S. Yahya Mohamed^{*} P. Umamaheswari[†]

Abstract

In this paper, the concept of an anti-vague filter of a *BL*-algebra is introduced with suitable illustration, and also obtained some related properties. Further, we have investigated some more equivalent conditions of anti-vague filter.

Keywords: *BL*-algebra; filter; implicative filter; vague set; vague filter; anti-vague filter

2010 AMS subject classification[‡]: 03B50; 03B52; 03E72; 06D35.

^{*}Assistant Professors, PG and Research Department of Mathematics, Government Arts College, Tiruchirappalli-620 022. Affiliated to Bharathidasan University, Trichirappalli, Tamilnadu, India; yahya_md@yahoo.com

[†]Assistant Professors, PG and Research Department of Mathematics, Government Arts College, Tiruchirappalli-620 022. Affiliated to Bharathidasan University, Trichirappalli, Tamilnadu, India; umagactrichy@gmail.com

[‡] Received on August 28, 2021. Accepted on November 13, 2021. Published on December 31, 2021. doi: 10.23755/rm.v41i0.650. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1. Introduction

Håjek [5] introduced the idea of *BL*-algebras as the algebraic structure for his Basic Logic. The interval [0, 1] endowed with the structure induced by a continuous t- norm is a well-known example of *BL*- algebra. The MValgebras, on the other hand, are one of the most well-known groups of BLalgebras, having been introduced by Chang [2] in 1958. In 1965, Zadeh [12] introduced the concept of a fuzzy set. The flaw in fuzzy sets is that they only have one feature, which means they cannot convey supporting and opposing data. Gau and Buehrer [4] introduced the principle of vague set in 1993 as a result of this. The authors [7, 8, 9, 10] discussed the vague filter, implicative filter, prime, and Boolean implicative filters of *BL*- algebras, as well as some of their properties.

The frame work of this study is constructed as follow: some basic observations connected to anti-vague filter are provided in "Preliminaries". "Anti-vague filter" presents the new notions of anti-vague filter in *BL*-algebra and investigated some related properties, also derived some equivalent conditions for an anti-vague filter to be a vague filter. Finally, the conclusion is presented in "Conclusion".

2. Preliminaries

In this section, we will go through some basic *BL*-algebra, filter, and vague set concepts, as well as their properties, which will help in the development of the main results.

Definition 2.1[5] A *BL*-algebra is an algebra $(A, \lor, \land, *, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) such that

- (i) $(A, V, \Lambda, 0, 1)$ is a bounded lattice,
- (ii) (A, *, 1) is a commutative monoid,
- (iii) * and \rightarrow form an adjoint pair, that is, $z \le x \rightarrow y$ if and only if $x * z \le y$ for all $x, y, z \in A$,
- (iv) $x \wedge y = x * (x \rightarrow y)$,
- (v) $(x \to y) \lor (y \to x) = 1.$

Proposition 2.2[6] In a *BL*- algebra *A*, the following properties are hold for all $x, y, z \in A$,

- (i) $y \to (x \to z) = x \to (y \to z) = (x * y) \to z$,
- (ii) $1 \rightarrow x = x$,
- (iii) $x \le y$ if and only if $x \to y = 1$,
- (iv) $x \lor y = ((x \to y) \to y) \land ((y \to x) \to x),$
- (v) $x \le y$ implies $y \to z \le x \to z$,

(vi) $x \leq y$ implies $z \rightarrow x \leq z \rightarrow y$, (vii) $x \to y \le (z \to x) \to (z \to y),$ (viii) $x \to y \le (y \to z) \to (x \to z)$, $x \le (x \to y) \to y,$ (ix) $x * (x \rightarrow y) = x \land y,$ (X) $x * y \leq x \wedge y$ (xi) $x \to y \leq (x * z) \to (y * z),$ (xii) (xiii) $x * (y \rightarrow z) \le y \rightarrow (x * z)$, (xiv) $(x \to y) * (y \to z) \le x \to z$, (xv) $(x * x^{-}) = 0.$

Note. In the sequel, we shall use *A* to denote as *BL*- algebras and the operation \lor , \land , * have priority towards the operations " \rightarrow ". **Note.** In a *BL*- algebra *A*, we can define $x^- = x \rightarrow 0$ for all $x \in A$.

Definition 2.3[13] A filter of a *BL*- algebra *A* is a non-empty subset *F* of *A* such that for all $x, y \in A$,

(i) If $x, y \in F$, then $x * y \in F$,

(ii) If $x \in F$ and $x \leq y$, then $y \in F$.

Proposition 2.4[13] Let F be a non-empty subset of a *BL*- algebra A. Then, F is a filter of A if and only if the following conditions are hold

(i) $1 \in F$,

(ii) $x, x \to y \in F$ implies $y \in F$.

A filter *F* of a *BL*-algebra *A* is proper if $F \neq A$.

Definition 2.5[1, 3, 4] A vague set S in the universe of discourse X is characterized by two membership functions given by

- (i) A truth membership function $t_S: X \to [0, 1]$,
- (ii) A false membership function $f_S: X \to [0, 1]$.

Where $t_S(x)$ is lower bound of the grade of membership of x derived from the 'evidence for x', and $f_S(x)$ is a lower bound of the negation of x derived from the 'evidence against x' and $t_S(x)+f_S(x) \le 1$. Thus the grade of membership of x in the vague set S is bounded by a subinterval $[t_S(x), 1 - f_S(x)]$ of [0, 1]. The vague set S is written as $S = \{(x, [t_S(x), f_S(x)]) | x \in X\}$, where the interval $[t_S(x), 1 - f_S(x)]$ is called the value of x in the vague set S and denoted by $V_S(x)$.

Definition 2.6[4] A vague set *S* of a set *X* is called

- (i) the zero vague set of X if $t_S(x) = 0$ and $f_S(x) = 1$ for all $x \in X$,
- (ii) the unit vague set of X if $t_S(x) = 1$ and $f_S(x) = 0$ for all $x \in X$,

(iii) the α -vague set of X if $t_S(x) = \alpha$ and $f_S(x) = 1 - \alpha$ for all $x \in X$, where $\alpha \in (0, 1)$.

Definition 2.7[4] Let *S* be a vague set of *X* with truth membership function t_S and the false membership function f_S . For all $\alpha, \beta \in [0, 1]$, the (α, β) -cut of the vague set *X* is crisp subset $S_{(\alpha,\beta)}$ of the set *X* by $S_{(\alpha,\beta)} = \{V(x) \ge [\alpha, \beta]/x \in X\}$. Obviously, $S_{(0,0)} = X$.

Definition 2.8[4] Let D[0, 1] denote the family of all closed subintervals of [0, 1]. Now, we define refined maximum (*rmax*) and " \geq " on elements $D_1 = [a_1, b_1]$ and $D_2[a_2, b_2]$ of D[0, 1] as $rmax(D_1, D_2) = [max\{a_1, a_2\}, max\{b_1, b_2\}]$. Similarly, we can define $\leq =$ and *rmin*.

3. Anti-Vague Filter

In this section, we introduce the notion of an anti-vague filter of *BL*-algebra with illustration. Moreover, we discuss some related properties.

Definition 3.1 Let *S* be vague set of a *BL*-algebra *A* is called an anti vague filter of *A* if it satisfies the following axioms

- (i) $V_S(1) \leq V_S(x)$,
- (ii) $V_S(y) \le rmax\{V_S(x \to y), V_S(x)\}$ for all $x, y \in A$.

Proposition 3.2 Let *S* be vague set of *BL*-algebra *A*. *S* is an anti vague filter of *A* if and only if the following hold if for all $x, y \in A$,

(i)
$$t_{S}(1) \le t_{S}(x)$$
 and $1 - f_{S}(1) \le 1 - f_{S}(x)$,
(ii) $t_{S}(y) \le \max\{t_{S}(x \to y), t_{S}(x)\}$ and
 $1 - f_{S}(y) \le \max\{1 - f_{S}(x \to y), 1 - f_{S}(y)\}$

Proof: Let *S* be an anti-vague filter of *A*. Then from (i) of definition 3.1 and the definition of V_S , we have (i) straight forward. From (ii) of definition 3.1 and the definition of V_S , (ii) is obvious.

The following is the example of definition 3.1 and proposition 3.2.

Example 3.3 Let $A = \{0, a, b, 1\}$. The binary operations ' * ' and ' \rightarrow ' give by the following tables 3.1 and 3.2:

S. Yahya Mohamed and P. Umamaheswari

*	0	а	b	1
0	0	0	0	0
а	0	0	а	b
b	0	а	b	b
1	0	а	b	1

Table3.1: ' * 'Operator

Table 3.2: ' \rightarrow ' Operator

\rightarrow	0	а	b	1
0	1	1	1	1
а	а	1	1	1
b	0	а	1	1
1	0	а	b	1

Then $(A, \lor, \land, *, \rightarrow, 0, 1)$ is a *BL*- algebra. Define a vague set *S* of *A* as follows:

 $S = \{ (1, [0.2, 0.7]), (a, [0.3, 0.5]), (b, [0.3, 0.5]), (0, [0.2, 0.7]) \}.$

It is easily verified that S is an anti-vague filter of A and satisfy the conditions (i) and (ii) of proposition 3.2.

Proposition 3.4 Every anti-vague filter *S* of *BL*- algebra *A* is order preserving.

Proof: Let *S* be an anti-vague filter of *BL*-algebra *A*.

Then, we prove that if $x \le y$, then $V_S(x) \ge V_S(y)$ for all $x, y \in A$.

From (ii) of the proposition 3.2, we have,

$$t_{\mathcal{S}}(y) \le \max\{t_{\mathcal{S}}(x \to y), t_{\mathcal{S}}(x)\}$$

 $= \max \{t_S(1), t_S(x)\},\$

[From (iii) of proposition 2.2]

Also, we have $1 - f_S(y) \le \max\{1 - f_S(x \to y), 1 - f_S(y)\}$. From (i) of the proposition 3.2, we have $t_S(1) \le t_S(x)$ and $1 - f_S(1) \le 1 - f_S(x)$. Thus, $t_S(y) \le \max\{t_S(x), 1 - f_S(y)\}$ $\le 1 - f_S(y)$, and so $V_S(y) = [t_S(y), 1 - f_S(y)]$ $\le [t_S(x), 1 - f_S(x)]$ $= V_S(x)$.

Hence $V_S(x) \ge V_S(y)$.

Proposition 3.5 Let *S* be a vague set of *BL*- algebra *A*, *S* be an anti-vague filter of *A* if and only if $x \to (y \to z) = 1$ implies $V_S(z) \le rmax\{V_S(x), V_S(y)\}$ for all $x, y, z \in A$.

Proof: Let *S* be an anti-vague filter of *BL*-algebra *A*.

Then, from (ii) of the definition 3.1, we have

 $V_{S}(z) \ge rmax\{V_{S}(z \rightarrow y), V_{S}(y)\} \text{ for all } x, y, z \in A.$ Now, $V_{S}(z \rightarrow y) \le rmax\{V_{S}(x \rightarrow (y \rightarrow z), V_{S}(x)\}.$ If $x \rightarrow (y \rightarrow z) = 1$, then we have $V_{S}(z \rightarrow y) \le rmax\{V_{S}(1), V_{S}(x)\} = V_{S}(x).$ So, $V_{S}(z) \le rmax\{V_{S}(x), V_{S}(y)\}.$ Conversely, since $x \rightarrow (x \rightarrow 1) = 1$ for all $x \in A.$ Then $V_{S}(1) \le rmax\{V_{S}(x), V_{S}(x)\}$ $= V_{S}(x).$ On the other hand, from $(x \rightarrow y) \rightarrow (x \rightarrow y) = 1.$ It follows that $V_{S}(y) \le rmax\{V_{S}(x \rightarrow y), V_{S}(x)\}.$ From the definition 3. 1, *S* is the anti vague filter of *A*.

From (i) of the proposition 2.2, and the proposition 3.5, we have the following.

Corollary 3.6 Let *S* be vague set of *BL*- algebra *A*, *S* be an anti vague filter of *A* if and only if $x * y \le z$ or $y * x \le z$ implies $V_S(z) \le rmax\{V_S(x), V_S(y)\}$ for all $x, y, z \in A$.

Proposition 3.7 Let *S* be a vague set of *BL*- algebra *A*, *S* be an anti vague filter of *A* if and only if (i) $x \le y$, then $V_S(x) \ge V_S(y)$,

(ii) $V_S(x * y) \le rmax\{V_S(x), V_S(y)\}$ for all $x, y \in A$.

Proof: Let *S* be an anti vague filter of *BL*- algebra *A*. Then, from the proposition 3.4, we have $x \le y$, $V_S(x) \ge V_S(y)$.

Since $x * y \le x * y$ and corollary 3.6, we have $V_S(x * y) \le rmax\{V_S(x), V_S(y)\}$.

Conversely, let *S* be a vague set and satisfies (i) and (ii). For all $x, y, z \in A$, if $x * y \le z$, then from (i) and (ii), we get $V_S(z) \le rmax\{V_S(x), V_S(y)\}$.

From corollary 3.6, we have *S* is an anti vague filter. \blacksquare

Proposition 3.8 Let *S* be a vague set of *BL*- algebra*A*. Let *S* be an anti vague filter of *A*. The following holds for all $x, y, z \in A$,

(i) If $V_S(x \to y) = V_S(1)$, then $V_S(x) \ge V_S(y)$,

(ii) $V_S(x \lor y) = rmax \{V_S(x), V_S(y)\},\$

- (iii) $V_S(x * y) = rmax \{V_S(x), V_S(y)\},\$
- (iv) $V_S(1) = rmax\{V_S(x), V_S(x^-)\},\$
- (v) $V_S(x \to z) \le rmax \{V_S(x \to y), V_S(y \to z)\},\$
- (vi) $V_S(x \to y) \ge V_S(x * z \to y * z)$,
- (vii) $V_S(x \to y) \ge V_S((y \to z) \to (x \to z)),$
- (viii) $V_S(x \to y) \ge V_S((z \to x) \to (z \to y)).$

Proof: (i) Let *S* be an anti vague filter of *BL*- algebra *A*.

Then, from the definition 3.1, and since $V_S(x \to y) = V_S(1)$.

We have $V_S(y) \le rmax\{V_S(x), V_S(x \to y)\}$

$$= rmax\{V_S(x), V_S(1)\}$$
$$= V_S(x).$$

Thus, $V_S(x) \ge V_S(y)$.

(ii) Since
$$x \lor y \ge x$$
 and $x \lor y \ge y$.

From the proposition 3.4, we get $V_S(x \lor y) \le rmax\{V_S(x), V_S(y)\}$. From the definition 3.1 we have

$$V_{S}(x \lor y) \leq rmax\{V_{S}(x \to (x \lor y)), V_{S}(x)\}$$

$$= rmax\{V_{S}((x \to x) \lor (x \to y)), V_{S}(x)\}$$

$$= rmax\{V_{S}(x \to y), V_{S}(x)\}$$

$$\leq rmax\{rmax\{V_{S}(y \to (x \to y)), V_{S}(y)\}, V_{S}(x)\}$$

$$= rmax\{rmax\{V_{S}(1), V_{S}(y)\}, V_{S}(x)\}$$

$$= rmax\{V_{S}(y), V_{S}(x)\}$$

$$= rmax\{V_{S}(x), V_{S}(y)\}$$

Hence, $V_S(x \lor y) = rmax \{V_S(x), V_S(y)\}.$

(iii) From (ii) of proposition 3.7, we have

$$V_S(x * y) \le rmax\{V_S(x), V_S(y)\}$$

Since $x * y \ge x \lor y$, proposition 3.4, and (ii), we have

$$V_{S}(x * y) \ge V_{S}(x \lor y)$$
$$= rmax\{V_{S}(x), V_{S}(y)\}.$$

Thus, $V_S(x * y) = rmax \{V_S(x), V_S(y)\}.$

(iv) From (iii), we have $rmax \{V_S(x), V_S(x^-)\} = V_S(x * x^-) = V_S(1)$. Therefore, $V_S(1) = rmax \{V_S(x), V_S(x^-)\}$. (v) From (iii) and proposition 3.4, since $(x \to y) * (y \to z) \le x \to z$, we get $V_S((x \to y) * (y \to z)) \ge V_S((x \to z),$ $rmax\{V_S((x \to y), V_S(y \to z))\} \ge V_S((x \to z).$

Therefore, we have $V_S(x \to z) \le rmax \{V_S(x \to y), V_S(y \to z)\}$. From the proposition 2.2 and (i) of proposition 3.7 we can prove (vi), (vii) and (viii) easily. **Proposition 3.9** Let *S* be a vague set of *BL*- algebra *A*, *S* be an anti vague filter of *A* if and only if (i) $V_S(1) \le V_S(x)$,

(ii)
$$V_S((x \to (y \to z)) \to z) \le rmax\{V_S(x), V_S(y)\}$$

for all $x, y, \in A$.

Proof: Let *S* be an anti vague filter of *A*. By the definition 3.1, (i) is straight forward.

Since,
$$V_S\left(\left(x \to (y \to z)\right) \to z\right) \le rmax\left\{V_S\left(\left(x \to (y \to z)\right) \to (y \to z)\right), V_S(y)\right\}.$$

(3.1)

Now, we have $(x \to (y \to z)) \to (y \to z) = x \lor (y \to z) \ge x$. $V_S((x \to (y \to z)) \to (y \to z)) \le V_S(x)$. [from the proposition 3.4] (3.2) Using (3.2) in (3.1), we have $V_S((x \to (y \to z)) \to z) \le rmax\{V_S(x), V_S(y)\}$. Conversely, suppose (i) and (ii) hold.

Since
$$V_S(y) = V_S(1 \rightarrow y)$$

= $V_S(((x \rightarrow y) \rightarrow (x \rightarrow y) \rightarrow y))$
 $\leq rmax\{V_S(x \rightarrow y), V_S(y).$

From (i), *S* is an anti vague filter of *A*. \blacksquare

Proposition 3.10 Intersection of two anti vague filters of *A* is also an anti vague filter of *A*.

Proof: Let *U* and *W* be two anti vague filters of *A*.

To Prove: $U \cap W$ is an anti vague filter of *A*.

For all $x, y, z \in A$ such that $z \leq x \rightarrow y$, then $z \rightarrow (x \rightarrow y) = 1$. Since, U, W are two anti vague filters A, we have $V_U(y) \leq rmax\{V_U(z), V_U(x)\}$ and $V_W(y) \leq rmax\{V_W(z), V_W(x)\}$. That is, $t_U(y) \leq \max\{t_U(z), t_U(x)\}$ and $1 - f_U(y) \leq \max\{1 - f_U(z), 1 - f_U(x)\}, t_W(y) \leq \max\{t_W(z), t_W(x)\}$ and $1 - f_W(y) \leq \max\{1 - f_W(z), 1 - f_W(x)\}.$

Since, $t_{U \cap W}(y) = \min\{t_U(y), t_W(y)\}$

$$\leq \max \{\max\{t_{U}(z), t_{U}(x)\}, \max\{t_{W}(z), t_{W}(x)\}\}$$

$$= \max \{\max\{t_{U}(z), t_{W}(z)\}, \max\{t_{U}(x), t_{W}(x)\}\}$$

$$= \max \{\max\{t_{U\cap W}(z), t_{U\cap W}(x)\}\}$$
and $1 - f_{U\cap W}(y) = \max\{1 - f_{U}(y), 1 - f_{W}(y)\}$

$$\leq \max \{\max\{1 - f_{U}(z), 1 - f_{U}(x)\}, \max\{1 - f_{W}(z), 1 - f_{W}(x)\}\}$$

$$= \max \{\max\{1 - f_{U}(z), 1 - f_{W}(z)\}, \max\{1 - f_{U}(x), 1 - f_{W}(x)\}\}$$

$$= \max\{\max\{1 - f_{U \cap W}(z), 1 - f_{U \cap W}(x)\}\}.$$

Hence, $V_{U \cap W}(y) = [t_{U \cap W}(y), 1 - f_{U \cap W}(y)] \le rmax\{V_{U \cap W}(z), V_{U \cap W}(x)\}$. Thus $U \cap W$ is an anti vague filter of A.

Corollary 3.11 Let R_j be a family of anti vague filters of A, where $j \in I$, I is a index set, then $\bigcap_{j \in I} R_j$ is an anti vague filter of A.

Note: Union two anti vague filters of BL- algebra A need not be an anti vague filter of A.

Proposition 3.12 A ρ - vague set and zero vague set of a *BL*-algebra *A* are anti vague filters of *A*.

Proof: Let *S* be a ρ -vague set of *BL*-algebra *A*, and *S* be an anti vague filter of *A*.

Then, from the proposition 3.4, we have if $x \le y$, then $V_S(x) \ge V_S(y)$ for all $x, y, \in A$.

To prove:
$$V_S(x * y) \le rmax\{V_S(x), V_S(y)\}$$
 for all $x, y, \in A$.
Now, $t_S(x * y) = \rho = \max\{\rho, \rho\} = \max\{t_S(x), t_S(y)\}$ (3.3)
and $1 - f_S(x * y) = \rho = \max\{\rho, \rho\} = \max\{1 - f_S(x), 1 - f_S(y)\}$ for all $x, y, \in A$ (3.4)

From (3.3) and (3.4), we have $V_S(x * y) \le rmax\{V_S(x), V_S(y)\}$.

Thus, ρ - vague set is an anti vague filter of A.

Similarly, we prove zero vague set is an anti vague of A.

Theorem 3.13 Let *S* be a vague set of *BL*-algebra *A*, *S* be an anti vague filter of *A* if and only if the set $S_{(\rho,\sigma)}$ is either empty or a filter of *A* for all $\rho, \sigma \in [0, 1]$, where $\rho \leq \sigma$.

Proof: Let *S* be an anti vague filter of *BL*-algebra *A* and $S_{(\rho,\sigma)} \neq \emptyset$ for all $\rho, \sigma \in [0, 1]$.

To prove: $S_{(\rho,\sigma)}$ is a filter of *A*.

If $x \le y$ and $x \in S_{(\rho,\sigma)}$. From the proposition 3.12, we have $V_S(y) \le V_S(x) \le$

 $[\rho, \sigma]$ for all $x, y \in A$.

Thus, $y \in S_{(\rho,\sigma)}$.

If $x, y \in S_{(\rho,\sigma)}$, then $V_S(x)$ and $V_S(y) \le [\rho, \sigma]$.

From (ii) of the proposition 3.7, we have $V_S(x * y) \le rmax\{V_S(x), V_S(y)\} \le [\rho, \sigma].$

Thus, $x * y \in S_{(\rho,\sigma)}$. Hence $S_{(\rho,\sigma)}$ is a filter of A.

Conversely, if for all $\rho, \sigma \in [0, 1]$, the set $S_{(\rho,\sigma)}$ is either empty or a filter of *A*.

Let
$$t_S(x) = \rho_1$$
, $t_S(y) = \rho_2$, $1 - f_S(x) = \sigma_1$ and $1 - f_S(y) = \sigma_2$.
Put $\rho = \max\{\rho_1, \rho_2\}$ and $\sigma = \max\{1 - \sigma_1, 1 - \sigma_2\}$.
Then, $t_S(x)$, $t_S(y) \le \rho$ and $1 - f_S(x)$, $1 - f_S(y) \le \sigma$.
Thus, $V_S(x)$ and $V_S(y) \le [\rho, \sigma]$, that is $x, y \in S_{(\rho, \sigma)}$.
Thus, $S_{(\rho, \sigma)} \ne \emptyset$.
Hence, by the assumption $S_{(-\gamma)}$ is a filter of A .

Hence, by the assumption $S_{(\rho,\sigma)}$ is a filter of A.

To prove: *S* is an anti vague filter of *A*.

If
$$x \le y$$
, $t_S(x) = \rho$ and $1 - f_S(x) = \sigma$.
Then $x \in S_{(\rho,\sigma)}$.
Since, $S_{(\rho,\sigma)}$ is a filter, $y \in S_{(\rho,\sigma)}$, that is, $V_S(y) \le [\rho, \sigma]$.
Since, $S_{(\rho,\sigma)}$ is filter of $A, x * y \in S_{(\rho,\sigma)}$.
That is, $\vartheta_S(x * y) \le [\rho, \sigma]$ for all $x, y \in A$
(3.5)

$$= [\max\{\rho_1, \rho_2\}, \max\{1 - \sigma_1, 1 - \sigma_2\}]$$

= $rmax\{[t_S(x), 1 - f_S(x)], [t_S(y), 1 - f_S(y)]$
= $rmax\{V_S(x), V_S(y)\}$ for all $x, y \in A$. (3.6)

From (3.5) and (3.6), S is an anti vague filter of A.

Note. The filter $S_{(\rho,\sigma)}$ is called a vague-cut filter of *BL*- algebra *A*.

Proposition 3.14 Let *S* be an anti vague filter of *BL*-algebra *A*. Then S_{ρ} is either empty or a filter of *A* for all $\rho \in [0, 1]$.

Proof: Let *S* be an anti vague filter of *BL*-algebra \mathcal{B} . Then from the theorem 3.13, the proof is obvious.

4. Conclusion

In the present paper the notion of an anti-vague filter in *BL*- algebra with suitable examples are studied. Also investigated some related properties with the help of more implication of an anti-vague filter of *BL*-algebra.

References

- [1]. R.Biswas, *Vague groups*, International Journal of Computational Cognition, Vol. 4(2) (2006), 20-23.
- [2].C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490.
- [3].T. Eswarlal, Vague ideals and normal vague ideals in semirings, International Journal of Computational Cognition, Vol. 6, (2008), 60-65.
- [4]. W. L. Gau, D. J. Buehrer, *Vague sets*, IEEE Transactions on Systems, Man and Cybernetics, Vol. 23 (2), (1993), 610-614.
- [5].P. Håjek, *Metamathematics of fuzzy logic*, Klower Academic Publishers, Dordrecht, 1999.
- [6].L. Z. Liu, K. T. Li, Fuzzy filters of BL-algebras, Information Sciences, 173 (2005), 141-154.

S. Yahya Mohamed and P. Umamaheswari

- [7]. S. Yahya Mohamed and P. Umamaheswari, *Vague Filter of BL-Algebras*, Journal of Computer and Mathematical Sciences, 9(8), (2018), 914-920.
- [8].S. Yahya Mohamed and P. Umamaheswari, *Vague prime and Boolean filters of BL- Algebras*, Journal of Applied Science and Computations, 5(11),(2018), 470-474.
- [9].S. Yahya Mohamed and P. Umamaheswari, *Vague implicative filters of BL- algebras*, American International Journal of Research in Science, Technology, Engineering and & Mathematics, Conference Proceeding of ICOMAC-2019, 295-299.
- [10]. S. Yahya Mohamed and P. Umamaheswari, *Vague Positive Implicative filter of BL- algebras*, Malaya Journal of Matematik, 8(1), (2020), 166-170.
- [11]. E. Turunen, *Boolean deductive systems of BL-algebras*, Arch. Math. Logic 40 (2001), 467-473.
- [12]. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353.
- [13]. X. H. Zhang, Fuzzy logic and its algebraic analysis, Science Press, Beijing (2008).