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SPECTRAL ESTIMATES FOR UNREDUCED SYMMETRIC KKT

SYSTEMS ARISING FROM INTERIOR POINT METHODS∗

BENEDETTA MORINI§ , VALERIA SIMONCINI† , AND MATTIA TANI†

Abstract. We consider symmetrized KKT systems arising in the solution of convex quadratic
programming problems in standard form by Interior Point methods. Their coefficient matrices usually
have 3×3 block structure and, under suitable conditions on both the quadratic programming problem
and the solution, they are nonsingular in the limit.

We present new spectral estimates for these matrices: the new bounds are established for the
unpreconditioned matrices and for the matrices preconditioned by symmetric positive definite aug-
mented preconditioners. Some of the obtained results complete the analysis recently given by Greif,
Moulding and Orban in [SIAM J. Optim., 24 (2014), pp. 49-83]. The sharpness of the new estimates
is illustrated by numerical experiments.

Key words. convex quadratic programming, interior point methods, indefinite linear systems,
eigenvalue bounds, preconditioners

1. Introduction. Interior Point (IP) methods are effective iterative procedures
for solving linear, quadratic and nonlinear programming problems, possibly of very
large dimension, see [1, 4, 17, 10, 23, 35] and references therein. Since they are
second-order methods, a linear algebra phase constitutes their computational core
and its practical implementation is crucial for the efficiency of the overall optimization
procedure. Therefore, linear algebra of IP methods has been extensively studied in
all algorithmic issues, including formulation of the systems arising at each iteration,
employment of direct and iterative solvers, preconditioning and inertia control.

This work is devoted to the study of KKT systems1 arising in the solution of
convex quadratic programming (QP) problems with primal-dual pair of the form

min
x

cTx+
1

2
xTHx subject to Jx = b, x ≥ 0, (1.1)

max
x,y,z

bT y − 1

2
xTHx subject to JT y + z −Hx = c, z ≥ 0, (1.2)

where J ∈ R
m×n has full row rank m<n, H ∈ R

n×n is symmetric and positive
semidefinite (SPSD in the following), x, z, c ∈ R

n, y, b ∈ R
m, and the inequalities are

meant componentwise. The application of a primal-dual IP method gives rise, at each
iteration, to an unsymmetric 3 × 3 block matrix of dimension 2n + m which allows
for alternative formulations of differing dimension, conditioning and definiteness [8,
10, 21, 33]. In fact, the unsymmetric 3× 3 matrix can be easily symmetrized without
increasing the conditioning of the system [7], and here we will refer to the resulting
symmetric matrix as the unreduced KKT matrix. On the other hand, by exploiting
the structure of the unsymmetric 3 × 3 matrix and block elimination, it is common

∗ Work partially supported by INdAM-GNCS under the 2015 Project Metodi di regolarizzazione
per problemi di ottimizzazione e applicazioni, and the 2014 Project Metodi di regolarizzazione per
problemi di ottimizzazione vincolata.

†Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40127
Bologna, Italia. valeria.simoncini@unibo.it, mattia.tani2@unibo.it

§Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, viale G.B. Morgagni
40, 50134 Firenze, Italia, benedetta.morini@unifi.it.

1In the context of interior point methods, the coefficient matrix of the system to be solved at
each iteration is often referred to as the barrier KKT matrix. Following [7, p. 92] we omit the term
“barrier” for simplicity and denote the system as KKT system, see also [8, 6].
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to use a linear system of dimension n+m with a reduced (or augmented) symmetric
2× 2 KKT matrix. Finally, a further block elimination may yield a condensed system
(or normal equations) where the matrix is a Schur complement of dimension n. The
focus of this work is the theoretical study of the unreduced 3× 3 formulation and the
numerical illustration of the obtained results.

Unlike the reduced 2× 2 matrix, under suitable conditions on both the problem
(1.1) and the solution, the unreduced KKT matrix has condition number asymptot-
ically uniformly bounded, and typically remains well-conditioned as the solution is
approached [7, 10]. Motivated by this feature, in a very recent paper Greif et al.
[19] presented a spectral analysis for the 3 × 3 matrix and claimed that this formu-
lation can be preferable to the reduced one in terms of eigenvalues and conditioning,
although a “benign” asymptotically ill-conditioned scaling has to be applied to the
right-hand side and to the system variables [10]. Such a study covers also variants of
KKT matrices arising from regularization of the optimization problem.

The study conducted in [19] has renewed the interest in the unreduced formulation
but leaves some issues open, that are worth investigating and are a prerequisite for a
thorough comparison of the 2×2 and 3×3 formulations. Specifically, some eigenvalue
bounds presented in [19] may be overly pessimistic and not tight for the unregularized
3× 3 matrix; in fact they may not reflect the nonsingularity of the matrix.

Our contribution consists of a spectral analysis of the unpreconditioned and of
the diagonally (augmented) preconditioned unreduced matrix. Firstly, by reflecting
the potential nonsingularity of the matrices at the limit, we complement the results of
[19] providing two missing bounds: an upper bound on the negative eigenvalues and a
lower bound on positive eigenvalues whenH is SPSD and IP iterations progress. These
results give rise to new estimates of the condition number for the unpreconditioned
matrix and sharply characterize different stages of the Interior Point method. This
piece of information can be helpful for both the direct and iterative unpreconditioned
solution of the system. Secondly, we present a new spectral analysis for a general class
of KKT matrices preconditioned by an augmented block diagonal preconditioner, and
specialize such results to the unreduced matrix. Preconditioners that offer spectral
intervals of the preconditioned matrix independent of the problem data are discussed,
while a more detailed analysis of economical variants can be found in [26].

The outline of this paper is as follows. In Section 2 we introduce the KKT systems
studied and summarize existing results on their properties. In Section 3 we give new
estimates on the bounds of the unreduced KKT matrix and perform the analysis
for the early and middle stage of the IP method, and for the late stage of the IP
method, separately. A numerical validation of the bounds obtained is also given. In
Section 4 we provide the spectral analysis of the unreduced matrix preconditioned by
a class of augmented block diagonal preconditioners, and a numerical validation of
the sharpness of the obtained results. Final conclusions are drawn in Section 5.

Notation. In the following, ‖ · ‖ denotes the vector 2-norm or its induced matrix
norm. For any vector x, the ith component is denoted as either xi or (x)i; furthermore,
xmin and xmax (or (x)min, (x)max) denote the minimum and maximum components
of x in absolute value. Given x ∈ R

n, X = diag(x) is the diagonal matrix with
diagonal entries x1, . . . , xn. Given column vectors x and y, we write (x, y) for the
column vector given by their concatenation instead of using [xT , yT ]T ; analogously
for (x, y, z). For any x ∈ R

n and set of indices A ⊂ {1, 2, . . . , n}, we write xA for
the subvector of x having components xi with i ∈ A. Further, if B is a matrix we
write BA for the submatrix of the columns of B with indices in A. Given a matrix
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A, the set of its eigenvalues is indicated by Λ(A). For an arbitrary symmetric matrix
A, unless explicitly stated, λi(A) denotes the ith eigenvalue of A sorted in increasing
order, while λmin(A) and λmax(A) denote its minimum and maximum eigenvalues.
The symbols σmin(B) and σmax(B) represent the minimum and maximum singular
values of a given matrix B. In particular, due to their recurrence throughout the
manuscript, we let λmin and λmax be the minimum and maximum eigenvalues of H
(without parentheses), and analogously σmin and σmax be the minimum and maximum
singular values of J .

Finally, given two square matrices A and B of the same dimension, A � B means
that A−B is SPSD. For any positive integer p, the identity matrix of dimension p is
indicated by Ip.

2. Preliminaries. First-order optimality conditions for the problems (1.1) and
(1.2) are described by a mildly nonlinear system where x and z are bounded to be
nonnegative and the nonlinearity arises entirely from the complementarity condition
between such variables. Primal-dual IP methods find solutions (x̂, ŷ, ẑ) for problems
(1.1)-(1.2) by generating iterates (xk, yk, zk) ∈ R

2n+m where xk and zk are strictly
feasible with respect to the simple bounds, i.e. xk, zk > 0. Search directions biased
toward the interior of the nonnegative orthant (x, z) ≥ 0 are computed by perturbing
the complementarity condition and applying Newton method to the resulting system.
We refer the reader to [35] for details on primal-dual IP methods.

The primal-dual Newton direction solves, possibly approximately, the linear sys-
tem of dimension 2n+m




H JT −In
J 0 0

−Zk 0 −Xk






∆xk

−∆yk
∆zk


 =



−c−Hxk + JT yk + zk

b− Jxk

XkZk1n − τk1n


 , (2.1)

where Xk = diag(xk), Zk = diag(zk) are diagonal positive definite, 1n ∈ R
n is

the vector of ones and the positive scalar τk controls the distance to optimality and
it is gradually reduced during the IP iterations. When predictor-corrector schemes
are applied, the system (2.1) is solved for different right-hand sides. For notational
convenience the iteration subscript will be dropped in the following.

The computational core of these methods consists of the sequence of linear systems
arising during the iterative procedure and different formulations for such systems are
allowed, as discussed below. The matrix in (2.1), say K3,uns, is symmetrizable by
setting (see [7])

K3 = R−1K3,unsR =




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X


 , where R =



In 0 0
0 Im 0

0 0 Z
1

2


 . (2.2)

Thus, we can consider the system equivalent to (2.1) with matrix2 K3. Due to the
presence of zero and diagonal blocks in (2.1), it is very common to eliminate ∆z from
the third equation and to obtain a KKT system of dimension n+m with matrix

K2 =

[
H +X−1Z JT

J 0

]
. (2.3)

2There are other ways to symmetrize K3,uns; matrix K3 considered here does not suffer inevitable
ill-conditioning as the solution is approached [7, 10].
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One further block elimination step yields the normal equation with matrix K1 =
J(H +X−1Z)−1JT . With a proper block partitioning, K3 can be cast into a KKT
formulation as well. Under our assumptions on H and J , and as long as X and Z are
diagonal with positive entries, K2 and K3 are nonsingular; K2 has n positive and m
negative eigenvalues, while K3 has n positive and n+m negative eigenvalues, see e.g.
[4, Lemma 4.1], [19, Lemma 3.5, 3.8]. The distinctive feature of these two matrices is
their behavior in the limit of the IP procedure. Specifically, if (x̂, ŷ, ẑ) ∈ R

2n+m solves
the QP problem (1.1)-(1.2), then x̂, ẑ are nonnegative and satisfy the complementarity
condition x̂iẑi = 0, i = 1, . . . , n. Let

A := {i = 1, . . . , n | x̂i = 0} , I := {1, . . . , n} \A. (2.4)

The vectors x̂, ẑ are strictly complementary when ẑi > 0, for all i ∈ A. As a
consequence, when the IP iterates approach a solution, some entries of X−1Z tend
to zero while others tend to infinity and the eigenvalues of the (1, 1) block in K2 may
spread from zero to infinity. The effect of this feature on the conditioning of K2 can
be formally described in the situation where

min
1≤i≤n

zi
xi

= O(µ), and max
1≤i≤n

zi
xi

= O(µ−1),

and µ = xT z/n is the duality measure. These asymptotic estimates hold when strict
complementary is in place, A 6= ∅, I 6= ∅, and the iterates are restricted to a suitable
neighborhood of the central path, see, e.g., [19, 17]. As a consequence of these as-
sumptions, the asymptotic condition number of K2 may get as large as O(µ−2), [17,
Lemma 2.2], [19, Corollary 5.2]. Remedies to this occurrence may consist either in
scalings of K2 [11] or in regularization strategies [17, 12, 30]. For the sake of com-
pleteness, we recall here that ill-conditioning of the matrix is usually harmless when
direct methods are applied [9, 34].

Under suitable conditions stated below, the unreduced matrix K3 can be well
conditioned and nonsingular in the limit although the diagonal scaling (2.2) used
for forming the right-hand side of the system and unscaling the variables remains
benignly ill-conditioned [7, 10]. Therefore, a spectral analysis of the original K3 may
give insight into both its conditioning and the possible need for regularization.

Let q be the cardinality of the set A, q = card(A). Without loss of generality,
suppose that the zero components of x̂ are its first q elements. Hence, if x̂ and ẑ are
strictly complementary by (2.4) we have

x̂ = (0, x̂I), ẑ = (ẑA, 0), x̂I > 0, ẑA > 0, (2.5)

where x̂I ∈ R
n−q, ẑA ∈ R

q. The next definition will be used in the following.

Definition 1. The Linear Independence Constraint Qualification (LICQ) is
satisfied at x̂ if the matrix

[
JT −IA

]
has full column rank.

Note that a necessary condition for the LICQ condition to be satisfied at any
point is that J has full row rank.

It is useful to make some comments on the matrices K3,uns and K3 evaluated at
x = x̂, z = ẑ. To this end, we let

K̂3,uns =




H JT −In
J 0 0

−Ẑ 0 −X̂


 , K̂3 =




H JT −Ẑ
1

2

J 0 0

−Ẑ
1

2 0 −X̂


 , (2.6)
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where X̂ = diag(x̂), Ẑ = diag(ẑ). Throughout the paper, K̂3 and K3 will denote the
coefficient matrices at the QP solution and during the iterations, respectively.

The systems involving matrices K3,uns and K3 are formally equivalent also at the
exact solution (x̂, ẑ), at least after the natural elimination of some equations. Indeed,
let us assume for simplicity that x̂ and ẑ are partitioned as in (2.5) and strictly
complementary. Then, if in equation (2.1) we substitute x = x̂ and z = ẑ, upon
reduction of the components of ∆z with indices in I, we get a system with matrix




H
JT
A

−Iq
JT
I

0
JA JI 0 0
−ZA 0 0 0


 ,

and JA ∈ R
m×q , JI ∈ R

m×(n−q) and ZA = diag(ẑA) ∈ R
q×q. By using the similarity

transformation with a matrix of the form (2.2), namely



In 0 0
0 Im 0

0 0 Z
1

2

A


 ,

the resulting system is symmetric with matrix obtained by removing in K̂3 the last
block row and column associated to the set I.

We also observe that K̂3 and K̂3,uns have the same eigenvalues. Indeed, by (2.2)
K3 and K3,uns have the same eigenvalues for every strictly positive x and z. A
continuity argument shows that they also coincide when taking the limit as x → x̂
and z → ẑ. The following theorem states conditions under which K̂3 is nonsingular,
see, e.g., [19, Theorem 3.10].

Theorem 2.1. Suppose H is SPSD, X̂ and Ẑ are diagonal with nonnegative
entries. Then K̂3 in (2.6) is nonsingular if and only if

1. x̂ and ẑ are strictly complementary,
2. the LICQ is satisfied at x̂,
3. the null spaces of matrices H, J, Ẑ satisfy

ker(H) ∩ ker(J) ∩ ker(Ẑ) = {0}. (2.7)

In the next theorem we summarize the bounds for the eigenvalues of K3 given in
[19, Corollary 5.3 and Corollary 5.4]. We recall that we denote by λmin and λmax the
minimum and maximum eigenvalues of H and by σmin and σmax the minimum and
maximum singular values of J .

Theorem 2.2. Suppose H is SPSD and let K3 be as in (2.2).

i) If θ−In +X is nonsingular for all the negative eigenvalues θ− of K3, then θ− ∈
[ζ, 0), where

ζ = min

{
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
, min
{j|xj+θ−<0}

θ∗j

}
,

and θ∗j is the smallest negative root of the cubic polynomial

pj(θ) = θ3 + (xj − λmin)θ
2 − (σ2

max + zj + xjλmin)θ − xjσ
2
max. (2.8)
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ii) If J has full rank and X and Z are diagonal with positive entries, then the positive
eigenvalues θ+ of K3 satisfy θ+ ∈ [θ3, θ4], where

θ3 = min
1≤j≤n

1

2

(
λmin − xj +

√
(λmin + xj)2 + 4zj

)
, (2.9)

θ4 =
1

2

(
λmax +

√
λ2
max + 4(σ2

max + zmax)
)
. (2.10)

A computable lower bound on the negative eigenvalues of K3 is ([19, p. 68])

θ1 := min

{
1

2

(
λmin −

√
λ2
min + 4σ2

max

)
,min

j
θ∗j

}
. (2.11)

In [19, §5.2] Greif et al. observe that the lower bound in Theorem 2.2(i) is established
excluding that some eigenvalue θ− of K3 belong to the spectrum of −X but this
assumption may fail both in the course of the iterations and in the limit if there are
inactive bounds. They also note that the zero upper bound in Theorem 2.2(i) is not
particularly meaningful either in the case where (x, z) > 0 or in the limit. Finally,
they point out that the lower bound θ3 in Theorem 2.2(ii) is strictly positive as long as
(x, z) > 0 but in the limit it reduces to λmin and may be overly pessimistic if λmin = 0.

In particular, the nonsingularity of K̂3 stated in Theorem 2.1 is not reflected by this
spectral analysis. In the next section we find new bounds for the spectrum of K3

which improve upon the existing results.

3. Spectral estimates. In this section we give new bounds for the eigenvalues
of K3 and distinguish between the matrix arising at a generic IP iteration and the
matrix arising asymptotically or in the limit of the IP method. Therefore, first we
only assume strict positivity of x and z. Then, we suppose that the assumptions in
Theorem 2.1 hold and that (x, z) is either a positive vector approaching (x̂, ẑ) or that
it coincides with (x̂, ẑ).

General IP iterations. For positive x and z we fill in the incomplete analysis
on the negative eigenvalues of K3 given in [19]. If the leading block of K3 is positive
definite, an upper bound for the negative eigenvalues can be found in [31, Lemma 2.2],
but this analysis does not apply to our case where H is only positive semidefinite. In
[18, Proposition 3.2, Proposition 3.3], the authors derive eigenvalue bounds for general
saddle point systems with possibly indefinite and also singular (1,1) block. However,
their results require that the (1,2) block of the saddle point matrix have full rank; this
can be satisfied in our setting by a simple reordering of the blocks. However, they also
require strong assumptions on the norm of the (2,2) block, which in our numerical
experiments (see section 3.1) do not hold except during the very first few iterations.
In the following theorem we determine an upper bound for the negative eigenvalues
of K3 under weaker hypotheses, by exploiting the structure of the blocks.

Theorem 3.1. Suppose that H is SPSD, J has full rank and X and Z have
positive diagonal entries. Then the negative eigenvalues θ− of K3 given in (2.2) satisfy

θ− ≤ θ2 = γ, (3.1)

where γ is the largest negative root of the cubic polynomial

p(θ) = θ3 + (xmin − λmax)θ
2 − (xminλmax + σ2

min + zmax)θ − σ2
minxmin, (3.2)
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with γ > −xmin.
We explicitly notice that the polynomial p(θ) above does admit at least one real

negative root, since p(0) = −σ2
minxmin < 0 and p(−xmin) = zmaxxmin > 0.

Proof. Let θ < 0, and let us split the eigenvalue problem




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X





u
v
w


 = θ



u
v
w


 ,

into its block equations,

Hu+ JT v − Z
1

2w = θu, (3.3)

Ju = θv, (3.4)

−Z
1

2u−Xw = θw. (3.5)

Necessarily u 6= 0; otherwise (3.4) gives v = 0, and by the positive definiteness of
Z, (3.3) yields w = 0, which is a contradiction. Similarly, w must be nonzero since
otherwise, (3.5) implies u = 0. We first assume that u ∈ ker(J). From (3.4) we infer
that v = 0. The first and second equations now read

Hu− Z
1

2w = θu, −Z
1

2u−Xw = θw.

If we determine u from the first equation above, substitute it in the second one, and
multiply the resulting equation from the left by wT , we obtain

wTZ
1

2 (H − θIn)
−1Z

1

2w + wTXw + θ ‖w‖2 = 0.

Thus, using Rayleigh quotient arguments, we obtain zmin/(λmax − θ) + xmin + θ ≤ 0,
and

θ ≤ γ1 :=
1

2

(
λmax − xmin −

√
(λmax + xmin)2 + 4zmin

)
. (3.6)

We now suppose u /∈ ker(J), and write u = u1 + u2, with u1 ∈ ker(J) and 0 6= u2 ∈
ker(J)⊥. Moreover, we suppose θ > −xmin (otherwise, −xmin is the sought after
upper bound), so that the matrix X + θIn is also positive definite. From (3.4) and
(3.5) we respectively obtain

v =
1

θ
Ju, w = −(X + θIn)

−1Z
1

2u.

If we substitute in (3.3) and premultiply it by uT
1 and uT

2 , we respectively obtain:

uT
1 H(u1 + u2) + uT

1 Z
1

2 (X + θIn)
−1

Z
1

2 (u1 + u2)− θ ‖u1‖2 = 0,

uT
2 H(u1 + u2) +

1

θ
‖Ju2‖2 + uT

2 Z
1

2 (X + θIn)
−1

Z
1

2 (u1 + u2)− θ ‖u2‖2 = 0.

Subtracting the two equations,

uT
2 Hu2 − u1Hu1 +

1

θ
‖Ju2‖2 + uT

2 Z
1

2 (X + θIn)
−1

Z
1

2u2+

−uT
1 Z

1

2 (X + θIn)
−1

Z
1

2u1 − θ ‖u2‖2 + θ ‖u1‖2 = 0.

7



Since −uT
1 Hu1 , −uT

1 Z
1

2 (X + θIn)
−1

Z
1

2u1 and θ ‖u1‖2 are nonpositive, it holds

uT
2

(
H +

1

θ
JTJ + Z

1

2 (X + θIn)
−1

Z
1

2 − θIn

)
u2 ≥ 0,

from which we obtain
(
λmax +

σ2
min

θ
+

zmax

xmin + θ
− θ

)
‖u2‖2 ≥ 0.

Dividing by ‖u2‖2 and multiplying by −θ(θ + xmin), we find that θ satisfies p(θ) ≥ 0
where p(θ) is the cubic polynomial in (3.2). Noting that p(0) = −σ2

minxmin < 0 and
p(−xmin) = zmaxxmin > 0, it follows that θ ≤ γ, where γ is the largest negative
root of p(θ), and γ > −xmin. By (3.6) and γ1 < −xmin < γ, we can conclude that
θ ≤ max {γ1, γ} = γ.

Combining the above result with the bounds given in Theorem 2.2, we obtain

Λ(K3) ⊆ I− ∪ I+ = [θ1, θ2] ∪ [θ3, θ4], (3.7)

where θ1 is as in (2.11), and θ2 is the new estimate in (3.1). Clearly, the estimate
obtained depends on the scaling of the optimization problem, as noted also in [19].
Note that θ2 provides an improved upper bound for the negative eigenvalues, as
compared with Theorem 2.2 taken from [19], whose upper bound was simply zero; see
section 3.1 for some illustration. On the other hand, we observe that the estimate θ2
in Theorem 3.1 may be inadequate in the final stage of the IP method, as it goes to
zero with xmin. This fact can also be appreciated by writing the polynomial p(θ) in
the theorem statement as

p(θ) = (θ + xmin)(θ
2 − λmaxθ − σ2

min − zmax) + zmaxxmin,

so that p(θ) differs by zmaxxmin from a polynomial having −xmin as one of its roots.
Such a property shows the inadequacy of this technique to derive spectral estimates
at later stages of the IP iterations, when the coefficient matrix remains fairly well
conditioned.

Asymptotic IP iterations and limit point. The bounds in (3.7) are meaningful as
long as (x, z) are either early or middle stage iterates of the IP method, or (x, z) are
late-stage iterates andK3 tends to singularity. However, if (x, z) approaches a solution
(x̂, ẑ) satisfying the conditions in Theorem 2.1, then the bounds are unsatisfactory.
Indeed, K̂3 is nonsingular whereas the upper negative eigenvalue θ2 tends to 0 as xmin

tends to 0, and so does the lower bound θ3 on the positive eigenvalues if λmin = 0.
We thus make a further step and focus on the case when K̂3 is nonsingular. It is
therefore useful to analyze the assumptions made in Theorem 2.1. Considering the
partitioning in (2.5) we can write

J =
[
JA JI

]
,

[
JT −IA

]
=

[
JT
A

−Iq
JT
I

0

]
,

with JA ∈ R
m×q and JI ∈ R

m×(n−q). The LICQ condition is satisfied at x̂ if and only
if JT

I
has full column rank. This fact implies that JI is a “fat” or square matrix, i.e.

q ≤ n−m, and that σmin(JI) > 0.
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Concerning condition (2.7), we have that ker(Ẑ) =
{
(0, y) ∈ R

n | y ∈ R
(n−q)

}
,

and the vectors of ker(J)∩ker(Ẑ) are of the form (0, y) with y ∈ ker(JI). If q = n−m

then JI is square and ker(JI) = {0}; thus ker(J) ∩ ker(Ẑ) = {0} and (2.7) is met.

Otherwise, if q < n−m, then ker(J) ∩ ker(Ẑ) is a nontrivial subspace and condition
(2.7) is equivalent to

min
0 6=x∈ker(J)∩ker(Ẑ)

xTHx

xTx
= λ∗ > 0. (3.8)

Using the above properties, we prove nontrivial and sharp bounds for K3 in the
late stage of the IP method and for K̂3. To this end, the following technical lemma is
needed. It provides bounds for the singular values of a matrix B, which will be used
for later estimates; its proof is postponed to the Appendix.

Lemma 3.2. Suppose that x̂ and ẑ are strictly complementary, and A and I are
the index sets of active and inactive bounds at x̂ defined in (2.4). Further, suppose
that x̂ and ẑ are partitioned as in (2.5), the LICQ condition is satisfied at x̂, and
(2.7) holds. Let ZA ∈ R

q×q be a diagonal positive definite matrix and

B =

[
JA JI

−Z
1

2

A
0

]
. (3.9)

Then

σ2
min(B) ≥ 1

2

(
χ−

√
χ2 − 4σ2

min(JI)(zA)min

)
,

σ2
max(B) ≤ 1

2

(
(zA)max + σ2

max +

√
((zA)max − σ2

max)
2
+ 4(zA)maxσ2

max(JA)

)

≤ σ2
max + (zA)max,

with χ = σ2
max(JA) + σ2

min(JI) + (zA)min.

The following theorem provides bounds for all eigenvalues of K3 under the stated
assumptions; these bounds are based on perturbation theory results for symmetric
matrices and on estimates in [18, 22].

Theorem 3.3. Let H be SPSD with nontrivial null space, x̂ and ẑ strictly com-
plementary, A and I be the index sets of active and inactive bounds at x̂ defined in
(2.4). Further, suppose that the cardinality of A is equal to q, x̂ and ẑ are partitioned
as in (2.5), the LICQ condition is satisfied at x̂, and condition (2.7) holds. Let x and
z be sufficiently close to x̂ and ẑ and be such that x = (xA, xI), z = (zA, zI) with
xA ≥ 0, xI > 0, zA > 0, zI ≥ 0. Then

Λ(K3) ⊆ [µ1, µ2] ∪ [µ3, µ4] ,

where µ1, µ2 < 0 and µ3, µ4 > 0 are given by

µ1 = min

{
−(xI)max,

1

2

(
λmin −

√
λ2
min + 4σ2

max(B)

)}
−max

{
(xA)max,

√
(zI)max

}
,

µ2 = max

{
−(xI)min,

1

2

(
λmax −

√
λ2
max + 4σ2

min(B)

)}
+
√

(zI)max,

µ3 = µ∗
3 − (xA)max,

µ4 =
1

2

(
λmax +

√
λ2
max + 4σ2

max(B)
)
+
√

(zI)max.
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If q < n−m, the scalar µ∗
3 is the smallest positive root of the cubic equation

µ3 − λmaxµ
2 − σ2

min(B)µ+ λ∗σ2
min(B) = 0,

where λ∗ is defined as in (3.8). If q = n−m we have instead

µ∗
3 =

1

2

(
λmin +

√
λ2
min + 4σ2

min(B)

)
.

Once again, we explicitly notice that the polynomial p(µ) = µ3 − λmaxµ
2 −

σ2
min(B)µ+λ∗σ2

min(B) does admit a positive real root, since p(0) > 0 and p(σmin) < 0.
Proof. We write K3 in extended form

K3 =




H
JT
A

−Z
1

2

A
0

JT
I

0 −Z
1

2

I

JA JI 0 0 0

−Z
1

2

A
0 0 −XA 0

0 −Z
1

2

I
0 0 −XI



,

with XA = diag(xA) ∈ R
q×q, XI = diag(xI) ∈ R

n−q×n−q, ZA = diag(zA) ∈ R
q×q,

ZI = diag(zI) ∈ R
n−q×n−q, and observe that

K3 = K̃3 +∆K (3.10)

=




H
JT
A

−Z
1

2

A
0

JT
I

0 0
JA JI 0 0 0

−Z
1

2

A
0 0 0 0

0 0 0 0 −XI



+




0
0 0 0

0 0 −Z
1

2

I

0 0 0 0 0
0 0 0 −XA 0

0 −Z
1

2

I
0 0 0



.

Standard perturbation arguments for symmetric matrices ensure that an eigen-
value θ of K3 satisfies (see, e.g., [13, Theorem 8.1.5])

λi(K̃3) + λmin(∆K) ≤ θ ≤ λi(K̃3) + λmax(∆K), i = 1, . . . 2n+m. (3.11)

Thus, estimates for θ can be derived from spectral information on K̃3 and ∆K , where

λmin(∆K) = −max
{
(xA)max,

√
(zI)max

}
, λmax(∆K) =

√
(zI)max.

As for K̃3, we have that Λ
(
K̃3

)
= Λ(−XI) ∪ Λ

(
Ǩ
)
, where Ǩ is the saddle point

matrix

Ǩ =

[
H BT

B 0

]
,

with B given in (3.9). By Lemma 3.2 we know that BT has full column rank. More-

over, ker(B) = ker(J) ∩ ker(Ẑ), where we recall that Ẑ = diag(ẑ) and ẑ is defined
in (2.5). In addition, by (2.7) either ker(B) = {0} (if B is square, i.e. q = n−m) or
H is positive definite on ker(B). Thus, Ǩ satisfies the hypothesis of [18, Proposition
2.2], and the expressions for µ1, µ2 and µ4 are a direct consequence of that result.
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A slightly different approach is needed to obtain µ3. We consider the principal
submatrix K̄ of K3 obtained by taking its first n+m+ q rows and columns, i.e.

K̄ =




H
JT
A

−Z
1

2

A

JT
I

0
JA JI 0 0

−Z
1

2

A
0 0 −XA


 .

It holds that K3 has n positive and n+m negative eigenvalues, and K̄ has n positive
eigenvalues and m+ q negative ones [19, Lemma 3.8]. Using interlacing properties of
the eigenvalues and again the standard perturbation bounds for symmetric matrices,
we infer

λ+
min(K3) ≥ λ+

min(K̄) ≥ λ+
min(Ǩ)− (xA)max,

where the symbol λ+
min(·) indicates the smallest positive eigenvalue of a matrix. If

q = n − m we can use again [18, Proposition 2.2] to obtain the expression of µ∗
3. If

q < n−m, since we supposed H singular we can instead use the lower bound of the
positive eigenvalues of Ǩ given in [22, Theorem 2] to obtain the final result.

It is interesting to observe that, whenever x and z are sufficiently close to x̂ and
ẑ, then (xA)max and (zI)max are small enough to guarantee that the intervals [µ1, µ2]
and [µ3, µ4] are nontrivial, i.e., µ2 is strictly negative and µ3 is strictly positive.

Theorem 3.3 covers both the case where (x, z) is strictly positive and close enough
to (x̂, ẑ), and the case where (x, z) = (x̂, ẑ). Thus, these bounds are valid for the
matrices K3 occurring at the late stage of the IP method, and also for K̂3. The proof
of this theorem relies on the perturbation theory for symmetric eigenvalue problems,
and involves K̃3 and the scalars (xA)max and (zI)max which approach zero when (x, z)
tends to (x̂, ẑ). Hence, the smaller (xA)max and (zI)max, the closer µ1, µ2, µ3, µ4 are

to the spectral bounds for K̃3, for which bounds are available [18, 22].
Remark 3.4. In Theorem 3.3, for the case q < n−m, the value of µ∗

3 relies on
results from [22] and it holds for H singular. If H is nonsingular and q < n−m then
it holds that µ∗

3 = max {λmin, γ}, where γ is the smallest positive root of the cubic
polynomial p3(µ) = µ3−(λmin + λ∗)µ2+

(
λminλ

∗ − λ2
max − σmin(B)2

)
µ+λ∗σ2

min(B).
This follows from applying [18, Proposition 2.2] and [29, Lemma 2.1] to the matrix
Ǩ in the proof of Theorem 3.3. Furthermore, note that µ∗

3 remains bounded away
from zero as the IP iteration converges, as the polynomial coefficients do not depend
on (xA)max and (zI)max. All other bounds given by Theorem 3.3 still hold when H
is positive definite.

3.1. Validation of the spectral bounds for K3. We analyze the quality of
our bounds by first using two examples with small matrices. In the first case, H is
positive definite (see Remark 3.4), while in the second H is only positive semidefinite.

We want to stress that the new bounds are chiefly of theoretical interest, because
they emphasize how the eigenvalues of the matrix depend on the various matrices
appearing in the blocks, and thus, in turn, on the problem data. The bounds can be
computed for small scale problems; we do not advise their explicit computation in the
large scale case, however knowing that these bounds exist may be helpful in guiding
the selection of acceleration procedures.

Example 1. Given positive scalars λ, σ, ρ, let

H =

[
λ 0
0 λ

]
, JT =

[
0
σ

]
, x =

[
0
ρ

]
, z =

[
σ
0

]
, so that B =

[
0 σ
−σ 0

]
.

11



The characteristic polynomial of K3 is given by π(θ) = (θ + ρ)
(
θ2 − λθ − σ2

)2
. The

eigenvalues of K3 are −ρ, 1
2

(
λ−

√
λ2 + 4σ2

)
, 1

2

(
λ+

√
λ2 + 4σ2

)
, and the bounds in

Theorem 3.3 are sharp (note that q = n−m).

In this second example, we have q < n−m and show that the estimates µ1 and
µ3 can be sharp.

Example 2. Given positive scalars λmax, λ∗, σ, xmin xmax, λmax > λ∗, let

H =




λmax − λ∗
√

λ∗(λmax − λ∗) 0√
λ∗(λmax − λ∗) λ∗ 0

0 0 0


 , JT =



0
0
σ


 ,

z =



σ
0
0


 , x =




0
xmin

xmax


 , so that B =

[
0 0 σ
−σ 0 0

]
.

The characteristic polynomial of K3 is

π(θ) = (θ + xmin)(θ + xmax)(σ
2 − θ2)(θ3 − λmaxθ

2 − σ2θ + λ∗σ2).

Since λmin = 0 and q < n−m, the bounds µ1 and µ3 are sharp.

We then proceed by analyzing the quality of our spectral estimates on benchmark
Linear Programming problems:

min
x∈Rn

cTx, subject to Jx = b, x ≥ 0,

where n = 185, m = 129, J ∈ R
m×n is the matrix in LPnetlib/lp scagr7 [32] with full

row rank, b and c are fixed so that the x̂ = (0, 1n−q) and ẑ = (1q, 0) are exact primal
and dual solutions. The value of q is varied and it may affect the fulfillment of the
LICQ condition at x̂.

The problems were solved with the PDCO solver [27] and sequence of iterates
approaching x̂ and ẑ were computed and stored. Then, for each iterate we formed
matrix K3 letting H = ρIn with ρ = 10−6; this amounts to applying a primal positive
definite regularization. The eigenvalues of the resulting matrices were computed and
compared with the bounds given in (3.7) and in Theorem 3.3 with µ∗

3 as in Remark 3.4.
Regarding the actual computation of the bounds, singular values σmin(J), σmax(J),
σmin(B) and σmax(B) were computed while λmin = λmax = λ∗ = ρ.

In our numerical experiments, the known bounds θ1 and θ4 from Theorem 2.1
are very similar to our new bounds µ1 and µ4 from Theorem 3.3, and both pairs
seem to be good approximations of the extreme eigenvalues of K3. Since a numerical
validation of θ1 and θ4 was already given in [19], we do not show any of these bounds
in the plots. On the other hand, µ3, µ2 were plotted only when meaningful, that is
only when appearing with positive and negative sign, respectively.

We start by reporting on the accuracy of θ2 in Theorem 3.1. For this purpose
we set q = n − m, which makes the matrix JI, and thus B, rank deficient. The
absolute value of the largest negative eigenvalue λn+m(K3) (solid line), and its bound
θ2 are displayed in Figure 3.1, showing that the estimate matches quite well the true
eigenvalue of K3.

Let fix(·) be the function that rounds its argument to the nearest integer to-
wards zero. We then set q = fix((n−m)/2) so that the assumptions of Theorem 3.3
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Fig. 3.1. Negative eigenvalue of K3 closest to zero (solid line) and its bound at every iteration,
q = n−m.

hold; indeed, with this choice the matrix JI, and thus B, have full rank. In the left
plot of Figure 3.2, for each iterate on the x-axis, the minimum positive eigenvalue
λn+m+1(K3), and its bounds θ3 and µ3 are displayed; θ3 is a good lower bound and
µ3 is sharp as well during the later ones. Similarly, in the right plot of Figure 3.2 we
report the absolute value of the negative eigenvalue λn+m(K3) closest to zero, along
with the bounds θ2 and µ2. As expected, µ2 is sharp during the final iterations, unlike
θ2.
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Fig. 3.2. Eigenvalues of K3 closest to zero (solid line) and their bounds at every iteration,
q = fix((n−m)/2) and H nonsingular. Left: positive eigenvalues. Right: negative eigenvalues.

It is of interest testing the validity of the lower bound µ3 to the positive eigenvalues
when H is singular. For this reason, let us consider a QP problem where J is the
same matrix as before and let the orthonormal columns of V span ker(J). Then by
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taking H in the form

H =
[
V Q

] [ρIn−m 0
0 0

] [
V T

QT

]
, (3.12)

where ρ is positive and [V Q] is an orthogonal matrix, we ensure that λ∗ = λmax.
It holds that λmin = 0 and λmax = ρ. Finally, the QP problem is built setting
ρ = 1, so that x̂ = (0, 1n−q) and ẑ = (1q, 0) are exact primal and dual solutions
with q = fix((n − m)/2). The QP problem was solved with PDCO and a sequence
of iterates approaching x̂, ẑ was formed. Figure 3.3 displays the positive eigenvalue
λn+m+1(K3) and the bounds θ3, µ3, as the iterations proceed. Since λ∗ = λmax and
µ∗
3 = min {σmin(B), ρ}, during the last iterations of the interior point method, µ3 gets

close to µ∗
3 and is sharp whereas θ3 is not representative of the minimum eigenvalue.

0 5 10 15
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Positive eigenvalues

Number of IP iterations

m
a

g
n

it
u

d
e

 o
f 

e
ig

e
n

v
a

lu
e

 

 

λ
n+m+1

(K
3
)

µ
3

θ
3

Fig. 3.3. Minimum positive eigenvalue of K3 and its bounds for H singular as in (3.12), ρ = 1,
q = fix((n−m)/2).

We then consider larger QP problems from the Maros and Meszaros collection [24],
but small enough so that we can still explicitly compute spectral quantities: stcqp2
of dimensions n = 4097, m = 2052, and cont-050 of dimensions n = 2597, m = 2401.
In stcqp2, variables x and z were scaled by a factor 10−1 and 103 respectively. As
before, we solved these problems using PDCO and compared the eigenvalues of the
matrices generated through the IP procedure with the bounds θ2, θ3 from [19], and
µ2 and µ3 given in section 3; we remark that K3 is nonsingular at the limit.

Figures 3.4 and 3.5 show the eigenvalues of K3 closest to zero, namely λm+n

and λm+n+1, together with their bounds θ2, θ3 from [19], and the new bounds µ2

and µ3. Our conclusions are analogous to those obtained above: θ2 and θ3 are good
approximations at early and middle IP iterations; moreover in problem stcqp2matrix
H is positive definite and θ3 is meaningful also in the late iterations, see left plot of
Figure 3.4. In late iterations µ2 and µ3 are representative for both problems.

A special case is depicted in the left plot of Figure 3.5 for problem cont-050

where H is positive definite. In the final stage of the IP method, the estimate θ3 from
[19] satisfies θ3 ≈ λmin(H) > 0, see Theorem 2.2; however, this bound is not tight, as
the minimum positive eigenvalue λm+n+1(K3) is several orders of magnitude larger
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Fig. 3.4. Problem stcqp2: eigenvalues of K3 closest to zero (solid line) and their bounds at
every iteration. Left: positive eigenvalues. Right: negative eigenvalues.
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Fig. 3.5. Problem cont-050: eigenvalues of K3 closest to zero (solid line) and their bounds at
every iteration. Left: positive eigenvalues. Right: negative eigenvalues.

than λmin(H). On the other hand, the new lower bound µ3 approximates λm+n+1(K3)
accurately (since q = n−m, the second expression of µ∗

3 from Theorem 3.3 was used.)

4. A block diagonal augmented preconditioner for K3. An accurate spec-
tral analysis of the coefficient matrix K3 must be accompanied by a theoretical discus-
sion of the effectiveness of ideal preconditioners for the given problem. These two parts
together represent a necessary starting point for a more computationally-oriented
study of effective acceleration strategies. When we first addressed the problem of
deepening our knowledge of the unreduced formulation, we realized that specific stan-
dard preconditioning strategies were lacking of basic reference spectral information
for our setting. We aim to fill this gap in this section.

A variety of preconditioning techniques have been proposed for KKT systems
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arising in optimization; see the surveys [3, 6, 16]. We provide the spectral analysis
of matrix K3 preconditioned by an augmented block diagonal preconditioner; since
the symmetry is preserved preconditioned MINRES can be used as a solver. This
choice of preconditioner is motivated by the work in [28], where the effectiveness of
augmented block diagonal preconditioners on linear systems arising from IP methods
is demonstrated for highly singular (1,1) block and null (2,2) block. To the best of
our knowledge there are no results on spectral properties for nonzero (2,2) block in
the literature, as is the case for our matrix K3. This section is devoted to such a
study. We shall mainly discuss ideal preconditioners, that is preconditioners that
lead to spectral intervals of the preconditioned matrix that are independent of the
problem data, and small enough so as to ensure fast convergence. To make these
“ideal” choices computationally attractive, approximation strategies may have to be
performed; see, e.g., [26].

The sparsity pattern and spectral properties of the blocks of K3 should be care-
fully exploited when devising the block preconditioner. In particular, in some cases
the (1,1) block may be more suitable for preconditioning purposes than the other
diagonal blocks, whereas in other settings it may be the opposite. Therefore, in the
following we shall consider two block reorderings, namely




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X


 ,




0 0 J

0 −X −Z
1

2

JT −Z
1

2 H


 . (4.1)

For the sake of generality, we use the following general notation for the saddle point
matrix

M =

[
F GT

G −C

]
, (4.2)

where 0 6= F ∈ R
n1×n1 , C ∈ R

n2×n2 are SPSD matrices and 0 6= G ∈ R
n2×n1 . Each

of the given results will be specialized to our setting in a subsequent corollary.
Depending on the block reordering matrix G in (4.2) may be either tall or fat.

In either case, it must hold that ker(F )∩ ker(G) = {0} = ker(GT )∩ ker(C) to ensure
nonsingularity of M (see, e.g., [3]). Since F is SPSD, we consider the following block
diagonal preconditioner

PD =

[
F +GTW−1G 0

0 W

]
, (4.3)

which is based on the augmentation of the (1,1) block of M by a symmetric and
positive definite matrix W ∈ R

n2×n2 ; due to the hypotheses on F and G, the ma-
trix F + GTW−1G is symmetric and positive definite. In the case where C = 0 and
n2 ≤ n1 the preconditioner PD was originally proposed in [20] and later extended
in [28, 5]. Here we assume that C is SPSD and we allow any relation between n1

and n2. We stress that PD is an ideal preconditioner, and that further efforts need
be put into selecting computationally effective variants; nonetheless, spectral intervals
obtained with PD will drive the choices of more economical approximations. Our spec-
tral estimates no longer apply when approximations to PD are performed, although
we expect small perturbations of these estimates as the approximate preconditioner
slightly deviates from the ideal one.

We first give spectral bounds for the preconditioned matrix and then discuss the
choice of the matrix W .
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4.1. Spectral estimates for GT of full column rank. We first consider the
case when ker(GT ) = {0}.

Theorem 4.1. Let F ∈ R
n1×n1 and C ∈ R

n2×n2 be SPSD, W ∈ R
n2×n2 be

symmetric and positive definite, G ∈ R
n2×n1 . Suppose that the matrix M in (4.2) is

nonsingular and that ker(GT ) = {0}.
Let c0 = λmin

(
W−1C

)
≥ 0, c1 = λmax

(
W−1C

)
, g0 = λmin

(
W−1GGT

)
> 0 and

g1 = λmax

(
W−1GGT

)
. Then, given PD in (4.3), it holds

Λ(P−1
D M) ⊆ I− ∪ I+ = [ξ1, ξ2] ∪ [ξ3, 1] ,

where

ξ1 =
(1− c1)s− c1 −

√
((1− c1)s− c1)

2
+ 4(1 + c1s)(1 + s)

2(1 + s)
,

ξ2 =
1− tc0 −

√
(1 + tc0)

2
+ 4t(t− 1)

2t
,

ξ3 =
(1− c1)s− c1 +

√
((1− c1)s− c1)

2
+ 4(1 + c1s)(1 + s)

2(1 + s)
,

with s =
λmin(F )

g1
≥ 0 and t = 1 +

g0
‖F‖ .

Moreover, if ℓ denotes the nullity of G, then P−1
D M has the eigenvalue 1 with

multiplicity ℓ.

Proof. Consider the generalized eigenvalue problem M

[
u
v

]
= θPD

[
u
v

]
, i.e.

Fu+GT v = θ
(
F +GTW−1G

)
u, (4.4)

Gu− Cv = θWv (4.5)

and first suppose that θ > 0. Since any vector (u, 0) with u ∈ ker(G) satisfies (4.4)
and (4.5) with θ = 1, P−1

D M has the eigenvalue one with multiplicity ℓ.
Suppose now u /∈ ker(G). Since θW + C is positive definite, we eliminate v from

(4.5) and substitute it into (4.4). Further, we premultiply the resulting equation by
uT and obtain

uT (F +GT (θW + C)
−1

G)u = θuT
(
F +GTW−1G

)
u. (4.6)

By using the inequality (θW + C)
−1 � 1

θ
W−1, and after some rearrangement we get

(1− θ)uT
(
θF + (1 + θ)GTW−1G

)
u ≥ 0.

Noting that
(
θF + (1 + θ)GTW−1G

)
is positive definite, it follows θ ≤ 1.

To show the lower bound for the positive eigenvalues, we reformulate (4.6) as

uTGTW− 1

2

(
θIn2

−
(
θIn2

+ C̃
)−1

)
W− 1

2Gu = (1− θ)uTFu,
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where C̃ = W− 1

2CW− 1

2 and note that

F � λmin(F )In1
, θIn2

−
(
θIn2

+ C̃
)−1

�
(
θ − 1

θ + c1

)
In2

, GTW−1G � g1In1
,

where the last inequality follows form the fact that GTW−1G and W−1GGT admit
the same maximum eigenvalue. Using these inequalities and dividing by ‖u‖2, we find
that θ satisfies

(
θ − 1

θ + c1

)
g1 ≥ (1− θ)λmin(F ),

which is equivalent to θ2 (1 + s)+θ ((c1 − 1)s+ c1)−(1 + c1s) ≥ 0, with s = λmin(F )/g1.
The expression of the left extreme of I+ readily follows.

Let now θ < 0. Equation (4.4) can be rewritten as
(
(1− θ)F − θGTW−1G

)
u =

−GT v, and the matrix on the left-hand side is now positive definite. This implies that
v 6= 0 otherwise we would also have u = 0. If we eliminate u from (4.4), substitute

into (4.5) and premultiply the resulting equation by W− 1

2 we get

G̃
(
(1− θ)F − θG̃T G̃

)−1

G̃Tw + C̃w = −θw, (4.7)

where v = W− 1

2w, C̃ = W− 1

2CW− 1

2 , G̃ = W− 1

2G. It holds

G̃
(
(1− θ)F − θG̃T G̃

)−1

G̃T � G̃
(
(1− θ)λmin(F )In1

− θG̃T G̃
)−1

G̃T

� g1
(1− θ)λmin(F )− θg1

In2
,

since the eigenvalues of G̃
(
‖F‖ (1− θ)In1

− θG̃T G̃
)−1

G̃T are of the form σ2/((1 −
θ) ‖F‖ − θσ2), with σ being a singular value of G̃T . We now multiply (4.7) by wT

and use the above inequality as well as C̃ � c1In2
. Then, after some rearrangements

we obtain

θ2 (1 + s) + θ ((c1 − 1)s+ c1)− (1 + c1s) ≤ 0,

with s as above, from which the lower bound for the negative eigenvalues follows.
Finally, we prove the upper bound for the negative eigenvalues. We have C̃ �

c0In2
and

G̃
(
(1− θ)F − θG̃T G̃

)−1

G̃T � G̃
(
‖F‖ (1− θ)In1

− θG̃T G̃
)−1

G̃T

� g0
(1− θ) ‖F‖ − θg0

In2
,

using again the form of the eigenvalues of G̃
(
‖F‖ (1− θ)In1

− θG̃T G̃
)−1

G̃T . We

now multiply (4.7) from the left by wT . Using the above inequalities and dividing by

‖w‖2, we obtain

g0
(1− θ) ‖F‖ − θg0

+ c0 ≤ −θ,
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which implies tθ2 − (1− tc0) θ − t + 1 − c0 ≥ 0, with t = 1 +
g0
‖F‖ , and the stated

expression for the right extreme of I−.

When C = 0, the bounds of Theorem 4.1 reduce to I+ = {1} and I− =
[
− 1

1+s
, − t−1

t

]
;

moreover, the interval I+ and the left extreme of I− coincide with the corresponding
bounds in [20, Theorem 2.2], when F is singular, i.e. s = 0, while the right extreme
is an improvement of that in [20, Theorem 2.2]; we refer the reader to [25, section 4]
for more details.

We next specialize Theorem 4.1 to our setting. The full rank assumption on GT is
satisfied with the second of the two reorderings in (4.1). The result follows by noticing
that here s = 0.

Corollary 4.2. Assume that

[
J

−Z
1

2

]
is full column rank. Let

M =

[
F GT

G −C

]
:= −




0 0 J

0 −X −Z
1

2

JT −Z
1

2 H


 ,

and PD defined accordingly. Let c0 = λmin(W
−1H), c1 = λmax(W

−1H), g0 =
λmin(W

−1(JTJ + Z)), g1 = λmax(W
−1(JTJ + Z)). Then

Λ(P−1
D M) ⊂ [ξ1, ξ2] ∪ [ξ3, 1],

where ξ1 = 1
2 (−c1 −

√
c21 + 4), ξ2 = 1

2t (1 − tc0 −
√

(1 + tc0)2 + 4t(t− 1)), ξ3 =
1
2 (−c1 +

√
c21 + 4), and t = 1 + g0/max1≤i≤n |xi|. Moreover, if ℓ denotes the nullity

of [JT ,−Z
1

2 ], then P−1
D M has the eigenvalue 1 with multiplicity ℓ.

4.2. Spectral estimates for GT column-rank deficient. The proofs of The-
orem 4.1 and of its corollary rely on the full rank assumption of GT = [JT ,−Z

1

2 ]T .
In the case when the first ordering in (4.1) is used, this assumption no longer holds,

since the matrix [JT ,−Z
1

2 ] is not full-column rank in general. Nonetheless, we can
still provide insightful spectral bounds for the preconditioned problem. Once again,
we first state the result in general, and then specialize it to our setting.

Theorem 4.3. Let F ∈ R
n1×n1 and C ∈ R

n2×n2 be SPSD, G ∈ R
n2×n1 ,

M in (4.2) nonsingular. Let W ∈ R
n2×n2 be symmetric and positive definite and

c1 = λmax

(
W−1C

)
. Suppose that GT has a nontrivial null space, define

min
0 6=x∈ker(GT )

xTCx

xTWx
= c∗ > 0,

and let g+ be the minimum positive eigenvalue of W−1GGT . For PD as in (4.3), it
holds

Λ(P−1
D M) ⊆ I− ∪ I+ = [ξ1, min {η, ξ2}] ∪ [ξ3, 1] ,

where ξ1, ξ2 and ξ3 are given in Theorem 4.1, and η ≥ −c∗ is the largest negative root
of the cubic polynomial

q(θ) = t+θ
3 + θ2 ((c1 + c∗)t+ − 1)− θ (c1 + c∗ − 1 + t+)− (t+ − 1) c∗, (4.8)

with t+ = 1 +
g+
‖F‖ .
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Proof. We only need to prove the upper bound for the negative eigenvalues. From
the proof of Theorem 4.1 we infer that if θ is a negative eigenvalue of P−1

D M , then
θ ≤ ξ2 = −c0.

Consider equation (4.7) and suppose that w ∈ ker(G̃T ). Hence, we have wT C̃w =

−θ ‖w‖2, which implies θ ≤ −c∗.

We now suppose θ > −c∗, (hence, w /∈ ker(G̃T )), and write w = w0 + w1, with

w0 ∈ ker(G̃T ) and w1 ∈ ker(G̃T )⊥. We premultiply equation (4.7) by wT
0 to get

wT
0 C̃w1 = −wT

0 C̃w0 − θ ‖w0‖2 ≤ −
(
1 +

θ

c∗

)
wT

0 C̃w0,

from which, using the inequality wT
0 C̃w1 ≥ −

(
wT

0 C̃w0

) 1

2

(
wT

1 C̃w1

) 1

2

we infer

−
(
wT

0 C̃w0

) 1

2 ≥ − c∗

c∗ + θ

(
wT

1 C̃w1

) 1

2

.

Note that this inequality holds also when C̃w0 = 0. Thus,

wT
0 C̃w1 ≥ −

(
wT

0 C̃w0

) 1

2

(
wT

1 C̃w1

) 1

2 ≥ − c∗

c∗ + θ
wT

1 C̃w1. (4.9)

We then premultiply equation (4.7) by wT
1 , and we bound the leftmost term as follows:

wT
1 G̃

(
(1− θ)F − θG̃T G̃

)−1

G̃Tw1 ≥ wT
1 G̃

(
‖F‖ (1− θ)In1

− θG̃T G̃
)−1

G̃Tw1

≥ g+
(1− θ) ‖F‖ − θg+

‖w1‖2 ,

where the last inequality is justified by the fact that w1 is orthogonal to the null space
of

G̃
(
‖F‖ (1− θ)In1

− θG̃T G̃
)−1

G̃T , and that the eigenvalues of such matrix are of the

form
σ2

(1− θ) ‖F‖ − θσ2
, where σ is a singular value of G̃T . Therefore, we obtain

g+
(1− θ) ‖F‖ − θg+

‖w1‖2 + wT
1 C̃(w0 + w1) ≤ −θ ‖w1‖2 . (4.10)

According to the inequality (4.9), it holds

wT
1 C̃(w0 + w1) ≥

(
1− c∗

c∗ + θ

)
wT

1 C̃w1 ≥ c1θ

c∗ + θ
‖w1‖2 .

Thus, after dividing (4.10) by ‖w1‖2, we obtain

g+
(1− θ) ‖F‖ − θg+

+
c1θ

c∗ + θ
≤ −θ.

After some algebra, θ3t++θ2 ((c1 + c∗)t+ − 1)−θ (c1 + c∗ + t+ − 1)−(t+ − 1) c∗ ≥ 0,

where t+ = 1 +
g+
‖F‖ . If we call q(θ) the above cubic polynomial and η its largest

negative root, then it holds that θ ≤ η. Since q(−c∗) ≥ 0, then −c∗ ≤ η.
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Finally, we specialize the result to our setting, by using the first ordering in (4.1)
with which ξ2 = 0, so that the rightmost negative eigenvalue is bounded by η in
Theorem 4.3.

Corollary 4.4. Assume that

[
J

−Z
1

2

]
has a non-trivial null space, and let

M =

[
F GT

G −C

]
:=




H JT −Z
1

2

J 0 0

−Z
1

2 0 −X


 .

Let g+ be the minimum positive eigenvalue of W−1GGT , and c∗ be as defined in
Theorem 4.3. Then

Λ(P−1
D M) ⊆ [ξ1, η] ∪ [ξ3, 1] ,

where ξ1 and ξ3 are given in Theorem 4.1, and η ≥ −c∗ is the largest negative root of

the cubic polynomial in (4.8) with t+ = 1 +
g+
‖H‖ .

4.3. On the choice of W . We wish to identify choices of W by which the
eigenvalues of the preconditioned matrix are bounded by constants independent of
the problem parameters (e.g., the spectral properties of the blocks). A thorough
algebraic analysis of the choice of W can be found in [14, 15], where however the
focus was not the use of W within the context in (4.3).

If C were positive definite, as in the regularized case, the choice W = C would
do and would lead to the standard block diagonal preconditioner; see, e.g., [3]. Then,
we would have c0 = c1 = c∗ = 1, and the expression for I− and I+ would be ideal and
consistent with the known results in [18, Proposition 4.2]. In our setting, and for both
orderings, C is singular or very ill-conditioned, and we show in the following theorem
that the alternative choice W = C + 1

‖F‖GGT also yields an ideal preconditioner.

Clearly, this choice has computational drawbacks, as its effectiveness depends on the
cost of solving with W .

Theorem 4.5. Let F ∈ R
n1×n1 and C ∈ R

n2×n2 be SPSD, G ∈ R
n2×n1 ,

M in (4.2) nonsingular. Given W = C +
1

‖F‖GGT and PD in (4.3), it holds that

Λ(P−1
D M) ⊆ I− ∪ I+ with

I− =

[
−1 +

√
1 + 4(1 + f)2

2(1 + f)
, −1

2

]
⊆

[
−1

2

(
1 +

√
5
)
, −1

2

]
,

I+ =

[
−1 +

√
1 + 4(1 + f)2

2(1 + f)
, 1

]
⊆

[
1

2

(
−1 +

√
5
)
, 1

]

and f =
λmin(F )

‖F‖ ≥ 0. Moreover, if ℓ denotes the nullity of GT , then P−1
D M has the

eigenvalue −1 with multiplicity ℓ.
Proof. Direct calculation shows that any vector of the form (0, v), with v ∈

ker(GT ) is an eigenvector of P−1
D M with associated eigenvalue equal to −1.

Let c1 = λmax

(
W−1C

)
. Since W � C, it follows c1 ≤ 1. Moreover,

c1 ≥ c∗ = min
0 6=x∈ker(GT )

xTCx

xT

(
C + 1

‖F‖GGT

)
x
= 1.
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and as a consequence c1 = c∗ = 1.

From W � 1

‖F‖GGT , we obtain GTW−1G � ‖F‖ In1
and thus s = λmin(F )/g1 ≥

λmin(F )/‖F‖. Then all bounds except the right extreme of I− follow from Theo-
rem 4.1.

Regarding the upper bound for the negative eigenvalues, we start again from
equations (4.4) and (4.5) and suppose v /∈ ker(GT ) (if v ∈ ker(GT ) we immediately
have that θ = −1). If we eliminate u from (4.4) and substitute into (4.5), we obtain

G

((
(1− θ)F − θGTW−1G

)−1
+

θ

‖F‖In1

)
GT v + (1 + θ)Cv = 0.

Let us now multiply the above equation by vT from the left. Assuming that θ ≥ −1,
it holds that (1 + θ)vTCv ≥ 0 and we get

vTG

((
(1− θ)F − θGTW−1G

)−1
+

θ

‖F‖In1

)
GT v ≤ 0.

Since v /∈ ker(GT ), the minimum eigenvalue of
(
(1− θ)F − θGTW−1G

)−1
+

θ

‖F‖In1

must be nonpositive. Thus, again by GTW−1G � ‖F‖ In and F � ‖F‖ In, it follows

0 ≥ λmin

((
(1− θ)F − θGTW−1G

)−1
+

θ

‖F‖In1

)
≥ 1

(1− 2θ) ‖F‖ +
θ

‖F‖ .

Rearranging the above equation we obtain −2θ2 + θ + 1 ≤ 0 from which θ ≤ −1

2
.

4.4. Numerical illustration. In this section we illustrate the quality of the
spectral estimates derived for the proposed class of preconditioners. As a model
problem, we used the first test problem in Section 3.1 with q = fix((n−m)/2), taken
from the fifth iteration of the IP method.

In the first set of experiments we explore the setting of Corollary 4.2, so that

F =

[
0 0
0 X

]
, C = H, G =

[
−JT Z

1

2

]
, (4.11)

with n1 > n2 and ker(GT ) = {0}. Table 4.1 reports the true spectral intervals and
the bounds from Corollary 4.2 and Theorem 4.5, for the following choices for W :

W = C = H, W = WS = C +
1

‖F‖GGT = H +
1

max
1≤i≤n

|xi|
(JTJ + Z).(4.12)

For both selections, the bounds are rather sharp.

W I− [λ1, λn2
] I+ [λn2+1, λn1+n2

]
H [−1.618, −1.615] [−1.618, −1.618] [0.618, 1] [0.618, 1.00]
WS [−1.001, −0.500] [−1.000, −0.527] [0.998, 1] [0.999, 1.00]

Table 4.1

True spectral intervals and bounds from Corollary 4.2 and Theorem 4.5; WS is as in (4.12).
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In the second set we employ Corollary 4.4, which uses

F = H, C =

[
0 0
0 X

]
, G =

[
J

−Z
1

2

]
, (4.13)

so that n1 < n2 and ker(GT ) 6= {0}. The following typical choices for the matrix W
were considered as nonsingular completion of C:

i) Schur-complement type augmentation:

W = WS = C +
1

‖F‖GGT =

[
1

‖H‖JJ
T − 1

‖H‖JZ
1

2

− 1
‖H‖Z

1

2 JT X + 1
‖H‖Z

]
, (4.14)

ii) W = Wδ = C, for the regularized problem with C =

[
δIm 0
0 X

]
, with δ = 10−6.

Table 4.2 shows the comparison between the true spectral intervals, and the sets
I− and I+ obtained in Corollary 4.4 and Theorem 4.5. Rather sharp bounds are
obtained for the considered W s.

W I− [λ1, λn2
] I+ [λn2+1, λn1+n2

]
WS [−1.280, −0.500] [−1.000, −0.500] [0.780, 1] [0.999, 1.000]
Wδ [−1.618, −1.000] [−1.618, −1.000] [0.618, 1] [0.618, 0.618]

Table 4.2

True spectral intervals and bounds from Corollary 4.4 and Theorem 4.5; WS is as defined in
(4.14), Wδ is applied to the regularized problem.

As already mentioned, a major consideration in the choice of W is that both W
and F+GTW−1G should be cheap to invert. While the constraint on W can be easily
dealt with by using, e.g., a diagonal matrix, the constraint on F +GTW−1G cannot
be resolved without taking into account the specific application data. Indeed, F +
GTW−1G could be much denser than each of its terms [28], and some approximation
of its inverse should be considered. Depending on the chosen setting, matrices F
and G can change with the IP iteration, so that any (incomplete) factorization needs
to be recomputed. Strategies that avoid this new computation from scratch could be
fruitfully employed, see, e.g., [2, 36].

All these issues are of great importance in devising practical preconditioning
strategies that can be applied to a large variety of constrained optimization prob-
lems; a more detailed analysis of these issues can be found in, e.g., [26].

5. Conclusions. We have studied symmetric unreduced KKT systems, as they
arise in the solution of convex quadratic programming problems solved by IP methods,
and we have characterized the spectrum of the corresponding matrices.

In the unpreconditioned case, we distinguished between two stages of the IP
method: generic iterations, and late or final stage. A spectral analysis should be able
to reflect the peculiarities of each of these two phases, and in particular to capture
the potential nonsingularity of the matrices at the limit. For the generic iteration,
we were able to measure the distance from singularity for the negative eigenvalues.
By properly partitioning the coefficient matrix, we were also able to characterize the
spectral properties in the late stage of the IP iterations and at the solution, giving
novel reliable estimates in this delicate case.

We also addressed the use of positive definite augmented preconditioners, that
preserve the symmetry of the coefficient matrix, while coping with the possible high
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singularity of the diagonal blocks. General spectral bounds for the preconditioned
matrix were derived; they significantly expand results in the literature, covering the
case of all nonzero diagonal blocks.

Appendix. In this appendix we prove Lemma 3.2.
Proof. Matrix B has dimension (m+q)×n where q is the cardinality of the active

set A at x̂ (see the discussion on q before (3.8)). By the LICQ condition, q ≤ n−m
and JT

I
has full column rank. Consequently, BT has full column rank.

We provide estimates for σmax(B) and σmin(B) by using the relations σ2
max(B) =

λmax(BBT ) and σ2
min(B) = λmin(BBT ) and considering the eigenvalue problem for

BBT , that is
[
JAJ

T
A
+ JIJ

T
I

−JAZ
1

2

A

−Z
1

2

A
JT
A

ZA

] [
u
v

]
= λ

[
u
v

]
. (5.1)

If v = 0, then from the second equation JT
A
u = 0 and from the first equation we

find σ2
min(JI) ≤ λ ≤ σ2

max(JI). Then, we first focus on σmin(B) and consider the case
where v 6= 0 and λ < σ2

min(JI), otherwise σ2
min(JI) is the requested bound. By the

first block equation in (5.1), u =
(
JAJ

T
A
+ JIJ

T
I
− λIm

)−1
JAZ

1

2

A
v. Then, the second

block equation of (5.1) becomes

−Z
1

2

A
JT
A

(
JAJ

T
A
+ JIJ

T
I
− λIm

)−1
JAZ

1

2

A
v + ZAv − λv = 0,

and premultiplying it by vT we get

vTZ
1

2

A

[
Iq − JT

A

(
JAJ

T
A
+ JIJ

T
I
− λIm

)−1
JA

]
Z

1

2

A
v − λ ‖v‖2 = 0, (5.2)

Now we observe that
(
JAJ

T
A
+ JIJ

T
I
− λIm

)
�

(
JAJ

T
A
+ (σ2

min(JI)− λ)Im
)
, and

JT
A

(
JAJ

T
A
+ JIJ

T
I
− λIm

)−1
JA�JT

A

(
JAJ

T
A
+ (σ2

min(JI)− λ)Im
)−1

JA. Then

wTJT
A

(
JAJ

T
A
+ (σ2

min(JI)− λ)Im
)−1

JAw ≤ max
i

σ2
i (JA)

σ2
i (JA) + σ2

min(JI)− λ
‖w‖2

=
σ2
max(JA)

σ2
max(JA) + σ2

min(JI)− λ
‖w‖2

where w ∈ R
q and (5.2) gives

(zA)min − (zA)minσ
2
max(JA)

σ2
max(JA) + σ2

min(JI)− λ
− λ ≤ 0,

which is equivalent to r(λ) = λ2−(σ2
max(JA)+σ2

min(JI)+(zA)min)λ+(zA)minσ
2
min(JI) ≤

0. Since r(0) > 0 and r
(
σ2
min(JI)

)
< 0, then σ2

min(JI) is greater than the smallest
root of r(λ) and the stated bound on σmin(B) follows.

Finally, if w ∈ R
q, ŵ ∈ R

n−q we have

∥∥∥∥B
[
w
ŵ

]∥∥∥∥
2

=

∥∥∥∥J
[
w
ŵ

]∥∥∥∥
2

+
∥∥∥Z

1

2

A
w
∥∥∥
2

≤
(
‖J‖2 + ‖ZA‖

)∥∥∥∥
[
w
ŵ

]∥∥∥∥
2

,

from which the looser bound for σmax(B) follows.
The sharper bound for σmax(B), although more complicated, can be derived as

follows. We start again from (5.1) and suppose λ > σ2
max, which in particular implies
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v 6= 0. As before, we find u from the first equation (note that JAJ
T
A
+ JIJ

T
I

= JJT )
and substitute into the second one. Premultiplying for vT we obtain again equation
(5.2). This time we use

JT
A

(
λIm − JJT

)−1
JA�

σ2
max(JA)

λ− σ2
max

Iq.

Proceeding as above, we derive the inequality

(zA)max +
(zA)maxσ

2
max(JA)

λ− σ2
max

− λ ≥ 0,

which is equivalent to q(λ) := λ2−
(
(zA)max + σ2

max

)
λ+(zA)max

(
σ2
max − σ2

max(JA)
)
≤

0. Since q
(
σ2
max

)
< 0, then σ2

max is smaller than the largest root of q(λ). We thus
obtain

σ2
max(B) ≤ 1

2

(
(zA)max + σ2

max +

√
((zA)max − σ2

max)
2
+ 4(zA)maxσ2

max(JA)

)
.

Since σ2
max − σ2

max(JA) ≥ 0, this bound is sharper than the simpler one.
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