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Abstract
This paper is about the application of optimization methods to the analysis of three
pricing schemes adopted by one manufacturer in a two-country model of production
and trade. The analysis focuses on pricing schemes—one uniform pricing scheme, and
two differential pricing schemes—for which there is no competition coming from the
so-called parallel trade. This term denotes the practice of buying a patented product
like a medicine in one market at one price, then re-selling it in a second so-called gray
market at a higher price, on a parallel distribution chain where it competes with the
official distribution chain. The adoption of pricing schemes under which parallel trade
does not arise can prevent the occurrence of its well-documented negative effects. In
thework, a comparison of the optimal solutions to the optimization problemsmodeling
the three pricing schemes is performed. More specifically, conditions are found under
which the two differential pricing schemes are more desirable from several points of
view (e.g., incentive for the manufacturer to do Research and Development, product
accessibility, global welfare) than the uniform pricing scheme. In particular, we prove
that, compared to the uniform pricing scheme, the two differential pricing schemes
increase the incentive for the manufacturer to invest in Research and Development.
We also prove that they serve both countries under a larger range of values for the
relative market size, making the product more accessible to consumers in the lower
price country. Moreover, we provide a sufficient condition under which price discrim-
ination is more efficient from a global welfare perspective than uniform pricing. The
analysis applies in particular to the case of the European Single Market for medicines.
Compared to other studies, our work takes into account also the possible presence
in all the optimization problems of a positive constant marginal cost of production,
showing that it can have non-negligible effects on the results of the analysis. As an
important contribution, indeed, our analysis clarifies the conditions—which have been
overlooked in the literature about the mechanisms adopted to prevent parallel trade
occurrence—that allow/do not allow one to neglect the presence of this factor. Such
conditions are related, e.g., to the comparison between the positive constant marginal
cost of production, the parallel trade cost per-unit, and the maximal price that can be
effectively charged to the consumers in the lower price country.
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1 Introduction

Drug prices, transaction costs, and regulations usually vary across countries, even for
the same medicine. Under suitable conditions, if a patented drug is sold in at least
two countries, differences in such factors may create an arbitrage opportunity even
before patent expiration, providing an incentive to the emergence of so-called gray
markets (Scott Morton and Kyle 2012). This phenomenon (which is also referred to
in the literature as parallel trade1, see Danzon 1998) consists in the practice of buying
a patented product at one price in one country, then re-selling it at a higher price in
a second country, on a parallel distribution chain where it competes with the official
distribution chain. Different regulations at a national level may make this price het-
erogeneity last in time, possibly generating several inefficiencies, as highlighted in
various theoretical and empirical works, such as Danzon (1998), Danzon and Towse
(2003), Danzon et al. (2015), Duso et al. (2014), Gnecco et al. (2018), Kanavos et al.
(2011), Li and Robles (2006), Maskus and Ganslandt (2002) and Towse et al. (2015).
For instance, when parallel trade is legally permitted by policymakers, such hetero-
geneity may allow parallel traders (e.g., distributors or agents trading with authorized
distributors) to obtain a profit from parallel trade itself, representing a serious threat
to the investments of the manufacturers in Research and Development (R&D).2 As a
consequence, the analysis and the optimization of pricing schemes for which parallel
trade does not occur (hence, for which its well-documented negative effects are not
expected to arise) is a relevant research topic.3 In this context, it is important to dis-
tinguish between uniform pricing schemes (under which manufacturers set the same
price in different countries), and suitable differential pricing (or price discrimination)

1 Although the two terms “gray market” and “parallel trade” refer actually to the same issue, in this paper
we use mostly the second one, because it gives more the idea of the underlying phenomenon of trade, and
appears more often in the bibliography of this work. Moreover, the investigation of pricing strategies under
which parallel trade does not occur is the main objective of the paper, as discussed later in this Introduction.
2 Indeed, the locally sourced and parallel traded products are practically the same (apart from differences
in packaging/labeling).
3 The following data, taken from one study (Kanavos et al. 2011) recently conducted for the European
Parliament, clarify from a quantitative point of view the importance of the problem. In the European Union,
medicines represent the third most important cost component in the health care budgets of its countries.
As a consequence, the level of drug prices affects significantly its pharmaceutical sector, which counts
more than 600,000 employees across the European Union, and spends more than e26 billion annually on
R&D. This expenditure constitutes a key component of the world pharmaceutical sector, since the European
Union is one of the world leaders in terms of investment in pharmaceutical R&D. As it has been reviewed
by the European Court of Justice, parallel trade can reduce drug prices and, as a consequence, also the
incentives for the manufacturers to invest in R&D. The relevance of parallel trade for the European Union
is highlighted by the fact that, in its main importing countries, the market share of parallel-traded drugs has
been reported between 1.7% (the case of Finland) and 16.5% (the case of Denmark). This phenomenon has
also raised concerns in Europe about the access to certain drugs in specific countries, since such an access
tends to be negatively correlated with per-capita gross domestic product, and also with market size.
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schemes (which allow manufacturers to set even a different price in each country,
taking into account its specific features).

Contributions of the work Given this framework, in this paper, we investigate three
specific pricing schemes—a uniform pricing scheme, and two differential pricing
schemes—for which parallel trade does not occur, either because it is prohibited,
or as a consequence of the strategy adopted by the manufacturer. Then, for a two-
country model of production and trade, we evaluate and compare their global welfare
effects, and the associated manufacturer’s incentive to invest in R&D. In the uniform
pricing scheme considered in the paper (which was studied, in a less general setting,
in other works, e.g., in Müller-Langer (2009b), where the marginal cost of production
was neglected), the manufacturer sets the same drug price in both countries, making
parallel trade unprofitable. Then, the common price is optimized. Conversely, in the
case of differential pricing, the manufacturer has the opportunity of choosing different
prices in the two countries. The two differential pricing schemes investigated in the
paper refer, respectively, to the case in which parallel trade is legally forbidden, and
to the one in which the manufacturer sets a price difference lower than or equal to a
positive parallel trade cost per-unit,4 in case it decides to serve both countries. In this
way, potential parallel traders are discouraged.

Our analysis is mainly based on constrained quadratic optimization techniques
applied to pricing. The optimization problems we solve (in closed form) take into
account, at the same time, the marginal cost of production, the parallel trade cost per-
unit (only for one model, in which its knowledge is needed), the decision whether to
invest or not in R&D, and the total fixed cost of R&D. In contrast, other models in the
literature (for instance, Maskus and Chen 2004; Müller-Langer 2009b) neglect some
of the above-mentioned factors (e.g., the presence of a positive constant marginal cost
of production), in order to simplify the resulting optimization problems. Taking into
account such factors can be useful to assess the robustness of the conclusions obtained
from the analysis of these models with respect to changes in their assumptions.

The main qualitative economic insights obtained from our analysis can be summa-
rized as follows: for the specific model of production and trade considered in the paper
(which, differently from most specialized literature, takes into account the possible
presence of a positive constant marginal cost of production), we

1. extend the pricing analysis done in previous studies, e.g., highlighting the influence
of a positive constant marginal cost of production on the optimal strategies of the
manufacturer (hence, also on the optimal prices, quantities, and surpluses), under
the three different pricing schemes (see Propositions 2, 3, and 4, and the respective
Corollaries 2, 3, and 4);

2. clarify the conditions that allow/do not allow one to neglect in the analysis the
presence of a positive constant marginal cost of production. Such conditions are
related, e.g., to the comparison between the positive constant marginal cost of
production, the parallel trade cost per-unit, and the maximal price that can be
effectively charged to the consumers in the lower price country (see Remark 3 in
the appendix for details);

4 Or more precisely, “potential” parallel trade cost per-unit, since there is actually no parallel trade occur-
rence under this pricing scheme.
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3. take into account the additional possibility for the manufacturer in the various
pricing schemes (particularly, in the uniform pricing scheme and in the second
differential pricing scheme) to decide not to serve one of the two countries. This
splits effectively the corresponding optimization problem into three optimization
subproblems (see Sects. 5.1, 5.2, 5.3);

4. prove (by an analysis of the optimal prices) that the second differential pricing
scheme, for which the manufacturer sets the price difference between the two
countries to be sufficiently low to prevent parallel trade occurrence, is a “hybrid”
between the uniform pricing scheme and the first differential pricing scheme, for
which parallel trade is forbidden (see Remark 2, and Corollaries 2, 3, and 4 in the
appendix);

5. prove that, at optimality, the two differential pricing schemes increase the manu-
facturer’s incentive to invest in R&D with respect to the uniform pricing scheme,
and quantify such incentive for the three cases (see Proposition 5);

6. prove that, at optimality, for some choices of themodel parameters, compared to the
uniform pricing scheme, the two differential pricing schemes serve both countries
under a larger range of values for the relative market size of the two countries. This
is important from a society’s wellbeing perspective, because in this way the product
becomes more accessible to consumers in the lower price country. For two pricing
schemes, suitable marginal cost-dependent thresholds on the relative market size
are identified, above which the lower price country is not served at optimality (see
Proposition 6(i));

7. prove that for some other choices of the model parameters, differential pricing
schemes are more efficient at optimality than the uniform pricing scheme from
a global welfare perspective. Suitable marginal cost-dependent ranges of values
for the relative market size for which this occurs are also identified (see Proposi-
tion 6(ii)).

Possible policy implications are discussed in Sect. 6 (where the pricing schemes are
compared at optimality in terms ofmanufacturer’s surplus, accessibility of the product
in the two countries, global welfare, and loss of efficiency with respect to an idealized
situation) and in the final section, where possible developments and extensions to
game-theoretic models are also discussed.

Organization of the work The paper is organized as follows. Section 2 provides a
literature review on the mostly negative effects of parallel trade, and on possible ways
to prevent its occurrence. Section 3 presents the two-country model of production and
trade used in the analysis. In Sect. 4, we express in closed form the optimal value of the
globalwelfare for the two countries, solving a suitable quadratic optimization problem.
Then, in Sect. 5 we find the corresponding value of the global welfare obtained when
the manufacturer applies at optimality, respectively, the uniform pricing scheme and
the two differential pricing schemes (solving other quadratic optimization problems).
In Sect. 6, we compare the three pricing schemes at optimality, focusing on sufficient
conditions under which the two differential pricing schemes dominate the uniform
pricing one. Finally, Sect. 7 concludes the paper and discusses possible extensions.
All the proofs are reported in Appendix A. Due to their length, the expressions of the
optimal prices and quantities for the various models appear in Appendix B. Some
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technical remarks about the various models considered are reported in Appendix C.
All these appendices may be skipped at a first reading of the article.

2 Literature review

In the literature, there is a strong debate about the opportunity of permitting or not
parallel trade, and on its effects on the globalwelfare of the countries involved (Danzon
1998; Jelovac andBordoy 2005; Li andRobles 2006). This ismotivated by the fact that,
on one side, manufacturers see parallel trade as a serious threat to their investments
in R&D, whereas, on the other side, parallel trade can induce price convergence in
the different countries, e.g., by decreasing prices in re-importing countries, where
pharmaceuticals are more expensive (Towse 1998).5 This was empirically confirmed,
e.g., in Ganslandt and Maskus (2004), where it was found that the prices of drugs
subject to competition from parallel trade fell relative to those of other drugs by
12–19%. Hence, the former products turned out to be more accessible to consumers
(this is important from a society’s wellbeing perspective). On the other hand, in Duso
et al. (2014), the reduction of the manufacturers’ incentive for product innovation
was confirmed empirically (referring to the case of the German market of oral anti-
diabetics) through a structural approach, by comparing a counterfactual scenario with
the status quo market. In contrast, it was confirmed empirically that this incentive
tends to increase as the market size gets larger (Acemoglu and Linn 2004). This issue
is particularly relevant, since endogenous sunk costs, such as those associated with
R&D, can improve the product quality, raising its demand (Sutton 1998). Another
negative consequence of parallel trade is the associated increase in the risk of drug
shortage, for all the countries involved, limiting patients’ access to drugs.

According to the analysis presented in Danzon (1998), trade usually increases
global welfare, when it makes consumers in higher price countries benefit from lower
prices in other countries, and such lower prices are motivated by a better technology.
Nevertheless, in the case of pharmaceuticals, lower prices are often the result of a
more intensive regulation, not of lower production costs. Hence, parallel trade of
pharmaceuticals is expected to reduce global welfare in strictly regulated markets.
According to Kanavos et al. (2011), another negative aspect of parallel trade is that
most of the revenues it originates are accrued not to the consumers, but to the parallel
traders themselves. It is also worth mentioning that, following Jelovac and Bordoy
(2005), parallel trade may even positively affect global welfare, e.g., when it implies
a reallocation of consumption from individuals with relatively less drug needs to
individuals with relatively more such needs. Nevertheless, still according to Jelovac

5 It is worth mentioning that parallel trade is not the only possible mechanism of price convergence. This
can arise also as an effect of external reference pricing (Kanavos et al. 2011), according to which each
country sets its price based on a comparison with the prices in the other countries (e.g., choosing the lowest
among such prices). In thisway, however, the price is not optimized, and this can have negative consequences
on the global welfare. For instance, in the case of pharmaceuticals, this mechanism ignores health priorities
in each country, and can have a negative impact on innovation. Moreover, external reference pricing can
cause cascade effects on prices, a significant price uncertainty, and generate launch delays in the market.
Such issues were confirmed by empirical studies, such as Maini and Pammolli (2020) and Pammolli and
Rungi (2016).
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and Bordoy (2005), parallel trade decreases global welfare when it implies, instead,
a reallocation of consumption from individuals with relatively more drug needs to
individuals with relatively less such needs, and also when one market is not served due
to parallel trade. Concluding, the effect of parallel trade on globalwelfare is considered
in Jelovac and Bordoy (2005) to be ambiguous, in the sense that its positive/negative
influence on global welfare often depends on which issues are taken into account in
the model (e.g., the need for the manufacturer to recover from the cost of R&D).

Since parallel traders and manufacturers can be modeled as different agents with
their own objectives, it is natural to investigate parallel trade using noncooperative
game-theoretic models (Chen and Maskus 2005; Guo et al. 2013; Maskus and Chen
2004; Müller-Langer 2012). As an example, according to the two-country model pre-
sented in Maskus and Chen (2004), forbidding parallel trade is always advantageous
from the manufacturer’s point of view, even though the effect of such a prohibition on
the global welfare of the two countries is ambiguous (see, again, Jelovac and Bordoy
2005). In Müller-Langer (2012), two dynamic noncooperative games are discussed, in
order to analyze the equilibrium behavior of a manufacturer (which is located in one
of the two countries) and a distributor (which belongs to the other country), assuming
that parallel trade from the distributor is, respectively, allowed/prohibited. In the first
model, it is shown therein that parallel trade actually does not even show up at the
equilibrium (in another words, the quantity of the re-imported product from the paral-
lel trader/distributor is zero). Differently, in the noncooperative game-theoretic model
considered in Maskus and Chen (2004), parallel trade actually occurs at the equilib-
rium, when parallel trade is allowed. For other noncooperative games proposed in
the literature to model parallel trade, the reader is referred to the monograph (Müller-
Langer 2009a), and to our recent work (Gnecco et al. 2018), where the efficiency of
their equilibria is compared (in a framework where the marginal cost of production is
neglected, in order to simplify the models).

However, in case one can prevent parallel trade occurrence from the beginning
of the analysis, it is possible to switch to a single-agent model, to be studied using
suitable single-agent optimization techniques. In order to justify this simplification, it
is worth mentioning that, in several game-theoretic models considered in the literature
(see, e.g., the already mentioned article Müller-Langer 2012), the equilibrium pricing
schemes adopted by one player are found to make parallel trade not occur at those
equilibria. This reduces effectively such models to single-agent optimization models,
where the equilibrium pricing schemes above are optimized. A second justification is
that single-agent optimizationmodels are typicallymore easily analyzed,which allows
increasing their complexity by introducing someother parameters, oftenwithout losing
the possibility to get closed-form optimal solutions. Single-agent optimization models
are also justified, of course, when one desires to remove from the beginning—at the
possible cost of reducing the efficiency—at least someof the negative effects of parallel
trade occurrence discussed above.

Focusing on the manufacturer’s side, a possible way to prevent the occurrence of
parallel trade even when it is permitted by law consists in making the price of the
product be equal in different countries (Müller-Langer 2009b). Then, the common
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price is optimized.6 In such a case, potential parallel traders would be discouraged,
due to the presence of positive parallel trade costs (associated, e.g., with transporta-
tion/repackaging).

Although the choice of the above-mentioned uniform pricing scheme by the manu-
facturermay have good global welfare properties (Valletti 2006), it often has a negative
effect on the manufacturer’s profit (because price uniformity may be too much con-
straining for themanufacturer) and also on the global welfare. This depends on the fact
that the quantities sold in the markets may not be the optimal ones from the perspec-
tive of a global planner, who maximizes the global welfare. In this case, more efficient
alternative pricing schemes are needed, and price discrimination schemes (Danzon
and Towse 2003; Danzon et al. 2015; Liu and Shuai 2013; Towse et al. 2015)—in
which possibly different prices are used in different countries—can be good candi-
dates, and may also provide a higher incentive for the manufacturer to invest in R&D
(Alexandrov and Deb 2012). For instance, price discrimination is considered in Dan-
zon and Towse (2003) as a good way to minimize global welfare losses, when such
prices are set according to the so-called Ramsey pricing model (Ramsey 1927). For
the pharmaceutical sector, price discrimination is also considered in Danzon et al.
(2015) as global welfare-superior to uniform pricing schemes, when both static and
dynamic efficiency (related, respectively, to the optimal use of existing products, and
to the optimal investment in R&D) are taken into account, as price discrimination can
increase the manufacturer’s incentive to invest in R&D.

A final remark has to do with the implementation issues of price discrimination
schemes. According to Towse et al. (2015), price discrimination could be implemented
in European Union pharmaceutical markets:

1. either by a Treaty change or a voluntary agreement to power centralization;
2. or through the creation of different blocks of high-income/low-income countries,

with parallel trade permitted only in the same block;
3. or under discounts/voluntary contractual agreements implemented confidentially.

A partial price discrimination, still able to prevent parallel trade, can be implemented
by a variation of the uniformpricing scheme, inwhich themanufacturer takes explicitly
into account the parallel trade cost per-unit, and sets the price difference in the two
countries to be low enough to discourage potential parallel traders to adopt that
practice. This second differential pricing scheme has the advantage of not needing any
explicit prohibition of parallel trade. Nevertheless, the parallel trade cost per-unit has
to be known (or at least a positive lower bound on it has to be known). Moreover, it
should be high enough tomake the resulting pricing scheme sufficiently differentiated
from the already presented uniform pricing scheme.

3 Modeling framework

In this short section, we summarize (and extend, through the insertion of suitable costs)
themodel of production and trade considered inMüller-Langer (2009b), involving two

6 An extreme case of uniform pricing is external reference pricing, discussed in footnote 5, in case each
country chooses the lowest among the prices in the other countries.
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Fig. 1 The model of production
and trade among the
manufacturer and the consumers
in the Countries A and B (see
Sect. 3 for details about the
notation)

countries, characterized by different demand functions of one product.More precisely,
the following is assumed in the model. The first country (named “Country A” in
the following) is the one in which a product is produced by a manufacturer with a
constant total fixed cost of R&D equal to CF ≥ 0 (or, more generally, a total fixed
cost of market entry, which does not depend on the quantity produced), and a constant
marginal cost of production equal to k ≥ 0.7 Since the product can also be sold in a
second country (named “Country B” in the following), the Country A is the exporting
country, whereas the Country B is the importing country. The demand functions of the
product in the two countries are modeled by the following piecewise-linear functions8

(with pA, pB ≥ 0):

qA := max{0, γ a − bpA}, qB := max{0, a − bpB}. (1)

In the above, qA (respectively, qB) is the quantity of the product that the consumers
in Country A (respectively, B) are willing to buy at the price pA (respectively, pB),
a, b > 0 are two constants (the same for both countries), and γ > 1 (relative market
size9) is another constant, which describes the heterogeneity of Countries A and B
with respect to their market size. After it is produced, the product can be (see also
Fig. 1 to further illustrate the meaning of the following notations): (i) sold by the
manufacturer of Country A to the consumers of Country A in quantity qA at the retail
price pA; (ii) sold by the manufacturer of Country A to the consumers of Country B
in quantity qB at the retail price pB . No parallel trade is possible under the strategies
considered in the paper. Finally, differently from previous literature, the analysis of the
model reported in the next sections includes also the possibility for the manufacturer
to decide not to invest in R&D. Hence, the total cost of R&D is really a fixed cost, not
a sunk cost.

7 The assumptions of constant costs CF and k are introduced here to keep the model sufficiently simple to
get closed-form optimal solutions for all the optimization problems introduced in the paper, and to simplify
the presentation of its results. However, see Sects. 6 and 7 for some of their possible relaxations. In particular,
the two sections discuss how the analysis of the paper can be readily extended, respectively, to the case
in which either CF and k are random variables, and to the the case in which CF influences the demand
functions in the two countries.
8 Such a piecewise-linear model is quite common in the literature about pricing of pharmaceuticals: it is
used, among others, in Maskus and Chen (2004), Müller-Langer (2009b), Müller-Langer (2012).
9 This is called relative market size because, in the limiting case of very low prices, the quantity qA bought
in Country A is nearly equal to γ a, and the quantity qB bought in Country B is nearly equal to a. So, one
gets qA � γ qB .
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4 Optimization of the global welfare by the global planner

In this section, for a specific and well-known form of the global welfare function, we
find its optimal value for a hypothetical global planner, whose goal is to maximize the
global welfare itself. To start the analysis, we need the following definition.

Definition 1 In this paper:

1. the manufacturer’s surplus (profit) when selling a given quantity of a good is the
difference between the total amount of money received from selling the good and
its total cost of production;

2. for each country, the consumers’ surplus is the definite integral (from 0 to the total
quantity actually bought by the consumers) of the difference between themaximum
price per-unit they would pay for any quantity of the good between 0 and the total
quantity actually bought, and the price per-unit of the good.

For the two-country model of production and trade of pharmaceuticals described
in Sect. 3, one obtains immediately from Definition 1 the following expressions for
the manufacturer’s surplus Π , the consumers’ surplus CSA in the Country A, and the
consumers’ surplus CSB in the Country B:

Π = (pA − k)qA + (pB − k)qB − CF ; (2)

CSA =
∫ qA

0

(
γ a − q

b
− pA

)
dq =

(γ a

b
− pA

)
qA − q2A

2b
= q2A

4b
; (3)

CSB =
∫ qB

0

(
a − q

b
− pB

)
dq =

(a
b

− pB
)
qB − q2B

2b
= q2B

4b
. (4)

In Eqs. (3) and (4) above, the last equality follows from Eq. (1) when qA, qB > 0,
otherwise it holds trivially when qA, qB = 0.

We assume, for the global welfare function, the Bentham model, defined as the
sum of all the surpluses. When the manufacturer does R&D, it has the expression
GW = W (qA, qB) − CF , where

W (qA, qB) := (Π + CF ) + CSA + CSB

=
(γ a

b
− k

)
qA +

(a
b

− k
)
qB − q2A + q2B

2b
(5)

is a function of the quantities only.When themanufacturer does not invest in R&D, the
total fixed cost CF is not incurred and the quantities sold are 0, then one has GW = 0.
In the paper, we use the symbol “�” to denote global welfare values, or values of
other expressions of interest, when they are evaluated at optimality (with respect to a
suitable optimization problem). Since in some cases they are quite lengthy, the precise
formulations of the optimization problems considered in the paper are reported in
Appendix A. Here, we focus on the values of the global welfare at optimality (and
in the next sections, also on the values of the manufacturer’s surplus at optimality,
since the manufacturer is the decision maker for the optimization problems considered
therein).

123



G. Gnecco et al.

In the following Proposition 1, we express the optimal value of the Bentham global
welfare function for a global planner who maximizes such global welfare function
under suitable assumptions. In general, two situations have to be considered: the first
is when the manufacturer invests in R&D, the other one is when the manufacturer
does not invest in R&D. In the proofs, we use the notations “RD” and “NRD” to refer
to the two cases, respectively. The overall optimization problem solved by the global
planner can be stated as a dynamic optimization problem (Bertsekas 2015) with two
decisional stages in which:

1. in the first stage, the global planner decides (through a binary decision) whether it
is convenient to invest or not in R&D, comparing 0 (the value of the global welfare
when R&D is not performed) with the value of the global welfare obtained from
the second stage;

2. in the second stage, assuming that R&D is performed, the global plannermaximizes
the global welfare (optimizing quantities), assuming that R&D is done.

Equivalently, the two stages above could be merged into a single stage, due to
the simplicity of the problem to be solved in the first stage (once the problem in the
second stage has been solved). However, when solving this and the other optimization
problems considered in the paper, we have preferred to use the first approach, since
its first stage models explicitly the individual rationality constraint of the optimizer.

Proposition 1 The optimal value of the global welfare GW � found by the global plan-
ner is

GW � =
⎧⎨
⎩
max {0,W (γ a − kb, a − kb) − CF } , if 0 ≤ k < a

b ,

max {0,W (γ a − kb, 0) − CF } , if a
b ≤ k <

γ a
b ,

0, if k ≥ γ a
b .

(6)

The proof of Proposition 1, provided in Appendix A, shows that, in case the optimal
value of the global welfare GW � is higher than 0, the global planner suggests to sell
in both countries if 0 ≤ k < a

b , and to sell only in the Country A if a
b ≤ k <

γ a
b . The

proof provides also the expressions of the optimal quantities, for an optimal objective
value higher than 0 (likewise the proofs of Propositions 2, 3, and 4, for the optimization
problems studied in Sect. 5). Moreover, an inspection of the proof of Proposition 1
shows that, whenCF = 0, the corresponding optimal solution for the global planner is
compatible with non-negative surpluses for all the entities involved (the manufacturer
and the consumers of both countries), which is obtained by taking pA = pB = k.
When CF > 0, in case the global planner suggests the manufacturer to invest in
R&D (because this is preferable for the global planner) and side payments10 to the
manufacturer are inserted in the trade model, the optimal global welfare can be still
implemented by prices such that all the surpluses are non-negative, the surplus of the
manufacturer being higher than or equal to the 0 surplus that it would obtain in case
of no R&D. Finally, the optimal value of the global welfare for the global planner
is always non-negative (since the option CF = 0 is always available to the global
planner), and when it is 0, it is not possible for the manufacturer to have a surplus
higher than 0, even under a suboptimal allocation for the global planner.

10 I.e., additional payments given to the manufacturer to induce a specific manufacturer’s behavior.
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5 Optimization of the surplus by themanufacturer under uniform
and differential pricing schemes

In general, the prices and quantities of the production and trade model presented
in Sect. 3 cannot be chosen realistically by a global planner; because, given the
two demand functions, they depend on the pricing choices of the manufacturer, and
side payments may not be allowed. In the most general case, one should also take
into account the possible interaction between the manufacturer and potential parallel
traders, which can be studied by using game-theoretic tools (Gibbons 1992), deter-
mining suitable equilibrium solutions. Such an investigation has been done for some
noncooperative gamemodels using, for instance, a Cournot or Bertrand duopoly (Chen
and Maskus 2005; Guo et al. 2013; Maskus and Chen 2004; Müller-Langer 2012),
to model the competition between the manufacturer and a single parallel trader, or a
(deterministic or stochastic) Stackelberg leader–follower game (Ahmadi et al. 2015;
Zhang 2016). When the manufacturer adopts a pricing scheme for which parallel
trade does not occur, the equilibrium analysis is simplified, because one has to take
into account only its behavior (for this reason, the investigation of cases for which
parallel trade can occur at equilibrium is outside the scope of this paper).11 However,
the prices and quantities at equilibrium are usually different from the ones determined
by the global planner, causing a loss of efficiency.

In the following subsections, we investigate three possible pricing schemes for
the manufacturer, under which parallel trade does not occur: one uniform pricing
scheme, and two differential pricing schemes. In each among these three schemes,
the manufacturer’s behavior is determined as the optimal strategy of a corresponding
dynamic optimization problem with two decisional stages, defined as follows:

1. in the first stage, the manufacturer decides (through a binary decision) whether to
invest or not in R&D, comparing 0 (its surplus when R&D is not performed) with
its optimal surplus obtained when one assumes that R&D is performed (the latter
is obtained from the second stage);

2. in the second stage, assuming that R&D is performed, the manufacturer maxi-
mizes its own surplus (optimizing prices and quantities) in three possible subcases
(characterized by different constraints on the prices):

(a) selling the product potentially in both the Countries A and B;
(b) selling the product potentially only in the Country A;
(c) not selling the product at all;

then chooses the one associated with its highest surplus (in the following, when
multiple optimal solutions are obtained, we select one corresponding to the lowest
value of the globalwelfare among such solutions, since themanufacturermaximizes
its own profit, but not necessarily the global welfare).

11 See our previous work (Gnecco et al. 2018) for a comparison of some game-theoretic models that refer
to such a situation (differently from this paper, however, these models do not include a positive constant
marginal cost of production).
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The three pricing schemes differ in the way the optimizations in the three subproblems
of the second stage are performed, due to the presence, in the various schemes, of
different constraints on the prices in the two countries. In summary,

1. in the uniform pricing scheme, the manufacturer applies the same price in both
countries. This clearly prevents parallel trade occurrence, because any potential
parallel trader would get negative profit from parallel trade itself (due to a positive
parallel trade cost per-unit). However, the precise value of the parallel trade cost
per-unit is not taken explicitly into account (the manufacturer knows only that it is
positive);

2. in the first differential pricing scheme, parallel trade is forbidden (e.g., by law), so
the manufacturer can choose any two possibly different feasible prices in the two
countries without incurring competition coming from parallel trade;

3. in the second differential pricing scheme, parallel trade is not forbidden (it may
occur in principle), but the manufacturer can still prevent it, by taking explicitly
into account the value of the parallel trade cost per-unit. Indeed, by making the
price difference low enough, the manufacturer has still the possibility to prevent
parallel trade (in a similar way as in the uniform pricing scheme, but with two
possibly different prices in the two countries).

5.1 Uniform pricing scheme

As a first example of a pricing scheme for which parallel trade does not occur,
when the reimbursement regulations and transaction costs are the same in the two
countries and R&D has been already performed, the manufacturer can simply set
pA = pB = p̄ ≥ k to prevent parallel trade occurrence, optimizing simultaneously
the choice of the common price p̄. So, this is uniform pricing parallel trade-preventing
pricing scheme.12 In this scheme, due to the presence of positive parallel trade costs,
it would be impossible for a potential parallel trader to obtain a positive profit from
buying the product in the Country B from the manufacturer, then re-selling it in the
Country A. In doing so, indeed, after buying the product in the Country B at the retail
price pB , the potential parallel trader should choose a retail price in the Country A
higher than pB(= pA), so the consumers in the Country A would have no incentive
to buy the parallel traded product. In this case, parallel trade would not occur not as
a consequence of a specific law forbidding parallel trade, but because of the pricing
scheme chosen by the manufacturer. In the proof of the following Proposition 2, we
describe how the manufacturer can optimize the common price p̄ to maximize its
own surplus Π , under the uniform pricing scheme described previously, taking into
account also the decision whether to invest or not in R&D in the first decisional stage.
The proposition reports the optimal value of the manufacturer’s surplus in the uniform
pricing scheme, and the associated global welfare value, by considering various ranges
of the relative market size γ (such ranges depend on the other parameters). We use
the notation “U PS” to refer to this uniform pricing scheme.

12 Such pricing scheme was investigated in Müller-Langer (2009b) under some simplifying assumptions
(e.g., absence of a positive constant marginal cost of production), removed in the following analysis (see
the end of this subsection for a comparison of the two models).
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Proposition 2 (i) The optimal value of the manufacturer’s surplus Π�
U PS of the

uniform pricing scheme is, for 0 ≤ k < a
b ,

Π�
U PS =

⎧⎪⎨
⎪⎩

max

{
0, b

8

(
(γ+1)a

b − 2k
)2 − CF

}
, if 1 < γ < 1 + √

2
(
1 − kb

a

)
,

max
{
0, b

4

( γ a
b − k

)2 − CF

}
, if γ ≥ 1 + √

2
(
1 − kb

a

)
,

(7)

and, for k ≥ a
b ,

Π�
U PS =

{
0, if 1 < γ ≤ kb

a ,

max
{
0, b

4

( γ a
b − k

)2 − CF

}
, if γ > kb

a .
(8)

(ii) In case Π�
U PS> 0,13 the associated global welfare value is, for 0 ≤ k < a

b ,

GW �
U PS =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2

)
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2
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)
,

W
( γ a
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if γ > 1 + √
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(
1 − kb

a

)
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(9)

and, for k ≥ a
b ,

GW �
U PS = W

(
γ a

2
− kb

2
, 0

)
− CF , if γ >

kb

a
. (10)

(iii) In case Π�
U PS= 0, the associated global welfare value is GW �

U PS = 0.

Our analysis reported above and its results differ from the ones detailed in Müller-
Langer (2009b) because:

1. to make the model more complete, we also take into account the presence of a
constant marginal cost of production k;

2. we allow the manufacturer to choose a price even higher than the threshold price
above which one of the two markets is not served anymore, making it possible for
the manufacturer to exploit such an information to take an optimal decision;

13 I.e., according to (7) and (8), when

1. b
8

(
(γ+1)a

b − 2k
)2

> C f , if 0 ≤ k < a
b and 1 < γ < 1 + √

2
(
1 − kb

a

)
;

2. b
4

( γ a
b − k

)2
> C f , if 0 ≤ k < a

b and γ ≥ 1 + √
2

(
1 − kb

a

)
;

3. b
4

( γ a
b − k

)2
> C f , if k ≥ a

b and γ > kb
a .
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3. we consider two decisional stages, to take into account the possible decision of
the manufacturer not to invest in R&D, and also the total fixed cost CF of R&D
incurred by the manufacturer in case R&D is performed.

5.2 1st differential pricing scheme

In the following, we investigate how the manufacturer changes the optimal decisions
in case the following specific differential pricing scheme is adopted, which requires
the additional assumption that parallel trade is forbidden.14 In this pricing scheme,
we require that, if the manufacturer has decided to invest in R&D and incurred the
total fixed cost CF , then it maximizes its own surplus by optimizing the prices (and
quantities) in the two countries without constraints on the relationship between the
two prices. The following proposition reports the optimal value of the manufacturer’s
surplus in this 1st differential pricing scheme, and the associated global welfare value,
by considering various ranges of the relative market size γ (such ranges depend on the
other parameters). We use the notation “DPSI ” to refer to this 1st differential pricing
scheme.

Proposition 3 (i) The optimal value of the manufacturer’s surplusΠ�
DPSI

of the 1st
differential pricing scheme is, for 0 ≤ k < a

b ,

Π�
DPSI = max

{
0,

b

4

(γ a

b
− k

)2 + b

4

(a
b

− k
)2 − CF

}
, (11)

and, for k ≥ a
b ,

Π�
DPSI =

{
0, if 1 < γ ≤ kb

a ,

max
{
0, b

4

( γ a
b − k

)2 − CF

}
, if γ > kb

a .
(12)

(ii) In case Π�
DPSI

> 0, the associated global welfare value is, for 0 ≤ k < a
b ,

GW �
DPSI = W

(
γ a

2
− kb

2
,
a

2
− kb

2

)
− CF , (13)

and, for k ≥ a
b ,

GW �
DPSI = W

(
γ a

2
− kb

2
, 0

)
− CF , if γ >

kb

a
. (14)

(iii) In case Π�
DPSI

= 0, the associated global welfare value is GW �
DPSI

= 0.

14 A similar pricing scheme—which, however, does not take into account the presence of a positive constant
marginal cost of production—is reported in Müller-Langer (2009b) as “third-degree price discrimination”
in the absence of parallel trade.
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Other comments about the 1st differential pricing scheme, and its comparison with
both the uniform pricing scheme and the 2nd differential pricing scheme, are reported
in Sect. 6. Here, we anticipate that, according to the results of that section, differential
pricing has often several advantages over uniform pricing in terms of the manufac-
turer’s incentive to invest in R&D, product accessibility, and efficiency from a global
welfare perspective.

5.3 2nd differential pricing scheme

We now consider the case in which parallel trade is allowed, but the manufacturer,
rather than adopting a uniform pricing scheme, sets a price difference lower than or
equal to the parallel trade cost per-unit t (assumed to be positive, constant, and known
to the manufacturer, otherwise replaced in the following analysis by a known positive
lower bound on it), in case both markets are served. In this way, potential parallel
traders are discouraged, and parallel trade does not occur. The following proposition
reports the optimal value of the manufacturer’s surplus in this 2nd differential pricing
scheme, and the associated global welfare value, by considering various ranges of
the relative market size γ (such ranges depend on the other parameters). We write
“DPSI I ” to refer to this 2nd differential pricing scheme. As shown in Sect. 6, in
several cases, this 2nd differential pricing scheme is preferred by the manufacturer to
the uniform pricing scheme ( moreover, differently from the 1st differential pricing
scheme, it does not require the additional assumption that parallel trade is forbidden).

Proposition 4 shows that, for 0 ≤ k < a
b , the 2nd differential pricing scheme

transforms into the 1st differential pricing scheme, when γ is sufficiently small, and
to the uniform pricing scheme, when γ is sufficiently large. Finally, when k ≥ a

b , all
the pricing schemes behave in the same way. Some other technical remarks about
the various pricing schemes are reported in Appendix C, which focuses especially on
their common aspects. Other important differences between the three pricing schemes
(e.g., in terms of product accessibility and global welfare) are examined in the next
section.

Proposition 4 (i) The optimal value of the manufacturer’s surplus Π�
DPSI I

of the
2nd differential pricing scheme is, for 0 ≤ k < a

b ,

Π�
DPSI I

=
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(15)
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and, for k ≥ a
b ,

Π�
DPSI I

=
{

0, if 1 < γ ≤ kb
a ,

max
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0, b

4
( γ a
b − k

)2 − CF

}
, if γ > kb

a .
(16)

(ii) In case Π�
DPSI I

> 0, the associated global welfare value is, for 0 ≤ k < a
b ,
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and, for k ≥ a
b ,

GW �
DPSI I

= W

(
γ a

2
− kb

2
, 0

)
− CF , if γ >

kb

a
. (18)

(iii) In case Π�
DPSI I

= 0, the associated global welfare value is GW �
DPSI I

= 0.

6 Comparison of the three pricing schemes at optimality in terms of
manufacturer’s surplus, accessibility of the product, global welfare,
and loss of efficiency

6.1 Theoretical comparison

In the following, the three pricing schemes are compared at optimality in terms
of manufacturer’s surplus, accessibility of the product in the two countries, global
welfare, and loss of efficiency with respect to the optimization performed by the
global planner. The next comparisons are based on the results of the analyses of the
three pricing schemes, made in Sect. 5.

As a first comparison, in the next Proposition 5 we confront the three pricing
schemes from the perspective of the manufacturer’s surplus. The proposition shows
that, at optimality for each pricing scheme, such surplus increases when moving from
the uniform pricing scheme to the 2nd differential pricing scheme, then to the 1st
differential pricing scheme. The proposition, which refers to the optimal manufac-
turer’s surpluses under the three pricing schemes, does not necessarily extend to the
corresponding values of the global welfare.

Proposition 5 The optimal manufacturer’s surpluses under the “U PS”, “DPSI ”,
and “DPSI I ” pricing schemes are related as follows:

Π�
U PS ≤ Π�

DPSI I ≤ Π�
DPSI . (19)
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Expressions of Π�
U PS , Π

�
DPSI

, and Π�
DPSI I

have been reported in Propositions 2,
3, and 4, respectively.When combinedwith such expressions, Proposition 5 shows that
the uniform pricing scheme and the 1st differential pricing scheme have at optimality,
respectively, the lowest and the highest threshold on the total fixed cost CF of R&D
under which there is no incentive for the manufacturer to invest in R&D (in this
case, a global welfare value equal to 0 is obtained). Hence, in our framework, the
manufacturer is always interested in having parallel trade forbidden. This is a first
important consequence of the analysis made in the paper. The proof of this result relies
on the fact that more constrained optimization problems provide a lower (or at most
the same) optimal surplus to the manufacturer. Although the uniform pricing scheme
is always the least preferable from the manufacturer’s viewpoint, it has been worth
including such a pricing scheme in the analysis of the paper, because it does not require
themanufacturer to know the exact value of the parallel trade cost per-unit t .Moreover,
a comparison of the expressions ofΠ�

U PS ,Π
�
DPSI I

andΠ�
DPSI

(provided, respectively,
in Propositions 2, 3, and 4) would easily quantify the degree of suboptimality (for the
manufacturer) of the first two pricing schemes with respect to the last one. It is also
worth mentioning that all these expressions are piecewise-quadratic with respect to
k (and t , for the 2nd differential pricing scheme), and piecewise-affine with respect
to CF . Hence, their partial derivatives are piecewise-affine with respect to k (and t ,
for the 2nd differential pricing scheme), and piecewise-constant with respect to CF .
This would simplify a comparison of their sensitivity analyses with respect to such
parameters. A similar remark holds for the comparison of the global welfare values
associated with the three pricing schemes, whose expressions have been also given
in Propositions 2, 3, and 4.

The following result shows other two important advantages at optimality of dif-
ferential pricing over uniform pricing, which hold under specific assumptions. They
concern, respectively, accessibility of the product to consumers in the country with
the smallest market size, and global welfare.

Proposition 6 Let0 ≤ k < a
b ,CF ≥ 0andγ > 1 such thatΠ�

U PS,Π
�
DPSI

,Π�
DPSI I

> 0.
Then,

(i) the threshold on γ above which the Country B is not served at optimality but
the Country A is still served is γU PS = 1+ √

2
(
1 − kb

a

)
for the uniform pricing

scheme, and γDPSI I = 1 + 2tb
a + √

2
(
1 − kb

a

)
for the 2nd differential pricing

scheme. There is no such threshold for the 1th differential pricing scheme;
(ii) for γ > γU PS, one has GW �

DPSI
> GW �

U PS; if γU PS < γ ≤ 1 + 2tb
a , one has

also GW �
DPSI I

> GW �
U PS.

Proposition 6(i) shows that, for both the uniform pricing scheme and the 2nd dif-
ferential pricing scheme, the country with the smallest market size is never served
at optimality when the relative market size is larger than a suitable threshold (γU PS

for the uniform pricing scheme, γDPSI I for the 2nd differential pricing scheme). It
is worth mentioning that the assumption 0 ≤ k < a

b is realistic, since the marginal
cost of production k is typically low, e.g., in the pharmaceuticals sector. Still, even
a low k can have a non-negligible effect on the thresholds γU PS and γDPSI I . Both
thresholds are decreasing functions of k, and γDPSI I is also an increasing function in
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t (intuitively, this means that the parallel trade “threat” for the 2nd differential pricing
scheme becomes less “fearsome”when t increases).Moreover, γDPSI I > γU PS holds.
Hence, compared to the uniform pricing scheme, the 2nd differential pricing scheme
serves the country with the smallest market size (i.e., it makes the product accessible
to consumers in that country) under a larger interval of values for γ . No such threshold
is present for the case of the 1st differential pricing scheme. It has also to be noticed
that, for the uniform pricing scheme and k = 0, the threshold γ ′

U PS = 3 is obtained
in Müller-Langer (2009b), rather than γU PS = 1 + √

2 < γ ′
U PS , where γU PS comes

from Proposition 6(i). This depends on the fact that Müller-Langer (2009b) uses a
different model than ours for the uniform pricing scheme. Indeed, as discussed at the
end of Sect. 5.1, in our model the manufacturer can choose a price even higher than
the threshold price above which one of the two markets is not served anymore.

Proposition 6(ii) shows that, under certain conditions on the relativemarket size, the
two differential pricing schemes produce at optimality global welfare values higher
than the one obtained for the uniform pricing scheme, making them preferable from
a society’s wellbeing perspective. In particular, in this case, compared to the uniform
pricing scheme, they show lower losses of efficiency with respect to the optimal global
welfare value obtained by the global planner. Nevertheless, one should notice that
Proposition 6(ii) does not exclude the existence of other choices of the parameters for
which, e.g., GW �

DPSI I
> GW �

U PS still holds, or of other cases for which even the
opposite inequality is satisfied.

Finally, our results allow one to compare the losses of efficiency of the three pricing
schemes. Each of them is formally defined as the ratio between the optimal value of
the global welfare function found by the global planner (see Proposition 1), and the
global welfare value associated with the specific pricing scheme (see Propositions 2,
3, and 4, respectively). When an indeterminate expression of the form 0

0 is obtained,
by convention, we set the loss of efficiency to be equal to 1, as the numerator and the
denominator are equal.

The loss of efficiency (which is always higher than or equal to 1, by its definition)
is useful to detect when a pricing scheme adopted by the manufacturer is satisfactory
from the perspective of global welfare optimization. This occurs when the loss of
efficiency is near 1. When this is not the case, an intervention by a policymaker (e.g.,
a government regulation) would be needed to increase significantly the value of the
global welfare, by inducing a suitable change in the pricing scheme adopted by the
manufacturer.

6.2 Numerical comparison of the three pricing schemes

Although in principle closed-form expressions for the losses of efficiency can be
obtained using Propositions 1, 2, 3, and 4, in the last part of this section we pre-
fer to do a numerical comparison. In the following, we denote, respectively, by
LoEUPS (γ,CF , k), LoEDPSI (γ,CF , k), and LoEDPSI I (γ,CF , k, t) the losses of
efficiency associated with the uniform pricing scheme, the 1st differential pricing
scheme, and the 2nd differential pricing scheme (in each case, at optimality), high-
lighting their dependence on the respective parameters.
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As an illustrative example, we first consider here, for simplicity, the case of a zero
total fixed cost. The behavior of the function LoEUPS (γ, 0, 0) corresponding to a zero
marginal cost of production is illustrated in Fig. 2a, and compared to the one of the
function LoEUPS(γ, 0, a

10b ) corresponding to our choice of a low positive constant
marginal cost of production. Figure 2a shows that, the relative market size γ being
the same, the loss of efficiency of the uniform pricing scheme is higher for the case of
the zero marginal cost, with the exception of a small interval of values for γ , i.e., the
ones between the discontinuity points γ = 1+ 9

5
√
2
and γ = 1+ √

2 associated with

the functions LoEUPS (γ, 0, 0) and LoEUPS
(
γ, 0, a

10b

)
. In both cases, however, for

small values of γ the loss of efficiency is close to 1, indicating that the uniform pricing
scheme is quite efficient (i.e., the reduction with respect to the optimal efficiency
is small), and no intervention by a policymaker is needed to increase significantly
the value of the global welfare, by inducing a suitable change in the pricing scheme
adopted by the manufacturer. However, for larger values of γ , an intervention by a
policy maker would be needed to make the manufacturer switch to a better pricing
scheme. Figure 2b, c illustrate, for t = k and the same values for the other parameters
as in Fig. 2a, the losses of efficiency LoEDPSI (γ,CF , k) and LoEDPSI I (γ,CF , k, t)
associated, respectively, with the 1st and 2nd differential pricing schemes. These
figures show that the 1st differential pricing scheme is more efficient than the uniform
pricing scheme for large γ , and slightly less efficient for small γ . This depends on the
fact that, for large γ , both schemes provide the same price and quantity for the Country
A, but the uniform pricing scheme is not able to serveCountry B, whereas this is served
by the 1st differential pricing scheme. It is also worth mentioning that, for large γ ,
the consumers’ surplus in Country A is the same for both schemes, whereas both the
manufacturer’s surplus and the consumers’ surplus in Country B are higher under the
1st differential pricing scheme. Hence, in this case, the 1st differential pricing scheme
implies a Pareto improvement.15 For small γ , instead, the quantity of the product sold
in Country A under the 1st differential pricing scheme is lower than the one sold in
the same country under the uniform pricing scheme. Nevertheless, the quantity sold
in Country B under that differential pricing scheme is higher than the one sold in the
same country under the uniform pricing scheme, and, in the specific case, the uniform
pricing scheme is more efficient. However, in this case, other pricing schemes, that
give the manufacturer the incentive to produce in the two countries quantities more
similar to the ones suggested by the global planner, would be even more efficient.
Finally, Fig. 2c shows that the 2nd differential pricing scheme has the same loss of
efficiency as the uniform pricing scheme for k = t = 0, and a similar loss of efficiency
for k = t = a

10b (i.e., slightly higher than the loss of efficiency of the uniform pricing
scheme for γ lower than the discontinuity point associated with that scheme, the same
for γ higher than the discontinuity point associated with the 2nd differential pricing
scheme, and much lower for γ between the two discontinuity points). Concluding, the
results of this comparison show that the three pricing schemes are ranked in various
ways with respect to the loss of efficiency, depending on the specific choices of their

15 This is consistent with the findings of Hausman and MacKie-Mason (1988), and not in contrast with the
ones obtained for linear demand functions in Schmalensee (1981), since here we are considering a case for
which differential pricing increases the total output.
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(a) (b) (c)

Fig. 2 For k = 0 (zero marginal cost of production) and k = a
10b (low positive constant marginal cost of

production): plots of the loss of efficiency (as a function of the relative market size γ ) associated with a the
uniform pricing scheme; b the 1st differential pricing scheme; c the 2nd differential pricing scheme. The
figure refers to the case CF = 0, t = k

parameters. Some additional insights about the results of this comparison have been
provided before by Proposition 6(ii).

At this point, we investigate numerically the case in which either the total fixed
cost CF or the marginal cost k are random variables, which become known to the
manufacturer (and also to the global planner) after taking the decision whether to
invest or not in R&D. In this stochastic extension, the global welfare is replaced by
its expected value. In this situation, the extension of our analysis is straightforward
because, when the manufacturer decides to invest in R&D, one can simply replace
the (deterministic) total fixed cost CF and marginal cost k in various equations in
Appendix A (such as (26) and (32)–(37) for the case of the loss of efficiency associated
with the uniform pricing scheme) by realizations, respectively, of a stochastic total
fixed cost and a stochastic marginal cost. In general, also the knowledge of the a-priori
probability distributions of such random variables is needed, in order to evaluate the
expected value of the optimal global welfare. With this premise, Fig. 3 shows, under
various assumptions on all the costs: the optimal value of the global welfare for the
global planner; the value of the global welfare associated with each pricing scheme
(at optimality); the loss of efficiency associated with each pricing scheme (again, at
optimality). All these quantities are plotted as functions of the relative market size γ ,
for fixed choices of the other parameters. The blue curves refer to the deterministic
case CF = 0, k = 0, and t = 0, the dashed red curves to the deterministic case
CF = a2

20b , k = a
10b , and t = k, and the dash-dotted green curves to the stochastic

case where CF and k are realizations of independent random variables such that CF

assumes the two values 0 and a2
20b , respectively with a-priori probabilities 0.3 and

0.7, k assumes the two values 0 and a
10b , respectively with a-priori probabilities 0.4

and 0.6, and t = k. The parameters a and b are fixed, respectively, to 2 and 1.5. An
inspection of the specific cases shown in the figure reveals that the optimal value of
the global welfare for the global planner is the highest when all costs are 0, and in the
stochastic case, it is in between the two values obtained in the deterministic case.

123



Welfare and research and development incentive effects of…

(a) (b) (c)

(c) (d) (f)

(g) (h) (i)

Fig. 3 Plots (as functions of the relative market size γ ) of a–c the optimal value of the global welfare for
the global planner; d–f the value of the global welfare associated with each pricing scheme; g–i its loss of
efficiency. In the second and third rows, the first column refers to the uniform pricing scheme, the second
column to the 1st differential pricing scheme, and the third column to the 2nd differential pricing scheme.
See the main text for a description of the values assumed by the various parameters

7 Conclusions

In the paper, we have investigated the welfare and R&D incentive effects of three
pricing schemes under which parallel trade does not occur: a uniform pricing scheme,
and two differential pricing schemes. This comparison has been motivated by the fact
that price discrimination is often considered as welfare-superior to uniform pricing
(Danzon and Towse 2003; Danzon et al. 2015; Towse et al. 2015). We reach a similar
conclusion, considering different models, for which optimal decisions by both the
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global planner and the manufacturer have been obtained by formulating and solving
in closed form suitable quadratic (and dynamic) optimization problems.

First, for the specific model of production and trade considered in the paper, we
have obtained in closed form the optimal value of the global welfare, then we have
found the prices and quantities produced by the manufacturer assuming that a specific
uniform pricing scheme is applied. Our investigation of the uniform pricing scheme
has been obtained by extending its analysis performed in previous works. Differently
from such literature, we have taken into account in the model both the marginal
cost of production and the total fixed cost of R&D. Moreover, we have allowed the
manufacturer to choose a price even higher than the threshold price above which one
market (the smallest one) is not served. Taking into account such factors in the analysis
allows one to determine whether and how much the conclusions obtained by existing
models change due to modifications in their assumptions.

Second, we have extended the analysis to the two differential pricing schemes.
In both cases, parallel trade cannot occur by construction (likewise for the uniform
pricing scheme).

Third, we have compared the various models with respect to the manufacturer’s
incentive to invest in R&D, the loss of efficiency, and more generally, the incentive
to enter the market of each country. By a comparison of the optimal objective values
of the various price optimization problems considered in the paper, and an analysis of
the structure of the respective optimal solutions, we have shown that, compared to the
uniform pricing scheme, the two differential pricing schemes increase the incentive
for the manufacturer to invest in R&D (as being associated with a higher profit for the
manufacturer). We have also found a sufficient condition under which they serve both
countries under a larger range of values for the relativemarket size of the two countries.
In this case, the product becomes more accessible to the consumers in the lower price
country. Moreover, for the specific model of production and trade considered in the
paper, we have found a sufficient condition under which differential pricing dominates
uniform pricing from a global welfare perspective.

The results of our comparisons are in accordance with the ones already obtained
in the specialized literature about pricing of pharmaceuticals (see Jelovac and Bordoy
2005; Müller-Langer 2009b and the references therein), and extend them to the spe-
cific models considered in the analysis. In particular, one of the novel aspects is in
quantifying, in the analysis of the specific model of production and trade, the effects
on the manufacturer’s behavior of a positive marginal cost of production (a cost which
is often neglected in such literature). One such effect is in changing some thresholds
on the relative market size above which the lower price country is not served. As an
important contribution, our analysis clarifies the conditions—which have been over-
looked in the related literature—that allow/do not allow one to neglect the marginal
cost of production in the analysis. In any case, the results provide a robustness check
with respect to those models in the literature about pricing of pharmaceuticals that do
not take into account the presence of that factor in the analysis.

The analysis of each of the pricing schemes considered in the paper is based on the
following assumptions. While the uniform pricing scheme always prevents parallel
trade, the first differential pricing scheme assumes additionally an effective prohibi-
tion of parallel trade, which requires an explicit intervention by policymakers. The
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second differential pricing scheme requires the knowledge (by the manufacturer) of
the parallel trade cost per-unit (or at least of a positive lower bound on it). For what
concerns policy implications, this calls for the possibility of enforcing, in each situa-
tion, the assumption (and, as a consequence, the choice of the manufacturer’s pricing
scheme) that provides the lowest loss of efficiency from a global welfare perspective.
Such an external intervention, indeed, would influence the manufacturer’s behavior,
making it possible also to extend the models considered in the article to their possible
variations. Nevertheless, it has also to be mentioned that, in cases in which, for certain
choices of the parameters and of the pricing scheme, the loss of efficiency is already
low, no external intervention is really needed to improve the efficiency significantly.

Our results can be applied to specific empirical case studies after identifying the
values of their parameters (e.g., the relative market size, the total fixed cost, the con-
stant marginal cost, and the parallel trade cost per-unit). Our framework is applicable
also in extensions to more than two countries, to stochastic costs,16 and to nonlinear
models for the demand functions (rather than to the piecewise-linear ones studied in
the paper). However, in these cases more complex expressions for the optimal strate-
gies are expected, possibly not available in closed form (hence, differently from this
paper, an analytical comparisonmay not be possible, and numerical approaches would
be needed, see Boyd and Vandenberghe 2004; Nocedal and Wright 2006, including,
e.g., those based on approximations either of the optimal strategies, see Gnecco and
Sanguineti 2010 or of the value functions, see Gaggero et al. 2014). For instance,
Proposition 5 extends directly to the nonlinear case. In that case, for each pricing
scheme, the Lagrange multipliers associated with the various subproblems of the sec-
ond decisional stage could be used to perform a sensitivity analysis of their optimal
objective values. This would allow to characterize for which of these subproblems the
maximum among their optimal manufacturer’s surpluses is achieved, when changing
some parameters. This kind of analysis was not needed in the paper, having already
obtained closed-form optimal solutions. Moreover, our analysis could be applied, with
no significant changes in the adopted methodology, to the case in which the demand
functions depend on the total fixed cost of Research and Development CF , by mod-
eling the parameters a, b, and γ of the demands as functions of CF , and considering
CF itself as an optimization variable.17 In this case, one should take into account that
the various optimization problems modeling the manufacturer’s behavior may have
different total fixed costs of R&Dat optimality. Another possible extensionwould con-
sist in replacing the hypothetical global planner with a national government, whose
objective is to maximize the welfare—now defined as the sum of the domestic con-
sumers’ surplus and of the global profits of themanufacturer—in the countrywhere the
manufacturer is located. In this case, closed-form optimal solutions are still expected.
However, such an extension would not change the optimization problems defining the
optimal strategies of the manufacturer under the three pricing schemes, but only their
common term of comparison.

16 See also the end of Sect. 6 for one such extension.
17 For instance, one may assume that γ increases as CF increases. This could correspond to the perception
of a higher quality of the product (in response to a higher effort in R&D) by the consumers in the country
in which the manufacturer is located. Pharmaceutical pricing problems with endogenous product quality
are investigated, e.g., in Matteucci and Reverberi (2017).
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Finally, in the paper, we have assumed that the manufacturer is the only decision
maker. This has been possible due to the absence of parallel trade. However, its main
ideas can be applied also to other models, e.g., in a noncooperative game-theoretic
setting (Gibbons 1992) with two or more agents. In particular, the manufacturer’s
surpluses associated with its optimal strategies for the three models examined in the
paper could be used as terms of comparison for more complex models involving game
theory and modeling the possible presence of parallel trade at the game-theoretic
equilibrium. Indeed, when moving from a single-agent to a multiple-agent setting,
the manufacturer would accept changing its strategy (possibly allowing parallel trade
occurrence at the equilibrium) only if this resulted in its higher profit. Some results
about the comparison of such noncooperative game-theory models have been recently
obtained inGnecco et al. (2018).However, differently from the present paper, thatwork
does not include the marginal cost of production in the noncooperative game-theoretic
models examined. Including such a cost, and considering the single-agent optimal
strategies of the present paper as terms of comparison, would allow a quantification
of the effect of the marginal cost of production in such noncooperative game-theoretic
extensions.
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Appendix A: Proofs of the Propositions

Proof of Proposition 1. (a) We first consider the case in which the manufacturer does
R&D, which models the second decisional stage. In this case, the global planner
has to solve the quadratic optimization problem

maximize
qA,qB

W (qA, qB) s. t. qA, qB ≥ 0, (20)

in order to find the optimal value of the global welfare W provided by Eq. (5)
under the Bentham model.
Due to the separability of its objective function, and to the form of its constraints,
solving the optimization problem (20) is reduced to solving the two following
optimization subproblems:

maximize
qA

W (I )(qA) :=
(γ a

b
− k

)
qA − q2A

2b
− CF s. t. qA ≥ 0, (21)
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maximize
qB

W (I I )(qB) :=
(a
b

− k
)
qB − q2B

2b
s. t. qB ≥ 0, (22)

then, taking the sum of the values of their optimal objectives.
(a.1) The subproblem (21) is a concave quadratic maximization problem. By intro-

ducing the Lagrangian function L(I )(qA, μA) := W (I )(qA) + μAqA, it is
solved through the following KKT conditions (which, for all the optimization
(sub)problems studied in the paper, are necessary and sufficient for global opti-
mality18, see Luenberger 1969):

⎧⎪⎪⎨
⎪⎪⎩

stationari ty : ∂L(I )

∂qA
= γ a

b − k − qA
b + μA = 0,

primal f easibili t y : qA ≥ 0,
dual f easibili t y : μA ≥ 0,
complementary slackness : μAqA = 0.

(23)

Then, it is straightforward to see that, for 0 ≤ k <
γ a
b , the system (23) has

(qA = γ a − kb, μA = 0) as its unique solution, whereas, for k ≥ γ a
b , it has

the unique solution
(
qA = 0, μA = k − γ a

b

)
. In the following, we denote the

situation 0 ≤ k <
γ a
b by “lA” (low marginal cost with respect to the Country A),

and the situation k ≥ γ a
b by “hA” (high marginal cost with respect to the Country

A). Concluding, the value of the objective function W (I )(qA) at optimality is(
W (I )

)�

lA
= (γ a−kb)2

2b −CF in case of a low marginal cost with respect to A, and(
W (I )

)�

hA
= −CF in case of a high marginal cost with respect to A.

(a.2) Similarly, also (22) is a concave quadratic maximization problem. Again, by
introducing the Lagrangian function L(I I )(qB) := W (I I )(qB) + μBqB, it is
solved through the following KKT conditions:

⎧⎪⎪⎨
⎪⎪⎩

stationari ty : ∂L(I I )

∂qB
= a

b − k − qB
b + μB = 0,

primal f easibili t y : qB ≥ 0,
dual f easibili t y : μB ≥ 0,
complementary slackness : μBqB = 0.

(24)

Again, one can see that, for 0 ≤ k < a
b , the system (24) has the unique solution

(qB = a − kb, μB = 0) whereas, for k ≥ a
b , it has

(
qB = 0, μB = k − a

b

)
as its

unique solution. We denote the case 0 ≤ k < a
b by “lB”, and the case k ≥ a

b by

“hB”. Then,
(
W (I I )

)�

lB
= (a−kb)2

2b and
(
W (I I )

)�

hB
= 0.

Summarizing, the optimal value of the objective functionW (qA, qB) of the orig-
inal optimization problem (20) is

(W )RD,� =
(
W (I )

)� +
(
W (I I )

)�

, (25)

18 Moreover, the qualification of the constraints holds, due to their linearity (Bertsekas 2004).
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which has the expression

(W )RD,� =

⎧⎪⎪⎨
⎪⎪⎩

W (γ a − kb, a − kb) − CF = (γ a−kb)2

2b + (a−kb)2

2b − CF , if 0 ≤ k < a
b ,

W (γ a − kb, 0) − CF = (γ a−kb)2

2b − CF , if a
b ≤ k <

γ a
b ,

−CF , if k ≥ γ a
b .

(26)

(b) When the manufacturer does not invest in R&D, one has (W )N RD,� = 0.
(c) In the first decisional stage, of the two cases RD and NRD, the global planner

prefers the one with the highest value of the global welfare (or it is indifferent,
when they produce the same value). Then, one obtains Eq. (6), which concludes
the proof. ��

Proof of Proposition 2. (a) We first consider the case (modeling the second decisional
stage) in which the manufacturer has decided to invest in R&D and incurred the
total fixed cost CF . Then, any common price p̄RD,� that is optimal for the man-
ufacturer is obtained maximizing its surplus Π , subject to p̄ ≥ k, and to one
of the following constraints (whose choice depends on the value assumed by p̄).
These correspond, respectively, to the three subcases (2a), (2b), (2c) presented at
the beginning of Sect. 5 (when the set of admissible solutions for one of these
subproblems is empty, by convention we set its optimal value to −∞):

(a.1) if the common price p̄ is lower than or equal to a
b , then the quantities qA and qB

of the product bought by the consumers in A and B are described, respectively,
by the negative-slope linear parts of the two demand functions in Eq. (1);

(a.2) if p̄ is higher than or equal to a
b , but lower than or equal to γ a

b , then qA is still
described by the negative-slope linear part of the first demand function in Eq.
(1), whereas qB is equal to 0, because the market in the Country B cannot be
served;

(a.3) if p̄ is higher than or equal to γ a
b , then both quantities qA and qB are equal to 0.

Although the objective functionΠ of the resulting optimization problem is concave,
the “global” equality constraints on qA and qB that are obtained by taking into account
all the three cases above, are only piecewise-linear, hence one does not obtain a concave
maximization problem. However, in order to find its optimal solution and the optimal
value of its objective function, one can still decompose such a problem into the three
following subproblems:

maximize
p̄

Π(I )( p̄) := ( p̄ − k) ((γ + 1)a − 2b p̄) − CF

s. t. qA = γ a − b p̄ ≥ 0, qB = a − b p̄ ≥ 0, p̄ ≥ k, (27)

maximize
p̄

Π(I I )( p̄) := ( p̄ − k) (γ a − b p̄) − CF

s. t. qA = γ a − b p̄ ≥ 0, a − b p̄ ≤ 0, p̄ ≥ k, (28)

maximize
p̄

Π(I I I )( p̄) := −CF

s. t. γ a − b p̄ ≤ 0, a − b p̄ ≤ 0, p̄ ≥ k, (29)

which are concave maximization problems, more amenable to an analysis through
standard Lagrange multipliers techniques. Indeed, their domains constitute a partition
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of the domain of the original optimization problem, as they correspond, respectively,
to the three cases (a.1), (a.2), (a.3) above, and their objective functions coincide, in
the respective domains, with the one of such optimization problem. Finally, once an
optimal common price has been found for each of the three subproblems (27), (28),
and (29), one chooses, among such prices, the one that corresponds to the maximum
among the optimal values of their three objective functions, thus solving the original
optimization problem. We now address in more detail the three subproblems (27),
(28), and (29).
(a.1) The subproblem (27), which is feasible for 0 ≤ k ≤ a

b , is solved by introducing
the following Lagrangian function

L(I )
U PS( p̄, μ̄, μA, μB ) :=( p̄ − k) ((γ + 1)a − 2b p̄) − CF + μ̄( p̄ − k)+μA(γ a−b p̄)+μB (a − b p̄),

(30)

and imposing the following KKT conditions:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

stationari ty : ∂L(I )
U PS
∂ p̄ = (γ + 1)a − 4b p̄ + 2kb + μ̄ − μAb − μBb = 0,

primal f easibili t y : γ a − b p̄ ≥ 0, a − b p̄ ≥ 0, p̄ ≥ k,
dual f easibili t y : μ̄, μA, μB ≥ 0,
complementary slackness : μ̄( p̄ − k), μA(γ a − b p̄), μB(a − b p̄) = 0.

(31)

Then, by solving the system (31), one gets that its optimal solution p̄(I ),�, the cor-
responding optimal value Π(I ),� of its objective function, and the corresponding
optimal quantities q(I ),�

A and q(I ),�
B , have the following expressions, depending

on the values of γ and k:

if 0 ≤ k ≤ a

b
and 1 < γ < 3 − 2kb

a
:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p̄(I ),� = (γ+1)a
4b + k

2 ,

Π(I ),� = b
8

(
(γ+1)a

b − 2k
)2 − CF ,

q(I ),�
A = γ a − b

(
(γ+1)a

4b + k
2

)
> 0,

q(I ),�
B = a − b

(
(γ+1)a

4b + k
2

)
> 0,

(32)

if 0 ≤ k ≤ a

b
, γ > 1, and γ ≥ 3 − 2kb

a
:

⎧⎪⎪⎨
⎪⎪⎩

p̄(I ),� = a
b ,

Π(I ),� = a(γ − 1)
( a
b − k

) − CF ,

q(I ),�
A = (γ − 1)a > 0,

q(I ),�
B = 0.

(33)

(a.2) The subproblem (28), which is feasible for 0 ≤ k ≤ γ a
b , is solved by a similar

Lagrange multipliers technique, providing the following expressions, depending
on the values of γ and k:

if 0 ≤ k <
a

b
and 1 < γ ≤ 2 − kb

a
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄(I I ),� = a
b ,

Π(I I ),� = a(γ − 1)
( a
b − k

) − CF ,

q(I I ),�
A = (γ − 1)a > 0,

q(I I ),�
B = 0,

(34)

if 0 ≤ k <
a

b
and γ > 2 − kb

a
or

a

b
≤ k <

γ a

b
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄(I I ),� = γ a
2b + k

2 ,

Π(I I ),� = b
4

( γ a
b − k

)2 − CF ,

q(I I ),�
A = γ a

2 − kb
2 > 0,

q(I I ),�
B = 0,

(35)
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if k = γ a

b
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄(I I ),� = γ a
b ,

Π(I I ),� = −CF ,

q(I I ),�
A = 0,

q(I I ),�
B = 0.

(36)

(a.3) Finally, the subproblem (29), which is feasible for 0 ≤ k < +∞, is solved
trivially by any of its feasible solutions, providing

⎧⎪⎪⎨
⎪⎪⎩

p̄(I I I ),� = any p̄ ≥ max
{ γ a

b , k
}
,

Π(I I I ),� = −CF ,

q(I I I ),�
A = 0,

q(I I I ),�
B = 0.

(37)

To conclude the analysis of the second decisional stage, one sets

Π RD,� = max{Π(I ),�,Π(I I ),�,Π(I I I ),�}, (38)

and takes p̄RD,� to be equal to the optimal common price from (32)–(37) that corre-
sponds to Π RD,� (in case of multiple such prices, we select one associated with the
lowest global welfare value).

The following notes are useful to detect, under each condition, which of the three
subproblemsprovidesΠ RD,� as its optimalmanufacturer’s surplus, hence to determine
Π RD,� itself. Indeed, a comparison of Eqs. (32)–(37) shows that:

1. for 0 ≤ k < a
b and 1 < γ ≤ 2 − kb

a , one has (noticing that the condition
2 − kb

a < 3 − 2kb
a holds)

b

8

(
(γ + 1)a

b
− 2k

)2

− CF ≥ a(γ − 1)
(a
b

− k
)

− CF ≥ −CF , (39)

since both the optimal common prices p̄(I ),� and p̄(I I ),� from Eqs. (32) and (34),
respectively, are feasible for the subproblem (27). Moreover, the first equality in
Eq. (39) holds if and only if the two prices above coincide, since the objective
function of the subproblem (27) is strictly concave;

2. for 0 ≤ k < a
b and 2 − kb

a < γ < 1 + √
2

(
1 − kb

a

)
(which is less than 3 − 2kb

a ),
one has

b

8

(
(γ + 1)a

b
− 2k

)2

− CF >
b

4

(γ a

b
− k

)2 − CF ≥ −CF , (40)

which one can re-write, after some algebraic steps, as the quadratic inequality γ 2−
2γ −1−2

( kb
a

)2+ 4kb
a < 0, whose solution provides the threshold 1+√

2
(
1 − kb

a

)
in Eqs. (7) and (9) in the statement of Proposition 2. Similarly, the first inequality
in (40) holds with “>” replaced by “<” for 1 + √

2
(
1 − kb

a

)
< γ < 3 − 2kb

a , and

by “=” for γ = 1 + √
2

(
1 − kb

a

)
;
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3. for 0 ≤ k < a
b and γ ≥ 3 − 2kb

a , one gets

b

4

(γ a

b
− k

)2 − CF ≥ a(γ − 1)
(a
b

− k
)

− CF ≥ −CF , (41)

since both the optimal common prices p̄(I ),� and p̄(I I ),� from (33) and (35), respec-
tively, are feasible for the subproblem (28). Again, the first equality in (41) holds
if and only if the two prices above coincide.

(b)The optimization problem in the first decisional stage is solved using the expres-
sion (38) of Π RD,� and Eqs. (39)–(41). From these, one gets Eqs. (7) and (8) (this
completes the proof of item (i)), then Eqs. (9) and (10) (this completes the proof of
item (ii)). Item (iii) is obtained straightforwardly, and has been reported only for the
completeness of the analysis. ��
Proof of Proposition 3. The main difference with respect to the proof of Proposition 2
is that the subproblems (27)–(29) of its second decisional stage are now replaced by
the following subproblems, which are solved by using similar techniques:

maximize
pA,pB

Π(I )(pA, pB) := (pA − k)(γ a − bpA) + (pB − k)(a − bpB) − CF

s. t. qA = γ a − bpA ≥ 0, qB = a − bpB ≥ 0, pA, pB ≥ k, (42)

maximize
pA,pB

Π(I I )(pA, pB) := (pA − k)(γ a − bpA) − CF

s. t. qA = γ a − bpA ≥ 0, a − bpB ≤ 0, pA, pB ≥ k, (43)

maximize
pA,pB

Π(I I I )(pA, pB) := −CF s. t. γ a − bpA ≤ 0, a − bpB ≤ 0, pA, pB ≥ k.

(44)

We report only the results related to to the first two subproblems, since the third one
is trivial:

if 0 ≤ k ≤ a

b
and γ > 1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(I ),�
A = γ a

2b + k
2 ,

p(I ),�
B = a

2b + k
2 ,

Π(I ),� = b
4

( γ a
b − k

)2 + b
4

( a
b − k

)2 − CF ,

q(I ),�
A = γ a

2 − kb
2 > 0,

q(I ),�
B = a

2 − kb
2 ,

(45)

if 0 ≤ k ≤ γ a

b
and γ > 1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p(I I ),�
A = γ a

2b + k
2 ,

p(I I ),�
B = any pB ≥ max

{ a
b , k

}
,

Π(I I ),� = b
4

( γ a
b − k

)2 − CF ,

q(I I ),�
A = γ a

2 − kb
2 > 0,

q(I I ),�
B = 0.

(46)

From these expressions, one obtains Eqs. (11)–(14), in a similar way as in the proof
of Proposition 2. ��
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Proof of Proposition 4. (a) The main difference with respect to the proof of Proposi-
tion 2 is that the subproblems (27)–(29) of its second decisional stage are now
replaced by

maximize
pA,pB

ΠDPSI I ,(I )(pA, pB ) := (pA − k) (γ a − bpA) + (pB − k) (a − bpB ) − CF

s. t. qA =γ a−bpA ≥0, qB =a−bpB >0, pA ≥k, pB ≥k, |pA − pB |≤ t, (47)
maximize

pA,pB
ΠDPSI I ,(I I )(pA, pB ) := (pA − k) (γ a − bpA) − CF

s. t. qA = γ a − bpA ≥ 0, a − bpB ≤ 0, pA ≥ k, pB ≥ k, (48)
maximize

pA,pB
ΠDPSI I ,(I I I )(pA, pB ) := −CF

s. t. γ a − bpA ≤ 0, a − bpB ≤ 0, pA ≥ k, pB ≥ k, (49)

where we have taken into account that the constraint |pA − pB | ≤ t is needed
only when both qA and qB are positive, i.e., only in the optimization subproblem
(47). In the following, we report only the results of the first two subproblems,
being the third one trivial.

(a.1) The optimization subproblem (47) is feasible for 0 ≤ k < a
b . For such a case,

its optimal solution pDPSI I ,(I ),�
A , pDPSI I ,(I ),�

B , the corresponding optimal value
ΠDPSI I ,(I ),� of its objective function, and the corresponding optimal quantities
qDPSI I ,(I ),�
A and qDPSI I ,(I ),�

B , are determined in the following way.

For 0 ≤ k < a
b and t ≥ (γ−1)a

2b , the unconstrainedmaximizer of the strictly concave
function ΠDPSI I ,(I ),� (which is pA = γ a

b + k
2 , pB = a

b + k
2 ) is feasible also for the

optimization subproblem (47). Hence, it is also its optimal solution, and one gets the
following:

if 0 ≤ k <
a

b
and t ≥ (γ − 1)a

2b
:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pDPSI I ,(I ),�
A = γ a

2b + k
2 ,

pDPSI I ,(I ),�
B = a

2b + k
2 ,

ΠDPSI I ,(I ),� = b
4

( γ a
b − k

)2 + b
4

( a
b − k

)2 − CF ,

qDPSI I ,(I ),�
A = γ a

2 − kb
2 ,

qDPSI I ,(I ),�
B = a

2 − kb
2 .

(50)

For 0 ≤ k < a
b and 0 < t <

(γ−1)a
2b , instead, the unconstrained maximizer of the

strictly concave function ΠDPSI I ,(I ),� is not feasible for the optimization subproblem
(47). Moreover, one can observe that, at optimality for such optimization subproblem,
one has always pA ≥ pB (otherwise, the manufacturer could switch the two prices,
obtaining a higher profit). Further, one can also notice that there exists no optimal
solution with pA = γ a

b (because, in that case, the constraints pB ≥ pA − t , pB < a
b

and 0 < t <
(γ−1)a

2b are incompatible) and also with pB = k and k < pA < k + t

(because the unconstrained maximizer pA = γ a
2b + k

2 does not satisfy the constraint
pA < k + t). Then, the optimal solution to the optimization subproblem (47) has to
be searched inside the following set of candidate optimal solutions:

1. pA = pB = k (for which one has ΠDPSI I ,(I ) = −CF );
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2. the optimal solution to the following optimization subproblem (which corresponds
to a difference in prices equal to t):

maximize
pA

(pA − k) (γ a − bpA) + (pA − t − k) (a − bpA + bt) − CF

s.t. k + t ≤ pA <
a

b
+ t . (51)

Such an optimal solution exists for γ < 3 + 2b
a (t − k), and in that case is pA =

(γ+1)a
4b + k+t

2 (pB = (γ+1)a
4b + k−t

2 ), and is associated with

ΠDPSI I ,(I ) =
(

(γ + 1)a

4b
+ k + t

2
− k

) (
γ a − b

(
(γ + 1)a

4b
+ k + t

2

))

+
(

(γ + 1)a

4b
+ k − t

2
− k

) (
a − b

(
(γ + 1)a

4b
+ k − t

2

))
− CF

> −CF . (52)

Concluding, comparing the two cases above, one obtains the following optimal solu-
tion for the subproblem (47):

if 0 ≤ k <
a

b
, 0 < t <

(γ − 1)a

2b
and 1 < γ < 3 + 2b

a
(t − k) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pDPSI I ,(I ),�
A = (γ+1)a

4b + k+t
2 ,

pDPSI I ,(I ),�
B = (γ+1)a

4b + k−t
2 ,

ΠDPSI I ,(I ),� =
(

(γ+1)a
4b + k+t

2 − k
) (

γ a − b
(

(γ+1)a
4b + k+t

2

))

+
(

(γ+1)a
4b + k−t

2 − k
) (

a − b
(

(γ+1)a
4b + k−t

2

))
−CF ,

qDPSI I ,(I ),�
A = γ a − b

(
(γ+1)a

4b + k+t
2

)
,

qDPSI I ,(I ),�
B = a − b

(
(γ+1)a

4b + k−t
2

)
.

(53)

Finally, if 0 ≤ k < a
b , 0 < t <

(γ−1)a
2b , and γ ≥ 3 + 2b

a (t − k), then there exists

no optimal solution to the subproblem (47) (because pA = (γ+1)a
4b + k+t

2 becomes
unfeasible), and the supremum of its objective is obtained in the limiting case pA →
a
b+t ,which is associatedwithΠDPSI I ,(I ) = ( a

b + t − k
)
(γ a − a − bt + kb)−CF >

−CF (this limiting case is taken into account in the optimization subproblem (48), as
it is feasible for it).
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(a.2) The optimization subproblem (48) is feasible for 0 ≤ k ≤ γ a
b . For such a sub-

problem, applying a similar Lagrange multipliers technique, one obtains:

if 0 ≤ k ≤ γ a

b
and γ > 1 :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pDPSI I ,(I I ),�
A = γ a

2b + k
2 ,

pDPSI I ,(I I ),�
B = any pB ≥ max

{ a
b , k

}
,

ΠDPSI I ,(I I ),� = b
4

( γ a
b − k

)2 − CF ,

qDPSI I ,(I I ),�
A = γ a

2 − kb
2 ≥ 0,

qDPSI I ,(I I ),�
B = 0.

(54)

(b) From the expressions (50)–(54) above, one obtains (15)–(18), in a similar way
as in the proof of Proposition 2. In particular, the additional threshold 1 + 2tb

a +√
2

(
1 − kb

a

)
on γ is derived, e.g., when comparing the optimal manufacturer’s

surpluses ΠDPSI I ,(I ),� and ΠDPSI I ,(I I ),� for 0 ≤ k < a
b , 0 < t <

(γ−1)a
2b and

1 < γ < 3 + 2b
a (t − k). Indeed, after some algebraic steps, the inequality

(
(γ + 1)a

4b
+ k + t

2
− k

)(
γ a − b

(
(γ + 1)a

4b
+ k + t

2

))

+
(

(γ + 1)a

4b
+ k − t

2
− k

)(
a − b

(
(γ + 1)a

4b
+ k − t

2

))

>
b

4

(γ a

b
− k

)2

can be re-written as the quadratic inequality

γ 2 − 2

(
1 + 2tb

a

)
γ − 1 − 2

(
kb

a

)2

+ 4kb

a
+ 4

(
tb

a

)2

+ 4tb

a
< 0, (55)

whose solution provides that threshold. ��
Proof of Proposition 5. The optimization problems modeling the second decisional
stage become more constrained when moving from the 1st differential pricing scheme
to the 2nd differential pricing scheme, and from the 2nd differential pricing scheme
to the uniform pricing scheme. As a consequence, the same order is obtained when
moving to the first decisional stage, proving Eq. (19). ��
Proof of Proposition 6. Items (i) and (ii) are a direct consequence of the proofs of
Propositions 2, 3, and 4 (particularly, of the expressions of the associated optimal
prices and quantities obtained in the various cases). ��

Appendix B: Prices andquantities at optimality for the variousmodels

The following corollary to Proposition 1 is obtained directly from its proof. It expresses
the optimal quantities for the global planner (in this specific case, no prices are reported
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since they do not appear in the related optimization problem, which has been consid-
ered in Appendix A).

Corollary 1 (i) In case GW �> 0, the associated optimal quantities are

q�
A = γ a − kb, if 0 ≤ k <

γ a

b
, (56)

q�
B =

{
a − kb, if 0 ≤ k < a

b ,

0, if a
b ≤ γ <

γ a
b .

(57)

(ii) In case GW �= 0, the associated optimal quantities are q�
A = 0 and q�

B = 0.

It follows from the proof of Proposition 2, which has been detailed in Appendix
A, that the expressions of the optimal quantities associated with the optimal manu-
facturer’s surplus Π�

U PS can be easily detected from its statement given above, since
they are just the two arguments of the global welfare function W (·, ·) at optimality:

e.g., the term W
(
γ a − b

(
(γ+1)a

4b + k
2

)
, a − b

(
(γ+1)a

4b + k
2

))
in Eq. (9) indicates

that, in the specific case—i.e., for 0 ≤ k < a
b and 1 < γ < 1 + √

2
(
1 − kb

a

)
—

the optimal quantities for the manufacturer under the uniform pricing scheme are

qU PS,�
A = γ a − b

(
(γ+1)a

4b + k
2

)
and qU PS,�

B = a − b
(

(γ+1)a
4b + k

2

)
. Moreover,

starting from qU PS,�
A and qU PS,�

B , the optimal common price p̄U PS,� is obtained
immediately by applying Eq. (1). In summary, one gets the following corollary,
which provides the expressions of the optimal common price and of the opti-
mal quantities associated with Proposition 2. The corollary shows that these can
have a discontinuity point for γ = 1 + √

2
(
1 − kb

a

)
. It also illustrates cases for

which one of the two countries is not served at optimality (i.e., when the associ-
ated optimal quantity is 0). In the following, in order to simplify the notation in

the corollary, we let W (I ),�
U PS := W

(
γ a − b

(
(γ+1)a

4b + k
2

)
, a − b

(
(γ+1)a

4b + k
2

))
and

W (I I ),�
U PS := W

( γ a
2 − kb

2 , 0
)
.

Corollary 2 (i) In caseΠ�
U PS> 0, the optimal commonprice p̄U PS,� and theoptimal

quantities qU PS,�
A and qU PS,�

B associated with the uniform pricing scheme are,
for 0 ≤ k < a

b ,

p̄U PS,� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ+1)a
4b + k

2 ,

if 1 < γ < 1 + √
2

(
1 − kb

a

)
or γ = 1 + √

2
(
1 − kb

a

)
and W (I ),�

U PS < W (I I ),�
U PS ,

either (γ+1)a
4b + k

2 or γ a
2b + k

2 ,

if γ = 1 + √
2

(
1 − kb

a

)
and W (I ),�

U PS = W (I I ),�
U PS ,

γ a
2b + k

2 ,

if γ = 1 + √
2

(
1 − kb

a

)
and W (I ),�

U PS > W (I I ),�
U PS

or γ > 1 + √
2

(
1 − kb

a

)
,

(58)
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qU PS,�
A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ a − b
(

(γ+1)a
4b + k

2

)
,

if 1 < γ < 1 + √
2

(
1 − kb

a

)
or γ = 1 + √

2
(
1 − kb

a

)
and W (I ),�

U PS < W (I I ),�
U PS ,

either γ a − b
(

(γ+1)a
4b + k

2

)
or γ a

2 − kb
2 ,

if γ = 1 + √
2

(
1 − kb

a

)
and W (I ),�

U PS = W (I I ),�
U PS ,

γ a
2 − kb

2 ,

if γ = 1 + √
2

(
1 − kb

a

)
and W (I ),�

U PS > W (I I ),�
U PS

or γ > 1 + √
2

(
1 − kb

a

)
,

(59)

qU PS,�
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a − b
(

(γ+1)a
4b + k

2

)
,

if 1 < γ < 1 + √
2

(
1 − kb

a

)
or γ = 1 + √

2
(
1 − kb

a

)
and W (I ),�

U PS < W (I I ),�
U PS ,

either a − b
(

(γ+1)a
4b + k

2

)
or 0,

if γ = 1 + √
2

(
1 − kb

a

)
and W (I ),�

U PS = W (I I ),�
U PS ,

0,
if γ = 1 + √

2
(
1 − kb

a

)
and W (I ),�

U PS > W (I I ),�
U PS

or γ > 1 + √
2

(
1 − kb

a

)
,

(60)

and, for k ≥ a
b and γ > kb

a ,

p̄U PS,� = γ a

2b
+ k

2
, qU PS,�

A = γ a

2
− kb

2
, qU PS,�

B = 0. (61)

(ii) In case Π�
U PS= 0, the associated optimal common price is p̄U PS,� = any p̄ ≥

max
{ γ a

b , k
}
, whereas the associated optimal quantities are qU PS,�

A = 0 and

qU PS,�
B = 0.

In a similar way as for the uniform pricing scheme, we get the following corollary
to Proposition 3, about the optimal prices and quantities for the 1st differential pricing
scheme.

Corollary 3 (i) In case Π�
DPSI

> 0, the optimal prices pDPSI ,�
A and pDPSI ,�

B and

the optimal quantities qDPSI ,�
A and qDPSI ,�

B associated with the 1st differential
pricing scheme are, for 0 ≤ k < a

b ,

pDPSI ,�
A = γ a

2b
+ k

2
, pDPSI ,�

B = a

2b
+ k

2
, (62)

qDPSI ,�
A = γ a

2
− kb

2
, qDPSI ,�

B = a

2
− kb

2
, (63)
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and, for k ≥ a
b and γ > kb

a ,

pDPSI ,�
A = γ a

2b
+ k

2
, pDPSI ,�

B = any pB ≥ max
{a
b
, k

}
, (64)

qDPSI ,�
A = γ a

2
− kb

2
, qDPSI ,�

B = 0. (65)

(ii) In case Π�
DPSI

= 0, the associated optimal prices are pDPSI ,�
A = any pA ≥

max
{ γ a

b , k
}
and pDPSI ,�

B = any pB ≥ max
{ a
b , k

}
, whereas the associated

optimal quantities are qDPSI ,�
A = 0 and qDPSI ,�

B = 0.

Finally, in a similar way as for the uniform pricing scheme and for the 1st dif-
ferential pricing scheme, we get the following corollary to Proposition 4 about
the optimal prices and quantities for the 2nd differential pricing scheme. The
corollary shows that these can have a discontinuity point for γ = 1 + 2tb

a +√
2

(
1 − kb

a

)
. In the following, in order to simplify the notation in the corol-

lary, we let W (I ),�
DPSI I

:= W
(
γ a − b

(
(γ+1)a

4b + k+t
2

)
, a − b

(
(γ+1)a

4b + k−t
2

))
and

W (I I ),�
DPSI I

:= W
( γ a

2 − kb
2 , 0

)
.

Corollary 4 (i) In case Π�
DPSI I

> 0, the optimal prices pDPSI I ,�
A and pDPSI I ,�

B and

the optimal quantities qDPSI I ,�
A and qDPSI I ,�

B associated with the 2nd differential
pricing scheme are, for 0 ≤ k < a

b ,

p
DPSI I ,�
A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ a
2b + k

2 , if 1 < γ ≤ 1 + 2tb
a ,

(γ+1)a
4b + k+t

2 ,

if 1 + 2tb
a < γ < 1 + 2tb

a + √
2

(
1 − kb

a

)

or γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
< W (I I ),�

DPSI I
,

either (γ+1)a
4b + k+t

2 or γ a
2b + k

2 ,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
= W (I I ),�

DPSI I
,

γ a
2b + k

2 ,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
> W (I I ),�

DPSI I

or γ > 1 + 2tb
a + √

2
(
1 − kb

a

)
,

(66)

p
DPSI I ,�
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2b + k

2 , if 1 < γ ≤ 1 + 2tb
a ,

(γ+1)a
4b + k−t

2 ,

if 1 + 2tb
a < γ < 1 + 2tb

a + √
2

(
1 − kb

a

)

or γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
< W (I I ),�

DPSI I
,

either (γ+1)a
4b + k+t

2 or any pB ≥ max
{ a
b , k

}
,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
= W (I I ),�

DPSI I
,

any pB ≥ max
{ a
b , k

}
,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
> W (I I ),�

DPSI I

or γ > 1 + 2tb
a + √

2
(
1 − kb

a

)
,

(67)
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q
DPSI I ,�
A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ a
2 − kb

2 , if 1 < γ ≤ 1 + 2tb
a ,

γ a − b
(

(γ+1)a
4b + k+t

2

)
,

if 1 + 2tb
a < γ < 1 + 2tb

a + √
2

(
1 − kb

a

)

or γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
< W (I I ),�

DPSI I
,

either γ a − b
(

(γ+1)a
4b + k+t

2

)
or γ a

2 − kb
2 ,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
= W (I I ),�

DPSI I
,

γ a
2 − kb

2 ,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
> W (I I ),�

DPSI I

or γ > 1 + 2tb
a + √

2
(
1 − kb

a

)
,

(68)

q
DPSI I ,�
B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2 − kb

2 , if 1 < γ ≤ 1 + 2tb
a ,

a − b
(

(γ+1)a
4b + k−t

2

)
,

if 1 + 2tb
a < γ < 1 + 2tb

a + √
2

(
1 − kb

a

)

or γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
< W (I I ),�

DPSI I
,

either a − b
(

(γ+1)a
4b + k−t

2

)
or 0,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
= W (I I ),�

DPSI I
,

0,

if γ = 1 + 2tb
a + √

2
(
1 − kb

a

)
and W (I ),�

DPSI I
> W (I I ),�

DPSI I

or γ > 1 + 2tb
a + √

2
(
1 − kb

a

)
,

(69)

and, for k ≥ a
b and γ > kb

a ,

pDPSI I ,�
A = γ a

2b
+ k

2
, pDPSI I ,�

B = any pB ≥ max
{a
b
, k

}
, (70)

qDPSI I ,�
A = γ a

2
− kb

2
, qDPSI I ,�

B = 0. (71)

(ii) In case Π�
DPSI I

= 0, the associated optimal prices are pDPSI I ,�
A = any pA ≥

max
{ γ a

b , k
}
and pDPSI I ,�

B = any pB ≥ max
{ a
b , k

}
, whereas the associated

optimal quantities are qDPSI I ,�
A = 0 and qDPSI I ,�

B = 0.

Appendix C: Some technical remarks about the various models con-
sidered

In the following, some technical remarks are reported regarding the models consid-
ered in Sects. 5.1, 5.2, 5.3. In particular, some common aspects of these models are
highlighted.

Remark 1 Optimal prices and quantities for the uniform pricing scheme and for each
of the two differential pricing schemes have been reported inAppendix B, as functions
of γ (see Corollaries 2, 3, and 4). In particular, Corollaries 2 and 4 show the presence
of a discontinuity point in these functions. Moreover, Corollaries 2 and 4 show that,
for the corresponding model, the values of the optimal price(s) and quantities at the
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discontinuity point can be obtained simply by finding, in a first step, the maximum
between the left and right limit of the global welfare at the discontinuity point, then,
in a second step, taking the associated limiting price(s) and quantities: e.g., making γ

tend to the discontinuity point from the left (respectively, from the right) in the second
step if the maximum in the first step is obtained in correspondence of the left limit
(respectively, right limit).

Remark 2 Corollaries 2, and 3, and 4 show that, for k ≥ a
b , all the pricing schemes

are equivalent at optimality (i.e., they are associated with the same optimal prices and
quantities), since the Country B is never served in that case. Moreover, Corollary 4
and its comparison with Corollaries 2 and 3 show that, for 0 ≤ k < a

b and fixed t > 0,
at optimality, the 2nd differential pricing scheme is a “ hybrid” between the uniform
pricing scheme and the 1st differential pricing scheme, in the following sense:

1. in the range 1 < γ ≤ 1+ 2tb
a , it is equivalent to the 1st differential pricing scheme;

2. in the intermediate range 1 + 2tb
a < γ < 1 + 2tb

a + √
2

(
1 − kb

a

)
, it keeps some

features of both pricing schemes: the two optimal prices pDPSI I ,�
A and pDPSI I ,�

B
are different (likewise in the 1st differential pricing scheme), but their difference is
the constant t (similarly to the uniform pricing scheme, where the constant is 0);

3. in the range γ > 1 + 2tb
a + √

2
(
1 − kb

a

)
, it is equivalent to the uniform pricing

scheme.

It is also worth observing that the length 2tb
a of the interval

(
1, 1 + 2tb

a

]
above depends

on t ,whereas theone
√
2

(
1 − kb

a

)
of theother interval

(
1+ 2tb

a , 1+ 2tb
a +√

2
(
1 − kb

a

))
does not depend on t . So, the other parameters being fixed, when t goes to 0, the
2nd differential pricing scheme becomes more and more similar to the uniform
pricing scheme, because the length of the first interval goes to 0, whereas in the
second interval the optimal prices and quantities tend to the ones associated with
the uniform pricing scheme (and in the last interval, the 2nd differential pricing
scheme is already equivalent to the uniform pricing scheme). On the opposite, when t
increases, the 2nd differential pricing scheme becomes more and more similar to the
1st differential pricing scheme, because the length of the first interval

(
1, 1 + 2tb

a

]
increases, whereas the other two intervals

(
1 + 2tb

a , 1 + 2tb
a + √

2
(
1 − kb

a

))
and(

1 + 2tb
a + √

2
(
1 − kb

a

)
,+∞

)
are more and more “shifted” to the right.

Remark 3 All the models highlight the presence, in the expressions of the optimal
global welfare values, of various thresholds on γ , some of which depending on the
constant marginal cost of production k. In particular, when k ≥ a

b , a threshold is
always present for γ = kb

a . For the case 0 ≤ k < a
b , Propositions 2 and 4 also

show the presence of another threshold depending on k, which is obtained, respec-
tively, for γ = 1 + √

2
(
1 − kb

a

)
, and for γ = 1 + 2tb

a + √
2

(
1 − kb

a

)
. Additional

dependencies on k are reported in the expressions of the global welfare values valid
for the various subcases shown in Sects.refsubsec:uniform, 5.2, 5.3, and also in the
expressions of the optimal prices and quantities reported in Appendix B. Concluding,
the expressions that can be found in Propositions 1, 2, 3, and 4 and in their corol-
laries reported in Appendix B clarify the conditions that allow/do not allow one to
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neglect the presence of a positive constant marginal cost of production in the analy-
sis of each pricing scheme at optimality: e.g., in order to neglect k in the expression
1 + √

2
(
1 − kb

a

)
, one would need the condition kb

a � 1. Here, the term kb
a = k

a
b
rep-

resents the ratio between the positive marginal cost of production k and the maximal
price a

b that can be effectively charged to the consumers in the Country B, according
to the second demand function in Eq. (1). Similarly, in Eq. (17), one cannot neglect

k in the termW
(
γ a − b

(
(γ+1)a

4b + k+t
2

)
, a − b

(
(γ+1)a

4b + k−t
2

))
when the positive

constant marginal cost of production k has the same order of magnitude as the positive
parallel trade cost per-unit t .

Remark 4 It is interesting to observe that all the results of our analysis provided in
Sects. 4 and 5 are quite independent from some specific characteristics of the demand
functions. Indeed, for all the three pricing schemes (and also for the global planner

problem), the structure of the optimal decisions depends only on the ratios CF/
(
a2
b

)
,

k/
( a
b

)
, and t/

( a
b

)
, as one can see by examining the statements of Propositions 1, 2,

3, and 4.
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