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Abstract— Potential-induced degradation (PID) of 

photovoltaic (PV) modules is one of the most severe types 
of degradation in modern modules, where power losses 
depend on the strength of the electric field, the 
temperature and relative humidity and the PV module 
materials. Understanding how module defects impact PID 
is key to reducing the issue. This work investigates the 
impact of cracks and fractural defects in solar cells and 
their impact on PID. We have tested using 
electroluminescence (EL) imaging how solar cells with 
varying levels of cracks/defects impact PID and our 
results indicate that such defects have a sizeable 
influence on the PID. We also confirmed the strong 
relationship between the size of the initial defect/crack and 
the presence of hotspots. As the crack (dark) area 
increased, there was a further increase in the cell's 
temperature under standard test conditions. In this work, 
it is observed that minor cracks in solar cells have no 
considerable PID effect for the solar cells providing some 
reassurance that quality control can reduce this 
degradation pathway. 

 
Index Terms—Solar cells; PID, cracks, 

electroluminescence, performance analysis. 

I. INTRODUCTION 

NE of the most valuable attributes of solar cell 

technology is its high stability, with operational lifetimes 

of over 30 years. Nevertheless, there are numerous 

degradation mechanisms, and these collectively reduce the 

module output power over time. One of the main degradation 

mechanisms is called potential-inducted-degradation (PID) [1-

3]. For many photovoltaic (PV) systems, PID is one of the 

leading causes of module degradation and is caused by 

voltage, as well as the interaction of this stress factor with 

temperature and humidity.  PID occurs when the module’s 
voltage potential and leakage current drive ion mobility within 

the module between the semiconductor material and other 

components such as the glass, frame, or mount [4].  PID 

becomes more prevalent as the module ages, and whilst it 

doesn’t affect all modules, it does have a severe impact as it 

cannot be fixed [5].  

In a recent study, [6], a PV module subjected to a reverse 

bias of 160 V voltage was shown to exhibit severe PID, 

leading to the formation of hotspots which appeared on the 
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modules, as presented in Fig. 1 for three different PV modules 

connected in series. This study showed that the PID resulted in 

a reduction of the current density and the open-circuit voltage. 

Improved testing has been the focus of much recent research; 

for example, in [7], authors have presented an approach to test 

the reversible and irreversible PID testing to bifacial PERC 

solar cells. Other researchers [8, 9] have reported that cracks 

in solar cells can accelerate PID due to the localized heat 

caused by the cracks. This work was supported by studies 

conducted using electroluminescence (EL) imaging before and 

after PID testing. This affirmed that cracks could lead to 

hotspots in the solar cells, and as a result, PID is expected, yet 

there were no discussions on the type/size of cracks and their 

expected impact upon PID. 

To prevent PID on a solar cell level, one research direction 

is to optimize the top surface, for example, the antireflection 

coating (ARC) [10-12]. Recent studies show that the thin 

silicon dioxide (SiO2) ARC layer combined with n-type and 

p-type solar cells can reduce PID in solar cells. However, this 

coating layer cannot prevent cracks and structural defects 

forming, but perhaps mitigate for the impact of PDI on that 

particular cell. Regardless of the impact of the ARC, at a PV 

module level, every component must be resistant to PID; 

including the encapsulants, absorption layers, and preferably 

the glass as small leakage currents can cause ion migration. 

the glass as small leakage currents can cause ion migration. 

 In Fig. 2, the EL image of solar cells affected by the typical 

cracks and/or structural defects is presented. These have been 

categorized into 3 groups by these authors; in Fig. 2(a), the 

cell is affected by minor cracks, whereas Fig. 2(b) shows that 

the cell has a dark area on the bottom edge. The last image, 

Fig. 2(c), presents a solar cell affected by a breakdown area. 

Impact of Solar Cell Cracks Caused During 
Potential Induced Degradation (PID) Tests  
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Fig. 1. Thermographic image of three substrings of module 3 under reverse 

160 V bias [6]. 
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These types of cracks have been previously reported in studies 

such as [13-16], showing that cracks can lead to a drop in the 

efficiency of the solar cells. However, there has been no 

explanation of the behavior of these cracks on the actual 

current density and the potential impact upon PID.                  

In this paper, the relationship between cell cracking and 

PID in c-Si solar cells is examined. The analysis will include 

the short circuit current density map of cracked solar cell 

samples, PID test results, and more specific instances to use a 

scanning electron microscope to further investigate the crack 

distributions. 

This paper is organised as follows: Section II comprises the 

sample preparation and the EL and PID testing setups. In 

Section III, we present the results of the tested solar cell 

samples. Section IV presents the output power measurements 

and finally, Section V presents the conclusions of the 

complete study. 

II. SAMPLES PREPARATION AND EXPERIMENTAL 

PROCEDURE 

In this work, several c-Si solar cells affected by different 

types of cracks have been investigated. The solar cells were 

dismounted from a PV module operated in a field condition 

for five years (Fig. 4(a)); Solar UK ltd handled this process. 

The solar cells comprise three busbars and at standard test 

conditions (STC), and as provided by the manufacturer 

datasheets, the cells' short circuit current density 𝐽𝑠𝑐 is equal to 

38.8 mA/cm2, open-circuit voltage 𝑉𝑜𝑐  is equal to 0.61 V, and 

the peak power is 4.72 ±2% W. 

Initially, we have used the EL imaging setup shown in Fig. 

3. The EL comprises a digital single-lens reflex camera with a 

resolution of 6k x 4k pixels, and the filter is removed and 

calibrated to allow sensitivity to electroluminescence picture 

(peak wavelength 1150nm). The camera lens is 18-55 mm, 

and a programmable 15A, 60V power supply is available to 

connect with the solar cell. To capture the finest EL images, 

the solar cells were connected to a power supply under 𝐼𝑠𝑐   

current (8.07 A). 

We have examined several solar cell samples categorizing 

different cracks shapes on distribution as well as structural 

defects. The EL image of the tested cells is shown in Fig. 4. 

According to Fig. 4(b), the solar cell sample (#1) is affected 

by minor defects/cracks across the cell. It was evident by 

previous research that such cracks do not reduce the output 

power of the solar cell. While solar cell samples (#2 and #3) 

are affected by cracked areas along with dark areas (labelled 

by the triangle), this type of crack has not been fully 

understood, and there is no information on whether it could 

lead to PID in the solar cell.   

The last solar cell sample (#4) is affected by a breakdown 

region (labelled by the triangle). There are some proposals in 

the literature on whether this area can lead to PID or 

breakdown in the busbar; however, experimentation results 

have not yet been proclaimed. Hence, our results on 

examining these defects in the solar cells would significantly 

contribute to understanding the variations of the cracks along 

with their relationship with solar cell PID. 

 The PID test of the solar cell samples was conducted using 

the PIDcon instrument made by Freiburg Instruments GmbH 

in Germany and is shown in Fig. 5(a). The PID test's basic 

setup (Fig. 5(b)) comprises an aluminium foil placed on the 

front glass, covering the whole solar cell. The positive 

terminal of the PIDcon power supply is applied to the 

aluminium foil. The negative terminal has been applied to the 

front contact of the solar cell. We use the standard PID testing 

 

(a)                                  (b)                                       (c) 

Fig. 2. PV module affected by cracks or structural defect. (a) Minor cracks, 

(b) Dark area, (c) Breakdown the area. 

 
(a) 

 
(b) 

Fig. 4. (a) EL image of the PV module before the dismounting process, (b)

After the dismounting process, the EL image of the tested solar cell samples, 

the first sample (#1), has a minor defect/crack across the cell. In contrast, 

samples (#2 and #3) are affected by a dark area with additional cracks in the 

cell. The last sample (#4) is affected by a breakdown region, as evidence by 

the solid black area. 

    

Fig. 3. EL imaging setup. 
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conditions for this work, where the temperature is set at 85°C, 

the voltage is set to negative 1000 V, and the PID test is 

conducted for 96 hours. The same procedure was performed 

on all four solar cell samples to investigate how the differing 

crack distributions were affected by PID testing. 

In addition, we have tested the solar cell samples under a 

scanning electron microscope (SEM); the SEM is shown in 

Fig. 5(c). The SEM is interfaced with a personal computer for 

data acquisition. The Back Scattered (Everhart-Thornley 

detector (ETD)) was selected to observe the impact of the 

cracks on the actual micro/nanostructure of the solar cell 

samples. 

Laser beam induced current (LBIC) mapping was also used 

to observe changes in the 𝐽𝑠𝑐 for the tested solar cells. The 

LBIC is non-destructive optical testing for the characterization 

of solar cells. This technique uses a light source from laser 

diodes of different wavelengths between 638 to 850 nm. An 

electrical bias on the laser is modulated to produce the pulsed 

laser beam. We have used this technique because it provides 

an output image which contrasts from the EL technique and 

provides an alternative non-destructive view of the changes 

that are occur spatially within the solar cell. The LBIC 

provides greater detailed mapping of the cells' surface and 

bulk photogeneration properties, along with the actual 𝐽𝑠𝑐 

current, which, can offer a complementary map of the cell's 

appearance, particularly for the cracked area. In contrast, the 

EL gives an image showing high resolution images of solar 

cell fractures and cracks, as well as carrier injection into 

different regions of the solar cell. Undertaking LBIC in 

conjunction with EL measurements provides a fuller 

understanding of the changes during testing. 

III. RESULTS 

The first solar cell sample (EL image shown in Fig. 4, #1) 

was observed before and after the PID test. This solar cell 

possessed only minor defects/cracks across its surface. We 

investigated the short circuit current density, as the drop in the 

open-circuit voltage is not significant during the testing 

response (fraction of 10 mV) is expected to drop [17, 18] after 

the PID testing is performed. 

The image of the 𝐽𝑠𝑐 before and after the PID test is shown 

in Fig. 6(a) and Fig. 6(b), respectively. The difference between 

the before/after images is shown in Fig. 6(c). The most 

significant defects/cracks in the solar cell sees the biggest drop 

in 𝐽𝑠𝑐. For example, on, the area labelled by the circle has no 

losses in the 𝐽𝑠𝑐, 38 mA/cm2. However, for the 

cracked/fractured area, labelled by the rectangle, the 𝐽𝑠𝑐 drop 

is approximately equal to -10 mA/cm2 (27% relative 

reduction). This would correspond to a hotspot in an 

operational PV module, potentially leading to greater module 

defects as time progressed.  

Following the observation of sample #1, minor 

cracked/defective areas in a solar cell are unlikely to cause a 

major and immediate PID. This consequence was concluded 

by observing that the pattern of Fig. 6(a) and Fig. 6(b) are 

almost equal. There are moderate differences between the 𝐽𝑠𝑐 

before and after the PID, as shown in Fig. 6(c). We have 

labelled the key areas that exhibit a reduction in (leakage) 

current after the PID testing was completed. The blue regions 

in Fig. 6(c) correspond to a negligible change in degradation 

(no difference in the 𝐽𝑠𝑐). 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. 𝐽𝑠𝑐 for Solar cell #1. (a) before the PID test, (b) after the PID is 

completed, (c) Difference in the  𝐽𝑠𝑐 before and after the PID test. 

 
(a)                                                              (b) 

 
(c) 

Fig. 5. (a) PID (PIDcon) instrument, (b) PID testing setup, (c) SEM (Quanta

FEC250) testing facility. 
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Now consider the behavior of solar cell sample #2, where 

the LBIC images before the PID test began is shown in Fig. 

7(a). The dark area on the right-hand side of the solar cell 

clearly exhibits a drop in the 𝐽𝑠𝑐. In agreement with the earlier 

data, the 𝐽𝑠𝑐 reduced significantly after the PID test was 

completed (Fig. 7(b)). Remarkably, the images indicate that 

the dark area is likely to be causing a more severe PID to the 

cell. There is a noticeable expansion of the dark regions across 

the right-hand side where the original EL image has an initial 

dark area. 

The difference between the 𝐽𝑠𝑐 before and after the PID is 

shown in Fig. 7(c). There is a significant drop in the current on 

the right-hand side of the solar cell, which is the same area 

that had the initial shading/defect. This confirms that such 

dark areas in the original EL images can be classified as high-

risk regions for PID degradation in solar cells. 

We have taken the SEM image of the labelled area in Fig 

7(b) for further examination. The output image of the 

inspection is shown in Fig. 8(a). We have witnessed that after 

performing the PID test, the dark area (potential crack) 

damaged the busbar, this is evident by the front surface view. 

In Fig. 8(b), we have observed at the back surface of the 

busbar. The PID test initiated further damage to the rear 

surface of the solar cell sample. There are a number of ‘pits’ in 
the contacts and material migration from the contact areas. As 

a result, we prove that it is likely to have a critical PID for a 

solar cell that comprises entirely/partially dark regions in the 

original EL image. 

Now, considering solar cell sample #3 which was also 

imaged before and after PID testing. The 𝐽𝑠𝑐 before the PID 

test is shown in Fig. 9(a), whilst after the PID test is 

performed, a large reduction in the 𝐽𝑠𝑐 was observed, 

particularly in the dark area on the left-hand side of the EL 

image, and in the LBIC image, which is shown in Fig. 9(b). 

The difference between the 𝐽𝑠𝑐 before and after the PID test 

is shown in Fig. 9(c). We can remark that there is negative 

current (leakage) in the areas where the dark (crack) is present. 

This result reinforces our earlier conclusion that cracks can 

lead to greater decreases in current density, indicative of 

regions where the solar cell operation has completely broken 

down. Hence, hotspots are expected to appear these locations 

if the cell is operated under field conditions, which would lead 

to further degradation. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. 𝐽𝑠𝑐 for Solar cell #2. (a) before the PID test, (b) after the PID is

completed, (c) Difference in the  𝐽𝑠𝑐 before and after the PID test. 

 
(a) 

 
(b) 

Fig. 8. SEM for solar cell #2. (a) front surface, (b) Back surface. 

No damage in 

the busbar 

Damage in the 

busbar occurred 

after PID test 



 

 

5 

 

In contrast, we have further investigated the labelled area in 

Fig. 9(b), using an SEM. The result of the SEM inspection is 

displayed in Fig. 10. By inspection of the busbar’s metallic 
(solder) joint to the solar cell surface, it is evident that the 

solder has migrated and deformed around the solder joint. This 

microscopic observation leads to understand why some solar 

cells, after PID tests, demonstrate significant decreases in the 

output current; clearly these changes lead to the development 

of hotspots and open circuits forming at the solder joints. 

 

As the solar cell exhibits significant losses in the 𝐽𝑠𝑐 we 

have decided to test the cell under standard test conditions 

(illumination of 1000 W/m2 and cell temperature 25 degrees), 

as shown in Fig. 11(a). The resultant current-voltage (J-V) 

curve compared with the theoretical values (taken from the 

solar cell datasheet) is shown in Fig. 11(b). The current 

density at short circuit conditions dropped by 20.5%, 

calculated using (1), whereas 4.9% was the drop in the 𝑉𝑜𝑐 

calculated using (2). This concludes the fact that dark areas in 

EL images likely means that the cells are being impacted with 

severe PID. 

 𝐷𝑟𝑜𝑝 𝑖𝑛  𝐽𝑠𝑐 = 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝐽𝑠𝑐 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  𝐽𝑠𝑐 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝐽𝑠𝑐 × 100 =                           38.1 − 30.338.1 × 100 = 20.5%                   (1) 

 𝐷𝑟𝑜𝑝 𝑖𝑛  𝑉𝑜𝑐 = 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝑉𝑜𝑐 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑  𝑉𝑜𝑐 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙  𝑉𝑜𝑐 × 100 =                           0.61 −0.580.61 × 100 = 4.9%                       (2) 

In In Fig. 12(a), we show the results of the 𝐽𝑠𝑐 for the last 

solar cell sample #4, which exhibited the largest number of 

cracks at the outset. We can notice in the initial EL image that 

the black area represents a complete breakdown in the cell. 

After the PID test was completed, the image (Fig. 12(b)) 

confirms an expansion of the breakdown area in the cell 

(labelled as A1 and A2). In Fig. 12(c), the difference in the 𝐽𝑠𝑐 

before and after the PID test is presented. The expansion in the 

defect is evident indicating complete breakdown of ~15% of 

the cell. The cause of this breakdown is likely to be due to 

localized heating of the silicon material leading to expansion 

and greater stress on the cracked surface. It is worth noting 

that, if the solar cell sample were still exposed in the field, 

these additional breakdown regions would appear after a 

longer period, for example after months of operation, due to 

the lower stress conditions. 
 

Fig. 10. SEM image for the front surface of the labelled area in Fig. 9(b). 

 

                       (a)                                                           (b) 

 
(c) 

Fig. 9. 𝐽𝑠𝑐 for Solar cell #3. (a) before the PID test, (b) after the PID is

completed, (c) Difference in the  𝐽𝑠𝑐 before and after the PID test. 

 
(a) 

 
(b) 

Fig. 11. (a) The solar cell is exposed to 1000 W/m2 illumination, (b) Measured

J-V curve under STC conditions. 
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The breakdown areas were analyzed using a SEM. For 

example, the output SEM image for A1 is shown in Fig. 13(a). 

It appears that the crack has initiated a significant breakdown 

in the cell (the black area in the middle of Fig. 13(a)) and 

hundreds of similar potential breakdown blocks in the 

surrounding area. The white areas in the image represent are 

measured as Silicon using Energy-dispersive X-ray 

spectroscopy (EDX). In comparison, the black area 

corresponds to aluminum (Al), indicating that a large defect in 

the solar cell, and the solar cell rear contact (made of Al) is 

only visible. Additionally, the SEM image for A2 is shown in 

Fig. 13(b); only 6% silicon was found in this area, along with 

7% silver (Ag) due to the expansion of the busbar material and 

87% of Al. Accordingly, this part of the solar cell has a 

complete breakdown, not generating any photocurrent. 

In reviewing the abovementioned observations, the breakdown 

area in the solar cell sample #4 leads to a drop in the 𝐽𝑠𝑐 after 

the PID test was completed and a further breakdown area 

adjacent to the initial breakdown. These observations suggest 

the following: 

1) Breakdown in EL images are likely to span different 

breakdown regions after field operation. 

2) Solar cells with this type of structural defects are 

indeed affected by PID. 

To summarize the outcomes of this section, cracks in solar 

cells lead to an increase in PID and the size/shape of the initial 

defect has a strong bearing on the degraded cell. Our results 

indicate that minor cracks/fractures do not significantly 

degrade the solar cell under PID tests, which were conducted 

for 96 hours at -160V. In stark contrast, larger cracks seen in 

dark areas of EL images resulted in severe PID. In addition, 

SEM imaging showed the formation of material defects; we 

have proved that cracks can result in further breakdown areas 

and a further reduction of the capacity of the busbars. 

IV. OUTPUT POWER MEASUREMENTS AND THERMAL 

ANALYSIS 

The solar simulator was used to test the performance of the 

cells, and the output power at maximum power point vs 

irradiance is presented in Fig. 14(a). The irradiance ranges 

from 100 (0.1 Sun) to 1000 (1 Sun) W/m2, while the cell’s 
temperature was maintained at the standard test condition, 

25°C. 

For sample #1, affected by minor cracks, the cell generated 

more output power, with an average power output of 2.36 W. 

Cells #2 and #3 show similar levels of cracking (as 

demonstrated by the dark areas in the EL image); so, their 

output averaged power at 1 Sun irradiance equals 1.81 W and 

1.62, respectively. Finally, the maximum drop in the averaged 

power was observed for the last solar cell sample #4, which 

exhibited the most severe cracking and showed an output 

power of only 1.32 W. 

 
(a) 

 
(b) 

Fig. 13. (a) SEM image for the front surface of area A1, (b) SEM image for 

the front surface of area A2. 

    
                        (a)                                                 (b) 

 
(c) 

Fig. 12. 𝐽𝑠𝑐 for Solar cell #4. (a) before the PID test, (b) after the PID is

completed, (c) Difference in the  𝐽𝑠𝑐 before and after the PID test. 

                        (a)                                                       (b) 

(c) 

Fig. 12. 𝐽𝑠𝑐 for Solar cell #4. (a) before the PID test, (b) after the PID is

completed, (c) Difference in the  𝐽𝑠𝑐 before and after the PID test. 
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This data is supportive that as the crack size increases in 

solar cells, PID testing has a greater affect the output power 

performance. Furthermore, if we consider Fig. 14(b), the 

measured power has a more pronounced distribution away 

from the mean as the irradiance level increases. For example, 

the distribution of the measured output power at 1000 W/m2 is 

±15% from the actual median value, while it is only equal to 

±2% at 100 W/m2. 

In addition to the electrical tests, thermal images of the solar 

cells have been captured using a thermal camera (FLIR C3-X) 

with thermal sensitivity of 0.07°C. All the tested solar cells 

were connected with pure resistive load 1 ohms and 

illuminated under 1000 W/m2. The cells were left for 

approximately 10 minutes to develop the hotspots.  

The results of the experiment are presented in Fig. 15. We 

can remark that the cell's temperature of cell #1 is uniformly 

distributed and at nearly STC condition, 25 degrees. For cell 

#2 and cell #3, it is evident that there is a localized increase in 

the temperature, which reaches as high as 40°C in the areas 

where a crack (dark) appears. Considering Fig. 15(c), we can 

recognise that in the middle busbar, there is a minor hotspot is 

now affecting the cell; this is because of the expansion of the 

crack after the PID was performed. 

Because cell #4 has the large breakdown region (as shown 

in the earlier EL image in Fig. 4), a rapid increase (60°C) of 

the cell temperature is observed. This is because a reverse-

biased voltage is expected in this region, hence, a hotspot in 

the cell has now been developed. In summary, the main effects 

of the cracks themselves on hotspot temperatures are, 

1) A larger crack (dark) will drive the affected cell 

considerably into reverse bias. 

2) An increase of the shading effectively decreases the 

photo-illuminated region leading to a reduction in the 

cell current. These two effects run counter to each 

other and lead to the development of the hotspot. 

To consolidate the results, we have determined the crack 

size of each tested solar cell using the EL and LBIC images 

and assigned them into four categories, 1.2-1.5%, 3-4.5%, 10-

11.5%, and 15-17%. The degradation rate for each category 

has been calculated by dividing the measured power by the 

theoretical power and the results are presented in Fig. 16(a). 

According to the largest study to date on PV degradation, [19], 

the median degradation is -0.5%/year for a PV system, while 

for a standalone solar cell sample is -1.0%. Accordingly, in 

Fig. 16(a), we have labelled in "red" all calculated degradation 

rates that were observed below -1.0%. As a result, we found 

no significant degradation in the cell with 1.2-1.5% crack size, 

while for all other considered crack sizes, a significant 

degradation is observed. 

Similarly, we observed the thermal performance (cells 

temperature) under varying solar irradiance (see Fig. 16(b)). 

The results show that for the crack sizes from 1.2-11.5%, it is 

unlikely the cell develops a hotspot (nearly all measurements 

are below the standard baseline of 30°C, IEC61215/61646). In 

contrast, if the crack size is in the range between 15-17%, a 

hotspot is expected to develop and has an increase in the cell's 

temperature to approximately 60°C. 

 

   
                            (a)                                                           (b) 

   
                            (c)                                                           (d) 

Fig. 15. Thermal image of the solar cell samples (125 × 125 mm) at 1000 

W/m2. (a) Solar cell #1, (b) Solar cell #2, (c) Solar cell #3, (d) Solar cell #4. 

(a)

(b) 

Fig. 14. (a) Output power of the cells under illumination from 100 to 1000 

W/m2, and cell temperature is 25 degrees, (b) Boxplot of the output power vs 

irradiance. 
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V. CONCLUSIONS 

This work reports the effect of cell cracks and structural 

defects on PID in solar cells. We have analyzed four solar cell 

samples with differing levels of cracks, including minor 

cracks, dark areas, and cells with large breakdown regions. It 

was found that minor cracks, represented by small spots and 

points in the EL image, has no considerable effect upon solar 

cell output and PID. However, larger cracks can lead to severe 

increases in PID in solar cell. The same outcome is recognized 

when testing a solar cell with a breakdown area. These results 

could be used to understand solar cells EL images taken in the 

field, which is now becoming an industry standard for quality 

and reliability checks.  Therefore, if the EL image shows a 

dark area or breakdown regions, our results suggest that the 

PV module is likely to be affected by PID, resulting in a 

reduction in the current density, open-circuit voltage, and 

degrading its performance. We also confirmed the relationship 

between the cracks and the presence of hotspots. As the crack 

(dark) area increased, there was a further increase in the cell's 

temperature under standard test conditions. 
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Fig. 16. Irradiance spectrum of the crack size vs. (a) Degradation, (b) Temperature. 


