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Abstract—Identification of communication parameters, a ma-
jor task of intelligent receivers, has important applications in
intelligent systems, especially cognitive radio systems. Multiple
antennas make the identification problem more challenging. In
this paper, we focus on the problem of detecting the number
of transmit antennas in multiple-input multiple-output (MIMO)
cognitive radio systems. A novel identification algorithm is
proposed to determine the number of transmit antennas for
MIMO systems in the presence of alpha-stable noise. We first
introduce the correlation matrix based on the fractional lower
order statistics (FLOS) and provide a particular structure of
FLOS-based correlation matrix. Then, the eigenvalues of the
FLOS-based correlation matrix are employed to construct a test
statistic and the central limit theorem is exploited to obtain
the decision threshold. Finally, the transmit-antenna number is
detected using a serial binary hypothesis test. Simulation results
are demonstrated to evaluate the effectiveness of the proposed
transmit-antenna number detection algorithm for MIMO systems
in the presence of alpha-stable noise.

Index Terms—Alpha-stable noise, fractional lower order statis-
tics, multiple-input multiple-output, parameter identification.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technology
is a promising technique for high rate transmission

over wireless channels [1], [2]. MIMO technology has been
regarded as a key technique for intelligent systems, including
cognitive radio, software defined radio and security monitoring
[3], [4]. The utilization of MIMO technology in intelligent
systems incurs several challenges for the identification of com-
munication parameters, an important functional component of
intelligent systems, such as identification of transmit-antenna
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number [5], [6], classification of space-time code [7], [8] and
channel estimation [9], [10]. In particular, identification of
transmit-antenna number is crucial for intelligent receivers
[11], [12]. For example, in the cognitive radio systems, the
knowledge of transmit-antenna number for primary users
(PUs) is essential to enable secondary user intelligent trans-
mission so that secondary users can adjust the transmit power
and beamforming according to the transmit-antenna number
of PUs to avoid interfering the PUs [13]. Moreover, detection
of the transmit-antenna number is of interest for antenna
selection, which is considered as a alternative method in hybrid
MIMO system [14].

Several efficient identification algorithms have been devised
to determine the transmit antenna number for MIMO systems
in the literature. They fall into two main categories: the
information-theoretic methods [15]–[17] and the feature-based
(FB) algorithms [18]–[22]. In the fist method, detecting the
number of transmit antennas is formulated as a model selection
problem, which can determine the number of transmit antennas
by choosing the minimum Kullback-Leibler length of every
candidate models. O. Somekh et al. [15] have developed two
algorithms based on the minimum description length (MDL)
and Akaike information criterion (AIC) for detecting the num-
ber of transmitting antennas in MIMO systems. The MDL/AIC
algorithms provide a robust estimator to determine the number
of transmitting antennas for mild SNR conditions. However,
these two works are sensitive to timing and frequency offsets.
M. Shi et al. [16] presented a method based on the Schur
complement test to adaptively estimate the number of transmit
antennas in MIMO systems. The algorithm avoids the need
for tracking the eigenvalues of the sample covariance matrix,
and thus it has lower computational complexity. Additionally,
the performance of the adaptive estimator does not depend
on the number of receive antennas for MIMO systems. K.
Hassan, et al. [17] investigated the problem of identification
of transmit-antenna number for spatially-correlated MIMO
and proposed two algorithms based on objective information
theoretic criteria. These two algorithms are robust to the
spatial correlation of MIMO channel, but their performance
is sensitive to timing and frequency offsets.

Compared with the information-theoretic algorithms, the
feature-based algorithms are usually simpler to implement. In
[18], a novel algorithm was proposed to identify the number
of base station antennas by employing the orthogonality of the
pilot signals. This algorithm provides an acceptable detection
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performance by using only one receiver antenna, but it require
a priori knowledge about the pilot patterns. Mohammadkarimi
et al. [19] presented a new feature-based algorithm that utilized
the higher order statistics of the received signal to detect the
number of transmit antennas. In [20], the authors developed
two hypothesis testing based algorithm for identification of
the number of transmitting antennas, namely Wishart-matrix’s
largest eigenvalue (WME) based algorithm and secondary
moment based predicted eigenvalue threshold (SM-PET) algo-
rithm. Li et al. [21] presented a hypothesis testing algorithm
based on higher-order moments of eigenvalues to detect the
number of transmit antennas for MIMO systems. In [22],
a hypothesis testing algorithm based on the random matrix
theory was developed to detect the transmit antenna number in
frequency selective fading for non-cooperative MIMO-OFDM
systems.

Most of these existing works assume that the received
signal is impaired by additive white Gaussian noise (AWGN).
However, in practice, this assumption is not always valid,
as the received signal may be corrupted by non-Gaussian
noise/interference, as pointed out in [23], [24]. Typical non-
Gaussian noise impairments include human-made impulsive
noise, co-channel interference from multiple access and atmo-
spheric radio noise. Currently, several non-Gaussian models
are adopted in the literature, such as the Gaussian mixture
noise, generalized Gaussian noise and the alpha stable noise.
The family of alpha-stable distributions has been proved as an
accurate model for heavy-tailed noise [25], [26]. To the best
of our knowledge, no work has yet considered the problem
of identification of the number of transmit antennas in the
presence of alpha-stable noise.

In this paper, a novel feature-based algorithm is proposed
to estimate the number of transmitting antennas for MIMO
systems in the presence of alpha-stable noise. We employ the
eigenvalues of fractional lower-order statistics (FLOS) based
correlation matrix of the received signal as features and exploit
eigenvalues weighting to construct the test statistics to detect
the number of transmit antennas. The proposed algorithm does
not require a priori information about the pilot patterns and
preamble sequences.

The main motivations and contributions of this paper are
summarized as follows.

• It is the first work that detects the number of transmit
antennas for MIMO system with unlicensed user in the
presence of alpha-stable noise, which is scarcely men-
tioned.

• We present a novel feature-based identification algorith-
m, which employs the eigenvalues of the FLOS-based
correlation matrix of the received signal as features and
exploits hypothesis testing to determine the number of
transmit antennas for MIMO system with unlicensed user.
This is the first time FLOS is used in transmit antenna
number detection

• The performance of the proposed algorithm is signifi-
cantly improved over the existing algorithms for non-
Gaussian noise. Furthermore, the proposed algorithm
does not require prior knowledge about the pilot patterns
and preamble sequence.
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Fig. 1. MIMO system model with unlicensed user

The remainder of this paper is organized as follows. In
Section II, the system model is presented. The fractional
lower-order statistics based correlation matrix is introduced in
Sections III. The proposed detection algorithm is derived and
analyzed in Sections IV and V, respectively. The asymptotic
consistency analysis is presented in Section VI. Simulation
results are presented in Section VII, and some concluding
remarks are provided in Section VIII.

II. SYSTEM MODEL

A. System Model

Fig. 1 illustrates a cognitive MIMO system model as a
multi-antenna intelligent system. As shown in Fig. 1, the
primary user is equipped with Q transmit antennas and the
unlicensed user is equipped with K (K > Q) receive antennas.
The unlicensed user has no prior information about the number
of transmit antennas Q. The transmitted data symbols are
MPSK (Phase-Shift-Keying) or MQAM (Quadrature Ampli-
tude Modulation), M ≥ 4. It is assumed that the receiver is
completely synchronized with the transmitter. In this paper, the
channel is assumed to be flat-fading and characterized by an
K×Q matrix of flat fading coefficients. Under these assump-
tions, the received signal at the k-th antenna of unlicensed user
can be expressed as

rk (n) = s̃k (n) + wk (n) =

Q∑
q=1

hkqsq (n) + wk (n) , (1)

where sq (n) is the transmitted samples at the q-th transmit
antenna and wk (n) is the additive alpha-stable noise at the
k-th receive antenna. hkq represents the flat fading channel
coefficient between the q-th transmit antenna and k-th receive
antenna. The K × 1 observation vector at the receiver, i.e.,
r (n) = [r1 (n) , ..., rK (n)]

T , is expressed as

r (n) = Hs (n) +w (n) , (2)

where H corresponds to the K ×Q complex matrix of inde-
pendent and identically distributed (i.i.d.) flat fading channels
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and w (n) = [w1 (n) , ..., wK (n)]
T is the K×1 additive alpha-

stable noise vector.

B. Noise Model

The noise samples are assumed to be independent and iden-
tically distributed (i.i.d.) following the symmetric alpha-stable
(SαS) distribution. The SαS noise does not have a closed-
form and is most conveniently described by its characteristic
function as

φ (u) = exp {jeu− γ|u|α} . (3)

The characteristic exponent α controls the heaviness of
impulsiveness of the noise, and smaller α leads to the more
frequent occurrence of impulses. The dispersion γ determines
the spread of the distribution around its location parameter.
When α = 2, the SαS probability density function (pdf)
becomes the Gaussian pdf. Since it is rare to find SαS
noise with α < 1 in practical, we restrict our work to the
class of SαS distributions where α ∈ (1, 2]. It is assumed
that the noise process w (t) is white, which is a common
assumption for analytical purposes. In this paper, we define
a mixture signal-to-noise ratio (MSNR) as the ratio of the
average received signal power to the average noise power

MSNR(dB) = 10log10

E
[
∥r (n)−w (n)∥2F

]
Kγ

, (4)

where r (n) = [r1 (n) , · · · , rK (n)]
T and w (n) =

[w1 (n) , · · · , wK (n)]
T . ∥·∥F is the Frobenius norm, E {·}

denotes the statistical expectation. The variance of noise is
set to dispersion parameter γ in the symmetric alpha-stable
noise.

III. FRACTIONAL LOWER-ORDER STATISTICS BASED
CORRELATION MATRIX

In this section, we introduce the fractional lower order
statistics (FLOS)-based correlation matrix Gr and show a
particular structure of Gr, which includes the information
about number of transmit antennas.

The population covariance matrix has been widely used in
signal processing as a statistic property of signal correlation.
Unfortunately, there are no second-order or higher order mo-
ments for non-Gaussian noise and interference. As a result, the
performance of the algorithm in the identification of transmit-
antenna number using the population covariance matrix will
severely degrade in the presence of the alpha-stable noise. For
alpha-stable noise, the p-th order statistical moment E[|X|p] is
limited only if p < α. Therefore, fractional lower order statis-
tics are introduced to deal with alpha stable noise, including
fractional lower order moments, negative-order moment, zero
order moment, covariation, etc. The typical fractional lower
order correlation (FLOC) based on FLOS was introduced in
[27], [28]. The p-th FLOC of random variables X1 and X2

obeying SαS distribution can be denoted as

Rp
X1X2

= E

{
X1X

∗
2

|X2|2−p

}
, 1 < p < α, (5)

where E {·} denotes the statistical expectation.
According to [29], we introduce fractional lower order

statistics (FLOS)-based correlation matrix. The FLOS-based
correlation matrix of the received signals can be expressed as

Gr = E
{
[r (n)]

⟨p⟩[
r† (n)

]⟨p⟩}
=

 G11 · · · G1K

...
. . .

...
GK1 · · · GKK

 , (6)

where [r (n)]
⟨p⟩

= r (n)
/
|r (n)|(2−p)/2, and the (i,m)-th

element Gim of Gr can be given by

Gim = E

{
ri (n) r

∗
m (n)

(|ri (n)| |rm (n)|)(2−p)/2

}
, (7)

where ri (t) and rm (t), ∀i and m are the received signal
defined in Section II.

First, we show that Gr is bounded. Based on Theorem 1
in [29], the elements of the FLOS-based correlation matrix is
bounded as

−∞<Gim=E

{
ri (n) r

∗
m (n)

(|ri(n)||rm(n)|)(2−p)/2

}
<∞, 1<p<α ≤ 2.

(8)
Next, we provide a particular structure of the FLOS-based

correlation matrix Gr in Proposition 1.
Proposition 1: The elements of the FLOS-based correlation

matrix, Gim, can be expressed as

Gim ≃
Q∑

q=1

hiqΣqqh
∗
mq +ϖ2

wδim, (9)

where

Σqm≃δqmE


sq (n)

(
Q∑

q=1
sq (n) + wm (n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑q=1
hmqsq(n)+wm(n)

∣∣∣∣∣
) (2−p)

2


, (10)

ϖ2
w=E


wi (n)

(
Q∑

q=1
hmqsq (n)+wm (n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑
q=1

hmqsq(n)+wm(n)

∣∣∣∣∣
) (2−p)

2


, (11)

in which δqm is the Kronecker delta. From (11), the FLOS-
based correlation matrix Gr can be rewritten as

Gr = HΣH† +ϖ2
wI. (12)

Proof: See Appendix A.
Because Gr is a nonnegative definite Hermitian matrix, it

can be decomposed to a diagonal form as

Gr = UΛU†, (13)
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where U is a K×Q unitary matrix and Λ stands for a diagonal
matrix consisting of the eigenvalues as

Λ = diag (λ1, λ2, · · · , λQ, λ, · · · , λ) , (14)

and
λ1 ≥ λ2 ≥ · · · ≥ λQ ≥ λQ+1 = · · ·λK . (15)

From (15), the number of transmit antennas can be detected
by employing the multiplicity of the smallest eigenvalues of
Gr. However, the FLOS-based correlation matrix Gr is not
available in practice, which is can be estimated from a finite
number of the received signals. The estimator of FLOS-based
correlation matrix can be estimated as

Ĝr =

 Ĝ11 · · · Ĝ1K

...
. . .

...
ĜK1 · · · ĜKK

 . (16)

Ĝim =
1

N

N∑
n=1

ri (n) r
∗
m (n)

|ri (n)|
2−p
2 |rm (n)|

2−p
2

. (17)

Relying on eigenvalue decomposition, the eigenvalues of
Ĝr can be expressed as

ℓ1 ≥ ℓ2 ≥ · · · ℓQ ≥ ℓQ+1 ≥ · · · ≥ ℓK . (18)

In (18), it is obvious that the noise eigenvalues are not
all equal to the smallest eigenvalues, whose multiplicity is
not equal to K − Q. Hence, it is infeasible to determine
transmit-antenna number by observing the smallest eigenval-
ues. To remedy this difficult, we utilize statistical properties
of eigenvalues to develop a hypothesis testing based scheme
for detecting the number of transmit antennas, which will be
presented in Section IV.

IV. TRANSMIT ANTENNA NUMBER IDENTIFICATION
BASED ON FLOS-BASED CORRELATION MATRIX

A. Pertinent Statistical Properties of Eigenvalues
Assume that matrix A is a sample covariance matrix of

observations Z. Also, Z has a zero-mean Gaussian distribution.
According to the random matrix theory, A = ZZ† is nearly a
Wishart random matrix. According to [21], for large random
matrix, the empirical distribution function of the eigenvalues
of A with m real eigenvalues can be given by

FA (x) =
Θ (A) ≤ x

m
, (19)

where Θ(A) represents the number of eigenvalues of A.
In the noise only condition, when α, p→ 2, we further as-

sume that w (n)/⟨w (n)⟩p−2 approximately follows Gaussian
distributions with zero mean, and the matrix Ĝw has Wishart
distribution. Furthermore, the empirical distribution function
of the eigenvalues of Ĝw converges to a Marcenko-Pastur
distribution in the asymptotic regime, i.e., K,N → ∞, c =
K/N . The Marcenko-Pastur density function can be described
as [20]

dFGw (x) = max

{
0,

(
1− 1

c

)}
δ (x)

+

√
(x− a−) (a+ − x)

2πϖ2xc

∏
[a−, a+] (x) dx.

(20)

Using (20), one can show that the noise eigenvalues become
closer to each other when the number of samples N is
significantly larger than the number of receive antennas Q, i.e.,
c = K/N → ∞. As mentioned before, all the eigenvalues of
Ĝw only depend on ϖ2 in the noise only condition. However,
when the signal is present, the signal eigenvalues are greater
than noise eigenvalues in the population covariance matrix Ĝr.
In [30], the features of eigenvalues are described as the spiked
population model, where all eigenvalues are the same except
for a finite number of eigenvalues. In addition, Li et al. [21]
reported that the distribution of the K −Q noise eigenvalues
is closely approximated by the Marcenko-Pastur distribution
when K ≥ Q. Considering that λi is the i-th eigenvalue of Gr

and ℓj is the j-th largest eigenvalues of Ĝr. According to [30],
ℓj tends to λj

(
1 + ϖ2c

λj−ϖ2

)
as K and N both tend to infinity

for some c. In addition, for a well-behaved function φ (y),
the random variable ϑ = 1

K−Q

∑K
i=Q+1 φ (ℓi) converges with

probability one to

lim
K,N → ∞
c = K/N

ϑ =

∫
φ (y)dFGw (y) , (21)

It can be readily seen from the above equation that the
average of φ (y) over the noise eigenvalues of the sample
covariance matrix converges to E {φ (y)} where y is a random
variable with Marcenko-Pastur distribution. Thus, the r-th
order moment of the eigenvalues of Gw can be given by [30]

E{ϑr}=
∫
xrdFGw(x)=ϖ2r

r−1∑
j=0

cj

j+1

(
r
j

)(
r − 1
j

)
. (22)

B. Transmit Antenna Number Identification Scheme
Based on the above discussion, we achieve the pertinent

statistical properties of r-th order moments of eigenvalues us-
ing the random matrix theory. Subsequently, the test statistic of
the eigenvalue weighting is conceived by using the distribution
function of the r-th order moments of the eigenvalues. Finally,
a hypothesis testing procedure is employed to determine the
number of transmit antennas, which can test the multiplicity
of the noise eigenvalues by comparing the test statistic with
the decision threshold.

We first propose a weighted r-th order moment of
eigenvalue-based detector. The test statistic is given by

Tℓ (k) =
1

K − k

K∑
j=k+1

(
ℓj −ϖ2

w(k)
)+

ϖ
2(r+1)
w (k)

ℓrj , (23)

where (x)
+
=max (0, x), ϖ2

w(k)=
1

K−k
∑K

j=k+1 ℓj . Accord-
ing to (15) and (18), when N → ∞ and k ≥ Q, we have
ℓj≈ℓQ≈ϖ2

w=ϖ
2
w(Q). Hence Tℓ (k)=0. For k < Q, we have

ℓj>ℓQ≈ϖ2
w and Tℓ (k)>0. Hence, we can detect the number

of transmit antennas by checking the test statistic Tℓ (k).
Let us then consider a serial binary hypothesis test by

using the theoretical distribution of the test statistic. We can
estimate the number of transmit antennas using a serial binary
hypothesis test. The decision criterion can be set as{

Tℓ (k) > ψℓ, under H1

Tℓ (k) ≤ ψℓ, under H0,
(24)
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where Tℓ (k) represents the test statistic with k = 1, 2, ...,K−
1. ψℓ denotes the decision threshold. The hypothesis H1

represents that the eigenvalue ℓj is a signal eigenvalue for the
test statistic Tℓ (k). The null hypothesis H0 represents that the
eigenvalue ℓj is a noise eigenvalue.

In practice, it is difficult to obtain enough information about
the transmitted signals at the receive side, especially at the
cognitive receiver. Hence, we cannot obtain the distribution
function of Tℓ (k) under the hypothesis H1. As a result, the
decision threshold ψℓ cannot be set based on the detection
probability Pd = P {Tℓ (k) > ψℓ|H1} [21]. To set the de-
cision threshold ψℓ, we analyze r-th order moments of the
random variables of test statistics Tℓ (k) in the null hypothesis
H0. Details on the decision threshold setting will be given
in the next section. In conclusion, the main procedures of
the proposed weighted r-th order moments of the eigenvalue-
based algorithm are summarized in Algorithm 1.

Algorithm 1 Transmit antenna number identification based on
FLOS-based correlation matrix

1: Compute the FLOS-based correlation matrix of the re-
ceived signal according to (16) and (17);

2: Obtain the absolute value eigenvalues ℓj of the matrix Ĝr,
and sort eigenvalues ℓj from large to small;

3: Compute the decision statistic Tℓ (k) according to (23);
4: Initialize k = 1
5: Set the decision threshold ψℓ based on (34) and (40);
6: If Tℓ (k) ≤ ψℓ;
7: Q̂ = k.
8: else
9: Increment k = k + 1 and go to Step 5.

10: end.

V. DECISION THRESHOLD ANALYSIS

A. Largest Eigenvalues Approximation Approach
The test statistic Tℓ (k) can be regarded as the sum of

K − k independent random variables. We propose the largest
eigenvalue to approximate the weight eigenvalues. We first
derive the first-order and second-order moments of the test
statistic Tℓ (k) under the null hypothesis H0. Let

Tℓ (k) |k=Q =
1

K − k

K∑
j=k+1

(
ℓj −ϖ2

w

)+
ϖ

2(r+1)
w

ℓrj

≃ 1

K − k

K∑
j=k+1

(
ℓj −ϖ2

w

)
ϖ

2(r+1)
w

ℓrj

≃ 1

K − k

K∑
j=k+1

(
ℓmax (Gw)−ϖ2

w

)
ϖ

2(r+1)
w

ℓrj

=

(
ℓmax (Gw)−ϖ2

w

)
ϖ2

w

1

K − k

K∑
j=k+1

ℓrj
ϖ2r

w

=

(
ℓmax (Gw)−ϖ2

w

)
ϖ2

w

∆r,

(25)

where ∆r = 1
K−k

K∑
j=k+1

ℓrj
ϖ2r

w
.

The first-order and second-order moment of the test statistic
Tℓ (k) under the hypothesis H0 can be obtained as

E {Tℓ (k)} ≃ ℓmax (Gw)−ϖ2
w

ϖ2
w

E {∆r} , (26)

and

E
{
T 2
ℓ (k)

}
≃
(
ℓmax (Gw)−ϖ2

w

ϖ2
w

)2

E
{
∆2

r

}
. (27)

According to the distribution of the largest eigenvalue

theorem, ℓmax (Gw) ≃ ϖ2
w

N

(√
N +

√
K
)2

when N → ∞
and α, p → 2. Hence, the mean and the variance of the test
statistic Tℓ (k) under the hypothesis H0 can be expressed as

µTℓ
=
K + 2

√
NK

N
E {∆r} , (28)

and

σ2
Tℓ

= E
{
T 2
ℓ (k)

}
− E2 {Tℓ (k)}

=

(
K+2

√
NK

N

)2 (
E
{
∆2

r

}
− E2 {∆r}

)

=

(
K+2

√
NK

)2
N2

Var{∆r} ,

(29)

where E {∆r} and Var{∆r} are the mean and the variance
of ∆r, respectively. Based on [30], when α, p → 2, K and
N tend to infinity (for c = K/N ), the distribution of ∆r

converges to a normal distribution as

∆r ∼ N
(
µ∆r ,

σ2
∆r

K2

)
. (30)

Table I gives µ∆r and σ2
∆r

for r = 2, 3, 4 [30].
According to the central limit theorem (CLT) for sufficiently

large N , Tℓ (k) approximately follows Gaussian distribution as

Tℓ (k) |k=Q ∼
(
µTℓ(k), σ

2
Tℓ(k)

)
, (31)

and
Tℓ (k) |k=Q − µTℓ(k)

σTℓ(k)

∼ N (0, 1) . (32)

According to [20] and [21], for the normal distribution, we
can set a threshold t, that is

−t ≤
Tℓ (k) |k=Q − µTℓ(k)

σTℓ(k)

≤ t. (33)

Then, the decision threshold ψa
l can be obtained as

ψa
ℓ =

K + 2
√
NK

N
µ∆r + ta

(
K+2

√
NK

)
N

σ∆r

K
. (34)

From (34), it is obvious that the decision threshold ψa
ℓ is

related to K, N , ta and the parameters µ∆r and σ∆r . For given
r, µ∆r and σ∆r are dependent on a Polynomial of variable
c = K/N . When α, p < 2, ϖ2

w contains information on the
MSNR, and ta will be set according to different MSNR.
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TABLE I

r = 2 r = 3 r = 4 r = 5

µ∆r
c+ 1 c2 + 3c+ 1 c3 + 6c2 + 6c+ 1 c4 + 10c3 + 20c2 + 10c+ 1

σ2
∆r

2c2 3c2
(
6+13c+6c2

)
36c2

(
1+4c+2c2

)(
c2 + 4c+ 2

)
20c2

(
5+20c+15c2+2c3

)(
5c3+20c2+15c+2

)

B. Gaussian Approximation Approach

The distribution of Tℓ (k) under the H0 hypothesis can be
approximated by a Gaussian distribution. Let us first rewrite
the test statistic Tℓ (k) as

Tℓ (k) |k=Q =
1

K− k

K∑
j=k+1

(
ℓj −ϖ2

w

)+
ϖ

2(r+1)
w

ℓrj

≃ 1

K− k

K∑
j=k+1

(
ℓj −ϖ2

w

)
ϖ

2(r+1)
w

ℓrj

=
1

K − k

K∑
j=k+1

(
ℓr+1
k

ϖ
2(r+1)
w

− ℓrk
ϖ2r

w

)

=
1

K− k

K∑
j=k+1

ℓr+1
j

ϖ
2(r+1)
w

− 1

K− k

K∑
j=k+1

ℓrj
ϖ2r

w

= ∆r+1 −∆r,

(35)

where ∆r+1 = 1
K−k

K∑
j=k+1

ℓr+1
j

ϖ
2(r+1)
w

.

Similarly, when α, p → 2, the distribution of ∆r+1 con-
verges to a normal distribution as

∆r+1 ∼ N

(
µ∆r+1 ,

σ2
∆r+1

K2

)
. (36)

According to the properties of Gaussian distribution, the
mean and variance of Tℓ (k) can be given by

µTℓ(k) = µ∆r+1 − µ∆r , (37)

σ2
Tℓ(k)

=
(
σ2
∆r+1

+ σ2
∆r

)/
K2. (38)

We approximate the distribution of Tℓ (k) to be Gaussian
with sufficiently large K. The normalized Tℓ (k) asymptoti-
cally follows a standard Gaussian distribution as

Tℓ (k) |k=Q − µTℓ(k)

σTℓ(k)

∼ N (0, 1) . (39)

Similar to Section V-A, we define a threshold tb for a
standard Gaussian distribution. The decision threshold can be
expressed as

ψb
ℓ = µ∆r+1 − µ∆r + tb

(
σ2
∆r+1

+ σ2
∆r

K2

) 1
2

. (40)

In (40), the decision threshold ψb
ℓ is simply a function of

the parameters µ∆r+1 , µ∆r+1 , σ2
∆r+1

and σ2
∆r

. The parameters
rely on a Polynomial of variable c = K/N . For α, p < 2, tb
is a value related to the MSNR.

Accordingly, the decision threshold ψa
ℓ and ψb

ℓ depend on
the number of samples N , the number of receive antennas

K, and the threshold ta and tb. We note that ψa
ℓ and ψb

ℓ

will be set according to the MSNR because ϖ2
w contains the

signal amplitude. This means that the proposed scheme require
MSNR, while it avoids the need for a priori information about
the pilot patterns and channel knowledge.

VI. ASYMPTOTIC CONSISTENCY ANALYSIS

In this section, the asymptotic consistency of the proposed
method is investigated. As mentioned in Section III, the FLOS-
based matrix Gr can be closely approximated by a sample
matrix Ĝr. When N → ∞, the sample matrix tends to the
FLOS-based matrix, and the eigenvalues of Ĝr converge to
the eigenvalues of Gr with probability 1.

As mentioned in Section V, the decision threshold ψa
ℓ and

ψb
ℓ are dependent on µ∆r and σ2

∆r
. For N → ∞ and α, p→ 2,

we have µ∆r → 1 and σ2
∆r

→ 0. Based on (34) and (40), we
obtain

lim
N→∞

ψa
ℓ = 0+, (41)

and
lim

N→∞
ψb
ℓ = 0+. (42)

Under the H1 hypothesis, when 1 ≤ k < Q, the limit of
test statistic Tℓ (k) can be expressed as

lim
N→∞

Tℓ (k)= lim
N→∞

1

K − k

K∑
j=k+1

(
ℓj−ϖ2

w (k)
)+

ϖ
2(r+1)
w (k)

ℓrj>0. (43)

According to the above inequality, Tℓ (k) > ψa
ℓ and

Tℓ (k) > ψb
ℓ are always satisfied for N → ∞. Based on the

decision criterion in Section II, for the decision threshold ψa
ℓ

and ψb
ℓ , we have

lim
N→∞

{
Q̂ ≥ Q

}
= 1. (44)

In the null hypothesis H0, when Q ≤ k ≤ K − 1, the limit
of test statistic can be expressed as

lim
N→∞

Tℓ (k)= lim
N→∞

1

K − k

K∑
j=k+1

(
ℓj−ϖ2

w (k)
)+

ϖ
2(r+1)
w (k)

ℓrj =0. (45)

As a result, Tℓ (k) < ψa
ℓ and Tℓ (k) < ψb

ℓ are always true
for N → ∞. Similar to the analysis process under the H1

hypothesis, for the decision threshold ψa
ℓ and ψb

ℓ , we obtain

lim
N→∞

{
Q̂ > Q

}
= 0. (46)

Therefore, according to (44) and (46), we have

lim
N→∞

{
Q̂ = Q

}
= 1. (47)

Hence, the proposed estimator is asymptotically consistent
when the sample size N goes to infinity with Q and K fixed.
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Fig. 2. Probability of identification versus MSNR for different parameters
p when considering decision threshold ψa

ℓ
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Fig. 3. Probability of identification versus MSNR for different parameters
p when considering decision threshold ψb

ℓ

VII. SIMULATION RESULTS AND DISCUSSION

In this section, numerical results are presented to validate
the performance of the proposed method for the identification
of transmit-antenna number in MIMO Systems with alpha-
stable noise. In our simulation, we consider a MIMO system
that employs linear space-time block coding with multiple
transmit antennas. Flat fading channel is considered in the
simulation. The parameters r and α are r = 4 and α = 1.9.
Moreover, the threshold ta and tb for the decision threshold
ψa
ℓ and ψb

ℓ are set by Monte Carlo method in different MSNR
ranges, respectively. All results are calculated using 2000
Monte Carlo trials. The probability of correct identification
Pd = Pr

[
Q̂ = Q

]
is employed as the performance measure.

In Figs. 2-3, the probability of identification Pd is plot-
ted versus MSNR for different parameter p in symmetric
alpha-stable noise. In this simulation, the number of receiver
antennas and the number of received samples are equal to
K = 10 and N = 800, respectively. Fig. 2 shows the effect
of parameter p on identification probability Pd when the test
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Fig. 4. Probability of identification versus MSNR for different receive
antennas K when considering decision threshold ψa

ℓ
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Fig. 5. Probability of identification versus MSNR for different receive
antennas K when considering decision threshold ψb

ℓ

threshold is ψa
ℓ . As observed from Fig. 2, the identification

probability Pd is improved with the decrease of parameter
p for transmit-antenna number Q = 3 and Q = 4. When
MSNR is close to 4dB and transmit-antenna number equals
Q = 3, the probability of identification is close to 96% for
p = 1.1 and close to 90% for p = 1.4. In Fig. 3, the effect of
parameter p on the identification probability Pd is presented
for the test threshold ψb

ℓ . As can be seen, a smaller parameter p
corresponds to better identification performance for transmit-
antenna number Q = 3 and Q = 4. With p = 1.1, the
probability of correct identification is close to 96% for an
MSNR equals to 4dB and Q = 3. According to the results
shown in Figs. 2 and 3, we conclude that the proposed method
achieves superior identification performance for parameter
p = 1.1 compared with other p. Unless otherwise mentioned,
the parameter p is set to 1.1 in the following simulation
experiments.

Figs. 4-5 show the effect of the number of receive antennas
K on the probability of identification Pd for the proposed
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Fig. 6. Probability of identification versus MSNR for different received
samples N when considering decision threshold ψa

ℓ
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Fig. 7. Probability of identification versus MSNR for different received
samples N when considering decision threshold ψb

ℓ

method when test threshold ψa
ℓ and ψb

ℓ . With N = 800, we
evaluate the identification probability of proposed method in
alpha-stable noise when receive antennas K is set to 8, 10, 12
and 14. In Fig. 4, for K = 14 receiver antennas and an MSNR
close to 1 dB, the probability of correct identification is over
90% when transmit-antenna number Q = 3. The probability
of correct identification Pd is close to 90% at MSNR equals
to 0dB in Fig. 5 when Q = 3 and K = 14. These results
show that the identification probability Pd of the proposed
method improves with the number of receive antennas K
increases. This is because that increasing the number of receive
antennas K will increase the effective post-processing MSNR
and obtain better performance.

Figs. 6-7 illustrate the effect of the number of received
samples N , on the probability of identification Pd for the
proposed identification method when decision threshold ψa

ℓ

and ψb
ℓ . In this simulation, we have evaluated the behavior of

our identification method for different received samples, where
N = 600, N = 800, N = 1000 and N = 1200. As can be
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Fig. 8. Probability of identification versus MSNR for different modulation
formats when considering decision threshold ψa

ℓ
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Fig. 9. Probability of identification versus MSNR for different modulation
formats when considering decision threshold ψb

ℓ

seen, the probability of correct identification improves when
increasing the number of received samples N . For instance,
the probability of correct identification Pd is over 90% when
the number of received samples N = 1200 at MSNR=3dB,
where the number of transmit antennas and receiver antennas
are equal to Q = 3 and K = 9. This can be easily explained,
as increasing the number of receive samples N will reduce
noise level and achieves better identification performance.

Figs. 8-9 depict the effect of the modulation scheme on
the probability of identification Pd of the transmit-antenna
number Q for the proposed method. The probability of correct
identification Pd, is shown versus MSNR for test threshold ψa

ℓ

and ψb
ℓ . It is observed in Figs. 8-9 that, the performance of

the proposed algorithm is not dependent on these modulation
formats, which are mandatory for most of the wireless stan-
dards. For example, the probability of correct identification Pd

is over 90% for different modulation formats at MSNR=5dB.
This is mainly because that the proposed scheme is developed
rely on the eigenvalues of the FLOS-based matrix, which is
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Fig. 11. Probability of identification versus MSNR for different noise
characteristic exponent α when considering decision threshold ψb

ℓ

independent on the modulation format.
In Figs. 10-11, the probability of identification of the

transmit-antenna number is plotted versus MSNR. For com-
parison, the performance of the HOM-HT algorithm [21],
WME and SM-PET algorithms [20] with symmetric alpha-
stable noise are also plotted in these figures. From Figs. 10-
11, it can be shown that the proposed algorithm (FLOS-HT) is
robust against symmetric alpha-stable noise and significantly
outperforms the existing algorithms when MSNR is large.
In addition, it can be observed that the performance of the
proposed algorithm is dependent on the value of α in Figs.
10-11. The correct identification probability increases with
an increase in α values. For example, we observed that the
probability of correct identification Pd degraded from close
to 99% to 20%, when noise characteristic exponent α values
decreased from 1.9 to 1.5 for MSNR= 5dB. Specifically, for
the same α values (α = 1.5), the proposed method achieves
good identification performance in relatively very heavy-tailed
impulsive noise (α = 1.5).

VIII. CONCLUSION

We developed a novel algorithm to detect the number
of transmit antennas for MIMO cognitive radio systems in
alpha-stable noise. We introduced the FLOS-based correlation
matrix of the received signals and provided pertinent statistical
properties of eigenvalues. Then, we construct a test statistic
rely on the eigenvalues of the FLOS-based correlation ma-
trix and utilized a serial binary hypothesis test to determine
the number of transmit antennas. Furthermore, the decision
threshold was derived based on the largest eigenvalues and
Gaussian approximation, respectively. The proposed algorithm
has the advantage of avoiding the need for a priori information
about the pilot patterns and channel knowledge. Simulation
experiments demonstrated that the algorithm can achieve a
good performance in the presence of symmetric alpha-stable
noise, and has good robustness to the change of characteristic
exponent. Future works include investigating robust detection
of transmit-antenna number for multi-cell or cell-free MIMO
systems.

APPENDIX A
PROOF OF PROPOSITION 1

Substituting the received signal rk (n) into the elements of
the FLOS-based matrix Gim, we have

Gim=E

{
ri (n) r

∗
m (n)

(|ri (n)| |rm (n)|)(2−p)/2

}

=E



(
Q∑

q=1
hiqsq(n)+wi(n)

)(
Q∑

q=1
hmqsq(n)+wm(n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑
q=1

hmqsq(n)+wm(n)

∣∣∣∣∣
) (2−p)

2


(48)

Since the transmitted signal sq (n) and the noise wm (n)
are independent, the elements of the FLOS-based matrix Gim

in (49) can be further expressed as (50) at the top of the next
page.

According to the process in [29], the elements of the FLOS-
based matrix Gim can be approximately written as

Gim≃
Q∑

q=1

hiqE


sq(n)

(
Q∑

q=1
sq(n)+wm(n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑q=1
hmqsq(n)+wm(n)

∣∣∣∣∣
) 2−p

2


h∗mq

+E


wi (n)

(
Q∑

q=1
hmqsq (n)+wm (n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑
q=1

hmqsq(n)+wm(n)

∣∣∣∣∣
) 2−p

2



(50)

Applying variable changes, the elements of the FLOS-based
matrix, Gim, can be expressed as

Gim ≃
Q∑

q=1

hiqΣqqh
∗
mq +ϖ2

wδim, (51)
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Gim ≃ E



Q∑
q=1

hiqsq (n)

(
Q∑

q=1
hmqsq (n) + wm (n)

)∗

(
|ri (n)|

∣∣∣∣∣ Q∑
q=1

hmqsq (n) + wm (n)

∣∣∣∣∣
) 2−p

2


+ E


wi (n)

(
Q∑

q=1
hmqsq (n) + wm (n)

)∗

(
|ri (n)|

∣∣∣∣∣ Q∑
q=1

hmqsq (n) + wm (n)

∣∣∣∣∣
) 2−p

2


. (49)

where

Σqm≃δqmE


sq (n)

(
Q∑

q=1
sq (n) + wm (n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑q=1
hmqsq(n)+wm(n)

∣∣∣∣∣
) (2−p)

2


, (52)

ϖ2
w=E


wi (n)

(
Q∑

q=1
hmqsq (n)+wm (n)

)∗

(
|ri(n)|

∣∣∣∣∣ Q∑
q=1

hmqsq(n)+wm(n)

∣∣∣∣∣
) (2−p)

2


, (53)

in which δqm is the Kronecker delta. The FLOS-based matrix
Gr is rewritten as

Gr = HΣH† +ϖ2
wI. (54)
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