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Abstract: Future car parks will require significant power to support electric vehicle (EV) charging as
there will be both an increase in the penetration of EVs and a higher demand for charging power
as battery packs increase in capacity. The effective management of the charging and local battery
storage can be installed to help prevent excessive increases in electrical feeder capacity; however, it
is inevitable that car parks will attain significant power capability in the future. There is therefore
an opportunity for car park owners to utilise this and generate additional revenue by providing
frequency response services to the electrical grid. This paper describes the modelling of a car park
that utilises photovoltaic power generation, battery storage, and EV charging management strategies
to provide a grid frequency response service. The analysis using simulated car park data shows
that it can provide a high availability in terms of service but it is dependent on the capacity of the
installed generation and storage.

Keywords: EV charging park; EV charging power management; V2G frequency response; energy
storage for EV charging

1. Introduction

With increasing concerns about climate change, continued emissions of greenhouse
gases, and the depletion of fossil fuels, the electric vehicle (EV) has attracted a lot of atten-
tion as competitive means of green transportation. In a recent survey, reduced pollution
was the most common response concerning their environmental benefits, followed by their
economic benefits, quieter driving, and reduced on-the-road costs (tax, fuel) [1].

Recent research on the potential scale of EV penetration has revealed that EVs will
have a large impact on the power grid with respect to peak power demand and localised
power constraint issues. In the Global EV Outlook 2019 [2], the EV stock (excluding
two/three-wheelers) is expected to reach USD145 million in 2030 based on the Stated
Policies Scenario, which is a model created by the IEA and reflecting the impact of existing
policy frameworks and newly announced policy intentions; meanwhile in EV30@30, a
collective aspirational goal has been set for EVs (excluding two/three-wheelers) to reach a
30% sales share by 2030 across all signatory countries. More EVs on the roads will require
more EV charging points and lead to a significant increase in electricity demand. Estimated
data show that globally, EV charging consumed 58 TWh of electricity in 2018 [2]. According
to [3], in the UK, by 1 October 2019, there were 15,116 public EV charging devices available;
among these, 2495 were rapid devices with the total number of public charging devices
growing by 312% since 2015.

The growth in electricity demand from EVs poses significant challenges to local power
distribution, such as transformer overloading, power quality problems, and electricity
generation adequacy [4,5]. Smart EV charging (SEC) by coordinating EV charging with
the local power grid can help solve these challenges. In brief, SEC can be one of two
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types of control method: decentralised and centralised methods. The decentralised control
method distributes the computational load to individual EV charging points [6] and is
more convenient to manage and install for private usage; however, due to the lack of global
coordination, decentralised charging cannot achieve system-wide optimality. In contrast, a
centralised method builds the connections between electricity markets and vehicle owners,
and then contracts the power demands of EVs via aggregators, enabling the management
of charging power across a wide population of EVs [7,8].

Many papers have discussed EV charging management using decentralised and
centralised methods: the decentralised methods achieve “valley-filling” in [6,9,10], which
flattens the load profile by filling the valleys of load curves, for example, scheduling EV
charging from midnight to dawn to fill the overnight valley with increased power demand.
References [11,12] provided a decentralised charging strategy that optimises charging
profiles for the next day through a negotiation process between the grid and EVs based on
the prediction of the inelastic base load profile (non-EV load) of the grid. The next day, the
optimised charging profiles are used to schedule EV charging, aiming to flatten the total
load curve (base load plus aggregate EV load). However, the optimisation requires very
accurate load profile forecasts and all the EV charging demand must be known prior [13].
In [14,15], decentralised charging control based on frequency regulation was introduced,
where EVs act as the energy producers or consumers through bi-directional power transfer
which can prevent the grid frequency deviating from its nominal when demand and supply
are unbalanced. The technical limitation of this method is that the total combined EV power
is unknown (decentralised scenario) and this complicates the electrical grid operator’s
efforts to balance the system.

Conventional centralised EV charging research mainly focuses on the optimisation
of power management methods to achieve “valley-filling”. A receding horizon control
framework was proposed in [7], which is a general-purpose control scheme which makes
a decision on EV charging strategies for each time step (e.g., every 10 min). It uses the
prediction of the non-PEV load profile and charging demands of EVs connected inside
this system within the pre-set prediction time horizon (e.g., 24 h) along with real-time
charging power demand. In this framework, a two-stage hierarchical optimisation is
introduced to calculate the energy constraints by utilising the charging information to
reduce the computation complexity; however, the error in the forecasted data might bring
uncertainties. Time-of-use pricing has been widely adopted in the electricity market [16],
and the difference between the retail electricity price and market price is employed to seek a
balance between the achievable profit of EV park owners and the satisfaction of customers.
Customers specify their charging requirement when they arrive at the EV charging park,
and an admission control mechanism is introduced to guarantee that all admitted EVs
can be charged to their targeted state of charge (SOC) before departure. EVs are refused
entry if the algorithm calculates that their charging requirement will unbalance the current
charging strategy and/or reduce potential profit.

Other research has incorporated photovoltaic generators (PV) and a battery energy
storage system (BESS) into centralised EV charging to reduce the loads in high-power
demand periods of the electrical grid. In [17], the authors introduced an EV charging park
with renewable energy and non-renewable energy supply, a group of EVs with an EV
leader (this is considered an EV platoon) coming into the charging park, a queuing system
that uses first-come-first-serve and random selection to pick platoons to charge from the
waiting EV platoon queue. In the model, renewable energy is the main energy source to
supply to the EVs, and if the EVs’ energy demand exceeds the generated renewable energy,
the difference will be provided by a non-renewable feeder. However, PV power highly
depends on the weather and season, once the EV energy demand is far higher than the
real-time PV energy generation—this method has seen limited success in reducing the load
on the grid. For PV systems, the need to manage demand for energy is important in order
to make full use of the PV power generation, as the research in [18] proposed a pricing
scheme for demand management where the excess power generated by PV could best be
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managed by selling power to EV owners at lower prices. The research in [19] adds an
additional BESS for storing energy with the power transferring modes presented to address
the energy flow among the assets, which are PV to EV, BESS to EV, PV to BESS, grid to EV,
and PV to grid. The BESS exports power to EVs when PV is insufficient for EV charging,
and it is charged by PV when there is surplus PV power after supporting EVs. In order to
improve the power generation from PV to EV, the research in [20,21] applies the particle
swarm and grey wolf optimisation algorithms on a PV system to find the maximum PV
power generation for EVs. In [22], the authors stored the energy in the BESS from the grid
based on the pricing of the electricity market in Singapore. When the real-time electricity
price is lower than a defined price, and the surplus PV energy cannot fill the BESS, the
energy will be imported from the grid to the BESS, and this energy will be further used to
charge EVs. This method enables the BESS to directly supply more energy to EVs to reduce
electricity demand from the grid during high-load periods.

EV charging parks containing many EV charging points provide an opportunity to
manage the energy flow compared to unmanaged isolated charging points. The centralised
control of all EV charging points can support control for power-limited electricity feeders
and provide V2G services. This centralised charging coordination can provide SEC and
ancillary services such as frequency response to the grid [17].

Grid frequency is not stable: is it the result of the balance of demand and generation.
When demand is higher than generation, the frequency falls and vice versa. The National
Grid Electricity System Operator (NGESO), or the ESO for Great Britain (GB), has the
responsibility of maintaining the frequency of the national electricity transmission system
within±1% of 50 Hz (49.5–50.5 Hz). The dynamic fast frequency response (DFFR) service is
one of the grid-balancing services sourced by NGESO which aims to balance the grid in real-
time operation [23]. The NGESO pays for the DFFR service based on the working period
and the available power for frequency response: for example, in March 2021, an average
price of £11.2/MW of DFFR/h was paid to service providers based on the post-tender
report from [24].

Most research about EV charging parks and grid frequency response has not consid-
ered the ancillary service specifications and restrictions enforced by the national ESO. In
contrast to other works in this field, a PV–BESS-based smart electrical car park (SECP)
is introduced in this paper to provide the SEC and the DFFR service. Three efficient but
straightforward power management methods for SECP are provided for limited electricity
feeders. Meanwhile, a novel bi-directional electricity transfer method between the EV,
grid, PV, and BESS is presented to construct an SEC system. In the DFFR service, the grid
frequency is categorised into high-frequency zone (HFZ), deadband, and low-frequency
zone (LFZ) with the SECP having the corresponding power management strategies for
each zone. The advantage of the SECP is that it not only minimises the impact on the grid
for the increasing power demand required for EV chargers, but also provides additional
revenue opportunities for the owners of the SECP by providing services such as DFFR.

2. SECP Modelling and Operating Principles

This paper investigates the capability of a future car park with 100% penetration of
EV charging to provide import/export power for grid frequency response services. This
type of car park will be referred to as an SECP and will be defined as including a BESS and
PV generation. This research is introduced through three parts; the first part introduces
the modelling of the SECP and its working principles: the basic information of EVs, the
PV panel, the BESS, and GB grid services. The second part is an analysis of the energy
flow among the SECP assets in different situations, such as high-power demand periods
or balancing service delivery periods. The final section simulates the SECP model under
real-world conditions to observe the results, and then a sensitive analysis on the impact of
the capacity and SOC of the BESS on EV charging efficiency and DFFR service quality.

In the first part, the SECP model is simulated in MATLAB, which is divided into
three sections:



Energies 2021, 14, 8433 4 of 18

1. Estimation of the real-time charging power demand of EVs parked in the SECP;
2. The energy management system for the control of power flow between system assets;
3. Analysing the availability of the SECP for grid services.

2.1. EV Data and State Estimation

The real-time total charging power requirement of the SECP depends on the number
of connected EVs, the charging power profile of each EV, and its current SOC. Therefore, the
simulation of the SECP traffic flow and the SOC of each EV are required. In [25], the SOC
vs. the maximum acceptable charging power of the EV battery (PBmax) is formulated to find
the constraints of the EV charging. PBmax is the maximum charging power controlled by the
battery management system (BMS) of the EVs based on the charging method, temperature,
etc. To model the sum PBmax of all EVs at any point in time, the following information is
necessary: the SOC of the EV on arrival (SoCinitial), its period of stay (Tp), and the charging
profile for the type of EV.

2.1.1. The SOC of the EV on Arrival (SoCinitial)

In this model, the SECP is the only parking and charging place in a commercial area
for commuters of an average distance; most EV owners arrive and connect their EVs every
day. The daily energy consumption of an EV is transferred to the equation below:

Ed = Ld ∗ Eev (1)

In Equation (1), Ed is the average daily energy consumption for an EV (kWh), Ld
represents the daily driving distance (miles), and Eev is the average energy consumption of
different models of EVs (kWh/mile).

The vehicle mileage and occupancy in 2017 in the UK (seen in the first two columns of
Table 1) are reported by the UK Department of Transport [26]; the middle value of each
range of annual mileage is chosen to the represent the average annual mileage of an EV.
Based on Eev of 0.304 kWh/mi of EVs in 2019 [27] and Equation (1), Ed is then calculated
and shown in the third column in Table 1. Therefore, the daily SOC drop of an EV (SoCd)
can be represented by

SoCd =
Ed

Ecev
× 100 (2)

where Ecev is the capacity of the EV battery in kWh. Subsequently, SoCinitial can be
represented as:

SoCinitial = SoCll − SoCd

= (
Ecev ∗ SoCll

Ecev
− Ed

Ecev
)× 100%

=
E ∗ SoCll − Ld ∗ Eev

Ecev
× 100% (3)

where SoCll represents the SOC of an EV on its last departure. Ld is a random value based
on the percentage in the second column of Table 1.

2.1.2. The Period of Stay for an EV (Tp)

To formulate Tp, the actual car park data (Hainault Station in London) from Transport
for London [28] were used. Tp can be represented as

Tp = Tout − Tin (4)

Tin and Tout are the times when an EV arrives at the SECP and departs the SECP, respectively.
A probability density function is employed to randomly generate Tin and Tout for each EV
based on the vehicle park in [28], for example, from the traffic flow of the car park in [28],
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at approximately 450 min, the highest number of vehicles arrives into the real car park, so
Tin has the highest probability of being equal to 450 min in the traffic flow simulation. The
Tp for each EV is then calculated based on Equation (4), the simulation results of Tp, Tout,
and Tin for all EVs have been demonstrated to be a good approximation of the original
traffic flow in Hainault Station in previous work by the authors [28].

Table 1. Annual mileage of cars in England and energy consumption.

Annual Mileage (miles) Percentage (%) Average Daily Energy Consumption (kWh)

0–499 1 0.208
500–999 1 0.623

1000–1999 5 1.245
2000–2999 6 2.075
3000–3999 8 2.905
4000–4999 7 3.736
5000–6999 22 4.981
7000–8999 16 6.641

9000–11,999 17 8.716
12,000–14,999 8 11.207
15,000–17,999 4 13.697
18,000–20,999 3 16.188
21,000–29,999 1 21.168

30,000+ 1 24.904

2.1.3. The Charging Profile for the Type of EV

The charging profile includes the proportion of different EV models, and the profile of
SOC vs. PBmax for each of them where PBmax is the EV charging power controlled by the
EV’s battery management system (BMS).

In the SECP model, four types of EV were considered, which were a Nissan Leaf
24 kWh, Nissan Leaf 30 kWh, BMWi3 33 kWh, and Volkswagen Golf 26 kWh; the proportion
of them in the SECP was based on their registration for the first time in GB in 2019, with
the ratio of the Nissan pair, BMWi3, and Golf being 53:41:38, respectively [29].

The SOC vs. PBmax profiles for the different EV types were obtained from sources that
experimentally measured this relationship under DC rapid charging [30]; this charging
method is faster and will become more common outside of domestic use compared to level
1 and level 2 charging [28]. PBmax in the model can be calculated by a lookup table using
the current SOC (SoCrealtime) of the EV against the SOC vs. PBmax profile; for instance, a
BMWi3 at 75% SOC will demand a PBmax of 49 kW at that instant.

The research in [25] proposed that the maximum charging power (PAmax) of a single
charging point for the charging process is:

PAmax = min{PUmax, PCmax, PBmax} (5)

where min means choosing the minimum value from PUmax, PCmax, and PBmax as the output.
PUmax is the maximum charging power set by the EV user and PCmax is the maximum output
power of a charger.

In the SECP model, EV users are not allowed to choose PUmax as forecasting PUmax
requires large amounts of customer data. Therefore, the system-allocated maximum
charging power (PSmax) is used to replace the PUmax and PCmax. PSmax is the power allocated
to each EV by the aggregator of the SECP in a fair way for each customer based on a set
of possible battery management methods—these methods will be introduced in section
three. For an SECP, the combined total EV charging power requirement could be very high,
taking an example of 50 EVs, with the maximum charging power individually being 50 kW,
the total potential maximum power requirement of the SECP reaches 2.5 MW. For a given
SECP location, there is likely to be a limit on the power capacity due to local electrical
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network constraints; upgrade through re-enforcement is often physically complicated
with long lead times and incurs a high cost. Furthermore, on the GB grid, connections
are subject to a fixed capacity charge based on GBP/MW/day at the maximum potential
power requirement, regardless of actual usage. Controlling PSmax can reduce the peak
power demand and therefore reduce the overall power requirements from the local power
feeder, thus reducing this cost. Equation (5) is then transferred to:

PAmax = min{PSmax, PBmax} (6)

SoCrealtime is then given as

SoCrealtime =
α ∗
∫ T

Tin
PAmax

Ecev
× 100% + SoCinitial (7)

T is the current time, and α represents the charging efficiency [28].

2.2. Energy Management System

This SECP was constructed with an energy management system (EMS) that controls
the power flow and collects operational data from the EVs, PV, BESS, and grid. Figure 1
shows the proposed SECP system.

Figure 1. SECP system.

The PV system uses solar energy to generate power, and researcher in Australia [31]
and Iran [32] have proven that the payback period for the initial investment of PV may
be less than ten years for residential use, with the shortest possible payback period being
3 years for supporting grid functions. As a long-term investment, a PV system can support
EV charging through renewable energy but it can also reduce the peak power demands of
an SECP and hence reduce the capacity requirements of the grid.

In [33], the capacity of a PV panel (PCpv) is stated as approximately 150 Wp/m2–200 Wp/m2.
In this work, PCpv is set as the medium value 175 Wp/m2, PV power generation (Ppv)
varies with changes in solar irradiance, and normally cannot reach PCpv. For example, the
historical data of PV generation [34] show that the recorded installed capacity of PV in
the UK was 13.08 GWp by June 2021, and achieved a peak generation of 9.68 GW. Z(t)
represents the relationship between the installed capacity of PV in the UK (PCpvUK) and
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PV power generation which changes with time (PpvUK(t)) by using the provided historical
data set:

Z(t) =
PpvUK(t)
PCpvUK

(8)

In the model, a PV canopy is over the car park spaces and the SECP only has a single
floor. The area of the PV panel could be equal to the parking area which does not include
the gap between the car park spaces. The UK standard single car park space size is 11.52 m2,
and the Ppv of the SECP changing with time (t) is then given as

Ppv(t) = Z(t) ∗ PCpv ∗ N ∗ 11.52 (9)

where N is the number of parking spaces, Z(t) represents the intensity of sunlight with
a range from 0 to 1, calculated every minute based on the PV NEGSO supplied data for
GB [34].

2.3. The DFFR Specification

A generator or storage provider that delivers DFFR must provide a power response as
frequency deviates from the deadband (49.985 Hz–50.015 Hz) offered by NGESO. Figure 2
shows the envelope of this response: from the figure, 49.985 Hz and 50.015 Hz are two
trigger points that divide the grid frequency into three zones. The HFZ represents the grid
frequency and is higher than the 50.015 Hz where storage imports power from the grid,
and DFFR power is negative. The LFZ occurs when grid frequency is lower than 49.985 Hz,
storage exports power to the grid, and DFFR power is positive. The deadband is when
the grid frequency is between the 49.985 Hz and 50.015 Hz, DFFR power remains at zero.
NEGESO requires the provider to deliver a minimum of 1 MW response power and must
sell in 1 MW increments for maintaining the grid frequency between 49.5 and 50.5 Hz, the
response power that the provider has tendered is called the contracted power (Pc). The
actual power required by DFFR based on the grid frequency (PAFR) is given as

PAFR = − Pc

50.5− 50
∗ (F(t)− 50)

50.5 > F(t) > 50.015 or 49.5 < F(t) < 49.985 (10)

PAFR = 0 50.015 <= F(t) <= 49.985 (11)

PAFR = −Pc F(t) >= 50.5 (12)

PAFR = Pc F(t) <= 49.5 (13)

where F(t) is the real-time grid frequency. Positive/negative PAFR represents the provider
exporting/importing power from the grid, respectively.

The SECP can be considered a complex energy storage system which contains many
energy storage units represented by EV batteries and a BESS. These can be used to ex-
port/import electricity from the grid and provide the frequency response services. SECPs
can generate additional revenue through the provision of frequency response services in
addition to the parking and charging revenue.
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Figure 2. DFFR droop curve for a provider (blue line).

In SECP, exporting electricity from EVs to provide grid services may lead to a lower
SOC on departure than expected by the EV owner. The average daily energy consumption
of the total annual mileage of EVs is calculated to be 6.72 kWh based on Table 1. In order to
ensure that EVs have enough electricity to support customers’ daily driving, the minimum
SOC of an EV battery (SoCmin) can be calculated by

SOCmin =
6.72
Ecev

(14)

For the Nissan Leaf 24 kWh, Nissan Leaf 30 kWh, BMWi3 33 kWh, and Volkswagen
Golf 26 kWh, the minimum SOCs are calculated to be 28%, 22.4%, 20.4%, 25.9%, respectively.
This means that, in the SECP, if the SOC of an EV is lower than the minimum SOC, the EV
will not be discharged for the grid service.

The SECP might not always meet PAFR, failure happens when the PV generation, EVs,
and the BESS cannot support enough power for DFFR. To measure this, DFFR availability
(AVA) was used to evaluate the quality of the DFFR service:

AVA =
Z− F

Z
∗ 100% (15)

where F is the period during which failure happens and Z is the period of DFFR. Taking
an example of 100 min charging with three minutes’ failed service, then the availability is
calculated to be 97%.

3. Energy Management and Power Flow

The SECP modelling has been described for the individual system components; now,
the energy management and power flow between them is discussed.

3.1. Power Allocation to Parked EVs

Three basic energy management methods were implemented to allocate power to EVs
referring to the previous work in [28] by the authors. The first approach is proportional
power control, in which power is shared among EVs based on their power requirements.
The charging algorithm calculates each EV’s real-time power demand and sums them, if
the total power requirements exceed the power allowance, then the surplus is considered
as the total amount of power that must be recovered through all EVs. This amount will
then be divided among the vehicles based on the proportion of each EV’s charging power
to the overall charging power. For each EV, the final charging power is the power demand
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based on its SOC minus the share of the power surplus. The function of the method [28]
can be represented as

Pgi = Pdi − (
S

∑
R=1

PdR − L) ∗ Pd

∑s
R=1 PdR

(16)

In this function, Pgi, Pdi, and ∑S
N=1 PdN represent the power which is given to the

ith vehicle, the maximum power demand of the ith vehicle in this minute, and the total
demand power of all EVs, respectively. L and S are the power limitation and the number
of EVs in the SECP, respectively.

Compared with the first approach, the second approach [28] is to divide and recover
the surplus power of each EV according to their SOC proportion when the total power
demand exceeds the power limit. The relationship can be represented as

Pgi = Pdi −
(

S

∑
N=1

PdN − L

)
∗ 1− Ci

∑S
N=1 (1− CN)

(17)

In this function, Ci is the SOC of the ith EV. The last approach [28] was also focused
on SOC proportion, but instead of spreading the surplus burden around the EVs when the
demand power exceeds the limit, the total power limit is directly applied proportionally
based on each EV’s SOC. The relationship is represented as follows:

Pgi = L ∗ 1− Ci

∑S
N=1 (1− CN)

(18)

The performance of these three methods can be found in [28], so the details are not
repeated here. In the SECP, the power limitation L is the maximum total power which can
be allocated to all EVs by the SECP. For example, at a certain time, the maximum power
from the grid to all EVs is 30 kW, the maximum PV power which can be transferred to all
EVs is 10 kW, and L is their sum of 40 kW. The second method was chosen as the main
method for use in this paper.

3.2. Power Management between the System Components

The power management in this section is considered for two grid-service scenarios—
the DFFR period and non-DFFR period—with the SECP providing the DFFR service in the
DFFR period and the non-delivery of the service in the non-DFFR period. It is possible in
the GB electricity market to bid to deliver the DFFR service in timed windows.

In the HFZ, the SECP must import contract power to support the grid, as Figure 3
shows the energy flow with respect to power from the grid (GP), EVs (EVP), PV (PVP) and
BESS. BSCP and BSDP represent the available power from the BESS for charging/discharging.
‘2’ in the middle of a word represents ‘to’, meaning power transfer (e.g., Grid2BESS means
the power transferring from Grid to BESS). The contents inside the dashed box illustrate
the energy flow between the PV, EV, BESS, and grid for each condition, whilst the bottom
dotted box formulates the power.

In the HFZ case, the system first checks the constraints of EVP, PVP, and GP: if EVP is
higher than the sum of the available power from both PVP and GP, the BESS will provide
the power to the EVs, the BESS2EV depends on how much the BESS discharging power can
support the EV charging. If EVP is lower than the sum of PVP and GP, but larger than PVP,
some part of GP is provided then to the EVs, and the remaining GP will be used to charge
the BESS. Grid2EV is EVP minus PVP, and if EVP plus BSDP is less than the GP, then DFFR
cannot be delivered during this period and AVA decreases. If EVP is less than the PVP, and
the surplus PVP is also larger than the BSCP, SECP cannot deliver any response for DFFR,
GP is zero, and AVA decreases. The SECP can benefit from selling the surplus energy to
the grid, but if the surplus power is less than BSCP, PV first charges the EVs, any surplus
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power and GP will charge the BESS, and the AVA decreases when GP is higher than the
BSCP minus the PVP.

Figure 3. The energy flow in the HFZ.

In the LFZ, SECP must export the contracted power: in this case, the PV is first
considered to export power to the grid, what remains will power the EVs, and any further
remaining power will charge the BESS and sell to the grid. EV is the second power source
for exporting energy when the PVP is less than GP. If there is still not enough power, BESS
is the last power source for the LFZ. The service is unavailable when the total exported
power capability cannot meet the contracted power GP. Figure 4 shows the details of how
the system operates in the LFZ.

SECP operating in the deadband region results in BESS and PV being the only sources
of power for EV charging, with PV being the priority power source. The excess PV power
will be used to charge BESS. If both sources cannot charge all EVs to maximum power, then
the EV charging power will be reduced through management as per Equation (17).

Based on an analysis of past tenders, from 11 p.m. to 7 a.m. and from 7 a.m. to
11 p.m. are commonly tendered periods for DFFR delivery. As there are almost no EVs
parking during the overnight period (based on the collected car park data) an SECP is not
advantageous overnight (compared to a standalone battery) as EVs cannot support the
DFFR service as energy storage units. Therefore, the DFFR delivery period is set to between
7 a.m. and 11 p.m.; at other times, the grid connection can be used without restriction as it
does not deliver the DFFR service. This is therefore used to manage the SOC of the BESS in
preparation for the next day.

In the non-DFFR service period, the PV first transfers energy to the EVs, then to the
BESS. If PV cannot provide enough power to EVs, GP will support the rest; however, this
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period happens in the night from 11 p.m. to 7 a.m.; therefore, with PVP being close to zero
and most EVs having exited or fully charged, the charge power profile is likely to remain
flat, whilst the BESS will be charged or discharged to a defined SOC overnight.

Figure 4. The energy flow in the LFZ.

4. Results

This paper first tested the SECP aggregated with the PV–BESS providing DFFR ser-
vices to establish whether an SECP can provide DFFR whilst maintaining the charging of
EVs. A real-time charging scenario is provided, the unit of time is a minute, and Table 2
shows the main parameters of the test. Here, we simulate the model with the lowest con-
tractable power unit of 1 MW as set by NGESO. According to Figure 2 and Equation (10),
PAFR is only 1 MW when the grid frequency is higher than 50.5 Hz or lower than 49.5 Hz,
which occurs only rarely, and analysing historical frequency data shows that in reality,
PAFR will average at approximately 5% of the contracted power or 50 kW in this example.
The battery’s capacity is set as 2 MWh and the simulation period is one day.
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Table 2. The main parameters of the simulation.

Parameters Details

Modelled traffic flow Hainault Station (London)
EV models 4

Capacity of car park 80
Simulation date 1 January 2019

Rated power of PV panels 175 Wp/m2

SoCll 95%
Capacity of BESS 2 MWh

Initial SOC of BESS 60%
Pc 1 MW

Simulation period 1 day
DFFR period 7 a.m. to 11 p.m.

The results are shown in Figure 5, the first of five figures showing the grid frequency
( fG) and the local feeder power (PLF), where a negative value corresponds to the SECP
importing energy from the feeder, positive represents the SECP exporting energy from the
feeder, and the third represents the generated PV power (Ppv). The last two figures are the
EVs’ total power demand (PEV) and BESS power demand (PBESS), respectively, where a
positive value represents the EVs or the BESS charging, and discharging is indicated by a
negative value. The two red lines represent the trigger points (49.985 Hz and 50.015 Hz)
in the grid frequency graph; four time points were chosen to refer to the four charging
periods (grey lines) with the data shown in Table 3. At the first charging point (5 h 33 min),
the system was operating in the non-DFFR period, PEV is 142 kW, and 0 kW is from PV,
the rest is from the grid, the BESS is not charging during this period. The second charging
point (9 h 15 min) is in the HFZ, the grid at 50.13 Hz demands an import power of 253 kW
to the SECP based on Equation (10), and 3.398 kW is generated by PV; however, at this
moment, the maximum charging power of all the EVs is 134.6 kW, so Ppv and 131.2 kW of
PLF are used to support the EV charging, and the rest of PLF is allocated to the BESS. The
third charging point (11 h 53 min) is during the deadband zone, DFFR does not allow one
to import or export power from the grid, and the demand power from the grid is therefore
0 kW, whilst Ppv (28.39 kW) and PBESS (−500 kW) is used for EV charging. At the last point
(14 h 58 min), the system is operating in the LFZ using Equation (10), where PLF is 203.7 kW,
which is from the PV (8.701 kW) and EVs (−195 kW). Figure 6 is the DFFR power response,
Figure 7 represents the value of the increasing SOC referring to the number of EVs, and
AVA is 100%. The SOC of BESS is shown in Figure 8. The above results show that the
PV–BESS-integrated SECP can provide a good DFFR service with 100% AVA and an EV
charging service.

Table 3. Data points as shown in Figure 5.

Time fG (Hz) PLF (kW) Ppv (kW) PEV (kW) PBESS (kW)

5 h 33 min 49.97 −142 0 142 0
9 h 15 min 50.13 −253 3.398 134.6 121.8
11 h 53 min 50 0 28.39 528.4 −500
14 h 58 min 49.89 203.7 8.701 −195 0
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Figure 5. System response for one day of operation.

Figure 6. DFFR of envelope showing power vs. frequency requirements.
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Figure 7. Distribution of the increase in SOC for EVs.

Figure 8. The SOC of BESS for one day of operation.

The capacity of the BESS and overnight target SOC are variables in the model which
can be subjected to a sensitivity analysis. The results based on the traffic flow at Hainault
Station (London) are presented to understand the impact of different BESS capacities and
the overnight SOC target, whilst Table 4 shows the main parameters of the sensitivity
analysis. The capacity of BESS is varied in steps of 300 kWh starting from 500 kWh to
2000 kWh.

Table 4. The main parameters of the sensitivity analysis.

Parameters Details

Modelled traffic flow Hainault Station (London)
EV models 4

Capacity of car park 80

Simulation date
Summer season (1 July 2019–7 July 2019)
Winter season (1 January 2019–7 January 2019)

Rated power of PV panels 175 Wp/m2

SoCll 95%
Capacity of BESS 2 MWh

Pc 1 MW
Simulation period 7 days

DFFR period 7 a.m. to 11 p.m.
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Tables 5–7 are the results of 25%, 50%, and 75% initial SOC of the BESS, along with the
increasing capacity of the BESS. The availability of DFFR and the average increasing SOC
of the EVs increase with the BESS capacity as expected. Compared with the summer season,
the average increasing SOC is always lower in winter regardless of how the capacity of
BESS changes. According to Tables 5–7, the higher initial SOC of the BESS leads to the
lower availability in the summer. The availability is 100% when the capacity of the BESS
is 2000 kWh with 25% initial SOC in summer, and 99.48% when the capacity of BESS is
2000 kWh with 50% initial SOC in winter, both of which achieve the acceptable average
increasing SOC (29.54% and 28.65% in order).

Table 5. Analysis with 25% initial SOC of BESS.

Capacity
of BESS

(kWh)

Winter (1 January–7 January) Summer (1 July–7 July)

Availability (%)
Average

Increasing
SOC of EVs (%)

Availability (%)
Average

Increasing
SOC of EVs (%)

500 93.03 12.90 88.90 27.60
800 96.14 15.20 94.17 28.86

1100 97.40 17.24 96.77 29.37
1400 97.50 19.30 97.96 29.48
1700 97.55 21.34 99.32 29.52
2000 97.98 23.12 100 29.54

Table 6. Analysis with 50% initial SOC of BESS.

Capacity
of BESS

(kWh)

Winter (1 January–7 January) Summer (1 July–7 July)

Availability (%)
Average

Increasing
SOC of EVs (%)

Availability (%)
Average

Increasing
SOC of EVs (%)

500 92.48 16.39 86.75 29.06
800 94.93 20.64 91.38 29.40

1100 97.16 23.97 94.32 29.47
1400 99.05 25.81 96.18 29.51
1700 99.38 27.25 97.10 29.52
2000 99.48 28.65 97.83 29.53

Table 7. Analysis with 75% initial SOC of BESS.

Capacity
of BESS

(kWh)

Winter (1 January–7 January) Summer (1 July–7 July)

Availability (%)
Average

Increasing
SOC of EVs (%)

Availability (%)
Average

Increasing
SOC of EVs (%)

500 90.99 19.76 84.39 29.13
800 95.26 24.51 87.66 29.40

1100 96.41 26.88 89.46 29.47
1400 97.49 28.58 91.13 29.51
1700 97.89 28.67 92.09 29.52
2000 98.31 28.72 93.49 29.53

Combined with the energy flow from Figures 3 and 4, the lower average increasing
SOC in winter can be explained:

1. In summer, the PVs can provide a higher percentage of the energy required to charge
the EVs;

2. In the winter season, without too much PV energy, the total EV energy demand is
mainly met by the grid and the BESS, and therefore the BESS suffers from a lower
average SOC;
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3. EVs have to provide more energy to the grid for the DFFR service to maintain a high
availability.

Observed in winter, the BESS with a 75% initial SOC can provide more energy to EVs
than 25%, hence the average increasing SOC of EVs with a 75% initial SOC of BESS is
higher. The average increasing SOC in summer remains consistent regardless of the initial
SOC values of the BESS since the EVs were fully charged with the available PV power.

The reason for which the higher initial SOC of the BESS causes lower availability in
summer is that if the BESS has a higher initial SOC, then there is limited energy storage
left for storing the energy from the PV and the grid when the frequency is in the HFZ.
Meanwhile, the PV generates more energy for charging EVs and the BESS in summer
than in the winter, and the energy storage left for storing energy from the grid is further
compressed. Once PAFR cannot be met, the availability decreases.

The results reveal that for different seasons, adjusting the suitable initial SoC of a
battery helps reduce the capacity of the BESS, hence reducing the initial cost associated
with the capacity of the BESS. A 2 MWh BESS, with a 50% initial SOC in winter and 25%
initial SOC in summer is a good choice for the parameters of this SECP providing DFFR
service, a conclusion which was based on the condition that the SECP manages the SOC of
BESS every day.

5. Conclusions

In this paper, a PV–BESS integrated SECP was introduced that can support the provi-
sion of DFFR as a service to the electricity grid whilst providing EV charging capability.
Based on the SECP model, three efficient power management methods were proposed to
control the power committed to charging multiple EVs. Simulations demonstrate how this
can be effective for all types of multi-space EV charging car parks where in the first instance
there is a requirement to minimise the capacity of the electrical feeder from the grid (re-
duces cost, workaround for local capacity constraints, opportunity for increased end-user
tariffs). A methodology is the presented to establish the power flow priorities between
the different assets in the SECP (EVs, grid, PV, and BESS) to maximise the availability of
power to/from the grid to provide a frequency response service. A sensitive analysis on
the capacity and SOC management of the BESS for the case of Hainault Station reveals
a sizing methodology to maximise grid service availability and EV charging capability.
The results show that a high availability is achievable without the need for the BESS to be
sized close to the service requirements. In addition to parking and charging fees, SECPs
can therefore generate additional revenue by providing frequency response services to the
grid. The results in this paper can be interpreted to recognise that whilst there is much
focus on achieving 100% charging of EVs at maximum power, it is advantageous to have
capacity, with respect to power and SOC, to respond to power demands to assist with
balancing the grid. It was assumed in this paper that the physical electrical system can
meet the power quality and protection requirements, as independently, each component is
already installed in real-world examples. However, varying electrical topologies could be
applied, for example, to remove superfluous DC–AC/AC–DC conversion and replace it
with a common DC bus between components, which is an avenue for further work.
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