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Billing fraud by health care providers is a widespread problem to a country’s health care
system. This article develops a general theory for estimating the billing error in medical claims
within pre-specified error bound using auxiliary information on the average payment amount
made by all persons in the population. Estimation methods with pre-specified sample size
cannot be used to achieve the fixed-width confidence interval for billing error. In this article
we propose two two-stage procedures for accuracy in estimating billing error in medical claims
using sample standard deviation and sample Gini’s mean difference as estimators of population
standard deviation. This problem is the same as constructing a fixed-width confidence interval
for billing error. In two-stage estimation procedures, the final sample size is not fixed in
advance by using supposed unknown population parameter(s). Data in two-stage procedures
are collected in two stages in which the final sample size is based on the estimate of the
unknown parameter(s) in the first stage. The comparison of the proposed two-stage procedures
are examined using a Monte Carlo simulation study.

Key words: Gini’s mean difference, Optimal sample size, Stratified sampling, Two-stage
procedure.

1. Introduction

Detecting billing fraud by health care providers is a very important and relevant problem. Often
there are cases of over-billing by health care service providers (hospitals, doctors and others) for
their services. This is a concern for agencies responsible for reimbursing medical bills. The U.S.
Department of Health & Human Services website reported that “a nationwide take down by Medicare
Fraud Strike Force operations in six cities has resulted in charges against 90 individuals, including
27 doctors, nurses and other medical professionals, for their alleged participation in Medicare fraud
schemes involving approximately $260 million in false billings” (e.g. CMS, 2017). Like over-billing,
under-billing can also have significant financial effects. Both under-billing and over-billing come
under medical care fraud which may result in costly audits and legal consequences (GAO, 2016).

In order to verify possible fraud, the agencies have designed sampling plans to check the submitted
bills in detail. Cohen and Naus (2007) proposed a stratified sampling design in order to compute the
lower confidence bound for the amount of over-/under-billing in which several strata were formed
based on the claim amount. From each stratum samples are independently drawn to determine the
necessary size of an audit sample to ensure a 95% confidence level for the absolute error in payment
amount. For a discussion on the application of stratified sampling in billing error estimation, one may
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refer to WHCA (2014) published in the Washington State Health Care Authority. In fact, stratified
sampling design is widely used in the field of healthcare management. For details, we refer to Cohen
and Naus (2007), Buddhakulsomsiri and Parthanadee (2008) and Kim et al. (2013).

In general, the length of a 100(1 — @)% confidence interval for a parameter decreases if we increase
the sample size, but this in turn increases the overall sampling cost. On the other hand, a smaller
sample might decrease the sampling cost but it might increase the width of the confidence interval.
One way to solve this problem is to fix the length of the confidence interval and try to minimise
the sample size or, in other words, the sampling cost. Since accuracy is a matter of concern, a
fixed-width 100(1 — @)% confidence interval for the absolute error in payment amount is desired
under the following scenario:

* observations are drawn from a finite population divided into several strata.
¢ an auxiliary information on the sum of payment amounts made by all persons in the population.

In general, the problem of finding a fixed-width confidence interval for a parameter cannot be solved
with a pre-specified sample size. This problem can only be solved using two-stage or multi-stage
sampling methods in which sample sizes are not pre-fixed. The final sample size depends on the
statistical analysis carried out on the already collected observations. For an extensive review of the
literature on two-stage procedure, one may refer to Mukhopadhyay and De Silva (2009) and Ghosh
et al. (1997), among others.

1.1 Contribution of this paper

There exist several articles on detecting insurance billing fraud in medical claims. Examples of work
on measurement and billing fraud detection methods include Upadhyaya and Singh (1999), Cohen
and Naus (2007), Li et al. (2008), David et al. (2013) and Johnson and Nagarur (2016). However,
none of the methods can be used to measure the amount of insurance billing fraud within a pre-
specified error bound. In this article we are going beyond the contribution of Cohen and Naus (2007)
by proposing two two-stage procedures to obtain the optimal sample size from each stratum and
thereby construct a fixed-width confidence interval for the billing fraud amount using the auxiliary
information without using any data distribution. Characteristics of both the procedures are discussed
using Monte Carlo simulation.

The organisation of the remainder of the paper is as follows. We formulate the fixed-width
confidence interval in the payment amount based on an auxiliary information in Section 2. Section 3
presents the two-stage procedures — one based on sample standard deviation and the other is based
on sample Gini’s mean difference required to compute a fixed-width 100(1 — @)% confidence interval
for the payment amount based on auxiliary formation. In Section 4, we assess and compare the
performance of both two-stage procedures using a simulation study. Section 5 presents an illustration
of the two-stage procedure using a dataset followed by concluding remarks in Section 6.

2. Estimation of absolute error in payment amount

We recall that stratified design using simple random sampling without replacement is used in esti-
mating billing error in medical claims. The goal is to construct a 100(1 — @)% fixed-width confidence
interval for the average amount of billing error in the population, ¥, when the information on the
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average payment amount (X) made by all persons in the population are available. The corresponding
error rate in the payment amount is R = ¥ /X.

Suppose there are H strata, with Nj, persons in the Ath stratum. The variable of interest is the
amount of payment error on a sample claim. For the ith person belonging to the Ath stratum we
define y;;, = |Amount billed and actually paid — Amount that should have been billed and paid| and
X;p, = Actual paid amount.

Also, suppose that X is the sum of payment amounts made by all persons in the population. This
quantity is usually known. Also, suppose Y is the unknown total billing error in the population. X
and Y are the corresponding population averages from N individuals. Then the corresponding error
rate in payment amount is R = ¥/X. Additionally, suppose X, S, and ¥,, S)z,h are population means
and variances corresponding to the Ath stratum based on (xi, . .., xn, ) and (y1,. . ., ¥, ), respectively,
and Sy, is the population covariance based on (x1,...,xn,) and (y1,...,¥n, ).

Next, a sample of nj, persons is drawn via simple random sampling without replacement from the
hth stratum containing Nj, persons in total. Let y;, and X;, be the sample means from n; persons
drawn from the Ath stratum. Also, let n(= Zthl ny,) be the total sample size. The corresponding
ratio estimator for the absolute error in payment amount is given by

H —

5 _ 5 v = -1 WhYh N,

Y, = R, X, where R,, = Z’:l—)_] and wy, = —h
Zh:l WhXp N

For details about ratio estimators, one may refer to Cochran (1977), Jhajj and Walia (2012) and
others. In fact, depending on the situation, one may use other suitable estimators. For example,
one can use the Sisodia—Dwivedi estimator if the population coefficient of variation of the actual
paid amount is known, or the Upadhyaya—Singh estimator when both population kurtosis and the
population coefficient of variation of the actual paid amount are known, etc. For details, one may
refer to Sisodia and Dwivedi (1981), Upadhyaya and Singh (1999), Singh and Vishwakarma (2008)
or Solanki and Singh (2016).

Using Taylor’s theorem, similar to equation (A3) of Chattopadhyay and De (2016) or equation (73)
of Kelley et al. (2018) or equation (81) of Kelley et al. (2019), we have

e Y 1. ¥ 1. . R_
R,—-R=——-——==— -Y)- — _X+En:T -Y)-—= <—X+E,
n % X X Vst ) 32 (X ) X (Vs ) X (X ) n

where,
En = =2(se = D)Eye = X)/0? + da(is - X)/ 1,

witha = Y+p(Fs-Y), b = X+p(is—X)forp € (0,1). Also, Xy = 2;;1:1 wpXp and yg; = Z,’;’zl Wi h.
Thus, we have

H
V(Y = Y) = Vn(3s = Y) = R\n(x%, — X) + VnE, = \/ﬁz wi [(Gn = ¥a) = R(%n — Xi)| + VE,.

h=1

Asn — oo, E, 5. By the central limit theorem, if 7 is large, Vn(¥, — Y) 9, N(0,V), where

H 2

w Mh\ 2 22
V = E LN S% + R°S%, —2RS .
n Z4 ”lh( Nh)(yh xh xyh)
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We note that Var(3s) = X4L(Sy, /nn) (1 = nn/Ny), Var(¥) = 50,3, /mn) (1= ny,/Ny), and

Cov(Fn- %n) = Xy (Sxyn/mn) (1 = ni [ Ny). i
Thus the approximate 100(1 — @)% confidence interval for Y is given by

(Yn = Zajp V(). Yo + Za/z\/@) ,

where

H
V() = > wi (i - L) S2, where, 2 = 52, — 2RS,yn + R2S2,,. (1)
i~ np - Ny Y

Equation (1) can also be found in Cochran (1977). The assumption that the population size (Ny,)
of each of the strata is also large is valid due to the nature of application and hence a large sample
approximation can be considered. Under optimum sample allocation, the sample size for the Ath
stratum is ny, = nwy Sy, / Zf:l wpSp. So, under optimal allocation, the total optimal sample size that
will be required to construct an approximate 100(1 — @)% fixed-width confidence interval of width
2d(> 0), say, of the average absolute error in billing amount in the population, Y, is

2
NXlz—ar;l (ZZI:I WhSh)
ng = . 2
d’N + Xlz—agl (lez-l:l thi)

Note that the population variance Sfl is usually unknown. So, one cannot find the optimal sample
size ng using (2). We use a two-stage procedure to find an estimate of the optimal sample size, ng,
required to get a fixed-width interval for average absolute error in billing amount in the population.

For estimating population variance, we generally use the sample standard deviation (SD). However,
the use of alternative estimators of population standard deviation like Gini’s mean difference (GMD)
is also well studied. In fact, Yitzhaki et al. (2003) Mukhopadhyay and Chattopadhyay (2011),
Mukhopadhyay and Chattopadhyay (2012) and Chattopadhyay and Mukhopadhyay (2013) proposed
a GMD-based estimator of population variance in case of non-normality and also in the presence
of suspect outliers in case of normal distribution. In the absence of any specific data distribution,
we may use sample GMD and sample SD as competing estimators of population standard deviation,
Sn. In the next section, we propose two two-stage procedures: a SD-based two stage procedure,
a procedure in which sample SD is used as an estimator of S, and a GMD-based procedure, a
procedure in which sample GMD is used as an estimator of S,.

3. Two-stage methodology
We suggest the following SD-based and GMD-based two-stage procedures:

Stage 1: Draw a pilot sample of pre-specified size, my, from the hth (h = 1,2,...,H) stratum
using simple random sampling without replacement. Thus, we have a sample of m(= Z}l;l:l my,)
observations. Obtain estimates of stratum means using pilot sample corresponding to each stratum.
Using the my, observations from the hth, we obtain Xy, and yj,, and compute

Ro= Zpl;lzl WhYhm

m — H — .
D=1 Whxhm
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Also, for the Ath strata, fori = 1,...,my, define v;;, = y;, — Ry xi; and compute an estimate of Sy,
defined as sp,,. In this case, use

[ﬁ it in — 171,)2] 1/2 if sample SD is used as an estimator of S,

Shm =

-1 . . .
(n;h) Z:_Zhl Z;"lei<j [vin — vjn|  if sample GMD is used as an estimator of Sj,.

Compute the combined sample size of the two-stage procedure based on sample SD or sample GMD
as

2 H 2
NX{_an1 (Zh:l thhm)

d’N + Xlz—a;l (ZII;[:] thim)

n, = max |m,

3

If the optimal sample size Nx? | (X2 wispm)?/(d*N + x?_ (572 was?, ) < m, stop sampling
and report the final sample size as n, = m. If n, > m, follow Stage 2.

Stage 2: Under optimal allocation, for allocating the remaining (n, — m) observations among the H
strata, we re-define the weights. For the Ath stratum, the weightis given by wy, = (N, — my,) /(N — m).

Thus, the estimated optimal sample size for the Ath stratum is
nop = (no = M)W1nSpm
(4 - H .
Zh:l WihShm

We collect the remaining (n, — m) observations in such a way that, in the Aith stratum, we collect n,,
pairs of observations. Suppose ¥p,,, and Xp,,, represent the (Stage-2) sample means corresponding
to X and Y, then the ratio estimator of the average absolute error in payment amount is

H mhyhm"’”ohyhnoh
Zh:l Wh ( mp+nop

H mhth"'nohxhnoh :
Zh=1 Wh ( mp+nop

Y,, = R, X, where R, =

The 100(1 — @)% fixed-width confidence interval for the average of absolute error in billing amount,
Y, is
(T, — d. T, +d) . @)

3.1 Modification of Stage 2

Suppose for the Ath (h = 1,2, ..., H) stratum the Stage 2 optimal sample size is such thatn,, > Njp—my,.
In such a case, define n,;, = N, — my,. For the stratum 2'(# h) = 1,2, ..., H, with n,p < Ny — myy,

redefine , ,
(Mo = M = Rop)Win'Sh'm N, —my,
, where wyjy = —————.
N —m — noh

Nop = 77
Zh’(#h)=1 Wih'Sh'm

We continue modifying the optimal sample sizes for each stratum in a similar way until n,, < N, —my,
forall 4 = 1,2,..., H and then draw observations on X and Y to get the fixed-width confidence interval.
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Table 1. Parameters of stratified population.

Cases Stratum (h)  Nj Xn, ) (S)zch, Sﬁh, Sxyh)
1 3000 (323.8455, 32.9444) (10355.4, 549.9568, — 12.0747)
1 2 5000 (400.7421, 39.8678) (16496.62, 802.8175, 166.6778)
3 2000  (478.7529, 48.0044) (23602.6, 1096.4360, 137.87)
1 3000 (1096.412, 154.313)  (749.8012, 2255.842, —7.270515)
2 2 5000 (2982.361, 153.136)  (10945.95, 1512.257, — 94.35078)
3 2000 (8102.661, 157.0822) (56272.53, 3298.059, 600.4041)

3.2 A note

The two-stage procedure discussed here can easily be extended to the sample size planning method
given by Cohen and Naus (2007). The authors proposed a method in which the sample size is
computed assuming the population standard deviation, which is highly unrealistic. We may easily
adopt our two-stage procedure in order to estimate the required stratum sizes.

4. Performance via simulation study

We now evaluate the performance of our proposed two-stage procedures via a simulation study. We
consider a population of size N = 10000 with H = 3 strata. We consider two scenarios:

Case 1: For the first stratum, to get observations on y;; (i = 1,...,N;) we randomly selected
3000 observations from a Gamma distribution with shape parameter 10 and scale parameter 4 and
multiplied each observation with 50. Now, to get observations on x;; (i = 1,...,N;), we randomly
selected 3 000 observations from a Gamma distribution with shape parameter 10 and scale parameter
2 and multiplied each observation with 40. Thus we have a pair of 3 000 observations for the first
stratum. In the same way, we collected 5 000 pairs for the second stratum, and the remaining 2 000
pairs for the third stratum and then we respectively added 10 to each pair of the second stratum and
20 to each pair of the third stratum.

Case 2: In this scenario, we use the following to draw 3 000 pairs of random observations from
Stratum 1, 5 000 pairs from Stratum 2 and 2 000 pairs from Stratum 3:

vi1 ~ Lognormal (5,0.3), y;» ~ Lognormal (5,0.25), y;13 ~ Lognormal (5,0.35), x;; ~ Lognormal
(7,0.025), x;» ~ Lognormal (8,0.035), x;13 ~ Lognormal (9,0.03).

Considering the data obtained in each of the various scenarios as a population, we detail the
stratum-wise population means, variances and the covariances in Table 1.

To implement the two-stage procedure in this simulation study, we fix d = 2, @ = 0.1,0.05.
Suppose from all three strata we select my, (= 50) pair of observations from the above population as
our pilot sample. Thus in the pilot stage we have 300 (= m) observations in total. Based on the pilot
sample, we implemented the two stage procedure to compute n, as given in equation (3) and then
the confidence interval given in (4).

This whole process is repeated 10 000 times and the results are given in Table 3 which presents the
overall average final sample size, 7, (which estimates n4) from 10 000 replications, the ratio of the
average of the estimated final sample sizes for each stratum and optimal sample sizes and the overall
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Table 2. Characteristics: Two-stage procedure.

Case «  Estimator 1o Na  Tot/Mai, o2 /nanTiea/nas  fo/na  CP(p)
of Sy s(7i,) s(p)

1 0.1 SD 573.7707 581 1.0664, 0.9046, 1.0755  0.9876  0.8601
1.0051 0.0035

1 0.1 GMD 679.3835 581 1.2440, 1.0835, 1.2653 1.1693 0.8825
1.0681 0.0032

1 0.05 SD 793.8603 805 1.0435,0.9292, 1.0483  0.9862  0.9086
1.3581 0.0029

1 0.05 GMD 935.8187 805 1.2154,1.1031,1.2337 1.1625 0.9231
1.4336 0.0027

2 0.1 SD 1210.378 1224 0.9949,0.9680, 1.0184 0.9889 0.8920
1.6377 0.0031

2 0.1 GMD 1442.659 1224  1.1827,1.1663,1.1956 1.1786  0.6796
1.7129 0.0047

2 0.05 SD 1626.137 1651 0.9893,0.9717 ,1.0033 0.9849 0.9418
2.1054 0.0023

2 005 GMD 1920.749 1651  1.1659,1.1587,1.1690  1.1634 0.6956
2.1626 0.0046

ratio and the coverage probability, CP (p) obtained from the total sample of size n,. Moreover, S(Z)
and s(p) represent the standard errors of 77, and p, respectively.

The sixth and seventh columns of Table 2 indicate that average sample sizes, both overall and
stratum-wise, for the SD-based two stage procedure are almost the same as the optimal sample size
ng, in the sense that the ratio is close to 1. Thus, in table 2, among the two procedures, we find that
on average the proposed SD-based two-stage procedure performs well compared to the GMD-based
procedure in terms of sampling cost, both overall and stratum-wise.

The last column illustrates that the coverage probability is not significantly different than 1 — « for
the SD-based two-stage procedure. Even though for the first case (when the observations are drawn
from the Gamma distribution), the coverage probability of the GMD-based procedure is closer to the
target than the SD-based procedure, but performed poorly in the second case (when the observations
are drawn from the Lognormal distribution). Therefore for non-normal data as well, the simulation
study indicates that the SD-based two-stage procedure is preferred over the GMD-based two-stage
procedure for constructing the fixed-width confidence interval for the average billing error.

5. An illustration

In this section, we provide a realistic example based on the dataset (Tables 1 and 2) in Cohen and
Naus (2007) in which the population was divided into six strata. As an illustration of our two-stage
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Table 3. Estimated average final sample size.

a,d Strata m;,  Nj Nos  Nog
1 4 4000 873 1135
2 6 2200 487 605
0.05, 10 3 6 1000 220 270
4 6 500 95 113
5 8 200 112 135
6 6 100 91 99
1 4 4000 713 969
2 6 2200 398 517
3 6 1000 180 230
0.1, 10 4 6 500 78 97
5 8 200 91 115
6 6 100 74 85

procedures, we consider the pairs of observations contained in Table 2 of Cohen and Naus (2007) as
the pilot sample observations for each stratum. Using the pilot sample observations and the SD- and
GMD-based two-stage procedures, we compute the final sample size for each stratum required to get
the fixed-width confidence interval for the average billing error in the whole population. In Table 3,
my, refers to the pilot sample size for each stratum and Ny, refers to the total number of observations
in the stratum. The last two columns, n,s and n,, indicate the estimated optimal sample size given
by the SD-based two-stage procedure and the GMD-based two-stage procedure for each stratum.

Similar to the simulation study, we find that the GMD-based two-stage procedure requires a larger
sample size from each stratum than the SD-based two-stage procedure.

6. Concluding remarks

Billing fraud in medical claims is a common problem in health-care systems in many countries.
A stratified sampling design is often used for auditing the medical claims. With no distributional
assumption, this article develops two-stage procedures based on sample GMD and sample SD for
estimating the billing error in medical claims within a pre-specified error bound, provided the sum
of payment amounts made by all persons in the population is known. Several authors proposed that
sample GMD is a suitable estimator of the unknown population standard deviation when the data
distribution deviates from normality. Apart from sample SD, sample GMD is also considered as an
estimator of the finite population standard deviation in order to formulate the two-stage procedure.

Both SD- and GMD-based two-stage procedures are studied using Monte Carlo simulation. The
SD-based two stage procedure is found to be more efficient than the GMD-based procedure in terms
of final stratum-wise sample sizes. Also the corresponding coverage probability is not significantly
different from the target coverage probability unlike in some cases of the GMD-based two-stage
procedure. However, both these properties seem to be lacking in the GMD-based procedure.

Unlike the fixed sample size procedures, the basic concept of two-stage procedures revolves
around the idea of estimating the required optimal sample size based on the pilot sample. Recent
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methodological advances in the medical claim fraud domain revolve around the fraud detection
methods. However, the estimation of the actual fraud amount with a pre-specified accuracy is also
important and we believe that this is the first article, with a practical approach, to make developments
in this area.
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