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Linear inference is the foundation stone for much of theoretical and applied statistics. In
practice errors often have excessive tails and are lacking the moments required in conventional
usage. For random vector responses such errors often are modeled via spherical α-stable
distributions with stability index α ∈ (0, 2], arising in turn through central limit theory but
converging to non-Gaussian limits. Earlier work [Jensen, D.R. (2018). Biom. Biostat. Int. J. 7:
205–210] reexamined conventional linear models under n-dimensional α-stable responses, to
the effect that Ordinary Least Square (OLS) solutions and residual vectors under α-stable
errors also have α-stable distributions, whereas F ratios remain exact in level and power
as for Gaussian errors. The present study generalizes those findings to include multivariate
linear models having matrix responses of order (n × k). Topics in inference focus on both
location and scale matrices, the latter in connection with analogs of simple, multiple, and
canonical correlations without benefit of second moments, seen nonetheless to gauge degrees
of association under α-stable symmetry.

Key words: Central limit theory, Excessive errors, Linear inference, Stable laws.

1. Introduction
In the model {Y =XB +E} the rows of Y (n × k) are observed responses, X(n × r) the regressors,
B(r × k) the regression coefficients, and E(n × k) an array of random errors. Classical linear
inference is cast in the currency of means, variances, correlations, skewness and kurtosis, requiring
moments to fourth order. All are met under the traditional requirement that the rows of Y be
mutually independent and Gaussian. To the contrary, errors having excessive tails often lack first or
second moments; venues for these include acoustics, image processing, radar tracking, biometrics,
portfolio analysis, risk management, and others. For an overview see Samorodnitsky and Taqqu
(1994). In addition, normality is often deemed to be nonrobust, whereas dependent but uncorrelated
responses are encountered in time series and econometrics. In consequence, the classical foundations
must be reworked, to include dependent sequences having excessive tails. Accordingly, this study
continues the work of Jensen and Good (1981) on structured distributions, to include α-stable matrix
distributions.

Non-Gaussian alternatives in wide usage include Sn(0,Σ) as elliptically contoured on Rn having
location-scale parameters (0,Σ), as in Fang and Anderson(1990), Fang and Zhang (1990), Gupta
and Varga (1993), and numerous archival sources. Excessive tails often are modeled via symmetric
α-stable (SαS) distributions Sαn (0,Σ) in Sn(0,Σ) with index α ∈ (0, 2 ]. As foundations to practice,
these are the limit distributions for standardized vector sums, namely, Gaussian limits (α = 2),Cauchy
limits (α = 1), and corresponding stable limits otherwise. Despite the venues cited, α-stable errors

MSC2010 subject classifications. 62E15, 62H15, 62J20.

South African Statistical Journal
Vol. 54, No. 1, 25–43
https://doi.org/10.37920/sasj.2020.54.1.3
© 2020 South African Statistical Association

25



have seen limited usage for want of closed expressions for their density functions, known in selected
cases but topics of continuing research. Developments here rest heavily instead on the characteristic
functions of distributions, their representations, and their inversion into α-stable densities. Even
here a divide emerges between independent, identically distributed (i.i.d. ) α-stable sequences, and
dependent SαS sequences, these having disparate limit properties as reported in Jensen (2017).

This study undertakes extensions of Jensen (2018) for α-stable distributions in Rn, to include
α-stable matrix distributions in Fn×k of order (n × k), and their elliptical matrix versions Sn,k(0,Ξ).
A key development entails embedding Fn×k → Rnk, enabling in turn the transfer to Sn,k(0,Ξ) of
essential properties widely known for Sn(0,Σ) on Rn. In addition, many findings of the present
study are genuinely nonparametric, in applying for all or portions of SαS distributions in the range
α ∈ (0, 2], and thus remaining distribution-free within that class. An outline follows.

Notation and technical foundations are provided next. Subsequent sections develop essentials for
structured matrix distributions, and their special role in regard to {Y = XB + E} subject to SαS
errors. In particular, topics in estimation and hypothesis testing are presented separately for the
location-scale parameters (B,Ξ), where Ξ = In ⊗ Σ, to include models having Cauchy errors. A
comprehensive collection of supporting materials is contained for completeness in Appendix A.

2. Preliminaries
2.1 Notation
Spaces of note include Rn as Euclidean n-space; Sn and S+n as the real symmetric (n×n) matrices and
their positive definite varieties; and Fn×k as the real matrices of order (n×k).Vectors and matrices are
set in bold type; the transpose, inverse, trace, and determinant ofA areA′,A−1, tr(A),and |A|; the unit
vector in Rn is 1n = [1, . . . ,1]′; and In is the (n × n) identity. For A ∈ S+n, Ch(A) = [α1 ≥ . . . ≥ αn]
are its characteristic values, A 1

2 its spectral square root, and Cnd(A) = α1/αn its condition number
as in von Neumann and Goldstine (1947). Moreover, Diag(A1, . . . ,Ak) is a block-diagonal array,
and for A(n × n) and B(k × k), the Kronecker product is A ⊗ B = [ai jB] of order (nk × nk). In
addition, essential matrix orderings are as follow.

Definition 1. (i) Matrices (G,H) in Sk are ordered as G �L H if and only if (G−H) is positive
semidefinite; see Loewner (1934);

(ii) Matrices (A,B) in Fn×k are ordered as A � B if and only if A′A �L B ′B; see Jensen
(1984);

(iii) The orderings G �L H and A � B are strict when (G −H) and (A′A −B ′B) are positive
definite.

To continue, let Y ∈ Fn×k be random. Its law of distribution is L(Y ), expected values E(Y ) and
dispersion matrix V(Y ) when defined. Its characteristic function (Chf) with argument T ∈ Fn×k is
φY (T ) = E[exp(i trY T ′)] and i =

√
−1. See Lukacs and Laha (1964). Conventions for arranging

the elements of V(Y ) = Ξ, of order (nk × nk), are addressed in the mapping J : Fn×k → Rnk as
follows and in detail in Appendix A.1.

Definition 2. Let J : Fn×k → Rnk take matrices into vectors in indicial order, i.e. for Z =

[z1, . . . ,zn]′ ∈ Fn×k, then J(Z) = [z′
1,z

′
2, . . . ,z

′
n]′ = z0 ∈ Rnk, serving to juxtapose its rows.
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Given V(z) = Ξ ∈ S+n, the function ∆2
Ξ(x,y) = [(x − y)′Ξ−1(x − y)] is the Mahalanobis (1936)

generalized squared distance between (x,y) ∈ Rn. Essential to this study are the following

Definition 3. Take L(Z) ∈ Sα
n,k

(0,Ink) to be spherical α-stable on Fn×k with location-scale param-
eters (0,Ink) and stable index α ∈ (0, 2 ], having moments of order α + ε for ε > 0 and (0 < α < 2).
Its Chf is φZ(T ) = exp[γ(trT ′T ) α

2 ] with T ∈ Fn×k and γ < 0. The Chfs for row i and element Zi j

are φZi (ti) = exp{γ(t′iti)
α
2 } and φZi j (ti j) = exp[γ | ti j |α], respectively. Affine transformations yield

Sα
n,k

(Θ,Ξ) as elliptical matrix versions; and for (0 < α < 2) the elements Ξ = [ξi j] serve to gauge
degrees of association among elements of Y , in lieu of undefined correlations. See Appendix A.3.

The concept of mode for matrix distributions is essential. We have the following extension to Fn×k
from Dharmadhikari and Joag Dev (1988) on Rn.

Definition 4. A distribution P on Fn×k is said to be monotone unimodal about 0 ∈ Fn×k if for every
Y ∈ Fn×k and every set C in the class C 0

n,k
convex and symmetric about 0 ∈ Fn×k, i.e. C ∈ C 0

n,k
implies

−C ∈ C 0
n,k

, then P[C + kY] is nonincreasing in k ∈ [ 0, ∞).

2.2 Central limit theory
This has to do with i.i.d. matrix sequences {[Z1,Z2,Z3, . . .]; Zi ∈ Fn×k}; their partial sums ZN =

N−1[Z1 + . . . + ZN ]; and their distributions as N → ∞. Under conditions on [Z1,Z2,Z3, . . .] and
c > 0, the limit distributions lim

N→∞
L(cZN ) def

= L∞(cZN ) are α-stable. In short, the collection

{Sαn,k(0,Ξ); Ξ ∈ S+nk, α ∈ (0, 2]}
exhausts the limit distributions for centered i.i.d. sequences [Z1,Z2,Z3, . . .] on Fn×k ; specifically,
Gaussian limits at α = 2, Cauchy limits at α = 1, and α-stable limits otherwise.

To continue, designate byDα the domain of attraction ofZi ∈ Fn×k such that the limit L∞(cZN ) is
in Sα

n,k
(0,Ξ). Specifically, the distributionsD2 attracted to Gaussian limits comprise all distributions

on Fn×k having second moments. Similarly, distributions in D1 have matrix Cauchy limits. More
generally, domains of attraction to SαS distributions in Rn have been studied in Rvac̆eva (1962),
Kuelbs and Mandrekar (1974), and De Haan and Resnick (1979), to include Lindeberg conditions
in Barbosa and Dorea (2009). Berry–Esseén bounds on rates of convergence to stable limits are
studied in Rachev and Rüschendorf (1992) and Paulauskas (2009). These in turn carry forward to
encompass SαS distributions on Fn×k through the Duality theory of Appendix A.1.

2.3 Wishart matrices
Consider the scale model Ξ = In ⊗ Σ as in Muirhead (1982; pp.89–90), together with the Gaussian
distribution Nn,k(0,In ⊗ Σ). A prominent derivation is that of the Wishart matrix W = Y ′Y on S+

k

with distribution Wk(n,Σ) having n degrees of freedom and scale parameters Σ. As this remains of
interest even for SαS distributions, its Chf with argument T ∈ S+

k
is φW (T ) = |In − 2i TΣ |− n

2 . See
Anderson (1984; p.253).

Cumulative probabilities for W ∈ S+
k

by convention are P(Wi j ≤ ci j) with arguments {ci j}.
However, it is instructive to consider that probabilities might accumulate as P(W �L D) in the
sense of Definition 2, with matrix argument D ∈ S+

k
. The following shows for Ω �L Σ that Wk(ν,Σ)

is more concentrated about 0 ∈ S+
k

than Wk(ν,Ω) in the following sense.
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Theorem 1. Consider Wk(ν,Ω) and Wk(ν,Σ) such that Ω �L Σ, together with induced measures
PΩ(·) and PΣ(·) on S+n . Then for each D ∈ S+

k
,

PΣ(W �L D) ≥ PΩ(W �L D).

Proof. Take (Y ,Z) to be centered, and suppose that L(Y ) = Nn,k(0,In ⊗ Σ) and L(Z) =
Nn,k(0,In ⊗ Ω). For a ∈ Rk then L(Y a) = Nn(0,In × a′Σa), and similarly L(Za) = Nn(0,In ×
a′Ωa). Moreover, {Y ′Y �L D} if and only if {a′Y ′Y a ≤ a′Da} for every a ∈ Rk, and similarly
for {Z ′Z �L D}. In view for both ratios that L(a′Y ′Y a/a′Σa) and L(a′Z ′Za/a′Ωa) are chi-
squared having n degrees of freedom, together with the fact that Ω �L Σ implies Ω = Σ +A with
A positive semidefinite, it follows that

P(a′Y ′Y a ≤ a′Σa c2) = P(a′Z ′Za ≤ a′Ωa c2) =
P(a′Z ′Za ≤ a′(Σ +A)a c2) ≥ P(a′Z ′Za ≤ a′Σa c2)
⇐⇒ P(Y ′Y �L D) ≥ P(Z ′Z �L D)

on replacing c2 = a′Da for every a ∈ Rk, to complete the proof. �

3. Essentials for SαS distributions
Fundamentals for these distributions are established next, to be followed by an inventory of their
stochastic ordering properties.

3.1 Elementary properties
As noted, SαS densities inRn are known in selected cases only, to be complemented here for densities
on Fn×k . Essentials are given next for spherical distributions centered at 0, namely Sα

n,k
(0,Ink);

location and scale changes follow subsequently. Here φY (T ) = exp[− 1
2 tr(T ′T )] and gn,k(Y;0,Ink) =

(2π)− nk
2 exp[− 1

2 tr(Y′Y)] are the Gaussian Chf and density for L(Y ) ∈ Nn,k(0,Ink). To continue, the
provisional SαS density is f α

n,k
(Z;0,Ink) for L(Z) ∈ Sα

n,k
(0,Ink), and φZ(T ;α) its Chf. The

following properties are essential, where N = nk is the effective dimension.

Theorem 2. Let L(Z) ∈ Sα
n,k

(0,Ink) have the Chf φZ(T ;α) and density function f α
n,k

(Z;0,Ink)
where defined. Then the following properties hold.

(i) L(Z) ∈ Sα
n,k

(0,Ξ) is absolutely continuous on Fn×k, having a density function f α
n,k

(Z;0,Ξ), if
and only Ξ has full rank;

(ii) The Gaussian mixture φZ(T ;α) =
∫ ∞
0 e− s2tr(T ′T )/2 dΨ(s;α) for Chfs holds with Ψ(s;α) as a

mixing cdf. on [0, ∞);
(iii) The Gaussian mixture f α

n,k
(Z;0,Ink) =

∫ ∞
0 gn,k(Z;0, s−2Ink) dΨ(s;α) for densities holds with

Ψ(s;α) as the mixing cdf. as before;

(iv) L(Z) ∈ Sα
n,k

(0,Ink) is monotone unimodal with mode at 0, for each α ∈ (0, 2].

Proof. Conclusion (i) is Theorem 6.5.4 of Press (1972) for Rn, extended here for Fn×k by Duality
as in Appendix A.1. Conclusion (ii) invokes a result of Hartman and Wintner (1940), namely, the
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process {Zt ; t = 1,2 . . .} is spherically invariant if and only if, for each n and Z = [Z1, . . . , Zn],
the Chf φZ(t) is a scale mixture of Gaussian Chfs on Rn. It is clear from Appendix A.1 that
Z is spherical on Fn×k if and only if the mapping J(Z) of Definition 2 is spherical on Rnk, to
which the Hartman and Wintner (1940) result applies directly to give conclusion (ii). To continue,
f (Z) = (2π)−nk

∫
Fn×k

e−itr(T
′Z)φZ(T )Λ(dT ) is the standard inversion formula for Chfs to densities

in Fn×k with Λ(·) as Lebesgue measure. From conclusion (ii) we thus recover

f α
n,k(Z;0,Ink) =

1
(2π)nk

∫
Fn×k

e−itr(T
′Z)

∫ ∞

0
e−s

2tr(T ′T )/2dΨ(s;α)Λ(dT ).

Reversing the order of integration inverts the Gaussian Chf to give conclusion (iii). Conclusion (iv)
attributes to Wolfe (1975) on Rn thus Fn×k by Duality. �

3.2 Stochastic orderings
Essential stochastic orderings are known for distributions in Sn(0,Σ) as Σ is allowed to vary; by
Duality these extend to include Sα

n,k
(0,Ξ) on Fn×k as follows.

Definition 5. A probability measure µ(·) on Fn×k is said to be more peaked about 0 ∈ Fn×k than
ν(·) if, for every set C ∈ C 0

n,k
as in Definition 4, the inequality µ(C) ≥ ν(C) holds, to be designated as

µ �P ν. See Birnbaum (1948) for distributions on R1, and Sherman (1955) for distributions on Rn.

Essential peakedness orderings for SαS distributions on Fn×k are as follow.

Theorem 3. Let µ(· ;Ξ) ∈ Sα
n,k

(0,Ξ) and ν(· ; Γ) ∈ Sα
n,k

(0,Γ). Then µ �P ν, that is, µ(C;Ξ) ≥ ν(C; Γ)
for every C ∈ C 0

n,k
, if and only if Γ �L Ξ in the sense of Definition 1.

Proof. That Γ �L Ξ implies µ �P ν, is established in Das Gupta et al. (1971) and Fefferman et
al. (1972) for distributions in Sn(0,Σ), and thus for Sαn (0,Σ) on Rn by inclusion. The converse was
shown in Theorem 1 of Jensen (1984); both are extended here to include Sα

n,k
(0,Ω) by Duality as in

Appendix A.1. �

4. Linear models under SαS errors
4.1 The structure: Ξ = In ⊗ Σ
The mapping J : Fn×k → Rnk of Appendix A.1 gives V(Y ) def

= V(J(Y )) = Ξ ∈ S+
nk

under second
moments, where the elements of Y (n× k) may be reported in nk distinct units. Instead, here the rows
ofY are k-dimensional responses consistently across the n rows. On partitioning V(Y ) = [Ξi j(k×k)],
it is clear for row Yi that V(Yi) = Ξii = Σ say, as diagonal blocks, whereas the off-diagonal blocks
Cov(Yi,Yj) = Ξi j, as cross-covariances, are necessarily in the same units as Ξii . In the absence of
second moments take Ξ instead to be scale parameters. Accordingly, these facts support the basic
structure Ξ = [ωi jΣ] = Ω ⊗ Σ with Ω(n × n) and Σ(k × k). Further taking Ξ = In ⊗ Σ, as is done
subsequently, not only mimics the classical Gaussian model at α = 2 having independent rows, but
it goes beyond in that the rows of Y in Sn,k(0,In ⊗ Σ) may be dependent but uncorrelated, as in
multivariate time series and econometrics. Nonetheless, it remains to ask whether non-Gaussian
members of Sn,k(0,In ⊗ Σ) might have independent rows. To the contrary, extending a result
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of Maxwell (1860), these are independent and uncorrelated if and only if Gaussian, as shown in
Appendix A.4. Nonetheless, confusion on this persists in the literature; see Remark 5, Appendix
A.4.

4.2 Properties of the solutions
Here L(Y ) ∈ Sα

n,k
(XB, In ⊗ Σ) with (XB, In ⊗ Σ) as centering and scale parameters, where

{Y ∈ Fn×k,X ∈ Fn×r ,B ∈ Fr×k}. The classical OLS solutions, as minimally dispersed unbiased
linear estimates, are available here only for α = 2, whereas alternative moment criteria necessarily
are subject to moment constraints. Specifically, for scalars (θ̂, θ) ∈ R1 under loss L(θ̂, θ) = |θ̂− θ |, the
risk R(θ̂) = E[L(θ̂, θ)] is undefined for α < 1 as for Cauchy errors at α = 1. Moreover, loss functions
(|θ̂ − θ |κ) are concave for {κ < α < 1}, and convex for {1 < κ ≤ α ≤ 2}, the latter at issue in
attaining global optima. Versions of these, i.e. minimal risk estimation for matrix models, not only
would require knowledge regarding α, but also optimizing algorithms. Instead we seek what might
be salvaged from classical linear models under the constraints of SαS errors.

Minimizing Q(B) = tr(Y −XB)′(Y −XB) asB varies yields the OLS solution B̂ = (X ′X)−1X ′Y
for B and XB̂ for approximating Y . We adopt much stronger minimizing properties as follow.

Theorem 4. Suppose Y =XB + E together with the ordering (Fn×k,�) of Definition 2. Then

(i) B̂ is minimizing on (Fn×k,�) in the sense that (Y −XB) � (Y −XB̂) for every B ∈ Fr×k ;

(ii) ψ(Y −XB̂) ≤ ψ(Y −XB) for every ψ in the class Ψ of functions monotone increasing on
(Fn×k,�);

(iii) B̂ is the minimum-norm solution to min
B∈Fr×k

| |Y −XB| |φ for every unitarily invariant norm | | · | |φ
on Fn×k .

Proof. See Theorem 6 of Jensen (1984). Conclusion (iii) was obtained by Rao (1980) as a conse-
quence of ordering the singular values σ(Y −XB) ≥ σ(Y −XB̂). �

On taking P = [In −X(X ′X)−1X ′], the elements of E = PY comprise the observed residuals
and S = E ′E/(n − r) the matrix of residual mean squares and mean products. We proceed to
examine essential properties of Sα

n,k
(XB, In ⊗ Σ) as α ranges over ( 0, 2 ].

Remark 1. The Chf for L(Y ) ∈ Sα
n,k

(XB,In ⊗ Σ) is φY (T ) = exp{i trT ′XB + γ[trTΣT ′] α
2 }

from Definition 3. Moreover, expressions to follow are simplified on letting (X ′X)−1 = H.

The following properties are fundamental.

Theorem 5. Given L(Y ) = Sα
n,k

(XB,In ⊗ Σ), consider [B̂, E] with E = PY as the matrix of
residuals, and S = E ′E/(n − r). Then

(i) L(B̂, E) ∈ Sα
r+n,k

([B,0],Ω), with Ω = Diag(H,P) ⊗ Σ, a distribution on F(r+n)×k of rank n;

(ii) The marginals are L(B̂) ∈ Sα
r ,k

(B, H ⊗ Σ) centered at B with scale parameters H ⊗ Σ;

(iii) L(E) ∈ Sα
n,k

(0, P ⊗ Σ), a distribution on Fn×k of rank (n − r)k centered at 0 with scale
parameters P ⊗ Σ;
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(iv) The distribution of W = E ′E is α-Wishart, namely Wα
k
(ν,Σ), having the Chf

φW (T ; ν,α) =
∫ ∞

0
|In − 2i s−2TΣ |− ν

2 dΨ(s;α)

with argument T ∈ S+
k
, ν = (n − r) degrees of freedom, and Ψ(s;α) as in Theorem 1;

(v) Let ψ(Y ) be scale-invariant, i.e. ψ(Y ) = ψ(cY ), c , 0; then its distribution is identical to that
on sampling Y from Nn,k(XB,In ⊗ Σ).

Proof. Let L′ = (X ′X)−1X ′ and P =
[
In −X(X ′X)−1X ′] to project onto the error space, so

that G = [L,P] operates on Y to give

Z = G′Y =
[
L′
P′
]
Y =

[
B̂
E

]
and G′G =

[ H 0
0 P

]
,

the latter of order [(n + r) × (n + r)] and rank n. From Remark 1 we have the Chf

φZ(U ) = exp[i tr(G′Y U ′)] = exp[i tr(U ′G′Y )]
= φY (GU ) = exp{i trU ′

1B + γ [trΣ(U ′
1HU1 +U

′
2PU2)]

α
2 }

on partitioning U ′ = [U ′
1,U

′
2]. Here U ′G′XB = U ′

1B since P′X = 0. The result is conclusion (i).
Taking in succession U2 = 0, then U1 = 0, gives the marginal Chfs as in conclusions (ii) and (iii).
To see conclusion (iv), the Gaussian mixture

f α
n,k(Y;XB,In ⊗ Σ) =

∫ ∞

0
gn,k(Y;XB, s−2In ⊗ Σ) dΨ(s;α) (1)

updates the location and scale parameters of Theorem 1(iii). On letting W = E ′E = Y ′PY and
observing that PXB = 0,we proceed to the Chf

φW (T ) =
∫
Fn×k

ei tr (Y′P Y)T ′)
∫ ∞

0
gn,k(Y;XB, s−2In ⊗ Σ) dΨ(s;α)Λ(dY)

as in conclusion (iv), again on reversing the order of integration. For conclusion (v), make the
change of variables ψ(Y ) → ψ(cY ) behind the integral in (1). From scale-invariance, i.e. ψ(Y )
not depending on s, it suffices to take Ψ(s;α) to be the Dirac delta function, {dΨ(s;α) = 0, s ,
1; dΨ(1;α) = 1; }, equal to zero everywhere except for unity and whose integral over the entire real
line is equal to one, to show conclusion (v). �

Remark 2. That Ω = Diag(H,P) ⊗ Σ is block-diagonal in conclusion (i), assures under SαS
errors that (B̂,E) are α-nonassociated as in Appendix A.3 Definition 8, well known to be mutually
uncorrelated under second moments.

A notable special case is the matrix Cauchy distribution as follows, often cited for its anomalous
characteristics.

Corollary 1. The elliptical Cauchy density for B̂ on Fn×k is

f 1
k (B̂;B,X ′X) = c(nk)

[
1 + trΣ−1(B̂ − B)′X ′X(B̂ − B)

] − nk+1
2

where c(nk) = [Γ( nk+1
2 )|X ′X | 1

2 /π nk+1
2 |Σ | 1

2 ] and from Theorem 1(iii) dΨ(s; 1) = 2√
2π

s−2e−1/2s2 is
the mixing distribution, namely, an inverted Gamma density.
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Proof. Zellner (1976) gives the multivariate t-density on Rn with ν degrees of freedom as f (x) =
c(n;Σ)[1+ 1

ν (x′Σ−1x)]− ν+n
2 with c(n;Σ) = Γ(ν+n2 )/[Γ(ν2 )(νπ)

n
2 |Σ | 1

2 ], namely, Cauchy at ν = 1. The
matrix version follows by Duality. �

5. Topics: estimation
For distributions L(Y ) ∈ Sα

n,k
(XB, In ⊗ Σ), we consider in succession particulars in regard to B

and Σ.

5.1 Location parameters
Portions of our findings extend beyond Gauss–Markov theory and OLS, typically requiring second
moments, to include other criteria and the much larger class of equivariant estimators. Details follow.

Definition 6. An estimator B̃(Y ) for B ∈ Fr×k is unbiased if E(B̃) = B; is linearly median-unbiased
if {med(a′B̃b) = a′Bb; (a,b) ∈ Rr × Rk}; is modal-unbiased if mode M(B̃) = B; and is translation-
equivariant if for {Y → Y +XB}, then B̃(Y +XB) = B̃(Y ) +B for every B ∈ Fr×k .

Essential properties include the following, where the peakedness ordering for measures is as in
Definition 5. Again it is expedient to let H = (X ′X)−1.

Theorem 6. For L(Y ) = Sα
n,k

(XB,In ⊗ Σ), consider properties of the OLS solutions B̂ =HX ′Y

without benefit of second moments, of the equivariant estimators B̃(Y ) of Definition 6, and of
alternative estimators B̌ centered at B.

(i) B̂ is unbiased for (1 < α ≤ 2); is linearly median unbiased; and is modal unbiased for B;

(ii) B̂ is most peaked about B among all unbiased, median-unbiased, and modal-unbiased linear
estimators for B;

(iii) B̂ is most peaked about B among all equivariant estimators B̃(Y ).
(iv) Consider designs (X,Z) such that X � Z as in Definition 1(ii). Then B̂(X) is more peaked

about B than B̂(Z).
(v) The Mahalanobis metric, ∆2

Ξ(B̂,B) = [tr (B̂ − B)′X ′X(B̂ − B)Σ−1], serves to quantify the
discrepancy between (B̂,B).

Proof. Conclusion (i) follows since B̂ is centered at B from Theorem 5(ii) and that first moments
are defined for (1 < α ≤ 2). Then L(a′B̂b) is symmetric on R1 and centered at its median a′Bb;
moreover, L(B̂) is unimodal with mode B from Theorem 1(iv). Conclusion (ii) follows on showing
that alternative linear estimators B̌ centered at B have inflated scale parameters, i.e. inflated V(B̌)
under second moments. To continue, begin with φY (T ) = exp[i tr(T ′XB) − 1

2 (trTΣT ′) α
2 ], and

consider B̌ = L′Y with L′ = [HX ′,G′], so that

φB̌(S) = exp[i tr(S ′L′XB) − 1
2
(trLSΣS ′L′) α

2 ].

Since S ′L′XB = S ′[HX ′,G′]XB, in order that B̌ should be centered at B, it is necessary that
G′X = 0.
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Table 1. Estimating Σ, its characteristic values Ch(Σ), and tr(Σ), where
Σ∗ seeks to shrink Ch(Σ∗) towards their arithmetic mean. Here L(Y ) ∈
Tν
n,k

(0,In⊗Σ) is a matrix T distribution on Fn×k having ν degrees of freedom,
a subset of Sn,k(0,In ⊗ Σ).

Function Loss Function Model Reference
Ch(Σ) Quadratic Tn,k(0,In ⊗ Σ) Joarder&Ahmed (1996)
Σ Entropy Tn,k(0,In ⊗ Σ) Joarder&Ali (1997)
tr(Σ) Quadratic Tn,k(0,In ⊗ Σ) Joarder&Singh (2001)
Σ∗ Quadratic Sn,k(0,In ⊗ Σ) Leung&Ng (2004)

Accordingly, it follows that φB̌(S) = exp[i trS ′B− 1
2 (trΩSΣS ′) α

2 ],withΩ = L′L = [H +G′G],
giving L(B̌) ∈ Sα

n,k
(B,Ω ⊗ Σ), to be compared with the conventional L(B̂) ∈ Sα

n,k
(B,H ⊗ Σ) from

Theorem 5(ii). Clearly the matrix [L′L−H] = G′G is positive semidefinite, so that Γ = Ω⊗Σ �L

H ⊗ Σ = Ξ. Conclusion (ii) now follows from Theorem 2. Conclusion (iii) stems from Theorem 2.7
of Burk and Hwang (1989) since SαS distributions are unimodal from Theorem 1(iv). Next observe
that the scale parameters for B̂(X) and B̂(Z) are ordered as ((X ′X)−1 ⊗ Ω) �L ((Z ′Z)−1 ⊗ Σ), so
that conclusion (iv) follows from Theorem 2.

To continue, take {L(Z) ∈ Sα
r ,k

(M,Ξ);Ξ = Ω ⊗ Σ)}; by Duality the Mahalanobis (1936) metric
on Fr×k is

∆2
Ξ(X,Y)

def
= | |X,Y| |2Ξ = tr [Ω−1(X − Y)Σ−1(X − Y)′].

Conclusion (v) follows on identifying (X,Y,Ω−1) as (B̂,B,X ′X), respectively. �

Remark 3. Returning to the Cauchy density of Corollary 1, it is seen that the matrix form within
square brackets is the squared Mahalanobis (1936) distance metric on Fr×k .

5.2 Scale parameters
Return to S = E ′E/(n− r) and the evidence it conveys regarding scale in Sα

n,k
(XB,In ⊗Σ). Clearly

unbiasedness is denied for (0 < α < 2) for want of second moments. Even under second moments,
the Table 1 survey is prompted by the cited tendency of the characteristic values of S to be more
scattered than those of Σ. Accordingly, alternatives to the conventional use of S itself are reported
in the literature, including those listed in Table 1 and the references cited, amounting in effect to
shrinkage operations. For point of reference, recall that Tν

n,k
(0,In ⊗ Σ) at ν = 1 is a matrix Cauchy

distribution in Sα
n,k

(0,In ⊗ Σ) for α = 1.
If scatter among the characteristic values Ch(S) is at issue, it would appear doubly so for the

heavy-tailed distributions in Sα
n,k

(0,In ⊗ Σ). Unfortunately, none of the estimators of Table 1 applies
here for (0 < α < 2), despite their theoretical and empirical advantages, because risks for the
designated loss functions are undefined for want of second moments. Instead we adopt and illustrate
two matrix-theoretic devices for shrinking S, neither depending on provisional loss functions whose
risks might be undefined.
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Table 2. The matrix Σ; its Σ-diminishing transformation Ξ; its majorized
transformation Ω; and the supporting orthogonal matrix Q and doubly
stochastic matrix B.

Item Σ Ξ Ω Q B

Matrices
[ 5 0 0

0 2 1
0 1 2

] [ 1 0 0
0 1 0
0 0 1

] [ 4 0 0
0 2.5 0.5
0 0.5 2.5

]
1√
2

[ √
2 0 0

0 1 1
0 1 −1

] [ 3
4 0 1

4
0 1 0
1
4 0 3

4

]

Method 1: Σ-diminishing transformations

Lemma A.2 asserts that Σ �L Ξ if and only if Ξ = Σ
1
2 W ′WΣ

1
2 such that the singular values of

W are bounded above by unity. This applies for diagonal matrices; take Σ − Ξ = [ 2 0
0 2

] − [ 1.5 0.5
0.5 1

]
,

the difference having positive diagonals and determinant and thus positive definite, so that Σ �L Ξ.

Taking Σ = QD2
σQ

′ with Dσ = Diag(σ1, . . . , σk) and Q orthogonal, suppose that commuting
justifies the factorizations

Ξ = Σ
1
2 W ′WΣ

1
2 = QDσQ

′QDωQ
′QDσQ

′ = QDσDωDσQ
′

with Dω as the characteristic values of W ′W . This provides a venue for choosing Dω to a desired
effect. Specifically, on taking Dω = Diag(σ

2
k

σ2
1
, . . . ,

σ2
k

σ2
k

) with its characteristic values reverse-ordered,

it follows that Ξ = Q(σ2
k
Ik)Q′ = σ2

k
Ik ; its characteristic values are [σ2

k
, . . . , σ2

k
]; and Σ �L σ2

k
Ik .

Moreover, this choice is maximally conditioned with Cnd(Ξ) = 1.

Method 2: majorizing transformations
TakingΩ = QDωQ

′ ∈ Sk in its spectral form, the classical definition of the matrix-valued function
Φ : Sk → Sk is Φ(Ω) def

= Q[Diag(Φ(ω1, . . . ,ωk))]Q′. Here we consider the following.

Definition 7. Given A = PDaP
′ and B = QDbQ

′ in Sk, take the diagonal matrices into vectors
as Da → a′ = [a1, . . . ,ak] and Db → b′ = [b1, . . . , bk]. Then A is said to majorize B spectrally
on Sk if and only if [a1, . . . ,ak] majorizes [b1, . . . , bk] on Rk as in Marshall and Olkin (1979), to be
denoted as A �M B. Specifically, A �M B on Sk if and only if a �M b on Rk .

To continue, by a majorizing mapping is meant Ω → PDiag(τ(ω))P ′ in which ω majorizes
τ(ω) = θ on Rk . Specifically, it is known that ω �M θ if and only if there is a doubly stochastic
matrix B(k × k) such that θ = Bω; see Marshall and Olkin (1979). Accordingly, Method 2 takes
Σ→ Q[Diag(Bδ)]Q′ with δ = [σ2

1 ,σ
2
2 , . . . , σ

2
k
]′ as the characteristic values of Σ.

Case studies
To illustrate, begin with Σ = QD2

σQ
′ with factors as listed in Table 2 such that Ch(Σ) = [5,3,1] and

D2
σ = Diag(5,3,1). Now taking Dω = Diag( 1

5 ,
1
3 ,

1
1 ) with its characteristic values reverse-ordered,

Method 1 yields Ξ = 1 · I3 as in Table 2. For the majorizing transformation of Definition 7, take
the doubly stochastic matrix B to be as in Table 2. Then B[5,3,1]′ = [4,3,2]′, namely, the majorized
characteristic values to be used in constructing Ω = QDiag(4,3,2)Q′, as listed in Table 2.

Returning to the sample matrix S = E ′E/(n − r), the foregoing constructions apply on treating
Σ instead as Σ̂ = S. Both Methods 1 and 2 reduce scatter among the characteristic values of Σ̂→ Ξ̂

34 JENSEN



and Σ̂→ Ω̂. Observe further that Methods 1 and 2 are intimately connected. Given the target values
[4,3,2] as having been stipulated apart from majorization, Method 1 nonetheless gives Σ̂→ Ω̂ as in
Table 2 on taking Dω = Diag( 4

5 ,
3
3 ,

2
1 ).

Recall that Σ∗ in Table 1 seeks to shrink the characteristic values towards their arithmetic mean,
but with undefined risk for Sα

n,k
(XB,In ⊗ Σ) with (0 < α < 2). Clearly this objective is achieved

exactly using Method 1, on identifying 3 as the mean of [5,3,1] and taking Dω = [ 3
5 ,

3
3 ,

3
1 ]. This does

in fact reduce the characteristic values precisely to their arithmetic mean, in which case Ξ of Table 2
becomes Ξ = 3I3.

In addition, it is relevant to discern the conditioning of S in view of its scattered characteristic
values and the vaunted heavy tails of Cauchy distributions. Despite these, the following holds from
the scale-invariance of Cnd(S) = λ1/λk .
Remark 4. Given L(Y ) ∈ Sα

n,k
(XB,In ⊗ Σ), the sample condition number Cnd(S) = λ1/λk, as the

ratio of its characteristic values, has properties identical to those in sampling from Nn,k(XB,In⊗Σ).

6. Topics: testing hypotheses
Normal-theory tests regarding location and scale parameters are myriad and far reaching, covering
many pages in contemporary text books. Our objectives are elementary: For selected tests, to
demonstrate the remarkable feature that they remain valid for every {L(Y ) ∈ Sα

n,k
(0,In ⊗ Σ); 0 <

α < 2}, and to identify the key point to be checked by users for the many procedures not covered
here for lack of space. Accordingly, it remains to reexamine hypothesis testing under SαS errors in
Fn×k . We first consider tests regarding B, then for selected functions of Σ.

6.1 Location parameters
Tests regarding M in L(Y ) ∈ Nn,k(M,In ⊗Σ) entail (k× k) matrices, H due to hypothesis and E due to
error, both as quadratic and bilinear matrix forms of type Y ′AY . The Invariance Principle stipulates
designated transformation groups, and it serves to extract the essentials of a problem through the
symmetries of group operations. Among invariant tests, the principal designees are identified in
Table 3, where rejection rules pertain to normal-theory critical values. These have been developed
and their properties studied in detail over the past century and beyond. There is a plethora of tests,
as none is uniformly most powerful.

Guided by invariance, these tests entail roots of the determinantal equation |H − λE| = 0, equiv-
alently, the values Ch(HE−1) = [λ1, . . . , λs] with s as the rank of H. Requiring neither moments nor
the need to demonstrate that likelihood estimators are maximal, the Invariance Principle nonetheless
applies for distributions in Sα

n,k
(XB,In ⊗ Σ).

Invariant tests for H0 : B = B0 vs. H1 : B , B0 utilize H = (B̂ − B0)′X ′X(B̂ − B0) due
to hypothesis, and E = E ′E due to error, the latter comprising the residual sums of squares and
products as in Theorem 5. Observe that H is the squared Mahalanobis (1936) metric for (B̂−B0) on
Fr×k as in Theorem 6(v). As moments are not invoked, these apply verbatim for Sα

n,k
(XB,In ⊗ Σ).

Numerous variations have been studied, to include tests on rows and columns of B and, more
generally, H0 : A′BB = ∆ with {A,B,∆} specified, all entailing prescribed versions of H and E.
It is essential in practice that the vast compendium of normal-theory linear tests applies verbatim
for distributions in Sα

n,k
(XB,In ⊗ Σ) as follows, despite excessive tails and the dearth of available
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Table 3. The principal test procedures in multivariate linear inference,
having matrix H of rank s due to hypothesis and E due to error, with
Ch(HE−1) = [λ1, . . . , λs], together with rejection rules for normal-
theory tests at level α.

Item Description Rule Designation

Λ
s∏

i=1

1
1+λi
=

|E |
|H+E | Λ < Λα Wilks

U
s∑

i=1
λi = tr(HE−1) U > Uα Lawley–Hotelling

V
s∑

i=1

λi

1+λi
= tr [H(H + E)−1] V > Vα Pillai

θ λ1
1+λ1

θ > θα Roy

moments.

Theorem 7. Given L(Y ) ∈ Sα
n,k

(XB,In⊗Σ) together with invariant tests utilizing H and E through
Ch(HE−1).

(i) For all L(Y ) ∈ Sα
n,k

(XB,In ⊗ Σ), all such procedures are identical in level and power to
those in sampling from Nn,k(XB,In ⊗ Σ);

(ii) Accordingly, exact critical values from special aid tables and algorithms, as well as a surfeit
of approximations, apply for all L(Y ) ∈ Sα

n,k
(XB,In ⊗ Σ).

Proof. Observe that Y → cY for c , 0 generates Y → (c2H)(c2E)−1 = HE−1, so that the
conclusions now follow from Theorem 5(v). �

6.2 Scale parameters
The second-moment matrix Σ supports essential concepts for dependence. For L(Y ) = Nn(µ,Σ),
these include simple, multiple, partial and canonical correlation parameters, as well as the indepen-
dence of subsets Y ′ = [Y ′

1 ,Y
′

2 ] through the diagonal structure Σ = Diag(Σ11,Σ22). Those same
parameters in {L(Y ) ∈ Sαn (µ,Σ); 0 < α < 2} nonetheless continue to quantify the stochastic affinity
between pairs, to be called α-association. Specifically, with {ρ = σ12/(σ11σ22) 1

2 }, the pair (Y1,Y2)
becomes increasingly indistinguishable, hence more α-associated, in the sense that

{P(|Y1 − Y2 | ≤ c) ↑ 1 as ρ ↑ 1; for every c > 0}.

For further details, Lemma A.3 pertains also to corresponding analogs of multiple and canonical
correlations. In addition, that Σ = Diag(Σ11,Σ22) under {L(Y ) ∈ Sαn (µ,Σ); 0 < α < 2}, designates
the subsets to be α-unassociated rather than independent; but with second moments in Sn(µ,Σ), to
be dependent but uncorrelated as in time series and econometrics.

Our objectives again are to illustrate the validity of selected tests in view of the many procedures
not covered. Specifically, the canonical correlations and conventional tests for these as in Table 4,
where a typical row of Y ∈ Fn×k is partitioned as {[Y ′

1 (1 × p), Y ′
2 (1 × q)]; p + q = k}, and rejection

rules pertain to normal-theory critical values. The following results are fundamental.
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Table 4. The principal procedures for testing H0 : Σ =
Diag(Σ11,Σ22) in terms of the squared sample canonical
coefficients [r2

1 ,r
2
2 , . . . ,r

2
s ] betweenY1(p×1) andY2(q×

1) with s = min(p,q), together with rejection rules for
normal-theory tests at level α.

Item Description Rule Designation

Λ
s∏

i=1
(1 − r2

i ) Λ < Λα Wilks

U
s∑

i=1

r2
i

1−r2
i

U > Uα Lawley–Hotelling

V
s∑

i=1
r2
i V > Vα Pillai

θ r2
1 θ > θα Roy

Theorem 8. Take {L(Y ) ∈ Sα
n,k

(XB,In ⊗ Σ); 0 < α < 2}; let S = E ′E/(n − r); and consider
the simple, multiple, and canonical α-association parameters {ρi j, R(Y1,Y2), ρc(Y1,Y2)} of Lemma
A.3. Then

(i) Normal-theory tests for {ρi j, R(Y1,Y2), ρc(Y1,Y2)} and their properties, when based on S

from Sα
n,k

(XB,In ⊗ Σ), are identical to those from Nn,k(XB,In ⊗ Σ);

(ii) In particular, the Table 4 procedures, to include exact and approximate critical values, each
has level and power identical to that if sampled from Nn,k(XB,In ⊗ Σ).

Proof. The quantities at issue are scale-invariant as Y → cY for c , 0. For example, the sample
canonical coefficients are the singular values of S− 1

2
11 S12S

− 1
2

22 from S = [Si j], clearly invariant as
Y → cY and S → c2S. The assertions now follow from Theorem 5(v). �

Remark 5. For SaS distributions with α ∈ (0, 2), it is remarkable not only that the probabilistic
notions of Lemma A.3 may supplant the classical moment-based notions of dependence, but that
conventional normal-theory properties should continue to hold.

7. Summary and discussion
As noted, many essentials of the present study are genuinely nonparametric, in applying for all or
portions of the SαS distributions and thus distribution-free within that class. Especially in hypothesis
testing, this has the ultimate advantage to obviate the need to derive distributions of test statistics from
largely unknown stable density functions and, from them, to devise algorithms and special aid tables
for finding cutoff rules, apart from the serious limitations of simulated values. In addition, Theorem
6(iv) addresses the matter of design efficiency beyond the confines of normal-theory inference, in
showing for the design X dominating Z that B̂(X) is more peaked about B than B̂(Z).

The present study offers further insight into the role of SαS distributions in practice. Normal-
theory procedures long have been applied as large-sample approximations in distributions attracted
to Gaussian limits. Specifically, Berry–Esséen bounds on rates of convergence to Gaussian limits are
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studied with applications in Jensen (1973, 1977), with special reference to linear models in Jensen
and Mayer (1975) and Jensen et al. (1975).

Findings cited here complement those studies for distributions attracted to heavy tailed SαS laws,
as well as rates of convergence to stable limits, as cited in Section 2.2. By showing that many
standard data-analytic procedures carry over in essence under significantly weakened assumptions,
this study gives further credence to the widely and correctly held view that Gauss-Markov estimation
and normal theory inferences extend considerably beyond the confines of the classical theory and its
needless reliance on moments to fourth order.

A. Appendix
A.1 Duality: imbedding Fn×k → Rnk
Note first that shifted distributionsL(Y ) ∈ Sn,k(Θ,Ξ) having elliptical contours derive from spherical
distributions through affine transformations. These in turn have a density in Fn×k if and only if Ξ is
of full rank; otherwise L(Z) is concentrated in a subspace of Fn×k of dimension equal to the rank of
Ξ. Specifically, given L(Z) ∈ Sn,k(0,Ink); let Y = A′ZB + Θ of orders A′(r × n) and B(k × s);
then L(Y ) ∈ Sr ,s(Θ,Γ ⊗ Σ) on Fr×s,with Γ = A′A and Σ = B ′B. See Jensen and Good (1981).

Details in regard to the mapping J : Fn×k → Rnk of Definition 2 are as follow, to include that Rnk

and Fn×k are isomorphic. This in turn supports the transfer to Fn×k of widely studied symmetric
distributions on Rnk .

Lemma 1. Consider L(x) ∈ Snk(0,Ink) on Rnk and L(Y ) ∈ Sn,k(0,Ink) on Fn×k, both symmetric
about their respective origins with scale parameters Ink .

(i) Distributions on Fn×k and Rnk correspond through Y = J−1(C ′x + γ) and conversely, with
C of order (nk × nk) and γ ∈ Rnk ;

(ii) Under first moments E(Y ) = J−1(γ) = Θ ∈ Fn×k ;

(iii) Under second moments V(Y ) def
= V(YJ) = C ′C = Ξ of order (nk × nk);

(iv) In short, {L(Y ) ∈ Sn,k(Θ,Ξ) on Fn×k} if and only if {L(x) ∈ Snk(γ,Ξ) on Rnk} with
x = J(Y ) and Y = J−1(x);

(v) Sets convex and symmetric about their respective origins, namely, C 0
nk

⊂ Rnk and C 0
n,k

⊂ Fn×k
as in Definition 4, correspond one-to-one;

(vi) The measurable subsets Bn,k of Fn×k and Bnk of Rnk correspond one-to-one;

(vii) The c-spheres Sn,k(c) ⊂ Fn×k and Snk(c) ⊂ Rnk, together with related c-balls, correspond
one-to-one.

Proof. Conclusions (i)-(iv) attribute to Jensen and Good (1981). Conclusions (v)-(vii) follow on
looking at images J(·) = I(·) in Rnk and preimages J−1I(·) in Fn×k . In particular, clearly the spheres
Sn,k(c) = {Y : tr(Y ′Y ) = c2} in Fn×k and Snk(c) = {YJ : Y ′

JYJ = c2} in Rnk are so related, as are
the corresponding balls of radius c. �
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A.2 Example
An alternative view is seen on partitioning {Y =XB + E} in Fn×k as

[Y1, . . . ,Yk] =X[β1, . . . ,βk] + [E1, . . . ,Ek]

and imbedding column wise as K(Y ) = [Y′1,Y′2, . . . ,Y′k]′ = Y0 ∈ Rnk, and K(B) = [β′
1,β

′
2, . . . ,β

′
k
]′ =

β0 ∈ Rrk . Next taking X0 = Diag(X,X, . . .X) having k blocks, it follows that the model on Fn×k
transforms into K(Y ) =X0 K(B) + K(E) on Rnk, namely

[ Y1
Y2
...
Yk

]
=

[
X 0 ..., 0
0, X ... 0
... ... ... ...
0 0 ... X

] [ β1
β2
...
βk

]
+

[ E1
E2
...
Ek

]
.

Equivalence holds as follows.

• The OLS solutions β̂0 in Rnk and B̂ in Fn×k correspond one-to-one as β̂0 = K(B̂) and
B̂ = K−1(β̂0).

• L(B̂) ∈ Sn,k(B, (X ′X)−1 ⊗ Σ) in Fn×k if and only if L(β̂0) ∈ Snk(β0, (X ′X)−1 ⊗ Σ) in Rnk .

A.3 Σ-diminishing transformations
We seek to diminish Σ in the sense of the ordering of Definition 1(i). The following is one such
venue.

Lemma 2. The transformation T : Σ → TΣT ′ is Σ-diminishing as in Definition 1(i), if and only if
T = Σ

1
2 W ′Σ−

1
2 , where W ∈ Fk×k is a matrix whose singular values are bounded above by unity.

In particular, the class τ(Σ) consisting of these is given by

τ(Σ) = {T : T = Σ
1
2 W ′Σ−

1
2 ; σ(W ) ≤ 1}.

Proof. See Theorem 1 of Jensen and Ramirez (1990). �

A.4 Degrees of association
The lack of second moments vitiates the classical simple, multiple, and canonical correlations
in SαS distributions, the elements of Σ serving instead as parameters of scale. As to whether
{ρi j = σi j/(σiiσj j) 1

2 } again might serve to quantify affinity between random variables, a definitive
answer is supplied in the following.

Lemma 3. Consider L(Z) ∈ Sαn (δ,Σ) together with the simple, multiple, and canonical correlation
type quantities based on Σ. Partition Z ∈ Rn variously as Z ′ = [Z1,Z

′
2] and Z ′ = [Z ′

1,Z
′
2] of

orders {Z ′
1(1 × p),Z ′

2(1 × q); p + q = n}. Then for each L(Z) ∈ Sαn (δ,Σ) with (0 < α < 2), the
following properties hold.

(i) The entities {ρi j = σi j/(σiiσj j) 1
2 } serve to quantify the stochastic affinity between (Zi, Z j), the

degrees of affinity increasing with ρi j ;

(ii) Parameters of type R(Z1,b
′Z2), as analogs of multiple correlations, serve to quantify affinity

between (Z1,b
′Z2), the degree increasing with R(Z1,b

′Z2);
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(iii) Values of ρ(a′Z1,b
′Z2),as analogs to canonical correlations, serve to quantify affinity between

(a′Z1,b
′Z2), the degree increasing with ρ(a′Z1,b

′Z2).

Proof. For conclusion (i) take (Z1, Z2) with δ = 0 and Σ =
[

1 ρ
ρ 1

]
. Let U = (Z1 − Z2); then L(U)

clearly is symmetric about 0 with scale parameter σU = 2(1− ρ). A result of Birnbaum (1946) shows
for each c > 0 that P(U ∈ (−c, c)) is decreasing inσU thus increasing in ρ.Equivalently, P(|Z1−Z2 | ≤
c) ↑ 1 as ρ ↑ 1, identifying the sense in which (Z1, Z2) become increasingly indistinguishable with
increasing values of ρ. Conclusions (ii) and (iii) follow on identifying (Zi, Z j) first with the pair
(Z1,b

′Z2), then with (a′Z1,b
′Z2) as the canonical variables. �

Definition 8. For L(Z) ∈ Sαn (δ,Σ) with (0 < α < 2), the analogs of simple, multiple, and canonical
correlations are called α-association parameters.

A.5 Independence versus non-association
For L(Y ) ∈ Sn,k(0,In ⊗ Σ) the structure V(Y ) = In ⊗ Σ asserts under second moments that the
rows of Y are mutually uncorrelated. Suppose that they are also independent. Maxwell (1860)
showed for L(Z) ∈ Sn(0,σ2In) that elements of the spherical vector Z = [Z1, . . . , Zn]′ are mutually
uncorrelated and independent if and only if Gaussian. It is relevant to ask whether this might carry
over to include the row vectors of L(Y ) ∈ Sn,k(0,In ⊗ Σ). An affirmative answer follows.

Lemma 4. Given L(Y ) ∈ Sn,k(0,In⊗Σ) having second moments, so that the rows ofY are mutually
uncorrelated. Then they are mutually independent if and only if Gaussian.

Proof. Temporarily fix T = [t1, . . . , tn]′ ∈ Fn×k, and letU ′ = [U1, . . . ,Un] such that {Ui = y′
iti; 1 ≤

i ≤ n} with [y1, . . . ,yn] as the columns of Y ′. Here {Var(Ui |ti) = t′iΣti = c2
i ; 1 ≤ i ≤ n}. Consider,

as the Chf for U with arguments s = [s1, . . . , sn] and T fixed, the function

φU (s| T ) = E
[
ei(s1U1+...+snUn)

]
= E

[
ei(s1t

′
1y1+...+snt

′
nyn)

]
.

Then L([U1/c1, . . . ,Un/cn]| T ) is spherical on Rn and, by Maxwell’s (1860) result, are independent
if and only if Gaussian, in which case [U1, . . . ,Un] are themselves independent Gaussian, and the
factorization

φU (s| T ) = E
[
ei(s1t

′
1y1+...+snt

′
nyn)

]
= Πn

i=1 E
[
eisit

′
iyi

]
holds. On extending the device of Cramér and Wold (1936), we now fix [s1, . . . , sn] at unity and
recognize the resulting expression as the joint Chf for the n rows of Y with arguments [t1, . . . , tn],
now independent by factorization. �

Remark 6. There is confusion about this in the literature. With X ′ = [x1, . . . ,xn], while stating
that L(X) ∈ Sn,k(M,In ⊗ Σ), Leung and Ng (2004) assumed the columns of X ′ to be a random
sample, thus independent, from L(xi) ∈ Sk(mi,Σ). In view of Lemma A.4, this is tantamount to
assuming instead that L(X) = Nn,k(M,In ⊗ Σ).

Acknowledgement. Thanks are extended to Professor Donald E. Ramirez for helpful exchanges on
these topics.
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