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The diffusion of a solute from a concentrated source into a horizontal, stationary, fluid-

saturated porous medium can lead to a convective motion when a gravitationally unstable

density stratification evolves. In an inclined porous medium, the convective flow becomes

intricate as it originates from a combination of diffusion and lateral flow, which is dominant

near the source of the solute. Here, we investigate the role of inclination on the onset of

convective instability by linear stability analyses of Darcy’s law and mass conservation for

the flow and the concentration field. We find that the onset time increases with the angle

of inclination (θ ) until it reaches a cut-off angle beyond which the system remains stable.

The cut-off angle increases with the Rayleigh number, Ra. The evolving wavenumber

at the onset exhibits a lateral velocity that depends non-monotonically on θ and linearly

on Ra. Instabilities are observed in gravitationally stable configurations (θ ≥ 90◦) solely

due to the non-uniform base flow generating a velocity shear commonly associated with

Kelvin-Helmholtz instability. These results quantify the role of medium tilt on convective

instabilities, which is of great importance to geological CO2 sequestration.
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I. INTRODUCTION

In a fluid-saturated porous medium where gravity is dominant, an unstable stratification of a

dense solution overlaying a less dense one may generate a convective motion. This phenomenon,

first observed by Horton and Rogers1 and Lapwood2, is important in applications including

CO2 geological sequestration3, evaporative salt convection4, contaminant transport5, and building

insulation6,7. Convective instability is considered steady when the buoyancy source creates a con-

stant density stratification, and transient when the density profile evolves in time. A detailed review

of porous medium convection discussing the steady and transient cases in horizontal and inclined

configurations is outlined in Nield and Bejan8 and Hewitt9. While convective instability has been

extensively studied in horizontal systems (for both the steady1,2 and transient cases3,10–16), only

few studies addressed inclined porous media, especially in the transient17,18 case which occurs in

many applications.

In horizontal systems, the stability of the time-dependent diffusive base state has been ana-

lyzed using the initial value problem (IVP) approach and the quasi-steady state approximation

(QSSA)19. IVP determines the stability character of the porous system by numerically evaluating

the growth rates of concentration (σc) and velocity perturbations (σv) without assuming the base

state to be instantaneously steady. This approach is sensitive to initial conditions and depends on

how the growth rate is measured, introducing subjectivities11,19.

On the other hand, QSSA predicts the onset time of instability and the unstable disturbance

modes, by examining the growth rate (σ ) in time (t) of various modes of small disturbances (ω)

in space (x) for both concentration and velocity, over a transient base state assumed to be in-

stantaneously steady11. The accuracy of the assumption that the diffusive base state can be held

instantaneously constant in QSSA improves with time as diffusion becomes slower. The upper

bound of the validity period of this approximation is when diffusion breaks down, becoming in-

valid in the non-linear regime, and is estimated to be when σt ∼ 1, representing when the initial

perturbations start becoming large20. The disturbance growth rate when QSSA is implemented in

self-similar coordinates, a moving reference frame, compare reasonably well at short time with

dominant mode, a method valid during early time, and with IVP for all regimes12. This agreement

in the onset time is because the growth rate in self-similar QSSA is compared with the growth rate

of concentration perturbation (σc) in IVP. However, when the growth rate of velocity perturbation

(σv) is considered, the onset predictions in IVP approximate onset time in normal QSSA, the sta-
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tionary cartesian coordinate system. Interestingly, both σc and σv converge to the value of σ in

normal QSSA at later time11. The scaling of the linear onset time to = α0D−1Ra−2H2 for the scal-

ing prefactor (α0) values of 36 ≤ α0 ≤ 143 and Rayleigh number (Ra) range of 100 ≤ Ra ≤ 8000

is similar for IVP (σc, σv), normal (σ ) and self-similar QSSA, where H is the thickness and D is

the effective diffusion coefficient of the porous system11. The Rayleigh number (Ra) describes the

relative importance of convection to diffusion (we provide the precise definition of Ra in the next

section). Furthermore, the onset time and critical wavenumber from QSSA compare well with the

modes in numerical simulations13.

The literature on the stability of a time-dependent density profile is preceded by a great deal of

research on the stability of a steady, linear temperature profile when a horizontal fluid saturated

porous medium is heated from below and cooled at the top simultaneously1,2. For this profile in an

isotropic homogenous system with impermeable and isothermal boundaries, the critical Rayleigh

number above which a steady conduction state becomes unstable is determined analytically to be

Ra= 4π2. The critical conditions for various modifications of the boundaries are outlined by Nield

and Bejan8.

In an inclined porous layer with impermeable boundaries, the stability of a constant temperature

profile is associated with various flow structures depending on Ra, the angle of inclination θ and

the dimensions of the domain whether two - (2D) or three - dimensional (3D). The unicellular

basic flow observed in experiments comprises an upward and downward fluid motion along the

bottom (heated) and the top (cooled) plate respectively21, which becomes unidirectional if the

layer was laterally infinite22. The unicellular flow has no convective pattern specified by zero

transverse (ωx = 0) and longitudinal (ωy = 0) wavenumber in a 3D domain22. For Racosθ > 4π2,

experimental results suggest that the unicellular or unidirectional mode with a steady temperature

profile transforms to a polyhedric (ωx � � � = 0) for θ ≤ 15◦= 0 ,ωy = 0) or transverse roll (ωx = 0,ωy

but to a helicoidal mode (ωx = 0,ωy =� 0) for larger inclinations21. Theoretical analysis predicts

that the transition from polyhedric or transverse rolls to helicoidal mode occurs at θ ≈ 31.8◦ when

the condition on Racosθ is met23. A theoretical study in a 2D domain where the longitudinal

wavenumber (ωy) is non-existent reveals that a precise condition for the occurrence of instability

is when θ ≤ 31.8◦ for large Ra and θ ≤ 31.49◦ in general22, supporting the previous findings that

a porous vertical slab (θ = 90◦) is always stable24. Above this critical cut-off value of 31.49◦, the

system is stable for any Ra.

The result in inclined porous media depends on the boundary conditions of the model such
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FIG. 1. Schematics of the model under consideration. (a) The diffusion of dissolved CO2 from the saturated

pore fluid in contact with the buoyant plume into less saturated zones in the storage aquifer, from the

wellbore into the overburden formations, and from the storage aquifer into the overburden formations. (b)

The inclinations describing the 3 diffusion scenarios, with the intermediate angles accounting for tilts in the

storage aquifer and deviations of the injection well. (c) An idealized model inclined at an angle θ , which

is within the range of inclinations considered. The colors indicate CO2 declining from yellow to blue,

while the yellow arrows in (a) depict the diffusive transfer of dissolved CO2. The overburden formation is

separated from the storage aquifer and the wellbore by a sharp diffusive interface.

as permeable25–27, uniform flux28,29, nonuniform linear temperature distributions30, and time

periodic temperature31; it depends on the model flow equations such as Forchheimer32 and

Brinkman equations33, extending Darcy’s law, and on other relaxed assumptions including viscous

dissipation34, anisotropy35, heterogeneity36,37, double diffusive convection38,39, and local thermal

non-equilibrium37,40. A summary on convective instability in inclined systems is reported by

Nield41 and Nield and Bejan8.

The earlier work on the stability of a time-dependent profile in an inclined configuration ana-

lyzed the case where the base state is stationary17,18. However, there are 3 outstanding questions

in the literature on the analysis of the stability of a transient base state which we address in this

paper: (i) how does the angle of inclination affect the onset time and perturbation dynamics? (ii)

what is the cut-off angle beyond which the system remains stable? (iii) what is the implication

when θ ≥ 90◦ in which the system is gravitationally stable? .

Therefore, we investigate the stability of a transient diffusive concentration profile in an in-

clined porous layer in the context of CO2 geological storage due to its relevance and important
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practical implications. Inclination introduces a near boundary buoyancy-induced flow which may

influence the dynamics during the formation of instabilities, and it can affect the driving force of

the convection. We investigate this problem in 2D to obtain insights into the evolution of pertur-

bations, to reduce computational demands and to augment the current understanding on porous

media convective instability in 2D horizontal systems. For the first time, we observe a Ra – de-

pendent cut-off angle θ , beyond which the system does not become unstable. In addition, the

inclinations delay the onset time and the growing instabilities are in lateral motion. In contrast to

the steady base state, any angle θ ≤ 180◦ will be unstable for sufficiently large Ra.

II. MODEL DESCRIPTION AND GOVERNING EQUATIONS

We consider an idealized porous layer, inclined at an angle θ to the horizontal, assumed to

be laterally infinite, homogeneous, isotropic and saturated with liquid-phase (Fig. 1). The layer

comprises of an impermeable top boundary with a diffusing CO2 source and a bottom boundary

that is impermeable to both CO2 and the pore fluid. The study is restricted to the parameter range

102 ≤ Ra ≤ 103 typical for storage aquifers10 and applicable to the overburden formations for

some realistic aquifer–to–overburden parameter ratios of permeability – ka/ko ∼ 103, diffusivity –

Da/Do ∼ 10, porosity – φa/φo ∼ 10, and thickness – Ha/Ho ∼ 10−1, where the subscripts a and o

denote aquifer and overburden respectively42. The properties of the fluid saturating the aquifer and

the overburden formation such as the viscosity (μ) and density (ρ) are assumed to be identical.

Geological formations are usually structurally heterogenous over multiples spatial scales.

Therefore, the following assumptions are made to reduce the complexity of the problem to fo-

cus on the formation of instabilities in various homogeneous configurations due to a diffusive

transfer from a concentrated source: we assume a sharp diffusive interface between the overbur-

den formations and (i) the storage aquifer and (ii) the wellbore, with the interface diffusive transfer

controlled by Do, the overburden diffusion coefficient. It is common for dissolved CO2 to leak

by diffusion from storage reservoirs43–45 and fractured wellbores46,47 into overburden formations.

Hence, the range of inclinations 0◦ ≤ θ ≤ 180◦ are considered to model different scenarios during

CO2 sequestration (Fig. 1) in a tilted storage aquifer48,49 with deviated injection wells50–52.

Further simplifying assumptions include the consideration of the flow of an incompressible,

single phase fluid; and the neglection of geochemical reactions, background flow of groundwa-

ter, other sources, and sinks. The flow is governed by Darcy’s law, and the density, which is
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linearly dependent on the solute concentration, varies according to Boussinesq approximation

only in the buoyancy term (ρg). The fluid motion in these settings is governed by the follow-

ing equations3,12,15

∂u ∂v
+ = 0,

∂x ∂ z
(1)

( )
k ∂ p

u =− +(1+βc)ρogsinθ ,
μ ∂x

(2)

( )
k ∂ p

v =− − (1+βc)ρogcosθ ,
μ ∂ z

(3)

( )
∂ 2 ∂ 2∂c ∂c ∂c c c

φ +u + v = φD + ,
∂ t ∂x ∂ z ∂x2 ∂ z2

(4)

where c is the CO2 dissolved concentration, u and v are Darcy velocity components, p is the

pressure, k is the permeability, φ is the porosity, μ is the viscosity, g is the gravity, ρo is the

original brine density, β is the coefficient of density variation with concentration, and D is the

effective diffusion coefficient of CO2 in brine, which accounts for the diffusivity of CO2 in brine

and the rock tortuosity. The source of the solute at z = 0 is modeled with a constant concentration,

cs, the solubility concentration of CO2 in brine, and the boundary at z = H has no flux, dc/dz = 0,

for t ≥ 0. The system (0 ≤ z ≤ H) is initially assumed to contain no solutes (c(t = 0) = 0). The

following dimensionless variables are introduced: x̂ = x/H , ẑ = z/H, ĉ = c/cs, û = Hu/φD, v̂ =

Hv/φD, t̂ = Dt/H2, p̂ = k(p−ρog(zcosθ − xsinθ))/φ μD, so that the dimensionless governing

equations becomes:
∂ û ∂ v̂

+ = 0, (5)
∂ x̂ ∂ ẑ

∂ p̂
û =− −Rasinθ ĉ, (6)

∂ x̂

∂ p̂
v̂ =− +Racosθ ĉ, (7)

∂ ẑ

∂ 2 ˆ 2∂ ĉ ∂ ĉ ∂ ĉ c ∂ ĉ
+ û + v̂ = + (8)

z2
,

∂ t̂ ∂ x̂ ∂ ẑ ∂ x̂2 ∂ ˆ

where Ra = kρoβcsgH/φ μD, the definition commonly used in porous media convection9,14–16,

which differs from that in an unconfined fluid where φ = 1, and the fluid flow is governed by

the Navier-Stokes equations. Our characteristic volume-averaged velocity (φD/H) is obtained by

multiplying the porosity φ (the fraction of the porous medium that is void) by the scale of the

actual diffusive speed of the solute in the fluid within the pores, (D/H).

6



We eliminate the pressure term by subtracting the x-derivative of (7) from the z-derivative of

(6) and apply mass conservation:

∂ 2v̂ ∂ 2v̂
(

∂ 2ĉ ∂ 2ĉ
)

+ = Ra cosθ + sinθ . (9)
∂ x̂2 ∂ ẑ2 ∂ x̂2 ∂ x̂∂ ẑ

III. LINEAR STABILITY ANALYSIS

The flow and transport variables are decomposed into base states and perturbation variables

Â(x̂, ẑ, t̂) = Âb(ẑ, t̂) + Â′(x̂, ẑ, t̂), where Â represents the flow and transports variables (p̂, ĉ, û, v̂);

subscript (b) and superscript (′) refer to the base state and perturbed variable respectively. The
∂ ĉb

base state problem requires that = 0 since the base concentration (ĉb) does not vary in the x-
∂ x̂

direction, with v̂b = 0 and ûb =−Rasinθ ĉb due to the unbalanced gravity term in the x-direction

Eq.(6). The horizontal base state velocity (ûb) is non-uniform varying with depth and time de-

pendent. Though the base state is not stationary, its concentration satisfies the diffusion equation
∂ 2ĉb ∂ ĉb

, the boundary conditions, and the initial condition, ĉ = 0 in 0 < ẑ < 1 for t̂ = 0 as ûbz2
=

∂ ˆ ∂ t̂
∂ ĉb

does not transport a concentration gradient = 0. Using separation of variables, a solution for
∂ x̂ ( )2(2m−1)π ( )

1 − 2 t̂ (2m−1)π ẑĉb may be found as ĉb(ẑ, t̂) = π
4 ∑∞ e sin . The perturbation equa-m=1 (2m−1) 2

tions can be derived by substituting the decomposition of the variables into equations (8) and (9)

while assuming the magnitude of the perturbation variables is sufficiently small such that higher

order perturbation terms can be neglected:

∂ 2v̂ ′ ∂ 2v̂ ′ (
∂ 2ĉ ′ ∂ 2ĉ ′ )

x2
+

z2
= Ra cosθ

x2
+ sinθ , (10)

∂ ˆ ∂ ˆ ∂ ˆ ∂ x̂∂ ẑ

′ c ′ ∂ 2ĉ ′∂ ĉ ∂ ˆ ′∂ ĉb ∂ 2ĉ ′
−Rasinθ ĉb + v̂ = . (11)

x2
+

z2∂ t̂ ∂ x̂ ∂ ẑ ∂ ˆ ∂ ˆ

v ′ iω x̂Instead of seeking an arbitrary solution ( ˆ , ĉ ′)(x̂, ẑ, t̂) = (v∗,c∗)(ẑ, t̂)e for the time evolu-
∂ ĉb

tion of the perturbations in (10) and (11) due to the transient nature of the base state (ẑ, t̂),
∂ ẑ

we employ QSSA by assuming the separation of timescales namely that the solute diffusion is

substantially slower than the growth or decay of small perturbations. To apply QSSA, the evolv-

v ′ iω ˆing perturbations can be expressed as ( ˆ , ĉ ′)(x̂, ẑ, t̂) = (v∗,c∗)(ẑ, t̂s)e x+σ(t̂s)t̂ assuming the base
∂ ĉb

state to be instantaneously stationary (ẑ, t̂s) = 0 at a given time t̂s since the growth of the
∂ t̂

perturbation is faster than the evolution of the base state. By substituting the QSSA expression
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for the perturbations into (10) and (11) with the associated boundary conditions, we can de-( ) ( )
∂ 2 ∂c∗

rive the ordinary differential equations −ω2 v∗ = Ra −ω2c∗ cosθ + iω sinθ and
∂ ẑ 2 ∂ ẑ(

∂ 2
)

∂ ĉbσc∗− iωRaĉb sinθc∗+v∗ = −ω2 c∗ and the boundary conditions v∗= c∗= 0 at ẑ= 0,
∂ ẑ ∂ ẑ 2

dc∗
t̂ > 0 and v∗ = = 0 at ẑ = 0, t̂ > 0, where ω and σ are wavenumber in the x-direction and

dẑ
growth rate of the perturbations respectively. These equations are solved numerically in a finite

difference numerical scheme after posing them in the following matrix form:

∗ ∗Bv = RaHc , (12)

( )
∗ cb ∗σc∗ − iωRadiag(ĉb)sinθc + v∗ diag

∂ˆ
=Ac . (13)

∂ẑ

After some algebraic substitutions, we arrive at the eigenvalue problem:

( ( ))
∂ˆ∗ cb ∗σc = A+ iωRadiag(ĉb)sinθ −RaB−1Hv∗ diag c . (14)
∂ẑ

(
∂ 2

)
c∗ and v∗ are the concentration and velocity eigenfunctions respectively, A = −ω2 ×I

∂ ẑ 2( ) ( )
and B =

∂ 2

−ω2 ×I , H = −ω2cosθ + iωsinθ
∂

and I is an identity matrix. The el-
∂ ẑ 2 ∂ ẑ

ements in the top and bottom rows of the coefficient matrices A and H which represents the

Dirichlet boundary condition on concentration are replaced by values for Neumann condition for

velocity in B. Due to the gravity component parallel to the inclined system, it is expected for

the growth rate to be complex (σ = σr + iσi) which modifies the perturbations to take the form

(v̂ ′, ĉ ′)(x̂, ẑ, t̂) = (v∗,c∗)(ẑ, t̂o)e(i(ω x̂+σit̂)+σrt̂). The imaginary part (σi) appears as an angular fre-

quency of a progressive wave of wavenumber ω , indicating an x-directional motion of the evolv-

ing perturbations with a wave velocity, v̂w = σi/ω . By choosing θ = 0, equation (14) becomes the( ( ))
∗eigenvalue problem σc = A− (−ω2)RaB−1 diag

∂ĉb
c∗ derived in previous studies14,16

∂ẑ
for horizontal systems, where the growth rate is real (σi = 0).

(n2π2 +ω2)2

To test our formulation, we compare it with the published solution Ra = for
ω2

dĉb
the most unstable mode (n = 1) in a horizontal configuration where we specify = −1 for a

dẑ
constant base state in (14) and seek the critical wavenumber ωc such that σ = 0 for various Ra

(Fig. 2a)1,2. For θ = 0, the minimum of the function Ra(ω) occurs at Rac = 4π2 when ωc = π as

in Horton and Rogers1 and Lapwood2 . For θ > 0◦, our results are in perfect agreement with the
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literature for the constant base state problem derived by substituting ĉb = 1− ẑ for the base state

and its ẑ derivative in (14), as in Rees and Bassom53. Increasing the angle of inclination decreases

the growth rate (σr) of the perturbations, weakening the force that triggers the density driven

convection. When θ increases beyond the critical value of θ = 31.49◦, the system is stable to two-

dimensional perturbations for all values of Ra (Fig. 2b) in agreement with Rees and Bassom53.

(a) (b)

FIG. 2. (a) Neutral curves for the first mode (n = 1) of the steady convective instability for 0◦ ≤ θ ≤ 30◦.

The declining range of the disturbance wavenumber (ω) as θ approaches the cut-off angle of 31.49◦ and

(π2+ω2)2

the comparison of our result with the classical solution of Ra = for the horizontal case validate ourω2

computations. (b) The relationship between the real part of the growth rate (perturbation growth rate) σr

and the wavenumber ω for various angles at the onset of convective instability (t̂o) for θ = 32◦, indicating

instability beyond the cut-off angle for the steady case.

IV. RESULTS AND DISCUSSION

The steady and transient cases are compared in Figs. 2 - 3. The growth rate of perturbations in

both cases is amplified by increasing Ra and inhibited by increasing the angle of inclination. LSA

predicts a range of wavenumber that grows; the fastest growing wavenumber has the largest growth

rate. Expectedly, the neutral stability curves (Fig. 2a) and the growth rate profile σr(ω) (Fig. 2b)

for the steady base state do not depend on time in contrast with the transient case where the growth

rate of the perturbations does evolve in time (Fig. 3a). The range of disturbance wavenumber

observed for horizontal media (θ = 0◦) in Fig. 4 results from the suppression of short waves by

diffusion and the inability of a relatively thin diffusive boundary layer to propagate long waves13.
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As the angle of inclination increases, this range gets smaller (Fig. 4).

(a) (b)

FIG. 3. (a) The perturbation growth rate (σr) increases in time for the specified wavenumbers (ω) for a

horizontal aquifer with Ra= 400 and an unsteady base state. The onset time (t̂o) and the critical wavenumber

(ω̂o) are shown in red. (b) Perturbation growth rate (σr) versus wavenumber (ω) for several inclined systems

θ = 0◦, 20◦, 40◦, 71.18◦, 107.42◦ and 130.69◦ plotted at the onset time (t̂o) for θ = 130.69◦, the maximum

or cut-off angle for Ra = 400 beyond which the system does not become unstable.

For horizontal media, the growth rate is real and negative during early time when the pertur-

bations decay but becomes positive at the critical wavenumber as the onset time is crossed. In

this case, the relationship obtained between the onset time of instability (t̂o) and Rayleigh num-

ber, t̂o = α0Ra−2, is in agreement with previous studies (Fig. 5a). Our constant of proportionality

(α0 ≈ 56) agrees with results in other studies that employ QSSA in normal coordinates but can

take a different value depending on the assumptions made11.

The scaling relationship t̂o = αRa−2 holds for θ > 0◦, except when θ approaches the cut-off

angle (Fig. 5). Below the cut-off angle, the gravitational force that drives density driven convection

declines as θ increases, delaying the onset of instability. Beyond the cut-off angle (which depends

on Ra), no instability arises. The prefactor increases with the angle of inclination and a reasonably

accurate polynomial fit to our numerically computed results are α(θ)≈ 0.054θ 2−0.28θ +αo for

0◦ ≤ θ ≤ 76◦, with an additional higher order term α(θ)≈ 1.68×10−18θ 10+0.054θ 2−0.28θ +

αo for 76◦ ≤ θ ≤ 230.69◦ (Fig. 5b), where α0 ≈ 56 is the horizontal prefactor. This behavior

differs from that in porous systems with steady base state, where instability is not observed for

θ > 31.49◦ regardless of Ra (see Rees and Bassom53).
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(a) (b)

FIG. 4. The time of instability decomposed into Fourier wavenumbers ω for various angles of inclination (θ )

for (a) Ra = 400 and (b) Ra = 1000, highlighting their cut-off angles in red. The range of the wavenumber,

measuring the instability region, declines while the onset time (t̂o) increases with θ , delaying the occurrence

of instability.

(a) (b)

FIG. 5. (a) The relationship between the onset time (t̂o)and Rayleigh number for θ = 0◦ − 130.69◦. By

having a larger onset time near the cut-off angles, this relationship deviates from t̂o = αRa−2, the scaling

for large Ra limits. (b) The prefactor α(θ) for the onset time increases θ for large Rayleigh limit beyond the

region of influence of the cut-off angle. t̂o increases with θ . aα = 0.054 , bα =−0.2 , and cα = 1.68×10−18.

The cut-off angles for Ra = 100, 200, and 400 are marked with the red crosses.

The growing instabilities at the onset time are not stationary due to the gravity component
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parallel to the layer, unlike in the horizontal case where gravity is perpendicular making the

perturbations non-oscillatory (σi = 0). The instabilities travel laterally with velocity v̂w which

is proportional to Ra and θ as v̂w ≈ η(θ)Ra, where η ≈ 0.0051θ for 0◦ ≤ θ ≤ 58◦ and η ≈
−2.08×10−7θ 3 +0.00589θ for 58◦ < θ ≤ 130.69◦ (Fig. 6). The velocity v̂w increases to a max-

imum at 96◦, which is close to but not exactly at 90◦ where the vertical gravity component is

maximum. The reason for the difference is that the onset time is also dependent on θ , becoming

later as θ increases. Beyond this maximum value, the velocity declines (Fig. 6). The magnitude of

σi is maximum at θ = 45◦ where the magnitude of the two gravity components are equal to each

other.

(a) (b)

FIG. 6. (a) The lateral wave velocity (v̂w) of the instabilities for various angles θ scales linearly with

Rayleigh number Ra as v̂w = ηRa, where v̂w = σi/ω , except at the cut-off angle of the Ra. (b) The

prefactor η(θ) of v̂w is a non-monotonic function of θ , becoming maximum at 96◦, where aη = 0.0051,

bη = 0.00079, and cη =−2.08×10−7 are the coefficients of the polynomial fits in the plot. The wavenum-

ber and the imaginary part of the growth rate σi are plotted in blue and red respectively. σi becomes

maximum at 45◦ where the gravity components are equal.

For sufficiently large Ra (possibly exceeding the expected range for CO2 sequestration), the

system can be unstable for θ = 179◦ (see Appendix) due to σi =� 0, even though the configuration

is gravitationally stable. However, when θ = 180◦ the system remains stable regardless of Ra.

For moderate Ra (100−1000), a generalized form which includes the effect of inclination can

be formulated for the dimensional onset time and wave velocity as to ≈ α(θ)(φ μ
√

D/kΔρg)2 and

vw ≈ η(θ)kΔρg/μ , respectively, where Δρ = ρoβcs. The instability found for θ ≥ 90◦ where

12



the fluid configuration is gravitationally stable is purely due to the base velocity shear, since the

base flow is faster near the source where the concentration is maximum (ûb ∼ ĉb), generating a

Kelvin-Helmholtz type instability.

V. CONCLUSION

This study exposes the role of porous medium inclinations on the onset of density driven con-

vective instability using linear stability analysis. The quasi-steady state approximation in normal

coordinates was introduced to handle the time-dependency of the diffusing base state, which is

also non-stationary. Our analysis indicates that the onset time is delayed as the inclination in-

creases, until it reaches a Rayleigh-dependent cut-off angle beyond which the system remains

stable. At the onset time, the growing perturbations migrate laterally with a velocity that depends

non-monotonically on the angle of inclination and linearly on the Rayleigh number. For gravita-

tionally stable configurations including angles between 90◦ and 179◦, perturbations grow due to

the velocity shear produced from the non-uniform base velocity characterizing Kelvin-Helmholtz

type instability. Further exploration of absolute instabilities and non-linear effects not captured by

our analysis remains an interesting subject for future work.
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Appendix: Stability for θ = 179◦

Here, we show that the system can become unstable for θ = 179◦ when Ra = 9×105 by exam-

ining the growth rate of different wavenumbers around the onset time; the plot of the corresponding

diffusive profile is shown (Fig. 7). This indicates the non-existence of a global cut-off angle where

the system is stable for any Ra, depicting a fundamental difference between transient and steady

convective instability in an inclined layer.

13



(a) (b)

FIG. 7. (a) Perturbation growth rate (σr) versus wavenumber (ω) showing the critical conditions in red for

θ = 179◦ and Ra = 9×105, indicating the existence of instabilities. This suggest the lack of a global cut-off

angle, implying that a diffusive boundary layer will become unstable when Ra is sufficiently large. (b) The

diffusive profile at the onset time. Both plots are made at t̂o = 0.033.
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