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Abstract

A user accessing an online recommender system typically has two choices:

either agree to be uniquely identified and in return receive a personalized and

rich experience, or try to use the service anonymously but receive a degraded

non-personalized service. In this paper, we offer a third option to this “all or

nothing” paradigm, namely use a web service with a public group identity, that

we refer to as an OpenNym identity, which provides users with a degree of

anonymity while still allowing useful personalization of the web service. Our

approach can be implemented as a browser shim that is backward compatible

with existing services and as an example, we demonstrate operation with the

Movielens online service. We exploit the fact that users can often be clustered

into groups having similar preferences and in this way, increased privacy need

not come at the cost of degraded service. Indeed use of the OpenNym approach

with Movielens improves personalization performance.

KEYWORD S

privacy, pseudonymous authentication, recommender systems

1 INTRODUCTION

Recommender systems are becoming pervasive in online services, ranging from relatively simple “people who liked this

also liked that” suggestions to personalized advertising, reranking of search results and decision support, for example,

route recommendation, health diagnosis. Importantly, existing services and businessmodels are largely based on an all or

nothing user participation paradigm, namely users are encouraged to supply personally identifiable information (typically

via use of a login account linked to their identity) in return for a personalized service. The, intentionally unattractive,

alternatives offered are either to receive a degraded service when accessing without logging in or to simply not use the

service.

The current online-tracking arms race between browsers and online advertisers exacerbates this ambivalence, as

solutions like Google FLoC1 will gradually reduce the possibility of indirect user behavior tracking, pushing web ser-

vices to require forms of authentication for the simplest of functionalities. However, centralizing all user tracking and

profile management could increase users’ sensitivity toward the requirement of using login accounts linked to their

identity.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,

provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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F IGURE 1 Overview of OpenNym approach

Our aim in this paper is to establish whether a usable middle ground exists whereby users gain good quality person-

alized recommendations while retaining a meaningful degree of privacy. We argue that a key requirement for practically

useful approaches is support for incremental rollout and backward compatibility with existing online services that

provide recommendations. We emphasize that while powerful cryptographic approaches to privacy have previously

been proposed, these are essentially clean slate designs that are not compatible with existing services without major

changes and so too easily dismissed/blocked by incumbents. Alternative approaches to privacy based on adding “noise”

to user ratings are potentially backward compatible with existing systems and have been considered, for example, in

the context of differential privacy,2 but often the addition of noise incurs a significant degradation in predictive accu-

racy plus the nature of the privacy protection provided may be difficult for relatively unsophisticated users to fully

understand.

The basic idea behind our approach is illustrated in Figure 1. Instead of users accessing the recommender system

individually using an account linked to them, they access the system by selecting from a set of available group accounts,

which we refer to as OpenNym identities (the nym terminology is motivated by the use of pseudonyms). Group accounts

are shared bymany users, so providing a formof “hiding in the crowd” indistinguishability that wewillmake crisp shortly.

By only submitting ratings via a group account, the link between a user’s ratings and their individual identity is much

reduced. Provided the users sharing an OpenNym identity have similar preferences, a useful degree of personalization

can still be provided.

In this paper, we first demonstrate that it is indeed possible to provide a useful degree of personalization when using

group accounts with an existing production recommender service, namely Movielens. Secondly, we show how users can

select in a private manner an OpenNym that is suitably aligned with their preferences. We do this by carrying out the

selection locally within the user’s browser via comparison of public OpenNym preference profiles with the user’s private

locally stored profile. While OpenNym identities with specified profiles can be created in an offline manner, for example,

using demographic information, thirdly we show that they can also be learned in an online manner. Namely, we consider

the repeated process of (a) users selecting the OpenNym identity most closely aligned with their preferences and submit-

ting ratings using this and (b) adaptation of the recommendations for each OpenNym identity based on these submitted

ratings. We show that under mild conditions this process is convergent and results in users being clustered according to

their preferences. Importantly, we demonstrate that this can be achieved in a privacy-preservingmanner while remaining

backward compatible with existing systems: we show that an appropriate profile selection policy can guarantee con-

vergence without (a) the need to access the online recommender system, and (b) the knowledge of the individual user

identities nor their ratings by the online recommender system.

Even in the worst-case scenario where an attacker already knows the OpenNym identity associated to a user (eg, after

a side-channel attack), the user can keep a so-called 𝜏-hiding property,3 keeping the adversary’s maximum probabilistic

belief that the user rated a given item lower than 𝜏.
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We implement a proof-of-concept prototype service based on these ideas. Users employ a browser plug-in to select

an appropriate OpenNym identity for accessing the Movielens recommender system. Since the identity used for access

is determined by the cookies supplied to the recommender system, the plugin essentially provides a cookie-management

service, while the identity repository on a third-party server is able to perform the clustering and the update of the

OpenNym identities. We demonstrate tools for private automated selection of the most appropriate identity and also

support for incremental rollout by demonstrating operation with the existing, unmodified Movielens recommender ser-

vice and user interface. Note that the Movielens service therefore includes a mix of existing individual users and users

accessing the system via OpenNym identities, a key aspect of support for incremental rollout.

The rest of the paper is organized as follows. In Section 2, we discuss the related work. In Section 3, we introduce the

threat model. In Section 4, we introduce the family of systems OpenNym and discuss its architecture. In Section 5, we

describe the specific profile association policy implemented in our prototype. In Section 6, wemeasure the recommending

performance of our prototype on the Movielens web system. In Section 7, we analyze the privacy performance of the

proposed system. In Section 8,we present the theoretical foundations onwhichOpenNym is based, and identify the family

of association policies and loss functions under which convergence can be guaranteed. Finally in Section 9, we draw the

conclusions.

2 RELATED WORK

Early work on private recommender systems focused on anonymous trust authentication. Bussard et al.4 uses a blind

signature scheme to establish trust and anonymity in an online systemwhileQuercia et al.5 introduces a blinded threshold

signature technique to achieve private trusted authentication. Crites and Lysyanskaya6 propose the so-called mercurial

signature to provide anonymous credentials by means of signatures that can be privately linked from one pseudonym to

another.

Unfortunately these techniques, while robust to some attacks (eg, Sybil and shilling attacks), are not by themselves

able to protect against de-anonymization attacks when the recommendation database is compromised. For example,

Aggarwal7 shows how high dimensional data can often easily be de-anonymized in the case of a leak and Narayanan

and Shmatikov8 demonstrated how the Netflix dataset could be de-anonymized using publicly available side information.

More generally, Datta et al.9 shows how large datasets can be easy to de-anonymize. This is arguably the main vulnera-

bility of a recommender system, and this kind of attack constitutes the main threat considered in the present work (see

Section 3).

There have been a number of previous studies on privacy in recommender systems, but none of them are able to

provide at the same time backward compatibility, good prediction accuracy, and implementation simplicity. Many exist-

ing approaches are based on encryption and multi-party computation and are essentially not backward compatible with

existing systems. Nikolaenko et al.10 proposes a solution where a trusted third party (a cryptographic service provider)

executes an encrypted version of the recommending task. Aimeur et al.11 imagines a solution where the user data is split

between the online system and a semi-trusted third party. Li et al.12 provides a solution where content ratings and item

similarity data are determined via distributed cryptographic multi-party computation, recommendations are then further

personalized locally. In the special case of advertisement systems, Guha et al.13 considers a web system that supplies a

large set of possible adverts to the user which the user’s browser then privately filters, locally making the decision about

which advert to display. Other solutions propose privacy-preserving schemes for a collaborative filtering algorithm using

synchronized cryptographic computation14 or homomorphic encryption.15-17 Another approach to implementing a pri-

vate recommender system is to perturb ratings with noise, an approach that often suffers from performance loss. Initially

proposed by Agrawal & Srikant18 it is applied to collaborative filtering.19-21

Federated learning approaches innovate the field by training machine-learning models without exposing user’s pri-

vate data.22 It has been extensively studied in the case of private matrix factorization.23,24 Federated learning has also

been proposed by Google Federated Learning of Cohorts (FLoC)1 as an alternative to HTTP cookies and related tracking

techniques.

Perhaps the closest piece of literature to our work is the one from Checco et al.,25 where a private clustering-based

recommender system is devised building on existing matrix factorization approaches, without the need for sophisticated

cryptographic methods. The main idea is to average the user ratings inside a cluster and iteratively learn the optimal

cluster choice. They show that often the increased privacy does not come at the cost of reduced recommendation accuracy.

However, this work is limited to recommender systems that use a specific form of matrix factorization, and requires the
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recommender service to implement a series of changes to ensure compatibility. For this reason, the applicability to existing

web systems has not been demonstrated. Our work builds on these ideas from a system perspective, extending the class of

recommender systems considered (not just matrix factorization recommenders, but rather a vast class of recommenders

satisfying very mild conditions) thus ensuring backward compatibility with existing web services. Moreover, we define

the implementation details of the client-server architecture needed to guarantee backward compatibility, and show that

the recommender system does not need to be aware of the presence of such a system, which can thus effectively piggyback

on existing systems. Finally, our experiments on a live web system are an important step toward the implementation of

such techniques in the real world.

3 THREAT MODEL

The privacy disclosure threat we consider arises naturally from attacks which have already occurred on production rec-

ommender systems. A user interacts with the recommender system through an authentication-based system, sending

ratings and receiving recommendations. The user ratings are stored in the recommender system database. The sensitive

asset is the stream of unique IDs and ratings composing this database, which might be released either as a result of a

hack/leak or intentionally by the recommender system operator* Thus, the attacker can be any actor that has access to this

database, even the recommender system itself. We do not consider any type of online/active attack (eg, malicious recom-

mender system/users or DoS attacks) focusing on the potential privacy issue resulting from leakage of the recommender

database, as our solution is meant to mitigate these type of vulnerability. However, in Section 3.3, we briefly discuss the

most relevant linking attacks for these type of systems.Motivations behind this kind of attacks are case-specific but poten-

tially very damaging,26 since recommender systems are employed in e-commerce, video streaming, dating applications,

and other fields where user ratings can be considered a private asset.

3.1 Attack definitions

We consider two main types of attack/threat:

Attack 1. The attacker seeks to learn the true user identity associated with a user account or ID. This can be of interest

in its own right: even if the user has not disclosed any rating, the mere fact of being associated to a specific ID can have

many different implications. Examples of such attacks are described in Reference 9,7,8.

Attack 2. The attacker knows already the association of a user with an ID and seeks to discover the user ratings.†

In conventional recommender systems each ID in the database is associated with a single user. In this case, Attack 1

might proceed by attempting to correlate the collection of (item, rating) pairs associated with each ID with known side

information about a target user or users. When such an attack is successful then the ratings submitted by the user are

simultaneously discovered, making Attack 2 automatically successful too.

Whenmultiple users are associatedwith an ID (aswithOpenNym) then the collection of (item, rating) pairs associated

with that ID is now amixture of ratings frommultiple different users. Provided the users sharing an ID submit sufficiently

different sets of (item, rating) pairs then this attack can be expected to involve a harder inference task than when an ID

is used by a single user. This is because the (item, rating) pairs submitted by the other users sharing the ID now act as

“noise” that tends to mask the pattern of (item, rating) pairs submitted by the user being targeted. Of course, if the users

sharing an ID submit sets of rating which are too similar to each other then the protection against de-anonymization

provided by this direct mixing mechanism may be reduced, in which case additional measures can be envisioned, for

example, inserting dummy ratings or other “noise” to increase diversity.

Regarding Attack 2, de-anonymization attacks have extensively proven their ability in attacking also large data set.27

Such attacks usually rely upon an extra knowledge (side-channel) which correlates with the allegedly anonymous data, to

reveal precious information. Importantly, our approach can, at least in part, protect from this kind of attack: when more

than one user is sharing an ID, then linking a user to the set of items rated is also significantly harder: an attacker can only

have certainty that an item has been rated by a user when all users sharing the ID have rated that item. In general, the

probability that a user rated an item can be taken as roughly proportional to the fraction of users employing the shared ID

that have rated the item. Further, even when the attacker knows that a user has rated an item, the attacker will not be able

to know the value of the user’s rating, unless all of the users employing the shared ID also gave exactly the same rating
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for that item. This form of “hiding in the crowd” indistinguishability/plausible deniability can be further strengthened

by allowing users to submit dummy ratings, in which case users can additionally claim that a submitted rating linked to

them was in fact dummy rather than real.

3.2 Privacy metrics

We define a privacy metric for each attack, which will then be evaluated on a live recommender system in Section 7.

3.2.1 Attack 1

Lacking additional side information the attacker can try to guess the correct nym by exploiting the fact that some nyms

might contain more users than others, namely the nym with most users is the best guess for the attacker. In the worst

case for the attacker (when all nyms have the same number of users) the user has an indistinguishability probability of

1∕p, where p is the number of nyms, that is, we have a form of “hiding in the crowd” anonymity.

In general, the probability that a user is using a certain nym is equal to the number of users in the that nym divided

by the total number of users (equivalent to anonymity set size3), so the best guess for the attacker is to choose the nym

with the largest number of users.

3.2.2 Attack 2

In the worst case scenario, knowing for instance all the ratings of an user but one, an attacker can at most calculate the

nym associated with a user (eg, pretending to be the user and letting the algorithm choose the right nym which will be

probably the same nym of the targeted user). We then consider this worst case scenario, where an attacker seeks to learn

which items a user has rated given knowledge of the nym to which the user belongs.

We define the following privacy measure:

P(u, v ∣ u is associated to nym a) ≜ p(u, v) =
∣ 𝒪av ∣

∣ 𝒰(a) ∣
,

where a is the nym index, v the item index, u is a given user, 𝒰(a) is the set of users sharing the nym a, and 𝒪av the set

of users selecting account a and rating item v. We refer to p(u, v) as the association probability and it is an estimate of

the probability that a user rated movie v, given that the user chose nym a. Hence, smaller values of p(u, v) correspond to

increased privacy in the sense that it is harder for an attacker to learn that a specific user in nym a rated item v, whereas

when p(u, v) = 1 then every user in nym a has rated item v and so an attacker can be certain that a target user in nym a

has rated that item.

More rigorously, the anonymity property of a user-item pair can be expressed in terms of hiding property,3 which is a

measure for accounting the adversary’s maximum probabilistic belief that a user is the sender (rater) of a given message

(rated item). According to suchmetric, the pair user-item (u, v) is assumed to be hidden if the probability is smaller than a

threshold 𝜏 .28 In our case the system provides all the necessary information to enforce such threshold in two ways: users

know both ∣ 𝒪av ∣ and ∣ 𝒰(a) ∣ and thus can avoid joining a specific nym or rating a given item when such ratio is greater

than 𝜏; nym providers can decide to join nyms or prevent nym splitting to enforce on their side the threshold as well, for

all the possible items. More formally, a user u has a 𝜏-hiding property‡ if:

privHP ≡ 𝜏, where ∀v ∶ p(u, v) ≤ 𝜏.

The threshold can in practice be very small, given that usually the preference matrix are very sparse.

Note that the attack considered here does not reveal the numerical rating submitted by a user for an item, only the

likelihood that a user rated the item. Hence the attack is rather limited in nature and a more powerful, and significantly
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more difficult, attack would be needed in order to estimate the numerical ratings, given that individual user ratings are

not stored anywhere apart from user clients.

3.3 Other attacks

3.3.1 Sybil attacks

Attacks by dishonest userswho submit false ratings in an attempt tomanipulate the recommendationsmade by the system

are an important challenge for all recommender systems.29,30 Typically such attacks aremitigated by forcing users to login

to an account linked to an external identity, for example, a credit card, or by restricting the rate at which ratings can be

submitted, for example, by restricting ratings to people who have paid for an item. By weakening the link between rating

submissions and user identity the use of OpenNym therefore potentially facilitates Sybil attacks. Nevertheless, there is

a number of ways that retain user anonymity while restricting the rate at which ratings can be submitted. For example,

users can authenticate against the system to obtain tokens/e-cash. This step is not anonymous and since authentication

is required the number of tokens generated per user can be restricted. The tokens thus obtained can then be used when

submitting ratings via an OpenNym identity. This step can be carried out in an anonymous fashion using a variety of

cryptographic techniques. In more detail, using the approach of Chaum et al.,31 each user mints a number of session

tokens (with associated serial number), blinds themwith a secret blinding factor and forwards them to the recommender

system through a non-secure channel. The system then signs the tokens with its private key, without knowledge of the

serial number associated with the tokens. On receiving the signed tokens back from the recommender system, the user

can remove the blinding factor and use the tokens to submit ratings to the system anonymously. Double use of tokens

is prevented by the system maintaining a database of the serial numbers of all tokens that have been issued. This token

approach therefore allows restricting use of the recommender system to pre-authenticated users and also limiting of the

rate of submission of ratings by each user. It does this while retaining the anonymity and privacy provided by use of

OpenNym when submitting ratings and obtaining recommendations.

3.3.2 Additional linking attacks

The OpenNym approach is a technique for ensuring that the content of the messages exchanged between client browser

and the service provider provides unlinkability between user ratings and their individual identity. Of course this leaves

open the possibility of other vectors for carrying out linking attacks.

One such approach in web or mobile applications is for the service provider to attempt to place secondary cookies

or third-party tracking content on the web pages viewed by a user. Within the EU the GDPR rules require that users be

explicitly informed of such actions and must take a positive step to opt in, hence attempts at such tracking seem like a

relatively minor concern. Outwith the EU, existing tools for blocking third-party trackers can be used, leaving the setting

of unique identifying first party cookies as the main concern. This can be mitigated by standard approaches for example,

by activists maintaining lists of cookies that can be safely used (similar to existing lists of malware sites, trackers, and so

on) and users blocking the rest.

Another possible vector of attack is to record the IP address of the user browser, and thereby try to link the ratings

back to the individual user. However, due to the widespread use of NAT and other middleboxes use of IP addresses as

identifiers is often ineffective.32 Users also have the option of using tools such as TOR to further conceal the link between

the IP address revealed to the server and the user’s identity. A more sophisticated approach is to try to use the timing and

ordering of ratings submissions to cluster and link them to an individual user. There are twomainmitigations that can be

used against timing attacks. One is to inject dummy rating submissions so as to disrupt timing and ordering information.

The other is to buffer ratings and delay their submission, again so as to disrupt timing and ordering information. When

applied to individual users in isolation both of these mitigations potentially significantly impact on user experience and

network/server load. Of course timing based attacks are not confined to recommender systems and there is, in particular,

a growing literature on such attacks against HTTPS traffic and on defenses. Borrowing from this literature, when user

traffic can be aggregated, for example by use of a shared VPN, then relatively low amounts of buffering and injection of

dummy traffic are sufficient to provably disrupt timing-based attacks33 and such approaches might usefully be adopted

in the present context.
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4 SYSTEM ARCHITECTURE

In this section, we introduce the system architecture to enable the use of OpenNym shared identities with exist-

ing web-based recommender systems. As already introduced in Section 1 and with reference to Figure 1B), the

proposed architecture is comprised of three entities: User client, Recommender system (RecSys) and OpenNym

repository.

4.1 User client

The client’s main responsibility is emitting requests for recommendation of given items and obtain back the responses as

recommended values. In traditional system, as shown in Figure 1A), this is done by implementing two set of operations:

1. send item ratings to the RecSys;

2. obtain recommendations for a set of given items.

Conversely, in the proposed system, the user client needs to be more complex and to perform the following activities:

1. fetch information about available nyms by querying the OpenNym repository;

2. select a profile with a group profile estimation;

3. send item ratings to the OpenNym repository and store them privately on a local database;

4. connect with the recommender system using the selected nym account to obtain recommendations.

While the group profiles stored in the OpenNym repository are visible to all users of the service, the individual ratings

history of each user is stored within the User client and never leaves the user’s browser. The client (which can be for

instance implemented as a browser plugin) is therefore a trusted element in the architecture and user confidence in this

plugin might be ensured by, for example, making it available in open source form.

4.2 Recommender system

This solution does not imply any change in the existing recommender systems that will work as usual. Our solution is

agnostic to the underlying implementation of the recommender system, but we refer to Section 8 for a theoretical analysis

of the (relatively mild) recommender systems constraints under which we obtain convergence guarantees.

4.3 OpenNym provider

The OpenNym provider is one or more servers which provide and collect information regarding the nyms. In particular,

each provider will:

1. keep a list of available nyms;

2. for each nym, provide the sum of all the ratings for a given item together with the number of ratings (in order to let

the User client compute the average value);

3. update such information when a user rates a new item;

4. provide splitting/joining functionality to split/merge nyms according to the evolution of the system and the accu-

racy/privacy thresholds. TheOpenNym repository can decide to split one nym in twowhen the predictive performance

falls below a certain threshold, provided that the computed privacy metrics constraints are satisfied, as explained in

details in Section 3.

As shown in Figure 2 and discussed inmore details in the next section, these functionalities can be implemented with

an OpenNym profile estimator and an OpenNym repository.
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F IGURE 2 OpenNym workflow to interact with existing systems

5 PROTOTYPE IMPLEMENTATION

In this section, we describe the implementation of an OpenNym prototype for a web applications, by defining a simple

nym association policy (adaptive nym selection). In such kind of applications, cookies are currently the primary approach

for identifying a user accessing an online service. Users can therefore access a service using the same OpenNym identity

by submitting the same application cookies to the service. This approach requires no changes to existing web systems,

and existing systems for use of cookies/identifiers and rating of items can be retained. Changes are, however, needed in

the user web browser in order to manage the application cookies and an OpenNym repository is needed that provides

group information and exports the APIs needed to update group characteristics according to the new elements rated by

users. Alternative implementations of OpenNym on other recommender systems based on this work are presented in

Reference 34.

5.1 Operations

In this section, we present the operations with reference to the workflow depicted in Figure 2, describing how OpenNym

can function on top of existing web-based applications which use a recommender system.

5.1.1 Group selection (steps 1 and 2)

The User client selects an appropriate group identifier either via manual user selection or by comparing the public group

profiles stored in the OpenNym repository with the user’s individual ratings history, the latter being stored privately

within the browser and never leaving the user’s device. An example user interface for manual group selection is shown

in Figure 3 (for use with Movielens).
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F IGURE 3 Illustration of the OpenNym plugin login functionality

5.1.2 Recommender system access (steps 3 and 4)

The plug-in intercepts user communication with the recommender web service, inserts the cookies for the selected iden-

tity and then forwards the communication to the recommender web service. The only information sent between the user

browser and the web service is the group identity and any ratings submitted, there is no need for the user to disclose their

individual identity. For recommender systems which do not support submission of multiple ratings for the same item

then the submitted user ratings are also modified by the plug-in, namely such that the submitted rating for an item is the

average of the existing ratings and the newly submitted rating (as explained in detail in Section 8).

5.1.3 Group profile estimator (steps 5 and 6)

Aprofile estimator is neededwhich constructs/updates the profiles of the shared accounts (stored in the OpenNym repos-

itory and used to assist users to select the OpenNym identity that most closely matches their personal preferences), steps

5 and 6 in Figure 2. This can be implemented either by accessing the recommender system using each shared account and

deriving the information needed to build/update the account profile, or by directly collecting data from the recommend-

ing system (eg, by web scraping or via API) and constructing/adjusting the shared account profiles accordingly. This task

must be executed periodically in order to keep the shared account profile information fresh.

5.2 Nym repository implementation

Each nym repository contains an internal status for each nym it serves. The status is composed by two variables which

are the number of ratings received Nm and the sum of the ratings received Rm, for each itemm.
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The nym repository exposes an API with the following three functions:

addRating: this function increments (decrements) by one the number of ratings Nm and update the score Rm for a

given itemm, and it is implemented by just updating Rm = Rm + r and Nm = Nm + 1.

rmRating: this function is implemented by just updating Rm = Rm − r andNm = Nm − 1. The function is called when

a user leaves a nym.

getRating: this function returns the number of ratings Nm and the current score Rm for a given item-nym pair.

The nym repository has an internal logic for creating new nyms or for merging different nyms. This is an adaptive

logic that should follow the evolution of the data provided by the users. In the simulation presented in Section 6, we

implemented the split ability by just duplicating nyms when the number of collected ratings is above a given threshold.

Depending on the legacy recommender system architecture, the repository might expose a function getCookie, that

returns the session cookie for a given shared account/nym and website.

5.3 Client implementation

As a proof of concept of the feasibility of the proposed approach with existing web services we implemented OpenNym

as a Google Chrome extension§ for use with Movielens,¶ a popular website for movie recommendations. We evaluate its

performance below but here we briefly describe the implementation.

The extension implementsOpenNymas a page action** so that an icon appears in the address bar onlywhen the user is

visiting a certain website (as shown in Figure 3). By clicking on that icon the user can manually select the shared account

with which to access Movielens. Underneath, whenMovielens is accessed the related session cookie is downloaded from

the OpenNym server and installed on the user browser. The user can at any time either manually change the shared

account used or the process can be automated based on the ratings history of the user. To allow automatic selection of the

shared account to use the plugin stores all the scores locally on the user browser. This data can also be stored in encrypted

form on a remote server and downloaded by the client on demand, to support the usage of multiple web browsers for the

same user (eg, mobile and laptop).

The plugin also launches a background process responsible for intercepting the ratings submitted by the user. This

traps the message to the server and changes the rating according to the average of the selected shared account as shown

in Figure 4.

Operation of the extension is facilitated by an OpenNym repository that (a) stores the list of shared accounts and

the related session cookies for each website and (b) for each movie and shared account keeps track of the number of

scores and their average value. The User client may contain a logic for choosing the right nym adaptively. In the sim-

ulation described in Section 6, we adopt the following logic. For each available nym and for all items already rated by

user u, compute the prediction error as the difference between the rating predicted by Movielens and the user rating r.

Then:

• Select the nym with the minimum prediction error.

• If the selected nym is different from the current nym, remove all the ratings by this user from the current nym (by

decrementing each item rating by r and each counter by one in the nym internal status) and then join the new nym by

updating its internal status by bulk adding the rating of all the rated items.

The pseudocode of this simple policy is reported in Algorithm 1 which makes use of three functions that, in turn, call

the APIs exposed by the repository. Specifically:

• calculateError: calculate the error according to a metric (eg, RMSE) between the scores given by a user (stored locally),

and the ratings predicted by the nym (using the getRatings API);

• join: iteratively uses the addRating to populate a nym repository with all the ratings belonging to the user

• leave: iteratively uses the rmRating to remove the ratings belonging to the user from the nym repository.



CHECCO et al. 11 of 23

F IGURE 4 Illustration of the OpenNym plugin score interception functionality

Algorithm 1. Adaptive nym selection

bestNym← NULL

bestErr←MAX_VALUE

for n in NYMS do

err← calculateError(myScores, getRatings(n))

if err < bestErr then

bestNym← n

bestErr← err

end if

end for

if bestNym ≠ currentNym then

leave(currentNym)

join(bestNym)

currentNym← bestNym

end if

6 PERSONALIZATION PERFORMANCE

In this section, we use the proof of concept OpenNym implementation to evaluate the personalization performance when

using shared identities to access the Movielens recommendation service,†† that is, we evaluate the loss of personaliza-

tion, if any, incurred by using shared rather than individual identities. We first assume that identities have already been

defined and roughly corresponds either to a systemwhere these identities have been crafted manually, for example, using

demographic and other public information, or where the system is already operating in steady state. We then relax this

assumption, and analyze the cold start properties in Section 6.4.
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TABLE 1 RMSE tested on Movielens website with “Wizard” engine

ID

Nym

size

Size of

ratings per

user group

Number

of users

in nym

RMSE

(OpenNym)

RMSE

(individual

accounts)

RMSE

(naive)

Performance

gain in using

OpenNym [%]

1 Smallest 20 466 1.496 1.507 1.551 0.739

2 Smallest 30 466 1.272 1.260 1.325 −0.908

3 Smallest 134 466 1.358 1.304 1.338 −4.161

4 Median 20 1724 0.993 1.005 1.232 1.240

5 Median 41 1724 0.934 0.945 1.185 1.188

6 Median 272 1724 0.870 0.874 1.133 0.470

7 Biggest 20 5442 0.670 0.734 1.081 8.720

8 Biggest 157 5442 0.839 0.812 1.071 −3.368

9 Biggest 2898 5442 0.789 0.792 0.960 0.414

Note: The best result for each dataset is indicated in bold.

6.1 Movielens recommendation service

Movielens has several recommending engines. The “Wizard”‡‡ is a matrix factorization recommender based on Refer-

ence 35 and Reference 36, using 50 features, 125 training epochs per feature, and subtracting the user-item personalized

mean prior to factorizing thematrix. Since this is both themost accurate engine and thatmost preferred by users, as shown

in Reference 37, we focus on testing using this engine. To explore the sensitivity of our results to the choice to engine

we also collected data for an engine called the “Peasant”, a user-item personalized mean algorithm partially described in

Reference 37.

6.2 User ratings data

In order to focus on personalization performance we used the Movielens 20M dataset§§ (with 26 744 movies, 138 493

users and 20 million ratings) and BLC25 to perform offline clustering of users into 64 nyms¶¶: in that work, this num-

ber of nyms has been proven sufficient to jointly achieve personalization and privacy. The use of online clustering is

evaluated in detail in Section 8. To minimize the load and potential perturbation of ratings of real users on the Movie-

lens website, we selected 3 of these 64 clusters for study: that containing the smallest number of users, that with the

median number of users and that with the largest number of users, with the aim of gaining a fair idea of the range of

behaviors. For each of these three nyms, we created three datasets by sorting users by the number of ratings each sub-

mitted and grouping these into subsets of users with the smallest, median and largest numbers of ratings (relative to the

nym). In this way, we obtained a total of nine sub-datasets consisting of (user, movie, rating) triples, as summarized in

Table 1.

6.2.1 Measuring performance

For evaluating performance we split each of these datasets into a training and a test set. The Movielens most advanced

recommender system (the “Wizard”) needs 15 ratings to being able to give predictions and so the training set consists of

15 ratings per user, and the test set consists of the rest of the ratings for each user.

For a sample of users*** (32 on average) in each training dataset, we: (a) submit the user ratings using a separate

account for each user in theMovielens website (in total, 4320 ratings are submitted to the online system), then (b) acquire

the predicted ratings for all the test movies in the dataset. In total, 36 304 queries are made. We then repeat (a) for each

training dataset but nowusing a shared accountwhose ratings for amovie are the average ratings among all the users using

that account and then (b) compare each user test rating with the Movielens predictions for this shared account. We auto-

mated the submission of ratings and collection of predictions by using the (undocumented) rest APIs of Movielens.†††
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F IGURE 5 Per user RMSE between predicted ratings and test ratings for Movielens website with “Wizard” engine

The metric used to assess the performance is the root mean square error (RMSE) between the ground truth and the

predicted ratings (either using OpenNym or separate accounts).

6.3 Results

6.3.1 “Wizard” recommender engine

In Table 1 we report the measured performance when users access the system using a shared account (ie, an OpenNym

identity) and when they access the system using individual per-user accounts. These results are for the “Wizard” rec-

ommender engine of Movielens. We also show, as sanity-check, the measured performance of a naive technique where

for each movie we use the global average rating over the training set as prediction, to verify that a more complex recom-

mender system is indeed helpful. It can be seen that using OpenNym leads to an average per-user RMSE decrease of 2.7%

(two-sided Wilcoxon P < .05 after Bonferroni-Holm adjustment) compared to use of individual per-user accounts. This

is a clear indication that OpenNym does not cause a loss in prediction accuracy: indeed the prediction accuracy slightly

improves because the recommender system can leverage the additional information from the other users sharing an

account.

In Figure 5 the per-user distribution of the RMSE is shown. Broadly speaking, it can be seen that the distributions

are much the same when using both OpenNym and individual per-user accounts. This is consistent with the results in

Table 1. Two trends are also apparent for both methods. Firstly, it can be seen that the users that have been clustered in

a smaller nym tend to achieve worse predictive performance (compare the left-hand box plots against those on the right

hand of the plot). Since the users have been clustered by BLC into a small nym presumably these users have specialized

preferences and this is also why Movielens is less able to predict their ratings accurately. Secondly, it can be seen that as

the number of ratings submitted by users increases the variance of the prediction error tends to fall (in each group of three

box plots in Figure 5 whenmoving from left to right the variance decreases), although themean error stays approximately

unchanged.
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6.3.2 “Peasant” recommender engine

We repeated the experiment using the “Peasant” recommender engine of Movielens. Since this engine does not need

many ratings before providing recommendations we rearranged the training and test sets such that only 10 ratings per

user are used as the training set, and the rest of the available ratings are used as the test set (Figure 6).

The full results are presented in Table 2 and are qualitatively comparable with the ones already presented for the “Wiz-

ard” engine. This lack of sensitivity to the choice of engine is encouraging as it suggests that the OpenNym architecture

is robust. For this recommender system, using OpenNym leads to an average per-user RMSE decrease of 1.0% (two-sided

Wilcoxon P < .05 after Bonferroni-Holm adjustment) compared to use of individual per-user accounts.

F IGURE 6 Per user RMSE between predicted ratings and test ratings for Movielens website with “Peasant” engine

TABLE 2 RMSE tested on Movielens website with “Peasant” engine

ID Nym size

Size of

ratings per

user group

Number of

users

in nym

RMSE

(OpenNym)

RMSE

(individual

accounts)

RMSE

(naive)

Performance

gain in using

OpenNym (%)

1 Smallest 20 466 1.583 1.468 1.474 0.387

2 Smallest 30 466 1.374 1.261 1.280 1.468

3 Smallest 134 466 1.325 1.375 1.331 −3.321

4 Median 20 1724 1.173 0.967 0.983 1.661

5 Median 41 1724 1.160 0.936 0.945 0.961

6 Median 272 1724 1.133 0.872 0.878 0.714

7 Biggest 20 5442 0.990 0.700 0.703 0.478

8 Biggest 157 5442 1.087 0.833 0.812 −2.637

9 Biggest 2898 5442 0.954 0.797 0.798 0.147

Note: The best result for each dataset is indicated in bold.
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6.3.3 Top-k Kendall-tau distance

As already remarked in Reference 38, the RMSE is not necessarily the best metric for evaluating real world recommender

systems since a user often will not query the predicted rating of a specific item, but rather will passively receive a target

recommendation (“you might be interested in… ”). Moreover, recommender systems can be used in search engines, and

also there, typically the “first page” of results is the only one that matters. For this reason we follow the approach in

Reference 39 and use the top-kKendall-tau distance, a generalization of the Kendall-tau distance able to consider partially

matching lists.

We computed the top-50 Kendall-tau distance (with parameter p = 0.5 as defined in Reference 39) between the pre-

dicted ratings and the test ratings for both OpenNym and when individual per-user accounts are used. Interestingly,

we found that for 98.6% of the users OpenNym preserves the ordering of the predicted ratings, and consequently the

Kendall-tau distance is equal for the majority of the cases (98.9%). This means that while OpenNym exhibits slightly bet-

ter performance in terms of RMSE, the top-50 recommended items would almost always be the same when using the two

mechanisms. Again, this is encouraging as it demonstrates in a concrete way that increased privacy (which we discuss

next) need not come at the cost of degraded predictive performance.

6.4 Nym learning and cold start

The results obtained so far assessed the performance of the OpenNym system when an appropriate user-nym matching

is known. Now we focus on the issue of nym learning from a cold start: nyms need to be created/updated, and users need

to be (dynamically) associated to the right nym.

We begin from the same settings described in Section 6.2 and select the four nyms (labeled A, B, C, D) with highest

Euclidean distance from each other in the latent space: the goal is to see how the transient period compares to the steady

state, when the users and theOpenNym repository starts with zero knowledge.We took a training set of 2520 ratingsmade

by 121 unique users to 587 unique movies equally sampled from nyms A–D . At each update, we compute the RMSE of

each user, using a (small) test set comprised of three ratings for each user.‡‡‡

To test the whole bootstrap process, we made the simulation start from a clean slate where only one initially empty

nym is available; then after considering respectively 10, 20, and 30 ratings, we introduce into the systemnewnyms, passing

from one initially active nym to four active nyms after 30 ratings. A new nym is introduced by cloning the last-activated

nym: at the next rating, users on the nym that has been cloned will approximately split in half in the new one.

6.4.1 Experimental setup

We generate a sequence of triples (user, movie, and rating) from the aforementioned dataset.

We implemented the system as described in Section 5, with the nym selection policy defined byAlgorithm1. Each nym

has an internal status containing, for each movie, the number of ratings received N and the sum of the ratings received

R. For each triple (u,m, r), we perform the following actions:

• If r is the first rating of user u, choose a random nym n.

• User u impersonates nym n, adds r to R and increments N by one.

• Update Movielens ratingm to be equal to
⌈

R

N

⌉

.

• For each available nym and for all movies already rated by user u, compute the prediction error as the difference

between the rating predicted by Movielens and the user rating.

• Select the nym with the minimum prediction error.

• If the selected nym is different from the current nym, remove all the ratings by this user from the current nym (by

decrementing each movie rating by r and each counter by one in the nym internal status) and then join the new nym

by updating its internal status and updating any rating in Movielens for which the corresponding
⌈

R

N

⌉

has changed.

When a new nym enters the system, it is created by the duplication of a nym already active in the system. Every 360

ratings, the performance for all the active users (ie, the users that rated at least one movie since the beginning of the

simulation) is evaluated against a test set composed of three values for each user.
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Figure 7 shows that the ratio of nym changes decreases over the time and tends to stabilize below 20% after 1500

ratings. Figure 8 shows how the transitory phase tends to converge to the steady-state RMSE, containing most of the

difference in the order of 10% right after 1000 ratings. The measured aggregated RMSE as the system evolves is shown in

Figure 9.

F IGURE 7 Proportion of nym changes from cold start, using a window of 30 ratings

F IGURE 8 Mean user RMSE difference from steady state one over time
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F IGURE 9 RMSE over time from cold start. The dotted line is the computed steady state from previous sections

6.4.2 Vulnerability assessment

This proof-of-concept implementation is open to attacks, which we briefly discuss here.

Batch rating
When a user change a nym might needs to send a lot of ratings, risking a temporal correlation attack. This attack can

be neutralized by introducing artificial random delays in the ratings and using mitigation techniques such as the ones

described in Section 3.3.2 to prevent linkability.

DoS attack
A malicious agent can act as a user, and providing ratings in a malicious way to, for instance, erase the status of all the

nyms. We refer to Section 3.3.1 for a more detailed discussion of this attack.

7 PRIVACY PERFORMANCE

As discussed in Section 3, the main attacks of interest are those which seek to learn: (a) which nym a user belongs to, and

(b) which items a user has rated, given knowledge of the nym to which the user belongs.

7.1 Defending against attack 1

For the Movielens setup described in the preceding section, the best guess for an attacker on which nym a user belongs

to corresponds to a probability of about 3.9% (calculated as the ratio of users in the biggest nym over the total number of

users). We argue that for this example the use of nyms therefore provides a reasonable level of protection against this first

type of attack.
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F IGURE 10 Measured movie association probability distribution for the three nyms considered

7.2 Defending against attack 2

In Figure 10 we show the measured distribution of the movie association probability p(u, v) for the three nyms (smallest,

median, and largest). The median of these values is consistently below 1%, indicating a generally high level of privacy.

That said, it can also be seen that a small fraction of movies that are rated by many of the users sharing a nym (the dashed

lines in Figure 10 indicating outlier points extend to a value of almost 0.7). As discussed in Section 3, these outliers could

be easily avoided by the user clients, by computing p(u, v) and avoiding to rate an item when such probability is greater

than their (possibly item-specific) threshold.

8 THEORETICAL ANALYSIS

We now demonstrate that OpenNym enables a private use of existing non-private online recommender systems, and can

guarantee convergence without (a) the need to access the online recommender system, and (b) the knowledge of the

individual user identities or ratings by the online recommender system.

By moving from the conventional architecture (Figure 1A), to the OpenNym architecture (Figure 1B) the overall

system is performing two types of optimizations: (a) the optimization performed by the (legacy) recommender systems,

which typically aims to reduce a loss function on the user-item rating40; and (b) the optimization defined by the association

policy of the nyms, which leads to private users clustering. We now present the conditions under which the independent

combination of such two optimizations (ie, using OpenNym) converges to the same result we would have by using the

conventional recommender system (ie, without OpenNym).

In other words, the basic approach to online clustering that we describe is alternating minimization41: the repeated

process of (i) users selecting the OpenNym identity most closely aligned with their preferences and submitting ratings

using this and (ii) adaptation of the recommendations for each OpenNym identity based on these submitted ratings. We
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show that under mild conditions this process is convergent and results in users being clustered according to their prefer-

ences. Importantly, this is achieved in a privacy-preserving manner since ratings are only ever submitted to the system in

step (i) using group identities. It is also backward compatible with existing systems since any suitable recommender can

be used in step (ii).

8.1 Formal setup

We proceed by expressing the above clustering approach more formally as follows. We have a set of user accounts𝒜 ∶=

{1, … , a}, a set of items𝒱 ∶= {1, … ,m} and a sequence of user-item ratings (ak, vk, rk), k = 1, 2, … with user account

ak ∈ 𝒜 , item vk ∈ 𝒱 , and corresponding rating rk ∈ R. Let 𝒪 ⊂ 𝒜 ×𝒱 be the subset of item-user account pairs for

which ratings have been submitted and gather the user-item ratings into matrix R ∈ R
a×m with entry Rav containing the

rating of item v submitted by user account a, (a, v) ∈ 𝒪 (so this matrix has many missing values).

Let 𝒰 ∶= {1, … ,n} denote the set of individual human users and suppose, for now, that each user u ∈ 𝒰 employs

account ua ∈ 𝒜 . We can capture the mapping from users to user accounts using matrix P ∈ {0, 1}n×a. Namely, row Pu of

P has a 1 in the column corresponds to account a employed by user u and zeroes in all other columns.

Online clustering aims is to jointly find an assignment of users to accounts and ratings predictions for each account

such that

P, R̂ ∈ arg min
R̂∈,P∈{0,1}n×a∶P1=1

𝓁(R,PR̂,𝒪) (1)

where 𝓁(R, R̂,𝒪) is a non-negative loss function and 1 denotes the all ones column vector (so P1 = 1 ensures that each

row of P has a single non-zero element).

8.2 Online clustering

We can solve for P and R̂ in alternating fashion, namely by solving

Pk ∈ arg min
P∈{0,1}n×a∶P1=1

𝓁

(

R,PR̂k−1,𝒪
)

(2)

R̂k ∈ argmin
R̂∈

𝓁

(

R,PkR̂k−1,𝒪
)

(3)

in turn for k = 1, 2, … until converged. Since each update is a descent step it is easy to show that these alternating updates

will converge to a stationary point, although this may of course only be a local minimum. Indeed, for convergence all we

need is that each of these updates is a descent step and so we can relax update (2) to

Pk ∈
{

P ∈ {0, 1}n×a ∶ P1 = 1 and 𝓁

(

R,PR̂k−1,𝒪
)

< 𝓁

(

R,Pk−1R̂k−1,𝒪
)}

. (4)

The importance of this observation in the present context is that we do not require that the loss function used to update

R̂k be the same as the loss function used to update Pk, namely we can select

Pk ∈ arg min
P∈{0,1}n×a∶P1=1

𝓁

(

R,PR̂k−1,𝒪
)

(5)

provided 𝓁 is compatible with loss function 𝓁 in the sense that it satisfies descent requirement (4). This not only provides

great flexibility butwhenupdatingPk also avoids the need to know the internal details of themechanismused to update R̂k.

In other words, we can use any existing recommender system to perform the R̂k update, augment it with group selection

update Pk having compatible choice of loss function 𝓁 and in this way obtain a newOpenNym recommender systemwith

group-based user accounts.
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8.3 User rating obfuscation

We can usually assume that a 𝓁(R,PR̂,𝒪) with the user-separable form
∑

u∈𝒰 𝓁u

(

Ru,PuR̂,𝒪u

)

can be used, where Ru

denotes the row of matrix R containing submitted ratings by user u, Pu is the row of P associated with user u (since Pu
has a single unit non-zero element in column a then PuR̂ is row a of R̂) and 𝒪u the set of items rated by user u. For

example, when 𝓁 is a least squares or top-k loss function then it has this form. Similarly for item-based approaches, and

also user-based approaches where the “users” are user accounts.

When this holds then in update (5) each row of Pk can be updated separately (and in parallel) by each user u. Namely,

each user u selects the account a to use by individually solving

Pu,k ∈ arg min
Pu∈{0,1}

a∶Pu1=1

𝓁u

(

Ru,PuR̂k−1,𝒪u

)

. (6)

This selection can be carried out privately within the user’s browser with the ratings Ru submitted by user u not being

revealed to the recommender system. Instead of seeing individual user ratings the recommender system only sees the

collection of ratings submitted to each account a ∈ 𝒜 , and when multiple users share account a direct linkage of these

ratings to a specific user u is broken.

8.4 Backward compatibility

When 𝓁(R,PR̂,𝒪) in addition has the item separable form
∑

v∈𝒱

∑

u∈𝒰 𝓁

(

Ruv,
(

PuR̂
)

v
,𝒪uv

)

, for example when a least

squares loss is used, then the R̂k update can be decomposed as

R̂k ∈ argmin
R̂∈

∑

v∈𝒱

∑

u∈𝒰

𝓁

(

Ruv,
(

PuR̂
)

v
,𝒪uv

)

(7)

= argmin
R̂∈

∑

v∈𝒱

∑

a∈𝒜

∑

u∈𝒰(a)

𝓁

(

Ruv, R̂av,𝒪uv

)

(8)

where 𝒰(a) ∶= {u ∈ 𝒰 ∶ Pua = 1} is the set of users sharing account a. Letting Rav =
1

∣𝒰(a)∣

∑

u∈𝒰(a) Ruv be the average

rating of item v by users sharing account a and 𝒪av the set of users selecting account a and rating item v, then for some

classes of loss functions the update further simplifies to

R̂k = argmin
R̂∈

∑

v∈𝒱

∑

a∈𝒜

∣ 𝒰(a) ∣ 𝓁
(

Rav, R̂av,𝒪av

)

. (9)

This holds, for example, when 𝓁 is the least squares loss (see Reference 25 Lemma 4.1).

Although it can be seen that stronger conditions are required than for the rest of the analysis above, when they hold

the advantage is that it is sufficient to submit an average rating Rav to account a rather than the collection of individual

ratings of the users sharing that account. This is helpful when, for example, using a recommender system for the R̂k
update that takes only the latest rating of each item by a user, such as Movielens.

Finally, if the number of users sharing an account ∣ 𝒰(a) ∣ is not known, (9) can be approximated by

R̂k = argmin
R̂∈

∑

v∈𝒱

∑

a∈𝒜

𝓁

(

Rav, R̂av,𝒪av

)

. (10)

This approximation is required when we want to update R̂k using an existing recommender system that expects a

one-to-one mapping between users and accounts.
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9 CONCLUSION

In this work, we introduce OpenNym: a framework where users access online recommender systems by selecting from

a set of available shared accounts (OpenNym identities). Group accounts are shared by many users, so providing a form

of “hiding in the crowd” indistinguishability. We demonstrate that, by using an appropriate profile association policy,

accurate user recommendations can be generated in a privacy preservingmanner, without the need for a user’s individual

ratings to leave their browser/client, while remaining backward compatible with existing systems.

We implement a proof-of-concept prototype service based on these ideas. Users employ a browser plug-in to select an

appropriate OpenNym identity.We demonstrate tools for private automated selection of themost appropriate identity and

also support for incremental rollout by demonstrating operation with the existing, unmodified Movielens recommender

service and user interface. Use of the OpenNym approach with Movielens yields an average per-user RMSE decrease of

2.7% for the “Wizard” recommender system, and of 1.0% for the “Peasant” recommender system (two-sided Wilcoxon

P < .05 after Bonferroni-Holm adjustment). That is, performance is improved while providing a form of “hide in the

crowd” deniability from attacks aimed at discoveringwhich item have been rated by the targeted user, providing amedian

association probability of less than 1% for all cases.

Finally we analytically demonstrate and experimental verify the convergence of OpenNym over a set of legacy

recommender systems: the system tends to converge to the steady-state (±10 %) after a relatively small number of

ratings.
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ENDNOTES
∗Even if IDs are not directly linked to user identities, they can be considered as quasi-identifiers, that is, they can potentially be linked with

side information to re-identify all or some of the users.8

†Hypothetically, an attacker might be interested in which items have not been rated by a user. However, usually in a recommending systems

the user ratings are extremely sparse (of the order of few percentage points). Therefore absence of a rating is largely uninformative and can

be excluded from the attack.
‡While we define this property at the user level, it can also be defined at the item level, to allow more stringent thresholds on sensitive items.
§Such an architecture do not need a trusted third party to be implemented.
¶http://movielens.org.
∗∗https://developer.chrome.com/extensions/pageAction.html.
††https://movielens.org.
‡‡http://lenskit.org/documentation/algorithms/svd/.
§§https://grouplens.org/datasets/movielens/.
¶¶github.com/AlessandroChecco/clustering-for-OpenNym.
∗∗∗To keep the perturbation on the online system to a minimum.
†††Partially described in https://www.npmjs.com/package/node-movielens.
‡‡‡The small size of the test set was necessary not to overburden the very frequent user RMSE computation on the Movielens website.
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