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This paper presents time series model building using Fourier autoregressive models.
This model is capable of modelling and forecasting time series data that exhibit periodic
and seasonal movements. From the implementation of the model, FAR(1), FAR(2) and
FAR(3) models were chosen based on the periodic autocorrelation function (PeACF) and
periodic partial autocorrelation function. The coefficients of the tentativemodelwere estimated
using a discrete Fourier transform estimation method. The FAR(1) model was chosen as the
optimal model based on the smallest value of periodic Akaike and Bayesian information
criteria, and the residuals of the fitted models were diagnosed to be white noise using the
periodic residual autocorrelation function. The out-sample forecasts were obtained for the
Nigerian monthly rainfall series from January 2018 to December 2019 using the FAR(1) and
SARIMA(1, 1, 1)x(1, 1, 1)12 models. The results exhibited a continuous periodic and seasonal
movement but the periodic movement in the forecasted rainfall series was better with FAR(1)
because its values showed a close reflection of the original series. The values of the forecast
evaluation for both models showed that the forecast was consistent and accurate but the FAR(1)
model forecast was more accurate since its forecast evaluation values were relatively lower.
Hence, the Fourier autoregressive model is adequate and suitable for modelling and forecasting
periodicity and seasonality in Nigerian rainfall time series data and any part of the world with
rainfall series that are mostly characterised with periodic variation.

Key words: Forecasting, Fourier autoregressive process, Periodicity, Rainfall series, Season-
ality.

1. Introduction
Cyclic and seasonal movements are found and seen in numerous fields. The periodic and occasional
qualities of several phenoma in our immediate local environment can be defined in the form of
time and space. These movements happen contingent upon every day, month to month, yearly or
other periodic changes (Bloomfield, 2004). Recently, there has been broad research work in the
improvement of time series analysis models for cyclic and occasional time series data. The most
noticeable is the growth of the class of autoregressive moving average models by Box and Jenkins
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(1970) and the routinely used models are seasonal autoregressive integrated moving average models
by Box et al. (2015), and periodic autoregressive moving average models by Tiao and Grupe (1980).
Seasonal autoregressive integrated moving average models have been utilised to examine time series
data that display periodic variation over the years by many researchers such as Olatayo and Taiwo
(2015), Mohamed and Etuk (2015), Godwin and Fakiyesi (2016), Lidiema (2017) and Zhou et al.
(2018). However, this appeared to be not absolutely accurate since most periodic time series data
exhibit intermittent conduct in the mean, standard deviation and skewness (Tesfaye et al., 2006). In
addition to these periodicities, they exhibited a period relationship structure which might be either
consistent or intermittent (Iqelan, 2011).
Basically, periodic autoregressivemoving averagemodels are capable of dealing with the attributes

of cyclic time series data and have been used by many researchers over the years. These are reflected
in the works of Vecchia (1985), Anderson and Vecchia (1993), Ula and Smadi (2003), McCall and
Jeraj (2007), H. I. El Shekh and Al-Awar (2014), Iwok and Udoh (2016) and Taiwo (2017), where
positive advancements have been recorded. However, the main obstacle with the utilisation of these
models has to do with the means associated with model structure. In accordance with Dudek et al.
(2016), techniques for obtaining the coefficients of periodic autoregressivemoving average (PARMA)
framework when the periodic coefficients are expressed in term of Fourier series, are still used in
practice and remain a vital sphere for further research.
As discussed by early researchers on PARMA models, such as Hannan (1955) and Jones and

Brelsford (1967), if the periodic movements are smooth inside the crucial period, as may be normal
in numerous physical time series, a significant decrease in the quantity of assessed parameters might
be acknowledged by setting a significant number of the Fourier coefficients to be zero and this
confines the evaluated answers for a subspace. The identified challenges turn into how to determine
the vital lags and frequencies with crucial amplitudes. In spite of the noteworthy advancement that
has been set aside in modelling periodic time series with suitable time series models, this research
work proposes a simple and robust model for periodic and seasonal time series data. The proposed
model is named the Fourier autoregressive (FAR) model and it is based on Fourier-PAR techniques.
This will include model identification, estimation, error diagnostics and forecasting. In order to
verify the performance of the FAR model, the out-sample forecast and forecast evaluation measures
of the FAR model will be compared with the seasonal autoregressive integrated moving average
model result that is regularly used for modelling and forecasting seasonal and periodic time series
data.

2. Materials and methods

2.1 Fourier autoregressive model
The Fourier autoregressive (FAR) model is formed by defining a different periodic autoregressive
for each period of the year. If ykω+ν = {ykω+ν ∈ Z} is a periodic stationary stochastic process then
FAR is given by

ykω+ν = ϕ0 +

p(ν)∑
i=1

[
ϕi(ν) cos 2π

k
ω
+ ϕ∗i (ν) sin 2π

k
ω

]
ykω+ν−i + εkω+ν, (1)
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where ν is the period index (ν = 1,2, . . . ,ω), k is the year index (k = 0,±1,±2, . . . ), ϕi(ν) is the
periodic autoregressive coefficient, ω is the number of seasons, and εkω+ν is white noise with mean
zero and periodic variance σ2

ε (ν). Given that the mean and autocovariance functions are periodic
functions of time with periodic ω, then the first and second order moments of the process are

E[yt ] = µ(t) = µ[t + kω],

cov(yt ys) = γ(t, s) = γ(t + kω, s + kω).

2.2 Autoregressive model building
2.2.1 Model identification for the Fourier autoregressive (FAR) model
The identification of the FAR model to be estimated will be based on the periodic autocorrelation
function (PeACF) and periodic partial autocorrelation function (PePACF). For a univariate periodic
stationary process {ykω+ν} defined by equation (1) in which the white noise terms {εkω+ν} are
assumed to be independent, the periodic autocovariance function is defined as

γkω+ν(l) = cov(ykω+νykω+ν−l) = E [(ykω+ν − µν)(ykω+ν−i − µν−l)]

for season ν at backward lag l ≥ 0. Then, the PeACF for period ν at backward lag l ≥ 0 is defined as

ρi(ν) =
γl√

γ0(ν)γ0(ν − l)
, l ≥ 0,

where γ0 is the variance for the νth season.
Let {y1, y2, . . . , ynω} be a series of size nω of periodic stationary process {ykω+ν}. Then the

sample estimate of ρl(ν) is called the sample periodic autocorrelation function and it is given as

Γl(ν) =
γ̂l√

γ̂0(ν)γ̂0(ν − l)
, l ≥ 0,

where γ̂l(ν) is the sample periodic autocorrelation function calculated from

γ̂l(ν) =
1
N

N−1∑
k=0
(ykω+ν − ȳν)(ykω+ν−l − ȳν−l),

in which

ȳν =
1
N

N−1∑
k=0
(ykω+ν)

is the sample mean for season ν.
The periodic partial autocorrelation function φll(ν) is viewed as a proportion of the careful

connection between ykω+ν and ykω+ν−l after removing the effect of the intervening observation. It is
defined for integers l ≥ 1 as

φll = corr
[
ykω+ν, ykω+ν−l

��� ykω+ν−1, . . . , ykω+ν−l+1

]
.

Denote the periodic partial autocorrelation function by

φll =
cov[(ykω+ν − ŷkω+ν), (ykω+ν−l − ŷkω+ν−l)]√
var(ykω+ν − ŷkω+ν)

√
var(ykω+ν−l − ŷkω+ν−l)

.
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The sample partial autocorrelation function will be obtained using a recursive method by substi-
tuting the value of ρ̂i(ν) = φ̂ll to find φ̂ll so that

φ̂l+1,l+1 =
Γ̂(ν) −

∑k
j=1 φ̂kl Γ̂kω+ν−l(ν)

1 −
∑k

j=1 φ̂kl Γ̂ll

and
φ̂kω+1,l = φ̂kl − φ̂kω+1,kω+l φ̂kl,k+1−l .

2.2.2 Parameter estimation for the FAR model
The Fourier autoregressive coefficients will be estimated using the discrete Fourier transform estima-
tion method, assuming ykω+ν is the source of the periodic time series data and the discrete Fourier
transform of the periodic stationary process is

ykω+ν =

p(ν)−1∑
i=0

[
φi(ν)

cos 2πk
ω

ykω+ν−i + φ
∗
i (ν)

sin 2πk
ω

ykω+ν−i

]
.

If t = kω + ν, for ν = 0,1,2, . . . ,ω and ω = 12, then the periodic autoregressive coefficients of order
p(ν) for the ω seasons were obtained as follows:

yt1 = φ0 + φ1
cos 2πk

12
yt1−1 + φ

∗
1

sin 2πk
12

yt1−1 + · · · + φp(ν)
cos 2πk

12
yt1−p(ν) + φ

∗
p(ν)

sin 2πk
12

yt1−p(ν),

yt2 = φ0 + φ1
cos 2πk

12
yt2−1 + φ

∗
1

sin 2πk
12

yt2−1 + · · · + φp(ν)
cos 2πk

12
yt2−p(ν) + φ

∗
p(ν)

sin 2πk
12

yt2−p(ν),

. . .

ytω = φ0 + φ1
cos 2πk

12
ytω−1 + φ

∗
1

sin 2πk
12

ytω−1 + · · · + φp(ν)
cos 2πk

12
ytω−p(ν) + φ

∗
p(ν)

sin 2πk
12

ytω−p(ν).

(2)
In matrix form, the set of equations (2) is

©«
yt1
yt2
...

ytω

ª®®®®®¬
=

©«
1 cos 2πk

12 yt1−1
sin 2πk

12 yt1−1 . . . cos 2πk
12 yt1−p(ν)

sin 2πk
12 yt1−p(ν)

1 cos 2πk
12 yt2−1

sin 2πk
12 yt2−1 . . . cos 2πk

12 yt2−p(ν)
sin 2πk

12 yt2−p(ν)
...

1 cos 2πk
12 ytω−1

sin 2πk
12 ytω−1 . . . cos 2πk

12 ytω−p(ν)
sin 2πk

12 ytω−p(ν)

ª®®®®®¬

©«

φ0
φ1
φ∗1
...

φp(ν)
φ∗
p(ν)

ª®®®®®®®®®¬
. (3)

By taking the inverse of equation (3), the Fourier autoregressive process coefficients will be obtained.
In order to assess the correct order of the model fitted, periodic Akaike and Bayesian information

criteria will be used. The periodic Akaike information criterion is given as

AIC(P) = n ln σ̂2
ε (ν) + 2p(ν).

The optimal order of the model is chosen by the value of P for which AIC(P) is a minimum. The
periodic Bayesian information criterion is given by

BIC = ln σ̂2
ε +

ln N
N

p(ν),

where σ̂2
ε (ν) is the periodic estimator of σ2

ε (ν) and p(ν) is the number of periodic autoregressive
coefficients in the season.
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2.2.3 Diagnostic checking in the FAR model
The appraisal for model adequacy will be carried out by checking whether the model assumptions
are fulfilled. The fundamental assumption is that the residuals {εt } are white noise. Hence a cautious
investigation of the estimated residuals will be carried out by checking whether the residuals are
white noise. This will be done by obtaining the sample PACF and PePACF of the residuals to check
whether they do not form any pattern and they are found to be statistically significant within two
standard deviations with α = 0.05.

2.2.4 Forecasting with the FAR model
Suppose we have the FAR(1) model

yt1 = µ + φ1 cos z(yt1−1) − φ
∗
1 sin z(yt1−1) + εt,

(1 − φ1 cos z − φ∗1 sin z)(yt1 − µ) = εt,
(4)

where z = 2πk/ω and µ is a constant. The model in (4) can be written as

yt1 − µ =
[
(φ1 cos zyt1−1 − φ

∗
1 sin zyt1−1) − µ

]
.

The general form of the forecast equation is given as

ŷl = µ +
[
(φ1 cos zyt1(l − 1) − µ) + (φ∗1 sin zyt1(l − 1) − µ)

]
= µ +

[
(φl1 cos zyt1(l − 1) − µ) + (φ∗l1 sin zyt1(l − 1) − µ)

]
, l ≥ 1.

2.2.5 Forecast evaluation for the FAR process
Once the forecast is obtained, an evaluation is computed to determine if the actual values of the series
forecast are observed. The forecast evaluation was based on the periodic root mean square error
(PRMSE), the periodic mean absolute error (PMAE) and the periodic mean absolute percentage error
(PMAPE). These are defined by

PRMSE =

√√√
1

tν + 1

p−1∑
tν=1
(ŷtν − ytν)2,

PM APE =

����� p−1∑
tν=1

ŷtν − ytν

ŷtν

����� ,
and

PM AE =
1

tν + 1

p−1∑
tν=1
| ŷtν − ytν |,

where tν = 1,2, . . . , p − 1. The actual and predicted values for corresponding tν values are denoted
by ŷtν and ytν respectively. The smaller the values of PRMSE, PMAPE and PMAE, the better the
forecasting performance of the model.
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2.2.6 Seasonal autoregressive integrated moving average (SARIMA) model
The seasonal autoregressive integrated moving average was proposed by Box et al. (2008) and it is
an extension of the autoregressive integrated moving average developed by Box and Jenkins (1970).
A seasonal ARIMA model can be defined as

φp(BS)Φ(B)∇DS ∇
dXt = Θq(BS)θ(B)εt,

where {εt } is the usual Gaussian white noise process and S is the period of the time series. The
ordinary autoregressive and moving average components are represented by polynomials φ(B) and
θ(B) of orders p and q, respectively. The seasonal autoregressive and moving average components
are Φ(B)(BS) and Θ(B)(BS) where P and Q are their orders. ∇d and ∇DS are ordinary and seasonal
difference components and B is the backshift operator.

3. Result and discussion
The Nigerian monthly rainfall series from January 1993 to December 2017, collected from the
Nigerian Meteorological Agency (2017), Lagos, given in Figure 1, was analysed. The rainfall series
exhibited seasonal and periodic variations and this informed the use of FAR and SARIMA models.
A critical look at the PeACF and PePACF for January to December showed that the PeACF was

stable and the PePACF cuts off at lag 2, so tentatively FAR(1), FAR(2) and FAR(3) were chosen
for the January to December rainfall series. The discrete Fourier transform estimation method was
used to obtain the coefficients of the FAR(1), FAR(2) and FAR(3) models. Based on the smallest
values of the periodic Akaike (PAIC) and Bayesian information criteria (PBIC) given in Table 1 after
estimation, the FAR(1) model was chosen as the optimal model and estimation results are as follows:

yjan = 3.163271 − 1.133662 cos(t)yt−1 − 0.742311 sin(t)yt−1,

y f eb = 9.345211 + 2.342522 cos(t)yt−1 + 0.644311 sin(t)yt−1,

ymar = 25.343171 − 2.192561 cos(t)yt−1 + 0.184311 sin(t)yt−1,

yapr = 63.153379 + 6.193441 cos(t)yt−1 − 0.7420011 sin(t)yt−1,

ymay = 121.365321 + 5.340560 cos(t)yt−1 + 1.582314 sin(t)yt−1,

yjun = 167.563271 − 8.127563 cos(t)yt−1 − 0.342311 sin(t)yt−1,

yjul = 321.153101 − 10.053568 cos(t)yt−1 − 0.043311 sin(t)yt−1,

yaug = 325.165211 − 12.135567 cos(t)yt−1 − 0.152311 sin(t)yt−1,

ysep = 202.261171 + 3.147566 cos(t)yt−1 + 0.900311 sin(t)yt−1,

yoct = 102.263471 − 6.123561 cos(t)yt−1 − 0.812001 sin(t)yt−1,

ynov = 98.165221 − 7.143561 cos(t)yt−1 − 0.122901 sin(t)yt−1,

ydec = 2.963171 + 0.823900 cos(t)yt−1 + 0.542311 sin(t)yt−1,

where t = 2πk/ω. The periodic residual autocorrelation for the FAR(1) models showed the residuals
are approximately white noise, hence the models can be used to forecast the Nigerian monthly rainfall
series.
For the SARIMAmodel, the augmented Dickey–Fuller test showed that the Nigerian rainfall series

was stationary at the first difference at the 1%, 5% and 10% levels of significance with a p-value of
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Figure 1. Rainfall series plot from January 1993 to December 2017.

< 0.001, and hence d(order of integration) = 1. The partial autocorrelation function tailed off and
the autocorrelation function cut off after lag 1, hence the four suggested models for the rainfall series
are SARIMA(1,1,1) x (1,1,1)12, SARIMA(2,1,2) x (1,1,1)12, SARIMA(1,1,2) x (1,1,1)12 and
SARIMA(2,1,1) x (1,1,1)12. The four suggested models were estimated using ordinary least squares
estimation and the optimal model for the rainfall series was SARIMA(1,1,1) x (1,1,1)12 based on
the smallest values of the estimated Akaike information criterion (AIC) and Schwarz information
criterion given in Table 2. The periodic residual autocorrelation test revealed that the residuals for
each period are normally distributed and are white noise. Therefore, SARIMA(1,1,1) x (1,1,1)12
is adequate for forecasting Nigerian rainfall. The out-sample forecast was obtained for the Nigerian
monthly rainfall series from January 2018 to December 2019 using the FAR(1) and SARIMA(1,1,1)
x (1,1,1)12 models. The out-sample forecast for both models is given in Table 3 and Figure 2. The
results exhibit continuous periodic and seasonal movements from January 2018 to December 2019
for both models, but the periodic movement in the rainfall series forecast is better shown with FAR(1)
because the forecast is a close reflection of the original series from January 1993 to December 2017.
The values of the forecast evaluation for both models in Tables 4 and 5 show that the forecasts
were consistent and accurate but that the FAR(1) model forecasts were more accurate since their
forecast evaluation values were relatively lower. Hence, the Fourier autoregressive model is adequate
and suitable for modelling and forecasting periodicity and seasonality in the Nigerian rainfall time
series data. The residual autocorrelation test revealed that the residuals are normally distribution and
are white noise. Therefore, the SARIMA(1,1,1)x(1,1,1)12 model is adequate to forecast Nigerian
rainfall.
Out-sample forecasts were obtained for Nigerian monthly rainfall from January 2018 to December

2019 using the FAR(1) and SARIMA(1,1,1)x(1,1,1)12 models. The out-sample forecast for both
models are given in Table 3 and Figure 2. The results exhibit continuous periodic and seasonal
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Table 1. Information criteria for FAR models.

Month(s) Inf. Criteria FAR(1) FAR(2) FAR(3)

JANUARY PAIC 3.430102* 3.455248 3.541566
PBIC 3.578210* 3.702095 3.887152

FEBRUARY PAIC 5.621061* 5.684433 5.839269
PBIC 5.769169* 5.931279 6.184854

MARCH PAIC 7.344116* 7.479084 7.503036
PBIC 7.492224* 7.725931 7.848621

APRIL PAIC 8.621772* 8.7137 8.721801
PBIC 8.769880* 8.960547 9.067386

MAY PAIC 8.962050* 9.014371 9.144934
PBIC 9.110158* 9.261218 9.490519

JUNE AIC 8.862177* 8.929468 9.097053
BIC 9.010285* 9.176315 9.442639

JULY AIC 10.21054 * 10.34706 10.52046
BIC 10.35865 * 10.59391 10.86605

AUGUST AIC 9.501169* 9.638035 9.67652
BIC 9.649277* 9.884881 10.02211

SEPTEMBER AIC 9.421283* 9.584354 9.701643
BIC 9.569391* 9.8312 10.04723

OCTOBER AIC 9.011679* 9.250466 9.054205
BIC 9.27657 * 9.497312 9.39979

NOVEMBER AIC 9.030679* 9.250466 9.054205
BIC 9.278787* 9.497312 9.39979

DECEMBER AIC 4.626287* 4.75582 4.907723
BIC 4.774395* 5.002667 5.253309

Table 2. Information criteria for SARIMA models.

SARIMA SARIMA SARIMA SARIMA
(1,1,1) x (1,1,1)12 (2,1,2) x (1,1,1)12 (1,1,2) x (1,1,1)12 (2,1,1) x (1,1,1)12

Akaike info criterion 9.047474 9.065214 9.053132 9.057689
Schwarz criterion 9.100221 9.144543 9.119065 9.123796
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Table 3. Out-sample Forecast of Nigerian Rainfall series from January 2018 to Decem-
ber 2019.

S/N Month(s) Forecast with FAR(1) Forecast with SARIMA(1,1,1)x(1,1,1)12

1 Jan-2018 3.8648 2.94521
2 Feb-2018 13.5153 7.97545
3 Mar-2018 132.2314 23.1458
4 Apr-2018 34.0749 93.6134
5 May-2018 649.8104 121.723
6 Jun-2018 689.5175 125.624
7 Jul-2018 474.2523 165.923
8 Aug-2018 388.8888 218.061
9 Sep-2018 821.4758 245.435
10 Oct-2018 105.5695 98.9342
11 Nov-2018 95.0692 9.9567
12 Dec-2018 2.9225 2.43258
13 Jan-2019 5.7203 1.62353
14 Feb-2019 20.9143 10.6348
15 Mar-2019 133.2610 50.7535
16 Apr-2019 33.0023 29.0345
17 May-2019 689.7604 81.3456
18 Jun-2019 669.5021 165.234
19 Jul-2019 474.2523 130.192
20 Aug-2019 388.8888 255.46
21 Sep-2019 921.5758 180.43
22 Oct-2019 114.2595 115.423
23 Nov-2019 96.0132 11.5454
24 Dec-2019 3.0225 2.56701

movements from January 2018 to December 2019 for both models. But the periodic movement in
the rainfall series forecast are better shown with FAR(1) because the forecast is a close reflection of
the original series from January 1993 to December 2017. The values of the forecast evaluation for
both models in Tables 4 and 5 show that the forecasts are consistent and accurate but the FAR(1)
model forecasts are more accurate since their forecast evaluations values are relatively lower. Hence,
the Fourier autoregressive model is adequate and suitable for modelling and forecasting periodicity
and seasonality in the Nigeria rainfall time series data.

4. Conclusion
This research presented time series model building using the Fourier autoregressive model (FAR).
A FAR model was used to analyse Nigerian monthly rainfall data collected by NIMET (2017)
between January 1993 and December 2017. FAR(1), FAR(2) and FAR(3) models were chosen
based on the PeACF and PeACF. The coefficients of the tentative model were estimated using a
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Figure 2. Monthly rainfall forecast from January 2018 to December 2019.

Table 4. Forecast evaluation for the FAR(1) model.

Month(s) Mean Absolute Percent Root Mean Square Mean absolute
Error of FAR(1) Error of FAR(1) error of FAR(1)

January 4.34728 2.08501 0.53143
February 34.00119 5.83105 2.34187
March 37.02215 6.08458 8.32480
April 23.16132 4.81262 11.08643
May 12.20014 3.49287 15.54210
June 9.172527 3.02862 12.80761
July 11.00311 3.31709 24.23190
August 2.09120 1.44610 17.34786
September 10.19090 3.19232 19.08512
October 17.56370 4.19091 13.52198
November 19.17569 4.37901 16.87124
December 73.32516 8.56301 0.09312

Table 5. Forecast evaluation for the SARIMA(1,1,1)x(1,1,1)12 model.

Forecast Evaluation Value

Mean absolute percent error 90.048
Root Mean square error 9.61
Mean absolute error 25.03
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discrete Fourier transform estimation. The FAR(1) model was chosen as the optimal model based
on the smallest value of the periodic Akaike (PAIC) and Bayesian information criteria (PBIC). The
residuals of the fitted models were diagnosed to be white noise. For comparison purposes, the
augmented Dickey–Fuller test was used to show that the Nigerian rainfall series was stationary at
the first difference. SARIMA(1,1,1) x (1,1,1)12, SARIMA(2,1,2) x (1,1,1)12, SARIMA(1,1,2) x
(1,1,1)12 and SARIMA(2,1,1) x (1,1,1)12 models were identified based on the ACF and PACF. The
four suggested models were estimated using ordinary least squares estimation and the optimal model
was SARIMA(1,1,1)x(1,1,1)12 based on the smallest value of the AIC and SBIC. The residual
autocorrelation test revealed the residuals are white noise. Out-sample forecasts were obtained
for the Nigerian monthly rainfall series from January 2018 to December 2019 using the FAR(1)
and SARIMA(1,1,1) x (1,1,1)12 models. The results exhibited continuous periodic and seasonal
movements from January 2018 to December 2019 for both models, but the periodic movement in
the rainfall series forecast was better shown with the FAR(1) model because the forecasted values
are a close reflection of the original series from January 1993 to December 2017. The values of the
forecast evaluation for both models showed the forecasted values were consistent and accurate but
the FAR(1) model forecasts were more accurate since their forecast evaluation values were relatively
lower. Hence, the Fourier autoregressive model is adequate and suitable for modelling and forecast
periodicity and seasonality in the Nigerian rainfall time series data. Hence, this model can be applied
to forecast rainfall anywhere if the series is characterised by periodic variation.
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