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Efficient generation of elimination trees and graph associahedra∗

Jean Cardinal† Arturo Merino‡ Torsten Mütze§

Abstract
An elimination tree for a connected graph G is a rooted tree on the vertices of G obtained by choosing

a root x and recursing on the connected components of G − x to produce the subtrees of x. Elimination
trees appear in many guises in computer science and discrete mathematics, and they encode many interesting
combinatorial objects, such as bitstrings, permutations and binary trees. We apply the recent Hartung-Hoang-
Mütze-Williams combinatorial generation framework to elimination trees, and prove that all elimination trees
for a chordal graph G can be generated by tree rotations using a simple greedy algorithm. This yields a short
proof for the existence of Hamilton paths on graph associahedra of chordal graphs. Graph associahedra are
a general class of high-dimensional polytopes introduced by Carr, Devadoss, and Postnikov, whose vertices
correspond to elimination trees and whose edges correspond to tree rotations. As special cases of our results,
we recover several classical Gray codes for bitstrings, permutations and binary trees, and we obtain a new Gray
code for partial permutations. Our algorithm for generating all elimination trees for a chordal graph G can
be implemented in time O(m + n) per generated elimination tree, where m and n are the number of edges
and vertices of G, respectively. If G is a tree, we improve this to a loopless algorithm running in time O(1)
per generated elimination tree. We also prove that our algorithm produces a Hamilton cycle on the graph
associahedron of G, rather than just Hamilton path, if the graph G is chordal and 2-connected. Moreover, our
algorithm characterizes chordality, i.e., it computes a Hamilton path on the graph associahedron of G if and
only if G is chordal.

1 Introduction
Many recent developments in theoretical computer science and combinatorics are closely intertwined. Specifically,
many combinatorial questions are motivated by applications to algorithm design, data structures, or network
analysis. Conversely, most fundamental computational problems involve finite classes of combinatorial objects,
such as relations, graphs, or words, and their analysis is a major drive for the development of combinatorial
insights. There are four recurring fundamental algorithmic tasks that we wish to perform with such objects,
namely to count them or to sample one of them at random, to search for an object that maximizes some objective
function (combinatorial optimization), or to produce an exhaustive list of all the objects. A great deal of literature
is devoted to all of these problems, and in this paper we focus on the last and most fine-grained of these tasks,
namely combinatorial generation.

1.1 Combinatorial generation. The complexity of a combinatorial generation algorithm is typically measured
as the time it takes to produce the next object in the list from the previous one. Clearly, the best we can hope
for is that each object is produced in constant time. For this to be possible, any two consecutive objects should
not differ much, so that the algorithm can perform the required modification in constant time. Such a listing of
objects subject to some closeness condition is referred to as a Gray code [Sav97, Rus16]. For some applications a
cyclic Gray code is desirable, i.e., the last object in the list and the first one also satisfy the closeness condition.

For example, the classical binary reflected Gray code [Gra53] is a listing of all bitstrings of length n such that
each string differs from the previous one in a single bit, and this listing is cyclic.
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n = 1 n = 2 n = 3 n = 4
1 12 123 1234

1243
1423
4123

132 4132
1432
1342
1324

312 3124
3142
3412
4312

21 321 4321
3421
3241
3214

231 2314
2341
2431
4231

213 4213
2413
2143
2134

Table 1: The Steinhaus-Johnson-
Trotter Gray code for permutations.

Another example is the problem of listing all permutations of length n

such that every permutation is obtained from the previous one by an
adjacent transposition, i.e., by swapping two neighboring entries of the
permutation. This is achieved by the well-known Steinhaus-Johnson-
Trotter algorithm [Tro62, Joh63, Ste64], which guarantees a cyclic listing;
see Table 1.

A third classical example is the Gray code by Lucas, Roelants van
Baronaigien, and Ruskey [LRR93] which generates all n-vertex binary
trees by rotations, albeit non-cyclically. Binary trees are in bijection
with many other Catalan objects such as triangulations of a convex
polygon, well-formed parenthesis expressions, Dyck paths, etc. [Sta15].
In triangulations of a convex polygon, the rotation operation maps to
another simple operation, known as a flip, which removes the diagonal
of a convex quadrilateral formed by two triangles and replaces it by the
other diagonal.

Combinatorial generation algorithms have been devised for many
other classes of objects [Ehr73, Kay76, CRS+00], including objects derived
from graphs and orders, such as spanning trees of a graph [Smi97],
maximal cliques or independent sets of a graph [TIAS77], perfect
matchings of bipartite graphs [FM94], perfect elimination orderings of
chordal graphs [CIRS03], and linear extensions [VR81, PR94] or ideals
of partial orders [Ste86].

A standard reference on combinatorial generation is Volume 4A of
Knuth’s series ‘The Art of Computer Programming’ [Knu11]. Generic
methods have been proposed, such as the reverse-search technique of Avis
and Fukuda [AF96], the ECO framework of Barcucci, Del Lungo, Pergola, and Pinzani [BDPP99], the antimatroid
formulation of Pruesse and Ruskey [PR93], Li and Sawada’s reflectable languages [LS09], the bubble language
framework of Ruskey, Sawada, and Williams [RSW12], and Williams’ greedy algorithm [Wil13].

1.2 Flip graphs and polytopes. Given any class of combinatorial objects and a ‘local change’ operation
between them, the corresponding flip graph has as vertices the combinatorial objects, and its edges connect pairs
of objects that differ by the prescribed change operation. Partial orders and lattices are often lurking, such as
the Boolean lattice for bitstrings, the weak Bruhat order on permutations, and the Tamari lattice for Catalan
families. Moreover, flip graphs can often be realized as the skeletons of polytopes, and combinatorial generation
for such classes of objects therefore amounts to computing Hamilton paths or cycles on this polytope. The
polytopes associated with the three aforementioned examples of bitstrings, permutations, and binary trees are the
hypercube, the permutahedron, and the associahedron, respectively; the latter two are shown in Figure 1. The
associahedron, in particular, has a rich history and literature, connecting computer science, combinatorics, algebra,
and topology [STT88, Lod04, HL07, Pou14].

1.3 Elimination trees. In this work, we focus on the generation of elimination trees, which are trees on n

vertices that are obtained from a fixed graph G on n vertices, and which capture all ways of removing the vertices
of G one after the other. For any graph G and any set of vertices X we write G − X for the graph obtained by
removing every vertex of X from G. For a singleton X = {x} we simply write G − {x} =: G − x.

Given a connected graph G = (V, E), an elimination tree for G is a rooted tree with vertex set V , composed
of a root x ∈ V that has as children elimination trees for each connected component of G − x. This definition is
illustrated in Figure 2. An elimination forest for a graph G is a set of elimination trees, one for each connected
component of G. We write E(G) for the set of all elimination forests for G.
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Figure 1: The three-dimensional permutahedron (left) and associahedron (right), with the Steinhaus-
Johnson-Trotter Hamilton path and the Lucas-Roelants van Baronaigien-Ruskey Hamilton path, respectively
(bold edges). The starting and end vertices are marked by a triangle or a diamond, respectively.
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Figure 2: (a) A connected graph G; (b) an elimination
tree T for G; (c) elimination orderings yielding the same
tree T .

We emphasize that an elimination tree is un-
ordered, i.e., there is no ordering associated with the
children of a vertex in the tree. Similarly, there is
no ordering among the elimination trees in an elim-
ination forest. It is useful to think of an elimination
tree for a graph G as the outcome of the process
of removing vertices in some elimination ordering,
which is a permutation that specifies the order of re-
moved vertices; see Figure 2 (c): We first remove the
root x from G, then proceed to remove the next ver-
tex in the ordering from the connected component of
G − x it belongs to. In general, one elimination tree
corresponds to several distinct elimination orderings.
Specifically, these are all the linear extensions of the partial order whose cover graph is the elimination tree turned
upside down.

1.4 Applications and related notions. Elimination trees are also found under the guise of vertex rankings and
centered colorings, and elimination forests are also known as G-forests [BM21], spines [MP15], and when defined
in the more general context of building sets, as B-forests [Pos09]. They have been studied extensively in various
contexts, including data structures, combinatorial optimization, graph theory, and polyhedral combinatorics.

For example, Liu and coauthors [Liu88, Liu89, Liu90, EL05, EL07] used elimination trees in efficient parallel
algorithms for matrix factorization. Elimination trees are also met in the context of VLSI design [Lei80, SDG92],
and for parallel scheduling in modular products manufacturing [IRV88b, IRV91, NW89]. In the context of
scheduling, one is typically interested in finding an elimination tree of minimum height, which determines the
number of parallel steps in the schedule. This problem, known to be NP-hard in general, has drawn a lot of
attention in the last thirty years [Sch93, AH94, DKKM94, DKKM99, BGHK95, BDJ+98]. Computing optimal
elimination trees for trees G is possible in linear time [IRV88a, Sch89].

A central notion in graph theory is the tree-depth of a graph, which is yet another name for the minimum
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height of an elimination tree [NO12, RRSS14, FGP15, KR18]. In particular, tree-depth and elimination trees can
be defined via the following other well-known objects. A ranking of the vertices of a graph G is a labeling of its
vertices with integers from {1, 2, . . . , k} such that any path between two vertices with the same label contains
a vertex with a larger label. A centered coloring of a graph G is a vertex coloring such that for any connected
subgraph H, some color appears exactly once in H. It is not difficult to show that the minimum k for which there
exists a vertex ranking of G is equal to the minimum number of colors in a centered coloring of G, which is in turn
equal to the tree-depth of G. For a connected graph G, the elimination tree corresponding to a vertex ranking or
a centered coloring can be constructed by iteratively picking respectively the largest label or the unique color as
the root x of the tree, and recursing on the connected components of G − x.

Elimination trees also occur naturally in the problem of searching in a tree or a graph [BAFN99, OP06,
MOW08, EZKS16], with applications to fault detection and database integrity checking. Recently, an online search
model on trees was defined based on elimination trees [BCI+20], which generalizes [BK20] the classical splay tree
data structure of Sleator and Tarjan.

1.5 Encoded combinatorial objects. In the context of combinatorial generation, elimination trees are
interesting, as they encode several familiar combinatorial objects:

• When G is the complete graph on [n], then its elimination trees are paths, which can be interpreted as
permutations of [n]: Read off the vertex labels from the root to the leaf in the elimination tree; see Figure 3 (a).

• When G is the path with vertices labeled 1, . . . , n between the end vertices, then its elimination trees are all
n-vertex binary trees: The distinction between left and right child in the binary tree is induced by the smaller
and larger vertex labels; see Figure 3 (b).

• When G is a star with 1 as the center and with leaves 2, . . . , n, then its elimination trees are brooms: a path
composed of elements from a subset of [n] \ {1}, followed by a subtree of height one rooted in 1. By reading off
the labels from the handle of the broom starting at the root and ending at the parent of 1, and subtracting 1
from those labels, we obtain a linearly ordered subset of [n − 1], which is known as a partial permutation; see
Figure 3 (c). We see that elimination trees for stars are in one-to-one correspondence with partial permutations.

• The graph G may also be disconnected. In particular, if G is a disjoint union of n edges {i, n+i} for i = 1, . . . , n,
then its elimination forests consist of n disjoint one-edge trees, which are either rooted in i or n + i for all
i = 1, . . . , n. We can thus interpret the elimination forest as a bitstring of length n, where the ith bit is 0 if i is
root, and the ith bit is 1 if n + i is root; see Figure 3 (d).
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Figure 3: Combinatorial objects encoded by elimination trees for suitable graphs G.
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• Combining the aforementioned encodings for permutations and bitstrings, we can take G as a disjoint union of n

edges {i, n + i} for i = 1, . . . , n and a complete graph on the n vertices {2n + 1, . . . , 3n}. The elimination forests
for G can be interpreted as signed permutations of [n]: Read off the vertex labels of the path on {2n+1, . . . , 3n}
from the root to the leaf in the corresponding elimination tree, subtracting 2n from those labels, and take the
resulting entry i of the permutation with positive sign if i is root and with negative sign if n + i is root; see
Figure 3 (e).

The task of generating all elimination trees for a graph considered in this paper is thus a generalization of generating
each of the aforementioned concrete classes of combinatorial objects.

1.6 Rotations and graph associahedra. Elimination trees can be locally modified by rotation operations,
which generalize the binary tree rotations used in standard online binary search tree algorithms [AVL62, GS78, ST85].
In fact, rotations are one of the elementary, unit-cost operations in the online search model studied
in [BCI+20, BK20].

Formally, rotations in elimination trees are defined as follows; see Figure 4. Let T be an elimination tree for a
connected graph G and let j be a vertex from G, distinct from the root of T . Let i be the parent of j in T , and let
H be the subgraph of G induced by the vertices in the subtree rooted at i. Then the rotation of the edge {i, j}
transforms T into another elimination tree T ′ for G in which:

• j becomes the parent of i, and the child of the parent of i in T (or the root if i is the root of T ),
• the subtrees of i in T remain subtrees of i,
• a subtree S of j in T remains a subtree of j, unless the vertices of S belong to the same connected component

of H − j as i, in which case S becomes a subtree of i.

a

b

c

d

e

f

j

i
G

a b c d

e fj

i T

a b

c d e f

j

i

T ′

(a) (b)

Figure 4: Elimination tree rotation. Part (a) shows two
vertices i and j in a graph G; (b) shows the corresponding
tree rotation.

A rotation in an elimination forest for a discon-
nected graph is a rotation in one of its elimination
trees. A rotation can be interpreted as the change in
an elimination tree for G resulting from swapping i

and j in the elimination ordering of the vertices.
Under the encodings discussed in Section 1.5,

elimination tree rotations correspond to natural ‘lo-
cal change’ operations on the corresponding combi-
natorial objects. Specifically, one can check that they
translate to adjacent transpositions in permutations,
classical rotations in binary trees, adjacent transpo-
sitions or deletions or insertions of a trailing element
in partial permutations, flipping a single bit in bit-
strings, or adjacent transpositions or sign changes in
signed permutations, respectively.

It is well known that for any graph G, the
flip graph of elimination forests for G under tree
rotations is the skeleton of a polytope, referred to as
the graph associahedron A(G) [CD06, Dev09, Pos09].
Graph associahedra are special cases of generalized permutahedra that have applications in algebra and
physics [PRW08, AA17]. For G being a complete graph, a cycle, a path, a star, or a disjoint union of edges,
A(G) is the permutahedron, the cyclohedron, the standard associahedron, the stellohedron, or the hypercube,
respectively. Figure 5 shows the graph associahedra of all 4-vertex graphs.

We consider the problem of generating all elimination forests for a graph G by rotations, or equivalently,
of computing Hamilton paths and cycles on the graph associahedron A(G). In previous work, Manneville and
Pilaud [MP15] showed that for any graph G with at least two edges, A(G) has a Hamilton cycle. Their construction
is an inductive gluing argument on A(G), which does not translate into an efficient algorithm for computing such
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Figure 5: Graph associahedra A(G) for all graphs G on n = 4 vertices, ordered by subgraph inclusion. The
Hamilton paths computed by our algorithm for all chordal graphs G are highlighted, with the starting and
end vertex marked by a triangle and diamond, respectively. The only non-chordal graph is the 4-cycle.
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a cycle. Note that the number of vertices of A(G) is in general exponential in the number n of vertices of the
underlying graph G (for example, the permutahedron has n! vertices), which makes global manipulations on A(G)
prohibitive for combinatorial generation, where we aim for an algorithm that visits each vertex of A(G) in time
polynomial in n, ideally even constant.

To obtain such an efficient algorithm, we apply the combinatorial generation framework recently proposed by
Hartung, Hoang, Mütze, and Williams [HHMW20]. In this framework, the objects to be generated are encoded by
permutations, and those permutations are generated by a simple greedy algorithm. Our encoding considers for
each elimination tree of an n-vertex graph the set of all elimination orderings (=permutations of [n]) corresponding
to this tree (recall Figure 2 (b)+(c)), and fixes precisely one representative permutation from this set. These
representatives are chosen so that their union, which is a subset of all permutations of [n], forms a so-called zigzag
language, a term defined in [HHMW20] via a closure property. The algorithm proposed in that paper to generate
zigzag languages and the combinatorial objects they encode can be implemented efficiently for many classes of
objects, and it subsumes several previously studied Gray codes. In a series of recent papers, this framework
was applied to a plethora of combinatorial objects such as pattern-avoiding permutations [HHMW21], lattice
quotients of the weak order on permutations [HM21], and rectangulations [MM21]. In this work, we extend the
reach of this framework and make it applicable to the efficient generation of structures on graphs, specifically
of elimination forests, which is a step forward in exploring the generality of this approach. This is achieved by
combining algorithmic, combinatorial, and polytopal insights and methods.

2 Our results
In the following we summarize the main results of this work and sketch the main ideas for proving them. In this
extended abstract, no formal proofs of our results are given. They can be found in the preprint [CMM21].

2.1 A simple algorithm for generating elimination forests for chordal graphs. For our algorithm it is
convenient to encode the rotation of edges {i, j}, i < j, by the larger end vertex j of the edge, and by the direction
in which i is reached from j, namely upwards if i is the parent of j and downwards if i is a child of j. This is
the direction in which the vertex j moves as a result of the rotation. We refer to these operations as up- and
down-rotations of j, respectively, and we use the shorthand notations j △ and j ▽ . Observe that a down-rotation
j ▽ is only well-defined if j has a unique child that is smaller than j, otherwise there are several choices for
children i < j of j and consequently several possible edges to rotate.

We propose to generate the set E(G) of all elimination forests for a graph G = ([n], E), [n] := {1, 2, . . . , n},
using the following simple greedy algorithm.

Algorithm R (Greedy rotations). This algorithm attempts to greedily generate the set E(G) of elimination
forests for a graph G = ([n], E) using rotations starting from an initial elimination forest F0 ∈ E(G).
R1. [Initialize] Visit the initial elimination forest F0.
R2. [Rotate] Generate an unvisited elimination forest from E(G) by performing an up- or down-rotation of the

largest possible vertex in the most recently visited elimination forest. If no such rotation exists, or the
rotation edge is ambiguous, then terminate. Otherwise, visit this elimination forest and repeat R2.

In other words, we consider the vertices n, n − 1, . . . , 2 of the current elimination forest in decreasing order,
and for each of them we check whether it allows an up- or down-rotation that creates a previously unvisited
elimination forest, and we perform the first such rotation we find, unless the same vertex allows several possible
rotations, in which case we terminate. We also terminate if no rotation creates an unvisited elimination forest.

For example, consider all elimination trees for the 4-cycle with vertices labeled 1, 2, 3, 4 cyclically; see Figure 6.
When initialized with the elimination tree F0 = T0 shown in the figure, the algorithm visits the 17 elimination
trees T0, . . . , T16. The tree T0 admits an up-rotation of 4, yielding T1. The tree T1 admits an up- and down-
rotation of 4, but the latter would yield T0, which was already visited, so we perform 4△ , yielding T2. One more
up-rotation of 4 gives T3, which does not admit any rotations of 4 to unvisited elimination trees. Consequently, we
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Figure 6: The output T0, . . . , T16 of Algorithm R for the 4-cycle.

consider the vertex 3, which does admit an up-rotation, yielding T4. The next interesting step is T6, which does
not admit rotations of 4 to unvisited elimination trees. However, T6 admits an up- and down-rotation of 3, but the
latter would lead to T0 again, so we perform 3△ to reach T7. From T9 to T10 we up-rotate 2, as neither 4 nor 3
admit rotations to unvisited elimination trees. The algorithm eventually terminates with T16, which admits both
an up- and down-rotation of 4 to two previously unvisited elimination trees T ′ and T ′′. Because of this ambiguity,
the algorithm terminates without exhaustively generating all elimination trees for G.

Figure 7 shows the output of Algorithm R for four other graphs G, and in all those cases the algorithm
terminates because from the last elimination forest in those lists, no rotation leads to a previously unvisited
elimination forests. Moreover, those four lists are all exhaustive, i.e., the algorithm succeeds in generating all
elimination forests for those graphs.

Our main result is that Algorithm R succeeds to generate E(G) exhaustively for chordal graphs G, i.e., graphs
in which every induced cycle has length three. Chordal graphs include many interesting subclasses, such as
paths, stars, trees, k-trees, complete graphs, interval graphs, and split graphs (in particular, all the graph classes
mentioned in Section 1.5). A classical characterization of chordal graphs is that they have perfect elimination
ordering, i.e., a linear ordering of their vertices such that every vertex x induces a clique together with its neighbors
in the graph that come before x in the ordering. In what follows, we consider a chordal graph G = ([n], E), where
the ordering 1, 2, . . . , n is a perfect elimination ordering of G.

Theorem 1. Given any chordal graph G = ([n], E) in perfect elimination order, Algorithm R visits every
elimination forest from E(G) exactly once, when initialized with the elimination forest F0 that is obtained by
removing vertices in increasing order.

Theorem 1 thus provides a short proof that the graph associahedron A(G) has a Hamilton path for chordal
graphs G. Figure 5 shows the Hamilton paths on the graph associahedra for all chordal 4-vertex graphs computed
by our algorithm.

Algorithm R generalizes several known Gray codes, including the Steinhaus-Johnson-Trotter algorithm for
permutations (when G is a complete graph; see Figure 7 (a) and Table 1), the binary tree Gray code due to Lucas,
Roelants van Baronaigien, and Ruskey (when G is a path; see Figure 7 (b)), and the binary reflected Gray code
for bitstrings (when G is a disjoint union of edges; see Figure 7 (d)). The Gray code for partial permutations
(when G is a star; see Figure 7 (c)) via adjacent transpositions or deletions or insertions of a trailing element is
new, and it can be implemented in constant time per generated object (see the next section).

Intuitively, the reason why Algorithm R succeeds for chordal graphs is that in every elimination forest for a
chordal graph, every vertex j has at most one child that is smaller than j. We show that this property characterizes
chordality, i.e., a graph is chordal if and only if all of its elimination forests have this property. It ensures that to
every vertex, at most one up-rotation and at most one down-rotation is applicable, and if both are applicable, then
one of the two resulting elimination forests has been visited before by the algorithm, and hence the other one is
visited next. In other words, there will never be ambiguity about two possible down-rotations of a vertex that lead
to unvisited elimination forests, or one possible up-rotation and one down-rotation (as in the last step in Figure 6),
so the algorithm does not terminate prematurely. By definition, the algorithm generates a previously unvisited

Copyright © 2022
Copyright for this paper is retained by authors



2

4

1

G

2

1

3 4

2

1

3

3

2

1

41

4

3

2

1

3

4 2

3

1

4

3

1

4

2

3

1

2

4

4

1

3

2

1

4

3

2

1

3

4

2

1

3

4

2

3

4

2

3

4

2

1

1

3

4

2

1

3

4

2

1

ε

3 2

2332

1

13 31
12

123
132

31221
213

231
321

4M 4O 4M
4O 4O 4O4M 4M 4M

3M 2M 3O

2

3

4

1G 2 3 4

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

42

1 3

4

2

1 3

4

2

1

3

4

2

1

3

42

1

3

4

2

1

3

4

2

1

3

4

2

1

1234
4312

4321
42313421

4132 4213
4123

24313412 3241
24131432 3142 3214

1423 21431342 23143124
1243 21341324 2341

4M 4M 4M 3M 4O
4O 3M 4M

2M
4O 3O 4M 4M

1G 2

3 4
3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1
4M 4M 4M 3M 4O

3

4

2

1

3

4

2

1 3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1 3

4

2

1

3

4

2

1

3

4

2

1

3

4

2

1

4O 4O 4O 4O 4O 4O 4O 4O3M 4M 4M 4M 4M 4M 4M3O 3O2M

permutations

binary trees

partial permutations

1G 2

3 4

5 6
000 001 011 110 111 101 100

6M 4M 6O 6M 6O4O

bitstrings
010

2M1

2

3

4

5

6

1

2

3

4 5

6 1

2 3

4

5

6 1

2 3

4 5

6 1

2

3

4 5

6 1

2

3

4

5

6

1

2 3

4 5

6

1

2 3

4

5

6

(a)

(b)

(c)

(d)

4O 3O 4M

Figure 7: The output of Algorithm R for four different chordal graphs G, and the corresponding Gray codes
of combinatorial objects.

elimination forest in every step, so avoiding premature termination guarantees that E(G) is generated exhaustively.
In fact, we show that Algorithm R generates a Hamilton path on the graph associahedron A(G) if and only if G

is chordal. As Algorithm R is oblivious of the notion of a chordal graph, this is an interesting new characterization
of graph chordality.

2.2 Efficient implementation of the algorithm. When implemented naively, Algorithm R requires storing
all previously visited elimination forests, in order to decide upon the next rotation. We can get rid of this defect
and make the algorithm memoryless and efficient.

Theorem 2. Algorithm R can be implemented such that for any chordal graph G = ([n], E) with m = |E| edges
in perfect elimination order, the algorithm visits each elimination forest for G in time O(m + n). For trees G, this
can be improved to O(1) for visiting each elimination tree for G.

The memory and initialization time required for these algorithms is O(m + n) for chordal graphs G and O(n)
for trees G, respectively. The initialization time includes the time for testing chordality and computing a perfect
elimination ordering. The obtained algorithm for trees G is loopless, i.e., the time bound O(1) holds in every
iteration. Recall that trees G are of particular interest in view of the special cases mentioned in Section 1.5 and
the data structure applications discussed at the end of Section 1.3.

We implemented both of these algorithms in C++, and made the code available for download, experimentation
and visualization on the Combinatorial Object Server [cos].

To achieve the runtime bounds stated in Theorem 2, we maintain an array of direction pointers o = (o1, . . . , on),
where an entry oj =△ indicates that the vertex j is rotating up in its elimination tree when it is rotated next by
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the algorithm, and oj = ▽ indicates that j is rotating down upon the next rotation. The direction is reversed if
after an up-rotation j △ the vertex j has become the root of its elimination tree or its parent is larger than j, or
if after a down-rotation j ▽ the vertex j has become a leaf or its children are all larger than j. In addition, we
introduce an array that allows us to determine in constant time which vertex j is rotating in the next step, i.e.,
which is the ‘largest possible vertex’ in step R2 of Algorithm R.

The bottleneck in the O(m + n) bound for chordal graphs is the time needed for one graph search in G.
Indeed, to perform the rotation of an edge {i, j} in an elimination tree T as illustrated in Figure 4, we consider the
subgraph H of G induced by the vertices in the subtree rooted at i, which is obtained by marking all ancestors
of i in T as removed (without actually removing them). In addition, we mark j as removed, but not i. Observe
that a subtree of j changes its parent from j to i in this rotation operation if and only if the root of this subtree is
reachable from i via non-marked vertices, i.e., vertices in H − j. This reachability of vertices in H − j from i can
be decided by a single graph search on non-marked vertices starting at i.

For trees G, every pair of vertices is connected by a unique path, and at most one subtree changes parent
upon a tree rotation. This allows us to dispense with the graph search and obtain a loopless O(1) algorithm.

2.3 Hamilton cycles for 2-connected chordal graphs. Lastly, we investigate when Algorithm R produces a
cyclic Gray code, i.e., a Hamilton cycle on the graph associahedron A(G), rather than just a Hamilton path. We
aim to understand under which conditions on G the first and last elimination forest generated by our algorithm
differ in a single tree rotation. In the examples from Figure 7, this is the case for (a) and (d), but not for (b)
and (c). We derive a number of such conditions, two of which are summarized in the following theorem. A graph
is 2-connected, if it has at least three vertices and removing any vertex leaves a connected graph.

Theorem 3. Let G = ([n], E) be a chordal graph in perfect elimination order. If G is 2-connected, then the
rotation Gray code for E(G) generated by Algorithm R is cyclic. On the other hand, if G is a tree with at least
four vertices, then this Gray code is not cyclic.

To appreciate the number of cases covered by our results in Theorems 1–3, we remark that the number of
non-isomorphic n-vertex graphs is 2n2/2(1+o(1)) [HP73], and the number of chordal graphs and of 2-connected
chordal graphs is 2n2/4(1+o(1)) [Wor85] (with different o(1) terms).

3 Open problems
We conclude this paper with the following remarks and open problems.

• While we precisely characterized the class of graphs on which our method applies, one may wonder whether it
could be applied to more general families of polytopes. Nestohedra, for instance, generalize graph associahedra,
and can be defined as Minkowski sums of standard simplices corresponding to families of subsets of {1, 2, . . . , n}
known as building sets [Pos09]. The main property of building sets is that the union of two intersecting subsets
must also be in the building set, which clearly holds for connected subsets of vertices of a graph. In this special
case, the building set is said to be graphical, and we recover the definition of graph associahedra. Postnikov,
Reiner, and Williams [PRW08] define chordal nestohedra as a generalization of chordal graph associahedra, via
the definition of chordal building sets. We omit details here, but our generation algorithm should apply directly
to chordal nestohedra, further extending its scope of applicability. Considering arbitrary hypergraphs instead
of building sets yields the class of hypergraphic polytopes [AA17, BBM19], not all of which are Hamiltonian.
The question of the applicability of our generation algorithm in this wider setting is worth considering.

• Can we generalize the methods from this paper to efficiently compute Hamilton paths and cycles in graph
associahedra A(G) for non-chordal graphs G? As a first step, one might try to tackle the case of G being a
cycle, i.e., cyclohedra. As we saw for the 4-cycle in Figure 6, and more generally for non-chordal graphs, the
simple greedy rule of Algorithm R will stop prematurely because of ambiguity. To overcome this, a more global
algorithmic control seems to be necessary, possibly using ingredients from Manneville and Pilaud’s Hamiltonicity
proof [MP15]. However, the cycles resulting from their inductive gluing argument have a completely different
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structure from the ones produced by our Algorithm R for chordal graphs, namely they are made of n blocks
and one of the n vertices of the graph is root in all elimination trees of one block. In contrast to that, the
largest vertex n in our cycles constantly moves up and down the elimination tree, and is root for only two
consecutive steps each.

• Another worthwile goal is to efficiently compute Hamilton cycles in graph associahedra A(G) for any chordal
graph G, specifically for graphs that are not 2-connected, in particular for trees G. Hurtado and Noy [HN99]
provide a simple construction when G is a path (i.e., the standard associahedron), which can probably be
turned into an efficient algorithm and possibly be generalized.

• Can the runtime bound of O(m + n) of our algorithm per generated elimination tree be improved? Recall that
m and n are the number of edges and vertices of G, respectively.

• The function that counts the number of elimination forests for a graph G, referred to as the G-Catalan number
by Postnikov [Pos09], deserves further study. For example, what is the complexity of computing it? This
question is directly related to unranking and ranking in the orderings computed by our algorithm, or to use our
generation approach for random sampling.
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