t} = \binom{(k-t-1)g+n-t}{(k-t-1)g}$ $\binom{-t-1}{k-t-1}$ and $\binom{(k-t-1)g+n-t}{n-t-1}$ $\binom{(k-t-1)g+n-t}{(k-t-1)g+1}$, the left-hand side of [\(9\)](#page-11-1) is equal to

$$
{(k-t-1)g+n-t \choose (k-t-1)g} {(k-t)g \choose t-1} + {(k-t-1)g+n-t \choose (k-t-1)g+1} {(k-t)g+1 \choose t}.
$$
 (10)

Since the right-hand side of the equation [\(9\)](#page-11-1) is the same as

$$
\sum_{i=0}^{g}(-1)^{i}\binom{g}{i}\left[\binom{n-i-1}{t-1}+\binom{n-i-1}{t}\right]\binom{(k-t)g+n-t-i}{n-i-1},
$$

we use Lemma [3.3](#page-5-2) (iv) to have

$$
\binom{(k-t)g+n-t-i}{n-i-1}\binom{n-i-1}{t-1} = \binom{(k-t)g+n-t-i}{(k-t)g}\binom{(k-t)g}{t-1};
$$
\n
$$
\binom{(k-t)g+n-t-i}{n-i-1}\binom{n-i-1}{t} = \binom{(k-t)g+n-t-i}{(k-t)g+1}\binom{(k-t)g+1}{t}.
$$

By Lemma [3.3](#page-5-2) (vii), we have

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} { (k-t)g+n-t-i \choose (k-t)g} = { (k-t-1)g+n-t \choose (k-t-1)g};
$$

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} { (k-t)g+n-t-i \choose (k-t)g+1} = { (k-t-1)g+n-t \choose (k-t-1)g+1}.
$$

Hence, the right-hand side of [\(9\)](#page-11-1) is also equal to [\(10\)](#page-11-2).

Then, we find the following identity for some particular b-nomial numbers of type 1.

Lemma 6.2. For any integers n and k, if $n = g$ or $k = k'g + 1$ for some positive integer k',

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k}_{b1} = \sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k-(i+1)g}_{b1}.
$$
 (11)

Proof. By Theorem [5.1](#page-9-1) (i) and Lemma [6.1,](#page-11-3) if $k > 0$,

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose kg+1}_{b1} = \sum_{i} (-1)^{i} {g \choose i} \sum_{t} (-1)^{t} {n-i \choose t} {n-i+kg+1-tb-1 \choose n-i-1}
$$

\n
$$
= \sum_{t} (-1)^{t} \left[\sum_{i} (-1)^{i} {g \choose i} {n-i \choose t} { (k-t)g+n-t-i \choose n-i-1} \right]
$$

\n
$$
= \sum_{t} (-1)^{t} \left[\sum_{i} {g \choose i} {n-i \choose t-i} { (k-t-1)g+n-t \choose n-i-1} \right]
$$

\n
$$
= \sum_{t} (-1)^{t+i} \sum_{i} {g \choose i} {n-i \choose t} { (k-t-i-1)g+n-t-i \choose n-i-1}
$$

\n
$$
= \sum_{i} (-1)^{i} {g \choose i} \sum_{t} (-1)^{t} {n-i \choose t} {n-i+(k-i-1)g-tb \choose n-i-1}
$$

\n
$$
= \sum_{t} (-1)^{i} {g \choose i} {n-i \choose kg+1-(i+1)g} {n-i \choose b}.
$$

Hence, when $k = k'g + 1$ for some positive integer k', the identity [\(11\)](#page-12-0) holds.

Now we consider $n = g$. Then, by Theorem [5.1](#page-9-1) (i) and Lemma [3.3](#page-5-2) (v) and (vii), we have

$$
\sum_{i=0}^{g} (-1)^{i} \binom{g}{i} \binom{n-i}{k}_{b1} = \sum_{i} \sum_{t} (-1)^{i} (-1)^{t} \binom{g}{i} \binom{g-i}{t} \binom{g-i+k-tb-1}{k-tb}
$$

\n
$$
= \sum_{i} \sum_{t} (-1)^{i} (-1)^{t} \binom{g}{t} \binom{g-t}{i} \binom{g-i+k-tb-1}{k-tb}
$$

\n
$$
= \sum_{t} (-1)^{t} \binom{g}{t} \sum_{i} (-1)^{i} \binom{g-t}{i} \binom{g+k-tg-t-1-i}{k-tg-t}
$$

\n
$$
= \sum_{t} (-1)^{t} \binom{g}{t} \binom{k-tg-1}{k-tg-g}.
$$

By Theorem [5.1](#page-9-1) (i) and Lemma [3.3](#page-5-2) (vi) and (ii), we have

$$
\sum_{i=0}^{g} (-1)^{i} \binom{g}{i} \binom{n-i}{k-ig-g}_{b1} = \sum_{i} \sum_{t} (-1)^{t+i} \binom{g}{i} \binom{g-i}{t} \binom{g-i+k-ig-g-tb-1}{g-i-1}.
$$

\n
$$
= \sum_{i} \sum_{t} (-1)^{t+i} \binom{g}{t+i} \binom{t+i}{i} \binom{k-(t+i)g-(t+i)-1}{g-i-1}
$$

\n
$$
= \sum_{i} \sum_{t} (-1)^{t} \binom{g}{t} \binom{t}{i} \binom{k-tg-t-1}{g-i-1}
$$

\n
$$
= \sum_{t} (-1)^{t} \binom{g}{t} \sum_{i} \binom{t}{i} \binom{k-tg-t-1}{g-1-i}
$$

\n
$$
= \sum_{t} (-1)^{t} \binom{g}{t} \sum_{j} \binom{t}{j} \binom{k-tg-t-1}{g-1-j} = \sum_{t} (-1)^{t} \binom{g}{t} \binom{k-tg-1}{k-tg-g}.
$$

Therefore, the identity [\(11\)](#page-12-0) holds for $n = g$ as well.

Adding more terms to both sides in the identity [\(11\)](#page-12-0), we find the following identity.

Corollary 6.3. For any nonnegative integers n and k, if $n = g$ or $k = k'g + 1$ for some positive integer k' ,

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b1} = 0.
$$
 (12)

Proof. The proof is done by mathematical induction on $\frac{k}{a}$ $\frac{k}{g}$. If $\frac{k}{g}$ $\left| \frac{k}{g} \right| = 0, 0 \leq k < g$. Thus, $k \neq k'g + 1$ for any $k' > 0$ so $n = g$. Hence, the base case holds by Corollary [5.2](#page-10-0) and Corollary [3.4.](#page-6-1)

Induction Hypothesis: Assume
$$
\sum_{i=0}^{g} (-1)^i {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b1} = 0 \text{ for } \left\lfloor \frac{k}{g} \right\rfloor < m.
$$

Suppose $\frac{k}{a}$ $\left| \frac{k}{g} \right| = m.$ Then, $\left| \frac{k-g}{g} \right|$ $\left| \frac{g-g}{g} \right| = m - 1$ so $\sum_{i=0}^{g} (-1)^i {g_i}$ $\binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-g-jg}_{b1} = 0$ by the induction hypothesis. Hence, by Lemma [6.2,](#page-12-1) we have

$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b1}
$$
\n
$$
= \sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b1} - \sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-g-jg}_{b1}
$$
\n
$$
= \sum_{i=0}^{g} (-1)^{i} {g \choose i} \left[{n-i \choose k}_{b1} + \sum_{j=1}^{i} {n-i \choose k-jg}_{b1} - \sum_{j=0}^{i-1} {n-i \choose k-g-jg}_{b1} - {n-i \choose k-(i+1)g}_{b1} \right]
$$
\n
$$
= \sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k}_{b1} - \sum_{i=0}^{g} (-1)^{i} {g \choose i} {n-i \choose k-(i+1)g}_{b1} = 0.
$$

By solving for $\binom{n}{k}$ $\binom{n}{k}_{b1}$ from [\(12\)](#page-13-0), we find a recurrence relation for some particular *b*-nomial numbers of type 1:

$$
\binom{n}{k}_{b1} = \sum_{i=0}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-jg}_{b1} \text{ for } n = g \text{ or } k = k'g + 1 > g. \tag{13}
$$

We extend the range of n in (13) , and find a recurrence relation for each type of b-nomial numbers as follows.

Theorem 6.4. For any nonnegative integers n and k ,

(i)
$$
\binom{n}{k}_{b1} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-jg}_{b1} \text{ for } n \ge g \text{ or } k = k'g + 1 > g;
$$

\n(ii) $\binom{n}{k}_{b2} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-jg}_{b2} \text{ for } n \ge g \text{ or } k = k'g \ge g;$
\n(iii) $\binom{n}{k}_{b3} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-j}_{b3} \text{ for } n \ge g \text{ or } k > 0;$
\n(iv) $\binom{n}{k}_{b4} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-j}_{b4}.$

Proof. (i) Because of [\(13\)](#page-14-1), we just need to show when $n \geq g$. The proof is done by mathematical induction on n . The base case is shown in (13) .

Induction Hypothesis: Assume that (i) holds when $n < N$.

Supposes $n = N$. Then, (i) is obtained by the recurrence relation in [\(6\)](#page-5-5) and the induction hypothesis:

$$
\binom{n}{k}_{b1} = \sum_{t=0}^{g} \binom{n-1}{k-t}_{b1} = \sum_{t=0}^{g} \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-1-i}{k-t-jg}_{b1}
$$

$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \left(\sum_{t=0}^{g} \binom{n-i-1}{k-jg-t}_{b1} \right)
$$

$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-jg}_{b1}.
$$

(ii) is obtained by (i) and Lemma [3.1](#page-5-1) (i): If $k = k'g \ge g$, $k + 1 = k'g + 1 > g$. Hence, for any integers *n* and *k* with $n \ge g$ or $k = k'g \ge g$,

$$
\binom{n}{k}_{b2} = \binom{n+1}{k+1}_{b1} - \binom{n}{k+1}_{b1}
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n+1-i}{k+1-jg}_{b1} - \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k+1-jg}_{b1}
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \left[\binom{n-i+1}{k-jg+1}_{b1} - \binom{n-i}{k-jg+1}_{b1} \right]
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-jg}_{b2}
$$

(iii) is obtained by (ii) and Lemma [3.2:](#page-5-3) If $k > 0$, $kg \ge g$. Hence, for $n \ge g$ and $k > 0$,

$$
\binom{n}{k}_{b3} = \binom{n}{kg}_{b2} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{kg-jg}_{b2} = \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-j}_{b3}.
$$

(iv) is obtained by (iii) and Lemma [3.1](#page-5-1) (iii): If $k \geq 0$, the inequality $k + 1 > 0$ always holds. Hence, for any nonnegative integers n and k ,

$$
\binom{n}{k}_{b4} = \binom{n+1}{k+1}_{b3} - \binom{n}{k+1}_{b3}
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n+1-i}{k+1-j}_{b3} - \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k+1-j}_{b3}
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \left[\binom{n-i+1}{k-j+1}_{b3} - \binom{n-i}{k-j+1}_{b3} \right]
$$
\n
$$
= \sum_{i=1}^{g} (-1)^{i+1} \binom{g}{i} \sum_{j=0}^{i} \binom{n-i}{k-j}_{b4}.
$$

Notice that when $b = 2$, every recurrence relation in Theorem [6.4](#page-14-0) is identified as the famous recurrence relation for the binomial coefficients:

$$
\binom{n}{k}_{2p} = \binom{n-1}{k}_{2p} + \binom{n-1}{k-1}_{2p} \text{ for all } p = 1, 2, 3, \text{ and } 4.
$$

We can also simplify the recurrence relations as the following identities.

Corollary 6.5. For any nonnegative integers n and k ,

(i)
$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b1} = 0 \text{ for } n \ge g \text{ or } k = k'g + 1 > g;
$$

\n(ii)
$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-jg}_{b2} = 0 \text{ for } n \ge g \text{ or } k = k'g \ge g;
$$

\n(iii)
$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-j}_{b3} = 0 \text{ for } n \ge g \text{ or } k > 0;
$$

\n(iv)
$$
\sum_{i=0}^{g} (-1)^{i} {g \choose i} \sum_{j=0}^{i} {n-i \choose k-j}_{b4} = 0.
$$

References

- [1] J. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math. 25 no. 2 (2019), 40–48.
- [2] J. Choi, Digit sums generalizing the binomial coefficients, J. Integer sequences 22 (2019), Article 19.8.3.
- [3] J. E. Freund, Restricted occupancy theory—a generalization of Pascal's triangle, Amer. Math. Monthly 63 (1956), 20–27.
- [4] S. Eger, Restricted weighted integer compositions and extended binomial coefficients, J. Integer Sequences 16 (2013), Article 13.1.3.
- [5] C. H. Jones, Generalized Hockey Stick Identities and N-Dimensional Block Walking, Fibonacci Quart. 34 (1996), 280–288.
- [6] D. E. Knuth, The Art of Computer Programming: Volume 1: Fundamental Algorithms (1997), Addison-Wesley.
- [7] W. Ladermann, Complex Numbers (1960), Routledge & Kegan Paul.
- [8] J. Shallit, A Second Course in Formal Languages and Automata Theory (2009), Cambridge University Press.
- [9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, <https://oeis.org>.