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Abstract—The partial discharge signal measurement is a
non-destructive diagnostics procedure to assess the status
of insulation system in high voltage equipment. Due to the
adverse measurement conditions, the PD signals are strongly
influenced with external noise. In this paper, a new approach
is presented for PD signal denoising, which combines the
Variational Mode Decomposition and Group-Sparse Total
Variation based denoising. The proposed method is applied
to extract the simulated PD signal buried in white noise,
discrete spectral interference and color noise. Simulation
results show that the performance of the proposed VMD-GSTV
method is superior to that of Wavelet and the recently introduced
Wavelet Total Variation method, specifically when the SNR is low.

Index Terms—Denoising; Group-Sparse Total Variation; Par-
tial Discharge; Variational Mode Decomposition

I. INTRODUCTION AND RELATED WORK

High Voltage (HV) equipment failure occurs as a result of
insulation deterioration initiated by voids created in the insu-
lation material from the combined effects of thermal, electri-
cal, mechanical, and environmental stresses during long-term
operation. Due to the high voltage stress, localized dielectric
breakdown of a small portion of an insulator occurs, resulting
in a Partial Discharge (PD) signal. Over the time, repetitive
discharge causes permanent breakdown of insulating materials
which leads to complete breakdown of the equipment[1].

The most common on-site noise reported during PD mea-
surements are noise from corona discharge, commutator noise,
white Gaussian noise, thermal noise, pink noise, and high-
frequency signal interference from communication equipment,
commonly referred as Discrete Spectral Interference (DSI) [2–
4]. For the past few years, many researchers proposed signal
decomposition based denoising algorithms for PD signals,
such as Wavelet Transform (WT) [2–5], Empirical Mode De-
composition (EMD) [6, 7], Variational Mode Decomposition
(VMD) [8]. Wavelet transform is considered to be one of
the popular method, WT using Discrete Wavelet Transform
(DWT) with hard and soft thresholding for denoising PD
signal is applied in [2–4] and Adaptive Dual Tree Complex
Wavelet Transform (ADTCWT) with automatic threshold by
applying adaptive singular value decomposition [5]. However,
the performance of Wavelet denoising relied on the type, order,

level of decomposition and threshold type - not practical for
certain applications.

Apart from WT, adaptive signal decomposition techniques
were used in many denoising applications [9]. EMD is an
adaptive signal decomposition technique, which decomposes a
signal into series of Intrinsic Mode Functions (IMFs) with the
different frequency levels. EMD with Interval Thresholding
(IT), Iterative IT (IIT) and Clear IIT (CIIT) were used in
PD denoising [6]. Recently, a Novel Adaptive Ensemble EMD
(NAEEMD) was applied to denoising PD signal [7], however,
in all these EMD-based methods the IMFs are taken as mean
of many trials, which results in a large amount of computation
time and other issues such as error accumulation, mode mixing
and end effects [10].

To overcome these issues, Dragomiretskiy and Zosso [11]
proposed VMD, a non-recursive approach with a firm math-
ematical foundation. It decomposes a multi-component input
signal into a set of Band Limited IMFs (BLIMFs). Hybrid of
VMD and Wavelet Packet Transform (WPT) were applied to
synthetic and real-time PD denoising and VMD based WT is
applied in denoising UHF PD signals [8]. In spite of the noise
sources considered in the literature i.e. white noise and narrow
band noise, the performance of VMD need to be studied for
other various noise sources.

Total Variation Denoising (TVD) is an optimization problem
for removal of noise in 2-dimensional data i.e. image [12].
Selesnick and Condat [13, 14] developed 1-dimensional TVD
algorithm, applied to an electrocardiogram (ECG) signal and
vibration signal denoising [15]. Signals processed using TVD
often exhibit stair-case artifacts [16], Selesnick and Chen pro-
posed Group-Sparse Total Variation (GSTV) denoising which
is suitable when the signal to be estimated is known to be
group sparse, which is more suitable for PD signal denoising.
It is an iterative algorithm derived using the Majorization-
Minimization (MM) optimization method with fast solvers for
banded systems of linear equations.

Usage of various decomposition methods and application of
total variation denoising in PD signal is still an ongoing area
of research. A new denoising approach based on VMD and
GSTV techniques for PD signal corrupted with white noise,
color noise and DSI is proposed in this paper.
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II. METHODOLOGY

The electrical detection method uses matching impedance
as either RC or RLC circuit for wide and narrow band PD
detection [2]. The output pulse shape is based on the type of
detection circuit, which is realized as natural response of either
parallel RC or RLC circuit, they are Damped Exponential
Pulse (DEP) and Damped Oscillatory Pulse (DOP). In this
work, DOP model along with white noise, DSI and color noise
is considered for implementation. The PD signal PDDOP (t)
is modeled using Equation (1) as given below,

PDDOP (t) = A
(
e−αt − e−βt

)
sin(ωt) (1)

where A represents the amplitude of the PD signal, α and β
are the damping factors and ω is the damping frequency. The
PD signal with the random amplitude between 0.7V to 1.3V,
α is set as 7.5x105, β is set as 16x106 and ω as 150 kHz is
considered. The sampling frequency fs is set to 20MHz.

First noise model is a commonly-used random noise pro-
cess is white noise. The built-in additive white Gaussian
noise model from MATLAB® used with Signal-to-Noise Ratio
(SNR) of -16dB, -12dB, -8dB and -4dB. The second noise
model is the DSI [4], the presence of continuous sinusoidal
noise from the communication systems represented in the form
of combination of amplitude modulated signals given by the
Equation (2).

nAM (t) =
9∑
c=1

(Ac +m ∗ sin (ωmt)) ∗ sin (ωct) (2)

the carrier amplitude Ac = 1, frequency of the carrier signal
ωc = 0.1−1.7MHz in steps of 200kHz, the modulation depth
m = 0.4 and the frequency of the modulating wave ωm =
1kHz. A third noise model is additive pink noise simulated
using MATLAB® function ColoredNoise.

The thermal noise generated by the detection system and
the background noise are considered as white noise and the
interference from radio transmission is considered as DSI [3,
4] and pink noise ( 1f noise) [17]. A typical on-site PD signals
were simulated using Equation (1) added with the different
white noise levels and the presence/absence of DSI and color
noise as shown in Table I. These twelve noisy PD signals
are subjected to the proposed VMD-GSTV algorithm and the
obtained results are compared with wavelet denoising methods.
The following section describes the proposed VMD-GSTV.

III. MATHEMATICAL BACKGROUND

A. Variational Mode Decomposition (VMD)

VMD can non-recursively decomposes a real valued input
signal f into a set of K sub-signals (modes), uk, that have
specific sparsity. Each mode k is compact around a central

TABLE I: Simulated Noisy PD Signal

PD Signal DOP using Equation (1)

Noise Type AWGN AWGN+DSI AWGN+DSI+Color

AWGN Levels -16dB, -12dB, -8dB, -4dB

Noisy PD signals S1 to S4 S5 to S8 S9 to S12

frequency ωk, and the input signal is the sum of these
components [11].

The process of signal decomposition is to solve a con-
strained variational problem is written as:

min
{uk},{ωk}

{
K∑
k=1

∥∥∥∥ ∂∂t
[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}

subject to
K∑
k=1

uk = f(t)

(3)
where {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK}
are the mode components and their center frequencies, K is
the number of modes to be recovered, δ(t) denotes impulse
function and f is the input signal.

To solve the Equation (3), constrained variational problem is
transformed into unconstrained. This is achieved by introduc-
ing the Lagrangian multiplier (λ) and quadratic penalty term
α. The new unconstrained problem is as follows:

L ({uk} , {ωk} , λ) =

α
K∑
k=1

∥∥∥∥ ∂∂t
[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

+

∥∥∥∥∥f(t)−
K∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

K∑
k=1

uk(t)

〉 (4)

The solution of Equation (4) now can be found as the saddle
point of the augmented Lagrangian in a sequence of itera-
tive sub-optimizations referred as Alternate Direction Method
of Multipliers (ADMM)[11]. The optimization procedure of
VMD includes the following steps:

1) Initialize modes
{
û1k
}

, center frequency
{
ω1
k

}
, and λ̂1.

Set n = 0
2) Update the modes ûk for all ω ≥ 0 :

ûn+1
k (ω) =

f̂(ω)−
∑
i<k û

n+1
i (ω)−

∑
i>k û

n
i (ω)+

λ̂n(ω)
2

1+2α(ω−ωnk )
2

3) Update the center frequencies ωk:

ωn+1
k =

∫∞
0
ω
∣∣ûn+1
k (ω)

∣∣2 dω∫∞
0

∣∣ûn+1
k (ω)

∣∣2 dω
4) Update dual ascent for all ω ≥ 0 :

λ̂n+1(ω)← λ̂n(ω) + τ

(
f̂(ω)−

∑
k

ûn+1
k (ω)

)
5) Repeat step 2 - 4, until convergence:∑

k

∥∥ûn+1
k − ûnk

∥∥2
2

‖ûnk‖
2
2

< ε

The noisy PD signal is decomposed into 5 modes (K=5)
and their spectrum are obtained with the parameters, α =
2000 and τ = 0, tolerance level set as 1x10−6 as stated in
[11]. The decomposed mode with the highest kurtosis value is
considered as an effective component for further processing.
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B. Group-Sparse Total Variation (GSTV) denoising

1) Notation: An N-point signal x ∈ RN , 0 ≤ n ≤ N − 1
is defined as the column vector,

x = [x(0), . . . , x(N − 1)]T (5)

The first-order difference matrix is represented by D, i.e.,

D =


−1 1

−1 1
. . . . . .

−1 1
−1 1

 (6)

The first-order difference of an N-point signal x is given by
Dx where D is a matrix of (N − 1) x N size.

A vector v of K-point adjacent samples with starting index
n is denoted as:

vn,K = [v(n), . . . , v(n+K − 1)] ∈ CK (7)

2) Model: The noisy data y ∈ RN is described as,
yn = xn +wn (8)

x ∈ RN and w ∈ RN are the clean signal and the noise
respectively. The clean signal x can be estimated by solving
the optimization problem:

arg min
x∈RN

{
F (x) =

1

2
‖y − x‖22 + λφ(Dx)

}
(9)

where φ is a penalty function that promotes group sparsity,
v = Dx ∈ R(N−1) as first-order difference of x which has
group sparse behavior and λ is the regularization parameter.

The penalty function described in [16] is used in this work,

φ(v) =
∑
n

[
K−1∑
k=0

|v(n+ k)|2
]1/2

(10)

K denotes the group size. If K=1, φ(v) = ‖v‖1 and then
Equation (9) is standard 1D total variation denoising problem.
In this work, K is set as 3, then the function φ(v) is a convex
measure of group sparsity. As stated in [13], a positive value
of λ is selected by trial and error method and in the range of
0.01 to 1. GSTV uses the computationally efficient and fast
converging MM algorithm to minimize F(x) [16].

IV. RESULTS AND DISCUSSIONS

In order to assess the performance of denoising algorithms,
the following parameters were computed and analyzed. (i)
RMSE: The root mean square error (RMSE) used to measure
the error between denoised signal and simulated PD signal,
lower values of RMSE is better denoising algorithm. (ii) CC:
Correlation coefficient parameter indicates the highest shape
similarity for cc = 1, on the other hand cc = −1 means
total asymmetry between the signals. (iii) PAR (in %): Peak
amplitude reduction is calculated using the peak amplitude of
the input signal and the peak amplitude of the denoised signal.
Lower values of PAR is better denoising algorithm.

The simulated PD signals were subjected to various noise
models as discussed in the Section II. A sample PD signal
S2 which has about twenty pulses at regular time interval is
shown in Figure 1(i) along with the noisy PD signal which

Fig. 1: Illustration of PD signal denoising. (i) PD signal S2 (in Red) in presence of
additive Gaussian white noise with SNR=-12dB (in black) and absence of DSI and
Color noise; (ii) Denoised signal using wavelet denoising; (iii) Denoised signal using
WATV denoising; (iv) Denoised signal using proposed VMD-GSTV denoising.

is corrupted by additive white Gaussian noise with SNR of
−12dB and the denoised signals using Wavelet, WATV and
VMD-GSTV denoising methods are shown in Figure 1(ii)-(iv).

The simulated PD signals were processed by three denoising
algorithms for ten iterations and the average value of perfor-
mance indices such as RMSE, CC and PAR are presented
in Table II. Though, the VMD-GSTV method is removing
the Gaussian noise better than WATV and wavelet methods,
it is noted that there is reduction of the pulse amplitude of
VMD-GSTV output. It is also observed that few PD pulses
are missing in the output of wavelet denoising method during
excessive white noise level.

Figure 2(a) shows the RMSE value of a PD signal corrupted
with various SNR level of white noise. In this condition,
VMD-GSTV performs better than the wavelet denoising, and
Figure 2(c) shows VMD-GSTV performs better in removing

TABLE II: Performance Comparison of Three Denoising Algorithm

Signal with

Noise

Denoising

Methods
RMSE CC PAR(%)

AWGN

VMD-GSTV 0.0135 0.93 46.7

WATV 1 0.0177 0.73 35.4

Wavelet2 0.0157 0.80 9.1

AWGN+

DSI

VMD-GSTV 0.0181 0.90 57.3

WATV 1 0.0142 0.83 17.2

Wavelet2 0.0174 0.78 9.1

AWGN+

DSI+

Color

VMD-GSTV 0.0192 0.77 44.1

WATV 1 0.0271 0.63 18

Wavelet2 0.0250 0.60 14.7

Best performance indicators are in bold font.

1 - WATV proposed in [18] is used as applied for PD in [19, 20] .

2 - The MATLAB® function ’wden’ is used as discussed in [3].
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Fig. 2: Mean value of the RMSE and the correlation coefficient of denoised signal for
each method: (a,d) for the white noise only; (b,e) for the white noise and discrete spectral
interference; (c,f) for the white noise, discrete spectral interference and color noise.

white noise, discrete spectral interference and color noise. On
the other hand, according to Table II, VMD-GSTV performs
low when it is subjected to white and DSI only, however, the
CC is highest as compared to other methods. The PAR value
of a specific signal corrupted with three noise models are listed
in Table II, wavelet denoising stands out with very low PAR
values as compared to other methods. The output amplitude
can be normalized to a scale for better representation as
presented the results in [8].

Correlation coefficient obtained between simulated PD sig-
nal and denoised signal were plotted in Figure 2(d) - 2(f),
which clearly indicates that VMD-GSTV performs better
than other techniques. In spite of the promising results, the
following can be considered in future work:
• Parameters such as penalty function, group size and

regularization for GSTV is currently chosen based on
iterative method, which can be automated / optimized

• Improvised VMD method to avoid mode-mixing issue
• Selection rule for BLIMF(s) to pick the best mode with

that of the PD signal

V. CONCLUSION

In this paper, a new method based on VMD-GSTV is pro-
posed for denoising PD signals and the results are compared
with wavelet and WATV denoising methods. A synthetic PD
signal with white noise, DSI and color noise were considered
in this study. The RMSE and CC values are in favour of VMD-
GSTV based on the results obtained, and peak amplitude
reduction of denoised signal is observed. With the comparative
study on three denoising methods, the proposed VMD-GSTV

method achieved better results in terms of CC metric and can
be potentially extended further.
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