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ABSTRACT OF THE THESIS

A Case Study on HLS Portability from Intel to Xilinx FPGAs

by

Zhili Xiao

Master of Science in Computer Engineering

Washington University in St. Louis, December 2021

Research Advisor: Professor Roger Chamberlain

Abstract: Field-programmable gate arrays (FPGAs) are a hardware accelerator option that

is growing in popularity. However, FPGAs are notoriously hard to program. To this end,

high-level synthesis (HLS) tools have been developed to allow programmers to design hard-

ware accelerators with FPGAs using familiar software languages. The two largest FPGA

vendors, Intel and Xilinx, support both C/C++ and OpenCL C to construct kernels. How-

ever, little is known about the portability of designs between these two platforms.

In this work, we evaluate the portability and performance of Intel and Xilinx kernels. We con-

duct a case study, porting the Needleman-Wunsch application from the Rodinia benchmark

suite written in Intel OpenCL C to Xilinx platforms. We use OpenCL C kernels optimized

for Intel FPGA platforms as a starting point and first perform a minimum effort port to a

Xilinx FPGA, also using OpenCL C. We find that simply porting one-to-one optimizations

is not enough to enable portable performance. We then seek to improve the performance of

those kernels using Xilinx C/C++. With rewriting the kernel for burst transfer and other

optimizations, we are able to reduce the execution time from an initial 294 s to 2.2 s.

vii



Chapter 1

Introduction

With Dennard scaling no longer effective [1] and Moore’s Law in retreat [14], offloading

computations from traditional multicore processors to a hardware accelerator is a common

approach used in the continuing effort to scale performance and efficiency. FPGAs are an

attractive solution, because an FPGA allows the generation of specific hardware to make

use of parallelism and specialized operations in the application. However, classical program-

ming of FPGAs using hardware description languages (HDL), such as Verilog and VHDL,

requires expertise in digital system designs and a huge amount of effort. Xilinx and Intel,

the two FPGA vendors, have tried to improve productivity by offering high-level synthesis

(HLS) which allows programmers to design hardware accelerators with FPGAs using familiar

software languages, e.g., C/C++ and OpenCL C. Little is known about the portability of

designs between these two platforms, which can hinder the further adoption of HLS designs.

To evaluate the portability and performance of Intel and Xilinx kernels, here we extend prior

work [7] by porting the Needleman-Wunsch application [15] from the Rodinia benchmark

suite [8] written in Intel OpenCL C [25] to a Xilinx FPGA. We use the Intel OpenCL C

kernel codes from [25] as a starting point and first performed a minimum effort porting to

Xilinx OpenCL C. We then improve the performance of the kernel codes in Xilinx C/C++

by taking advantage of Xilinx C/C++ pragmas and control and by moderately modifying

the codes for burst transfer. Eventually, the run time was able to be reduced from 294 s

to 2.2 s. This is much closer to, but not quite yet competitive with, the performance of

the initial Intel designs. This suggests that to achieve the performance portability of HLS

designs across FPGA vendors is not a straightforward task.
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Similar to previous efforts [7], this work is a detailed case study of porting an application from

the Intel platform to the Xilinx platform, which details the porting efforts and experiences

of porting FPGA kernel optimizations from Intel OpenCL to Xilinx HLS and evaluates the

performance and portability of the ported kernel. The factors that are distinctive to this

work are the following:

• we port an application from a different computing pattern (dynamic programming);

• we start from Xilinx OpenCL C, expanding to Xilinx C/C++;

• we achieve substantial performance improvement through exploration of several opti-

mizations; and

• we analyze the performance to study the reasons for performance gaps that remain.

The outline of the thesis is as follows. Chapter 2 introduces background knowledge of the

Neeldleman-Wunsch kernel we chose to port and related works. Chapter 3 describes the

application in more detail and our porting methods and optimization efforts. Chapter 4

lists the porting results and analyzes effective and ineffective efforts. Chapter 5 draws the

conclusion for HLS portability and points out direction for future works.

The results of this work have been published [21], and the code is available at [22].
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Chapter 2

Background and Related Work

The application that we use in this study is the Needleman-Wunsch application [15], which

comes from the Rodinia benchmark suite originally created by Che et al. [8]. The intent of

Rodinia was to provide a set of applications to evaluate heterogeneous computing systems

across accelerator interfaces (e.g., OpenMP and OpenCL) and parallel computing commu-

nication patterns (e.g., dynamic programming, structured grid). Zohouri et al. [25] later

extended the OpenCL implementations of a subset of the Rodinia benchmarks by designing

optimized high level synthesis (HLS) kernels for FPGAs. However, the hardware designs

from Zohouri et al. are optimized for Intel FPGA platforms. In this work, we port the

Needleman-Wunsch OpenCL kernels from the suite to be synthesizable and performant on

Xilinx FPGAs.

Sanaullah et al. [18] uses the Needleman-Wunsch and other common HPC applications

to explore the optimization strategies and their effects on FPGAs for Intel OpenCL C. In

particular, the authors detailed their optimization strategies and their effect on the singe-

work-item (SWI) kernel of the Needleman-Wunsch algorithm. Most of these strategies have

been adopted by Zohouri et al.’s original code. In our optimization exploration, we attempted

to use their temporary variables strategy to resolve iteration dependencies.

On the Xilinx side, two recent works by Brown evaluated the performance of Xilinx’s Vitis

HLS tools with the Nekbone mini-app and the Himeno benchmark [2, 3]. In porting the

Nekbone AX kernel from Fortran to Xilinx FPGAs via Vitis, the author studied a number

of optimizations, including revising the algorithm from von Neumann to dataflow form,

optimizing the use of memory banks, loop unrolling, and ping-pong buffering. In porting the

Himeno benchmark, they increased the port data width using the DATA PACK pragma and
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splitting the dataflow into separate kernels to take use of the Xilinx HLS streams. De Fine

Licht et al. [9] documented many transformation strategies to optimize the performance when

translating applications from traditional software to Xilinx HLS. The authors categorize

these strategies and emphasize the importance of pipelining, scaling, and memory accesses.

Brown’s and de Fine Licht et al.’s point to us a direction for future work.

Brown’s recent work [4] also explored the vendor differences in HLS tool chains between Intel

and Xilinx by revising an existing advection model kernel for the Xilinx HLS tool flow for

both Xilinx Vitis and Intel tool flows with the aim of vendor portability and performance.

Therefore, Brown’s implementation was Vitis C/C++ tool flow oriented and significant

modifications of kernel codes were needed to fit the Intel OpenCL program into the dataflow

design. The work also explored the performance difference when scaling to multi-kernel

designs, which is not applicable to our dynamic programming kernel.

Weller et al. showed that OpenCL as an HLS supported by both Intel and Xilinx is capable to

design energy efficient partial differential equation solver with FPGA [20]. They identified

vendor independent design strategies and Vendor specific optimization techniques. As a

consequence of those differences, separate kernel codes were written for Xilinx and Intel

FPGAs.

To overcome vendor differences, Kenter [12] provided guidance for design patterns that work

well for both OpenCL based Xilinx SDAccel and Intel FPGA SDK for OpenCL tool flows

and provides insights into the underlying philosophy and mechanism with examples. Ken-

ter et al. also evaluate the portability of OpenCL based FPGA designs between vendors

by implementing an finite-difference time-domain application for SDAccel and Intel FPGA

SDK [13]. By using preprocessor macros, their implementation can flexibly run on FPGAs

from different families. Our major difference from this work is that we evaluate the porta-

bility by starting from a design already optimized for the Intel OpenCL FPGA SDK instead

of starting from scratch and trying to optimize for both vendors.

In prior work, Cabrera and Chamberlain used the Needleman-Wunsch kernels from Zohouri

et al. [25] to evaluate the performance and portability between Intel FPGAs with different

memory architectures [6]. They built the OpenCL C kernels that were originally targeting an

Intel FPGA connected via PCIe on the Intel HARPv2 platform, which combines a CPU and

FPGA on the same chip package. The approach in this work is similar but with a different
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focus on evaluating the performance and portability across different FPGA vendors. For

evaluation purpose, we compare the performance of the most performant kernel before and

after optimizations with Cabrera and Chamberlain’s results as shown in Fig 2.1.

Figure 2.1: Execution times for the best kernel on Intel from prior work, sweeping across
the design space of PAR and BSIZE [6].

We further used the work of Zohouri et al. [25] to evaluate the performance and portability

between Intel and Xilinx platforms. This work extends [7] by porting a different class of

application (dynamic programming) and utilizing Xilinx C/C++ for kernel design in order

to enable design choices not available when using OpenCL C in Xilinx.
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Chapter 3

Methods

To evaluate the portability of the two HLS implementations, we leverage the Intel OpenCL

implementation of Needleman-Wunsch from the Rodinia benchmark suite modified by Zo-

houri et al. [25], and use the host and kernel codes as a starting point to build and run the

kernels on the Xilinx platform. We first performed one-to-one optimization ports to Xilinx

OpenCL C, and then explored how performant the kernel can be in Xilinx C/C++. The

Xilinx platform for this work is a Xilinx Alveo U250 Data Center accelerator card, which

includes an XCU250 FPGA of the Xilinx UltraScale+ architecture, a Gen3 x16 PCIe inter-

face, and 64 GB of DDR4 off-chip memory. To author designs, we used the Vitis 2020.1

Core Development kit.

Figure 3.1: Illustration of the baseline version of the Needleman-Wunsch algorithm.

Needleman-Wunsch [15] is a dynamic programming algorithm frequently used in bioinformat-

ics. The goal of the application is to find the global optimal alignment of two biosequences.

Figure 3.1 shows a pictorial representation of the Needleman-Wunsch algorithm. Each biose-

quence is represented by integers which are attached to the output matrix as an extra row

and column, as indicated by the blue elements. The score of each element depends on its

top, top left, and left neighbors as indicated by the green arrows, the score from a reference
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matrix, and a penalty value for mismatch. Due to these data dependencies, an element can

only be computed after the score of its top, top left, and left neighbors have been determined

and stored.

3.1 Initial Kernel Descriptions

To examine the portability of kernel designs, we chose the baseline kernel and the most

performant kernel versions (v1 and v5 following the numbering by Zohouri et al. [25]) for

porting. Both kernel versions are singe-work-item (SWI) kernels. The baseline version is just

the SWI model itself with no FPGA optimizations at all. The v5 version is the design that

has the highest performance and uses the least on-chip resources among the kernel versions

according to the reports by Zohouri et al. [24] and Cabrera and Chamberlain [6]. In what

follows, we refer to this version as the “best” version. It must be clarified that the design of

the “best” version or version “v5” leads to a design space which will be discussed below. By

tuning parameters across the design space, the performance of the “best” version will great

variability, but it is still much better than the baseline version on Intel platforms. That

means, we refer to the design with all different configurations of tuning parameters as the

“best” kernel.

The Baseline Kernel The baseline kernel is simply the doubly nested loop outlined in

lines 3-8 of Algorithm 1, which iterates through each location in the output matrix and

performs the computations as showed in Figure 3.1. As mentioned above, the computation

of the score of the current element depends on its top, top-left, and left neighbors as well

as the score from the reference matrix and the penalty value, which is shown in line 5-8.

Specifically, line 5 and 6 subtract the penalty value from the top and left neighbors, and line

7 adds the reference score at the current location to the top left neighbor. The max in line

8 is an inline function that will return the maximum of the three three results computed by

line 5-7.

The Best Kernel Figure 3.2 illustrates how the best kernel makes use of wavefront par-

allelism and computes elements on one diagonal line at a time. The kernel processes the

7



Figure 3.2: Illustration of the best kernel with BSIZE=4 and PAR=3. The number inside
in grid is the order in which elements will be processed.
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Algorithm 1 Baseline Needleman-Wunsch Algorithm

1: int output[dim+1][dim+1], reference[dim+1][dim+1]
2: int penalty
3: for i← 1 to N + 1 do
4: for j ← 1 to N + 1 do
5: top = output[i− 1][j] − penalty
6: left = output[i][j − 1] − penalty
7: top left = output[i− 1][j − 1] + reference[i][j]
8: output[i][j] = max(top, left, top left)

output matrix as groups of rows, where the size of each group is set by the parameter BSIZE.

Within a single row group, each group is further divided into chunks of columns to fix the

length of diagonal lines. The number of columns in each chunk is defined by the parameter

PAR. Once the kernel has reached the bottom of the current chunk, it will wrap around to

the next chunk until all elements in the current group of rows have been processed.

Another major optimization is the deployment of 2D shift registers of size PAR by PAR to hold

the computation results from the last diagonal lines. This optimization has two advantages:

first, it resolves the dependencies by storing the elements in local storage, which avoids

expensive accesses to global memory; second, the lower triangular buffers rearrange the

elements and coalesce the memory accesses such that elements on the same row can be burst

transferred when writing to global memory, which will increase the bandwidth utilization.

The design of the best kernel introduces two design parameters, BSIZE and PAR. The hardware

search space in our experimentation is the Cartesian product of

BSIZE ∈ {256, 512, 1024, 2048, 4096}

and

PAR ∈ {8, 16, 32, 64}.

To compare with the performance on Intel FPGAs, the sequence size we use is 23040, which

is the same as Zohouri et al. [25] and Cabrera and Chamberlain [6].

9



3.2 One-to-one Porting to Xilinx OpenCL C

Intel OpenCL and Xilinx OpenCL use the same host interface. We followed the modern

C++ conventions used in [7] to rewrite the host code and move the mapping of the DDR

banks to the configuration file for Xilinx, instead of establishing the connection in Intel host

codes. Using the same methods as in [7], we ported the baseline and the best kernel to Xilinx

OpenCL C with minimum changes to simply allow the codes to be executable on the Xilinx

platform. Because Xilinx has a partition limit of 1024 for the shift register that is too large

to be completely partitioned, we choose not to partition it and let the compiler make its

best decision. Besides porting FPGA optimizations like loop unrolling and shift registers,

additional changes not documented in [7] are the porting of inline functions and compiler

pragma ivdep, described next.

Inline Functions

In the baseline kernel version, the max function is an inline function. Inlining a function

will make sure the function will not be generated as a hierarchical submodule at the register

transfer level (RTL). The integration with surrounding logic and structures could lead to

potential optimization during compilation and increase the performance. For Intel OpenCL,

inlining a function is the same as in C/C++,

inline void foo(){}.

For Xilinx, the equivalent OpenCL attribute needs to be placed above the function,

attribute ((always inline)).

Ignore Vector Dependence

In the most performant kernel version, Intel OpenCL uses the pragma ivdep on the output

matrix to forestall the false load/store dependency assumption on the global memory buffer
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for the output matrix. As mentioned in Section 3.1, the dependency on the output matrix

has been resolved because of the use of 2D shift registers. For Intel, to ignore the assumed

inter loop dependency, the loop is preceded by

#pragma ivdep array(data).

Although the equivalent attribute was not found in the Vitis document, the SDAccel doc-

ument suggests that the xcl dependence attribute should be supported by Xilinx OpenCL

C. With

attribute ((xcl dependence(variable ="data", type="inter",

direction="RAW", dependent="false"))),

the read after write loop carried dependency can be resolved and the compiler can lower the

initiation interval [12].

3.3 Porting to Xilinx C/C++ and Optimization

To optimize the performance of the best kernel, we explored the use of Xilinx C/C++ for

architecting kernels, since Xilinx C/C++ affords more fine-grained control over the resulting

hardware than is possible with OpenCL C.

HLS INTERFACE

All kernel arguments will be implemented as a port for input or output operations in

the RTL design. In Xilinx C/C++, the implementation of these ports must be specified

by the HLS INTERFACE pragma to assign an I/O protocol . We used the default set-

ting of Vitis, assigning the array pointers to the m axi interface and scalar inputs to the

s axilite interface. In addition to assigning the interface, we also explored the effect of the

num read/write outstanding option of the interface, which specifies the maximum num-

ber of non-responding read/write requests can be issued before the design stalls to wait for

11



responses. Without specification, Xilinx will group all ports to the same memory interface.

Because the interface will only address access request of one variable at a time, this will

cause memory port contention and increase the pipeline initiation interval (II) even when

the memories are mapped to different DDR banks. We thus assign a different bundle to

each array input like Fig 3.3.

Figure 3.3: A kernel with two different memory adaptors for different inputs.

Loop Unrolling

To port the loop unrolling optimizations, Xilinx has a direct equivalence HLS pragma for

loop unrolling,

#pragma HLS unroll factor=N.

The only difference is that the pragma needs to be placed inside the loop instead of preceding

the loop.

Shift Registers

To port the shift registers, we treat the 1D shift registers and 2D shift registers separately.

For 1D shift registers, we use the ap shift reg class in the Xilinx HLS library. To show

the differences between the way we port the 1D shift registers in OpenCL C and in Xilinx

C/C++, Listing 3.1 shows the set up 1D shift registers in Xilinx OpenCL C and Listing 3.2

shows the use of ap shift reg for Xilinx C/C++.
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1 // fully partition the SR array

2 int shift_reg[SR_SIZE]

3 __attribute__ (( xcl_array_partition(complete ,0)));

4

5 // shift

6 __attribute__ (( opencl_unroll_hint(SR_SIZE - 1))

7 for (int i = 0; i < SR_SIZE - 1; ++i){

8 shift_reg[i] = shift_reg[i + 1];

9 }

10 //new input to the tail of the array

11 shift_reg[SR_SIZE - 1] = input;

Listing 3.1: 1D shift registers in Xilinx OpenCL C.

1 static ap_shift_reg <int ,SR_SIZE > shift_reg;

2 int var1;

3 //load new input into location 0, read the oldest value at location

SR_SIZE -1

4 var1 = shift_reg.shift(input ,SR_SIZE -1);

5

6 //read location 3 only

7 var1 = shift_reg.read (3);

Listing 3.2: 1D shift registers in Xilinx C/C++.

One major syntax difference is the location of new inputs. It was found that the Xilinx

compiler sometimes had trouble inferring 1D shift registers in the style of Listing 3.1, which

will degrade the performance. More about this is discussed in Section 4.2.

For 2D shift registers, as in [7], we completely partitioned the shift register arrays, and

replaced the Intel OpenCL C loop unrolling pragmas with Xilinx HLS unrolling pragmas, as

shown in Listing 3.3. There are several reasons for not implementing the 2D shift registers

with ap shift reg. First, ap shift reg only supports 1D shift registers. Second, rewriting

the columns of 2D shift registers into 1D shift registers would break down the global memory

access loops and hinder the inference for burst transfer.
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1 // fully partition

2 int SR[PAR][PAR];

3 #pragma HLS ARRAY_PARTITION variable=SR complete

4

5 // Shift

6 for (int i = 0; i < PAR; i++){

7 #pragma HLS unroll

8 for (int j = 0; j < PAR - 1; j++){

9 #pragma HLS unroll

10 SR[i][j] = write_SR[i][j + 1];

11 }

12 }

13

14 //load from data , the global memory buffer

15 for (int i = 0; i < PAR; i++){

16 #pragma HLS unroll

17 SR[i][i] = data[read_index ];

18 }

Listing 3.3: 2D shift registers in Xilinx C/C++.

Loop Carried Dependence

Similar to porting to Xilinx OpenCL C, we first ported the ivdep pragma by placing an HLS

dependence pragma inside the loop, with direction=RAW and type=inter for loop carried

dependencies,

#pragma HLS dependence variable=data inter RAW false.

We then explored the effect of resolving other kinds of dependencies including write after

read (WAR) and write after write (WAW) dependencies on the output matrix.

Modifications for Burst Transfer

To enable burst transfer inference, we first isolated global memory access loops from other

operations in the computation loop. We changed i-- to i++ because one of the precondition

for burst transfer in Xilinx is continuous monotonically increasing order. As opposed to the

loop switching technique of [9] to combine control flows into one pipeline, we applied loop

unswitching techniques to global memory access loops to move the boundary conditionals
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outside the loop. The removal of conditionals reduces the loop pipeline initiation interval

(II) to 1 such that the burst transfer could be inferred by Vitis [12]. Since the burst transfer

size will always equal to PAR, the number of columns that will be processed at the same time,

we set the max burst read/write length option in HLS INTERFACE to 64, the largest PAR in

our design space.

Exploration for Optimization

Besides the porting efforts above, we also tried to leverage the abundant options and control

that Xilinx C/C++ offers. To explore what options are effective, we apply these options to

the best kernel with BSIZE = 512 and PAR = 32. We explored the effects of binding arrays to

different storage types to arrays, like FIFO and RAM with different number of ports. This

is done by altering the storage type option in BIND STORAGE pragma as shown below.

#pragma HLS bind storage variable= <variable> type=<type>.

To deal with partition limits and simplify address demultiplexing logic and scheduler activ-

ities, we partition arrays with the cyclic and block option and partition factors of 8, 16,

and 32. To reduce loop latency, we pipeline the computation loops using PIPELINE pragma.

Moreover, we explore the effect of binding ports to different memory banks to avoid mem-

ory interleaving accesses and the effect of locating the compute unit to super logic regions

(SLRs) through configuration file. The effects of all options and optimization explorations

are discussed in detail in Sections 4.2 and 4.3.

15



Chapter 4

Results

4.1 Minimum Modification Porting Design Space Search

With one-to porting efforts as detailed in Section 3.2, the baseline version’s execution time is

315 s, and the best execution time of the best kernel across the design space is 294 s. Table

4.1 lists the best execution times of the baseline and the best kernel on Intel and one-to-one

porting of them on Xilinx platforms. Notice that the one-to-one optimization mapping of

the baseline kernel has a portable performance on Xilinx as the baseline kernels involves

almost zero designs for FPGA specific optimizations. Figure 4.1 shows the run time of the

best kernel across the design space ported to Xilinx. Note that the performance of the best

kernel varies considerably across the design space, yet the highest performing configuration

of the best kernel achieves a speedup of only 1.07× from the baseline.

On the other hand, the best kernel on Intel FPGA with PCIe and HARP system takes

only 0.260 s and 0.290 s achieving 784× and 2862× speedups relative to the baseline design,

respectively. This is in stark contrast to the 1.07× speedup achieved by the minimum porting

effort, let alone some other configurations that have even worse performance than the baseline

kernel. Moreover, the huge variations in run time of designs with the same PAR is different

from the performance pattern as reported in Fig 2.1, where the run time of kernels with the

same PAR size but different BSIZE are similar.

It was also noted that the compiler was not able to synthesize the design with PAR=64, which

was also observed in Fig 2.1 for BSIZE smaller than 2048. For the Intel compiler, the design
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Table 4.1: The runtime of the baseline and the best kernel on Intel and one-to-one porting
of them on Xilinx platforms.

Version Platform Runtime (sec)

Baseline

Stratix V GX A7,
PCIe

204

Arria 10 GX 1150,
HARP

830

Alveo u250,
PCIe

315

Best

Stratix V GX A7,
PCIe

0.26

Arria 10 GX 1150,
HARP

0.29

Alveo u250,
PCIe

294

Figure 4.1: Execution times for the best kernel with one-to-one port to Xilinx OpenCL C,
sweeping across the design space of PAR and BSIZE.
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is too congested to fit onto the board. But for Vitis, the limitation is because of the partial

write inference on the shift registers and the complex scheduling.

Obviously, with minimum effort porting to OpenCL, the Xilinx Vitis compiler interprets

the kernel codes differently and the best kernel cannot achieve the same performance and

speedup as it has in Intel systems. More modifications are necessary to improve performance.

To this end, we use Xilinx C/C++ to author kernels instead of OpenCL C.

4.2 Ineffective Optimization Efforts

Xilinx C/C++ offers finer control and more options than Xilinx OpenCL C. Among the

options we explored, there are some ineffective optimization efforts which do not decrease

the execution time and even harm performance in some cases. We first try to optimize the

shift register structure that cannot be completely partitioned. Even though Xilinx asserts

that it supports the inferring of shift registers even without complete partition [19], we found

that this was not the case until we enabled burst transfers.

To reduce cycles of operations on shift registers, we use the BIND STORAGE pragma to assign

the shift register array to RAM with 1 write port and multiple read ports and FIFO. Before

enabling burst transfers, binding arrays to RAM with multiple ports had no performance

improvement but consumed more resources, because the RAM cannot satisfy the simultane-

ous store operations as with the shift registers and therefore breaks the pipeline. Binding to

FIFO eventually failed because the compiler cannot find a legal memory core for the store

operation on the FIFO. After all, the shift register is not completely the same as the FIFO.

To mitigate this, we also explored the cyclic partition on the shift registers with partition

numbers = 8, 16, or 32 combined with unrolling factor equal to the partition number as

described in [16]. We observed that the cyclic partitioning degrades the performance of the

kernel. First, the scheduler is still unable to accommodate the store operations on the array

even with cyclic partitions. Second, the scheduling complexity increased because the array’s

size is not a multiple of the partition factor, which degrades the performance.

However, the inferring of shift registers seems to succeed after we enable burst transfers.

No reports on pipeline breaking due to the shift register arrays were found. We attribute
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this finding to be a bug of Vitis 2020.1, which seems to have been fixed by 2020.2. We also

compared the performance of including the ap shift reg class for the 1D shift registers after

the burst transfer has been enabled. No significant difference in resource and performance

was found when using the class versus not using it.

The second option we explored is the number of outstanding read/write requests option in

the INTERFACE pragma mentioned in Section 3.3. It specifies the number of transactions

that can be initiated before waiting for the first to complete, which can effectively hide

memory access latency. Applying the option reduces the execution time of the best kernel

from hundreds of seconds to 44 s. However, this option is only effective before burst transfer

is enabled. It turns out that after enabling burst transfer, the kernel has to stall for external

memory before the next burst transaction can be issued because of the dependency. The

burst transfer is more effective for hiding latency between atomic memory accesses and

reduces the execution time to 14 s.

To try to reduce the pipeline II, we used the temporary variable strategy described in [18]

to store the offset variables to resolve loop carried dependencies on reading/writing of the

global memory. But the dependency could not be resolved by simply using temporary

variables. The scheduler reports show that the pipeline II cannot be further reduced because

the dependency is in fact caused by the contention on memory ports, which will be discussed

in Section 4.4.

Xilinx empowers users with the ability to do coarse-grained floorplanning by specifying the

placement of compute units. Since we have mapped the kernel ports to different DDR banks,

the location of the compute unit in different SLR regions can decrease or increase the routing

across the boundary and thus affect the timing and clock rate. For Xilinx Avelo 250, SLR0

connects to the port of DDR bank 0, and SLR1 connects to DDR bank 1. Mapping the

buffer ”reference” to DDR bank 0 and the buffer ”data” to bank 1 and explicitly placing

the compute unit in SLR0 (2.54 s) or SLR1 (2.57 s) slightly degraded the performance,

increasing the run time by about 300 ms. Examination of the implementation log files shows

that without specification, Xilinx will spread the compute unit across SLR0 and SLR1 such

that the compute unit is close to both memory interfaces, which can slightly reduce the

execution time.
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4.3 Effective Optimization Efforts

Using the run time profile of the best kernel, we found that Xilinx failed to infer burst

transfer from the original kernel code. Therefore, only atomic transactions to/from the

global memory could be issued and more than 10000 ns of global memory access latency was

incurred. By rewriting the best kernel in ways described in Section 3.3, the average global

memory transaction size is increased to PAR integers and the latency is reduced to about

300 ns.

Although the performance improvement achieved by the memory banking is minimal, sepa-

rating global arrays into different memory interfaces with the bundle option can effectively

reduce the memory port contention and reduce the pipeline II from 2·PAR (caused by the

read of the reference matrix and the output matrix) to PAR.

After the rewrite for burst transfers, the Vitis compiler will only pipeline the memory ac-

cess loops. We added the PIPELINE pragma to the whole computation loop to pipeline

both burst transfers and computations. With the read after write dependency on the out-

put matrix resolved by #pragma HLS dependence variable=data inter RAW false, the

execution time for the best kernel with BSIZE=512 and PAR=32 is reduced to 6.85 s.

A closer look at the compilation log shows that besides the RAW dependency, Xilinx

also assumes WAW dependencies on the output matrix. With #pragma HLS dependence

variable=data inter false, all loop carried dependencies can be resolved and execution

time is reduced to 2.63 s. Examination of the run time reports shows that resolving all loop

carried dependencies will increase the kernel frequency from 105 MHz to 235 MHz, which is

the major cause of the speedup.

Xilinx allows users to map memories to different memory banks to avoid interleaving global

memory access through building commands or configuration files. Fig 4.2 shows the floor

plan of global memories and SLR regions on the Alveo U250. With no manual mapping of

memory banks, all global memories are accessed through DDR bank 0, and the resulting

design will be placed in SLR 0 which is closest to bank 0. This design decreases the clock

rate. By mapping the reference matrix to DDR bank 0, the output matrix to DDR bank 1,
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and the smaller input vector to PLRAM, the clock rate is increased to 295 MHz, and the

execution time is reduced to 2.2 s.

Figure 4.2: The floor plan of the Xilinx Alveo U250 [23].

4.4 Xilinx C/C++ Performance Analysis

Table 4.3 lists the execution time, the FPGA resource consumption, and the speedup relative

to the baseline of Xilinx C/C++ kernels across the design space. It is hard to make a direct

comparison between the hardware resources for Xilinx and Intel, as they use different logic

slices (see Table 4.2). But both of them use only a small amount of their respective FPGA

resources. Because Xilinx was able to identify the shift registers of the C/C++ kernels,

BRAM usage does not increase as the PAR size increases as we observed for OpenCL kernels.

Figure 4.3 illustrates the execution time of the best kernel across the design space. We

observed a similar performance pattern as [6] (see Fig 2.1), where designs with the same PAR

have a similar execution time, and the performance of designs with PAR=8 are significantly

worse than others.

The C/C++ kernels with burst transfers enabled and pipelined are much more performant

than the one-to-one optimization port OpenCL kernels. The execution time is reduced to

2.2 s, achieving 143× speedup relative to the baseline version. However, the Xilinx C/C++

kernels are still 10× slower than the Intel OpenCL C kernels. To know why there continues
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Table 4.2: Resources available on the Intel and Xilinx Platforms [10] [23] [11]

FPGA ALM/CLB Register (K)
M20K

(Blocks | Mb)
DSP External Memory

Stratix V GX A7,
PCIe

234,720 939 2,560 | 50 256 2x DDR3-1600

Arria 10 GX 1150,
HARP

427,200 1,709 2,560 | 50 1,518 2x DDR4-2133

Alveo u250,
PCIe

182,000 3,456 N/A 12,288 4x DDR4 2400MT/s

Figure 4.3: Execution times of the best kernel in Xilinx C/C++, sweeping across the design
space of PAR and BSIZE.
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to be a performance gap and for potential performance improvement in future work, we next

utilize the synthesis report and the run time report to the analyze the execution time and

study the performance bottleneck.

Figure 4.4: Execution times for the best kernel with BSIZE = 512 and different values of PAR
in terms of computation time and external memory stalls.

The synthesis report shows that the computation loop can only be pipelined with II=PAR,

because it cannot resolve the loop carried dependency of reads on the reference matrix or the

output matrix. Of course, there is no real “read after read” dependency here, and the true

reason is that the interface will only deal with one burst transaction at a time and that each

burst transaction needs PAR cycles (one cycle for each element). Reducing the PAR of the

design will reduce the pipeline cycle, but it will also reduce the number of elements processed

per loop and potentially increase the memory access latency. For example, reducing PAR to

8 will increase the latency to over 1000 ns. On the other hand, further increasing the PAR

will not further decrease the memory latency, but will make the design more congested and

result in the decrease of clock rate. Figure 4.4 shows the composition of the execution time

of the best kernel with BSIZE = 512 and different PAR in terms of the external memory stalls

and the rest of time, which is the actual time spend on computation. Therefore, if we reduce

the external memory stalls as reported by the run time report, we will find that the actual
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Table 4.3: Results for the baseline and the best version with different configurations in Xilinx
C/C++.

Kernel
Version

PAR BSIZE
Time
(sec)

fmax

(MHz)
LUT Register BRAM DSP Speedup

Baseline N/A N/A 314.788 300
3752

(0.22%)
5073

(0.15%)
2

(0.07%)
30

(0.24%)
1

Best

8

256 8.598 300
10300
(0.6%)

12773
(0.39%)

4
(0.15%)

6
(0.05%)

37

512 9.179 300
10409
(0.6%)

12837
(0.39%)

4
(0.15%)

6
(0.05%)

34

1024 8.467 300
10746
(0.62%)

12876
(0.39%)

4
(0.15%)

6
(0.05%)

37

2048 8.542 300
12571
(0.73%)

12825
(0.39%)

4
(0.15%)

6
(0.05%)

37

4096 8.540 300
13782
(0.8%)

12817
(0.39%)

4
(0.15%)

6
(0.05%)

37

16

256 2.486 295
16564
(0.96%)

22376
(0,68%)

4
(0.15%)

6
(0.05%)

127

512 2.390 300
17617
(1.02%)

21942
(0.67%)

4
(0.15%)

6
(0.05%)

138

1024 2.375 300
19229
(1.11%)

22239
(0.68%)

4
(0.15%)

6
(0.05%)

133

2048 2.449 300
18920
(1.09%)

22499
(0.68%)

4
(0.15%)

6
(0.05%)

129

4096 2.426 300
20678
(1.2%)

22191
(0.67%)

4
(0.15%)

6
(0.05%)

130

32

256 2.599 245
33022
(1.91%)

41720
(1.27%)

4
(0.15%)

6
(0.05%)

121

512 2.200 295
33608
(1.94%)

41900
(1.27%)

4
(0.15%)

6
(0.05%)

143

1024 2.294 285
33913
(1.96%)

41920
(1.27%)

4
(0.15%)

6
(0.05%)

137

2048 2.497 270
32524
(1.88%)

41571
(1.26%)

4
(0.15%)

6
(0.05%)

126

4096 2.437 275
36061
(2.09%)

41851
(1.27%)

4
(0.15%)

6
(0.05%)

129

64

256 3.345 210
62210
(3.6%)

81196
(2.47%)

4
(0.15%)

6
(0.05%)

94

512 3.283 215
64481
(3.75%)

81218
(2.47%)

4
(0.15%)

6
(0.05%)

96

1024 3.147 225
64004
(3.7%)

81102
(2.46%)

4
(0.15%)

6
(0.05%)

100

2048 3.118 230
63711
(3.69%)

81198
(2.47%)

4
(0.15%)

6
(0.05%)

101

4096 3.056 255
67478
(3.9%)

81139
(2.46%)

4
(0.15%)

6
(0.05%)

103
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computation time is similar for different PAR size as indicated by Figure 4.4. The actual time

spent on the computation on Xilinx FPGA is around 1 second even with clock frequency at

300 MHz, which is still 3× slower than the overall execution time on Intel platforms. We

therefore conclude that the performance bottleneck is the coupling of the pipeline II and PAR

caused by the memory port contention. To achieve better performance, we must decouple

the II and PAR, and effectively hide or eliminate the external memory stalls.

Aside from the performance portability, we also noticed a significant difference in build

time. As BSIZE decreases and PAR increases, the build time increases. Examination of the

logs shows that the increase mainly comes from place and route. But compared with the

unsynthesizable Xilinx OpenCL C version with PAR = 64, Vitis took no longer than 5 hours

to build the bitstream across the C/C++ design space.

25



Chapter 5

Conclusion and Future Work

This work presents our efforts to port an application kernel that has already been optimized

for Intel FPGA to the Xilinx platform and our evaluation of its performance and portability.

We found that most FPGA optimizations including the 1D and 2D shift registers can be

successfully ported with relatively low effort. Inter loop dependency optimization can also

be easily ported as Vitis is a best effort multi-pass compiler and will try to resolve all

different kinds of loop carried dependency itself. But in terms of performance, one-to-one

kernel optimization ports is not enough. The rigorous constraint on pipeline II for burst

transfer inference of the Xilinx compiler requires significant rewriting of the code that works

well on Intel FPGAs, which is also the biggest contributor of the performance difference.

By rewriting the kernel in the style that the Xilinx compiler prefers, we enabled burst

transactions to/from the global memories and reduced the average transaction latency to

around 300 ns and the overall execution time to 2.2 s, achieving a 143× speedup relative to

the baseline kernel and 134× speedup relative to the one-to-one optimizations port version.

But even with the rewriting for burst transfer, there is still an order of magnitude gap in

the performance between the Xilinx kernel and the Intel kernel.

Besides the compiler options we explored in this work, Xilinx C/C++ offers additional

compiler options that can potentially improve the performance. For example, using the

latency option in the INTERFACE pragma to issue read and write requests in advance could

reduce external memory stall cycles. Merging sequential loops with the LOOP MERGE pragma

can eliminate cycles between loops. However, many of these techniques can only reduce the

depth of each loop iteration. As the performance analysis in Section 4.4 shows, the overall

execution time will not be reduced to less than 1 s if the pipeline II is not reduced.
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We could possibly break the performance bottleneck by rewriting the memory access into

functions and use the DATAFLOW pragma as described in [9] and [2] and by applying the

AGGREGATE pragma, which is similar to the DATA PACK directive that is no longer supported

in Vitis 2020.1 to utilize the full port width. We also noticed that Vitis 2020.2 has a new

functionality called automatic port width widening. This new feature allows the Xilinx

compiler to automatically infer a widen port if the memory alignment condition can be

satisfied.

For this work’s purpose of evaluating portability of HLS codes, we choose to stop and con-

clude that simply performing one-to-one optimization ports and rewriting loops for burst

transfer is not enough to make the HLS design’s performance portable between vendors. As

suggested above, competitive performance with Intel’s platform could be achieved on Xilinx

platform. Better comparison in terms of operations per clock cycle and resource usage could

be made, and more insights into the vendor differences can be provided. Further exploration

for optimization as suggested above is left for future work.
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