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—— Abstract

Buhrman, Cleve and Wigderson (STOC’98) showed that for every Boolean function f: {—1,1}" —
{-1,1} and G € {AND2,XOR2}, the bounded-error quantum communication complexity of the
composed function f o G equals O(Q(f)logn), where Q(f) denotes the bounded-error quantum
query complexity of f. This is achieved by Alice running the optimal quantum query algorithm for f,
using a round of O(logn) qubits of communication to implement each query. This is in contrast
with the classical setting, where it is easy to show that R°°(f o G) < 2R(f), where R°® and R denote
bounded-error communication and query complexity, respectively. Chakraborty et al. (CCC’20)
exhibited a total function for which the logn overhead in the BCW simulation is required. This
established the somewhat surprising fact that quantum reductions are in some cases inherently more
expensive than classical reductions. We improve upon their result in several ways.

We show that the logn overhead is not required when f is symmetric (i.e., depends only on
the Hamming weight of its input), generalizing a result of Aaronson and Ambainis for the Set-
Disjointness function (Theory of Computing’05). Our upper bound assumes a shared entangled
state, though for most symmetric functions the assumed number of entangled qubits is less than
the communication and hence could be part of the communication.

In order to prove the above, we design an efficient distributed version of noisy amplitude
amplification that allows us to prove the result when f is the OR function. This also provides a
different, and arguably simpler, proof of Aaronson and Ambainis’s O(y/n) communication upper
bound for Set-Disjointness.

In view of our first result above, one may ask whether the logn overhead in the BCW simulation
can be avoided even when f is transitive, which is a weaker notion of symmetry. We give a
strong negative answer by showing that the logn overhead is still necessary for some transitive
functions even when we allow the quantum communication protocol an error probability that can
be arbitrarily close to 1/2 (this corresponds to the unbounded-error model of communication).

We also give, among other things, a general recipe to construct functions for which the logn
overhead is required in the BCW simulation in the bounded-error communication model, even if
the parties are allowed to share an arbitrary prior entangled state for free.

1 Part of this work was done while the author was a postdoc at Georgetown University.
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1 Introduction

1.1 Motivation and main results

The classical model of communication complexity was introduced by Yao [24], who also
subsequently introduced its quantum analogue [25]. Communication complexity has important
applications in several disciplines, in particular for lower bounds on circuits, data structures,
streaming algorithms, and many other complexity measures (see, for example, [16] and the
references therein).

A natural way to derive a communication problem from a Boolean function f : {—1,1}" —
{—1,1} is via composition. Let f: {—1,1}" — {—1,1} be a function and let G : {—1,1}’ x
{=1,1}F = {~1,1} be a “two-party function”. Then F = fo G : {—1,1}" x {-1,1}"" —
{—1,1} denotes the function corresponding to the communication problem in which Alice
is given input X = (X1,...,X,) € {~1,1}"7, Bob is given Y = (V1,...,Y,) € {—1,1}"*,
and their task is to compute F'(X,Y) = f(G(X1,Y1),...,G(Xp,Ys)). Many well-known
functions in communication complexity are derived in this way, such as Set-Disjointness
(DISJ,, :== NOR,, o AND,), Inner Product (IP,, := PARITY,, o AND;) and Equality (EQ,, :=
NOR,, 0 XOR32). A natural approach to obtain efficient quantum communication protocols for
f oG is to “simulate” a quantum query algorithm for f, where a query to the ¢th input bit
of f is simulated by a communication protocol that computes G(X;,Y;). Buhrman, Cleve
and Wigderson [7] observed that such a simulation is indeed possible if G is bitwise AND or
XOR.

» Theorem 1 ([7]). For every Boolean function f : {—1,1}" — {-=1,1} and O €
{AND3, XORz}, we have

Q“(feol)) = 0(Q(f)logn).

Here Q(f) denotes the bounded-error quantum query complexity of f, and Q®(f o
) denotes the bounded-error quantum communication complexity for computing f o OJ.
Throughout this paper, we refer to Theorem 1 as the BCW simulation. [7] used this, for
instance, to show that the bounded-error quantum communication complexity of the Set-
Disjointness function is O(y/nlogn), using Grover’s O(y/n)-query search algorithm [11] for
the NOR,, function.
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It is folklore in the classical world that the analogous simulation does not incur a logn
factor overhead. That is,

R (f o) < 2R(f), (1)

where R(f) denotes the bounded-error randomized query complexity of f and R(f o O)
denotes the bounded-error randomized communication complexity for computing f o[J. Thus,
a natural question is whether the multiplicative logn blow-up in the communication cost
in the BCW simulation is necessary. Chakraborty et al. [9] answered this question and
exhibited a total function for which the log n blow-up is indeed necessary when XOR; is the
inner function.

» Theorem 2 ([9, Theorem 2]). There exists a function f:{—1,1}" — {—1,1} such that
Q" (f 0 XORy) = Q(Q(f) logn).

Here Q°*(F') denotes the bounded-error quantum communication complexity of two-
party function F' when Alice and Bob shared an entangled state at the start of the protocol
for free. Comparing Theorem 2 with Equation 1 we see the somewhat surprising fact that
quantum reductions can in some cases be more expensive than classical reductions.

This gives rise to the following basic question: is there a natural class of functions for
which the logn overhead in the BCW simulation is not required? Improving upon Hgyer
and de Wolf [13], Aaronson and Ambainis [1] showed that for the canonical problem of
Set-Disjointness, the logn overhead in the BCW simulation can be avoided. Since the outer
function NOR,, is symmetric (i.e., it only depends on the Hamming weight of its input, its
number of —1s), a natural question is whether the logn overhead can be avoided whenever
the outer function is symmetric. Our first result gives a positive answer to this question.

» Theorem 3. For every symmetric Boolean function f : {1, 1}" — {=1,1} and two-party
function G : {—1,1} x {~1,1}* — {0,1}, we have

Q®*(f o G) = O(Q()QE(G))-

Here Q%(G) denotes the exact quantum communication complexity of G, where the

error probability is 0. In particular, if G € {AND3, XOR3} then Q%(G) = 1 and hence
Q" (f o G) = O(Q(f))-
» Remark 4. If Q(f) = ©(v/tn), then our protocol in the proof of Theorem 3 starts from
a shared entangled state of O(tlogn) EPR-pairs. Note that if ¢ < nQ%(G)?/(logn)? (this
condition holds for instance if Q% (G) > logn) then this number of EPR-pairs is no more than
the amount of communication and hence might as well be established in the first message,
giving asymptotically the same upper bound Q°*(f o G) = O(Q(f)QF(G)) for the model
without prior entanglement.

The next question one might ask is whether one can weaken the notion of symmetry
required in Theorem 3. A natural generalization of the class of symmetric functions is
the class of transitive-symmetric functions. A function f : {—1,1}" — {—1,1} is said to
be transitive-symmetric if for all i,j € [n], there exists o € S, such that o(i) = j, and
f(x) = f(o(x)) for all z € {—1,1}". Here, and in the rest of the paper, by o(r) we mean the
n-bit string z4(1), - ., Ts(n)- Henceforth we refer to transitive-symmetric functions as simply
transitive functions. Can the logn overhead in the BCW simulation be avoided whenever the
outer function is transitive? We give a negative answer to this question in a strong sense: the
log n overhead is still necessary even when we allow the quantum communication protocol
an error probability that can be arbitrarily close to 1/2.
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» Theorem 5. There exists a transitive and total function f: {—1,1}" — {—1,1}, such that
UPP(f o 1) = (Q(f)log n)
for every O € {AND2, XORz}.

Here UPP°(f o OJ) denotes the unbounded-error quantum communication complexity of
f o0 (adding “quantum” here only changes the communication complexity by a constant
factor). The unbounded-error model of communication was introduced by Paturi and
Simon [21] and is the strongest communication complexity model against which we know
how to prove explicit lower bounds. This model is known to be strictly stronger than the
bounded-error quantum model. For instance, the Set-Disjointness function on n inputs
requires 2(n) bits or Q(y/n) qubits of communication in the bounded-error model, but
only requires O(logn) bits of communication in the unbounded-error model. In fact, it
follows from a recent result of Hatami, Hosseini and Lovett [12] that there exists a function
F:{-1,1}" x {-1,1}" — {—1,1} with Q°¢*(F) = Q(n) while UPP*‘(F) = O(1).

Theorem 3 and Theorem 5 clearly demonstrate the role of symmetry in determining the
presence of the logn overhead in the BCW query-to-communication simulation: this overhead
is absent for symmetric functions (Theorem 3), but present for a transitive function even
when the model of communication under consideration is as strong as the unbounded-error
model (Theorem 5). We also give a general recipe to construct functions for which the logn
overhead is required in the BCW simulation in the bounded-error communication model (see
Theorem 6).

1.2 Overview of our approach and techniques

In this section we discuss the ideas that go into the proofs of Theorem 3 and Theorem 5.

1.2.1 Communication complexity upper bound for symmetric functions

To prove Theorem 3 we use the well-known fact that every symmetric function f has an
interval around Hamming weight n/2 where the function is constant; for NOR,, the length
of this interval would be essentially n, while for PARITY,, it would be 1. To compute f,
it suffices to either determine that the Hamming weight of the input lies in that interval
(because the function value is the same throughout that interval) or to count the Hamming
weight exactly.

For two-party functions of the form f o G, we want to do this type of counting on the
n-bit string z = (G(X1,Y1),...,G(X,,Ys)) € {—1,1}". We show how this can be done with
O(Q(f) Q5$(G)) qubits of communication if we had a quantum protocol that can find —1s
in the string z at a cost of O(v/nQ5(G)) qubits. Such a protocol was already given by
Aaronson and Ambainis for the special case where G = AND; for their optimal quantum
protocol for Set-Disjointness, as a corollary of their quantum walk algorithm for search on a
grid [1]. In this paper we give an alternative O(y/n Q% (G))-qubit protocol. This implies the
result of Aaronson and Ambainis as a special case, but it is arguably simpler and may be of
independent interest.

Our protocol can be viewed as an efficient distributed implementation of amplitude
amplification with faulty components. In particular, we replace the usual reflection about
the uniform superposition by an imperfect reflection about the n-dimensional maximally
entangled state (= logn EPR-pairs if n is a power of 2). Such a reflection would require
O(logn) qubits of communication to implement perfectly, but can be implemented with small
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Figure 1 If for all j € [n] and some s;,t; € {—1,1}/°8™, the inputs to the j-th hipy,, ., are

Hadamard codewords in £H (s;) and £H (¢;), then f = PARITY(IPiogn(s1,t1),- .., IPiogn(Sn,tn))-

If there exists at least one j € [n] for which either x;1,...,Z;n Or y;1,...,Y;jn is not a Hadamard
codeword, then f outputs —1. This function f equals PARITY,, o h|plogn (see Definition 26 and
Definition 28).

error using only O(1) qubits of communication, by invoking the efficient protocol of Aharonov
et al. [2, Theorem 1] that tests whether a given bipartite state equals the n-dimensional
maximally entangled state. Still, at the start of this protocol we need to assume (or establish
by means of quantum communication) a shared state of logn EPR-pairs. If Q(f) = O(v/tn)
then our protocol for f o G will run the —1-finding protocol O(¢) times, which accounts for
our assumption that we share O(tlogn) EPR-pairs at the start of the protocol.

1.2.2 Communication complexity lower bound for transitive functions

2
For proving Theorem 5, we exhibit a transitive function f : {—1,1}*" — {—1,1} whose
bounded-error quantum query complexity is O(n) and the unbounded-error communication
complexity of f o is Q(nlogn) for O € {AND2, XORz}.

Function construction and transitivity. For the construction of f we first require the
definition of Hadamard codewords. The Hadamard codeword of s € {—1, 1}1°g”, denoted
by H(s) € {—1,1}", is a list of all parities of s. That is, (H(s)); = [[ t; for all t €
{—=1,1}"°8". See Figure 1 for a graphical visualization of .

Using properties of IP and Hadamard codewords, and the symmetry of PARITY,,, we are
able to show that f is transitive (see Claim 32).

1:8;=—1

Query upper bound. The query upper bound of O(n) follows along the lines of [9], using the
Bernstein-Vazirani algorithm to decode the Hadamard codewords, and Grover’s algorithm to
check that they actually are Hadamard codewords. This approach was in turn inspired by a
query upper bound due to Ambainis and de Wolf [3]. See the proof of Theorem 29 for the
query algorithm and its analysis.

Communication lower bound. Towards the unbounded-error communication lower bound,
we first recall that each input block of f equals Py, if the inputs to each block are
promised to be Hadamard codewords. Hence f equals IP, 105, under this promise, since
PARITY,, 0 IPiogn, = IPy10gn. Thus by setting certain inputs to Alice and Bob suitably, foO
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Figure 2 In this figure, G : {—1,1}'°% x {—1,1}/*®™ — {—1,1}. If for all j € [n] and some
sj,t; € {=1,1}'°8" the inputs to the j-th hg are Hadamard codewords in £H (s;) and +H(t;),
then f =7(G(s1,t1),...,G(sn,tn)). If there exists at least one j € [n] for which either z;1,...,z;n
Or Yj1,- .-, Yjn is not a Hadamard codeword, then f outputs —1. This function f equals 7 o hg (see
Definition 26 and Definition 28).

is at least as hard as IP,1og, for O € {AND2, XORz} (for a formal statement, see Lemma 31
with 7 = PARITY,, and g = IPiog ). It is known from a seminal result of Forster [10] that
the unbounded-error communication complexity of IP, 104, equals (nlogn), completing
the proof of the lower bound. This proof is more general than and arguably simpler than
the proof of the lower bound for bounded-error quantum communication complexity in [9,
Theorem 2].

1.3 Other results

We give a general recipe for constructing a class of functions that witness tightness of the BCW
simulation where the inner gadget is either ANDy or XORs. However, the communication
lower bound we obtain here is in the bounded-error model in contrast to Theorem 5, where
the communication lower bound is proven in the unbounded-error model.

The functions f constructed for this purpose are composed functions similar to the
construction in Figure 1, except that we are able to use a more general class of functions
in place of the outer PARITY function, and also a more general class of functions in place
of the inner IPys, functions. See Figure 2 and its caption for an illustration and a more
precise definition.

We require some additional constraints on the outer and inner functions. First, the
approximate degree of  should be Q(n). Second, the discrepancy of G should be small with
respect to some “balanced” probability distribution (see Definition 17 and Definition 16 for
formal definitions of these notions).

» Theorem 6. Let r : {—1,1}" — {—1,1} be such that deg(r) = Q(n) and let G :
{=1,1}1°5" 5 {—=1,1}/°8™ — {=1,1} be a total function. Define f : {—1, 1}2n2 —{-1,1} as
in Figure 2. If there emists iz {—1,11°%™ x {—=1,1}'°8™ 5 R that is a balanced probability
distribution with respect to G and disc,(G) = n=*Y) | then for every O € {AND2,XORs},

Q(f) = O(n), and Q" (f oO) = Q(nlogn).

The query upper bound follows along similar lines as that of Theorem 5. For the
lower bound, we first show via a reduction that for f as described in Figure 2 and O €
{AND3, XOR2}, the communication problem fo[J is at least as hard as 7o G (see Lemma 31).
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This part of the lower bound proof is the same as in the proof of Theorem 5. For the
hardness of r o G (which in the case of Theorem 5 turned out to be IP, 1055, for which
Forster’s theorem yields an unbounded-error communication lower bound), we are able to
use a theorem implicit in a work of Lee and Zhang [17]. This theorem gives a lower bound
on the bounded-error communication complexity of 7 o G in terms of the approximate degree
of r and the discrepancy of G under a balanced distribution. Due to space constraints we
defer the proof of Theorem 6 to the full version of our paper [8].

We recover the result of Chakraborty et al. (Theorem 2) using a more general technique,

and additionally show that Q°“*(f o AND2) = Q(Q(f)logn), where f is as in Theorem 2.

We refer the reader to the full version [8] for details.

1.4 Organization

Section 2 gives notations and preliminaries. In Section 3 we prove Theorem 3, which shows
that the logn overhead in the BCW simulation can be avoided when the outer function is
symmetric. This proof relies on our new one-sided error protocol for finding solutions in the
string z = (G(X1,Y1),...,G(X,,Ys)) € {—1,1}", as a corollary of our distributed version
of amplitude amplification. We give this protocol in Appendix A.

We prove Theorem 5 in Section 4. This is our result regarding necessity of the logn
overhead in the BCW simulation in the unbounded-error model of communication.

2 Notation and preliminaries

Without loss of generality, we assume n to be a power of 2 in this paper, unless explicitly
stated otherwise. All logarithms in this paper are base 2. Let S,, denote the symmetric group
over the set [n] = {1,...,n}. For a string z € {—1,1}" and o € S, let o(x) denote the
StTing Te(1), - -+ To(n) € {—1,1}". Consider an arbitrary but fixed bijection between subsets

lo, .
€™ we abuse notation and also use s

of [logn] and elements of [n]. For a string s € {—1,1}
to denote the equivalent element of [n]. The view we take will be clear from context. For
a string = € {—1,1}" and set S C [n], define the string zg € {—1,1}" to be the restriction
of = to the coordinates in S. Let 1™ and (—1)™ denote the n-bit string (1,1,...,1) and

(-1,-1,...,-1), respectively.

2.1 Boolean functions

For two bits by, by € {—1, 1}, let by Abs be defined to be —1 if by = by = —1, and 1 otherwise.

For strings x,y € {—1,1}", let (x,y) denote the inner product (mod 2) of z and y. That is,
(z,y) = T (@i Ay;). For every positive integer n, let PARITY,, : {—1,1}" — {—1,1} be
defined as:

PARITY,, (21, ... ,2n) = H ;.

1€[n]

» Definition 7 (Symmetric functions). A function f: {—1,1}" — {—1,1} is symmetric if for
all o € Sy, and for all x € {—1,1}" we have f(z) = f(o(x)).

» Definition 8 (Transitive functions). A function f:{—1,1}" — {—1,1} is transitive if for
all 1,5 € [n] there exists a permutation o € S, such that

o(i) =7, and

f(x) = f(o(x)) for all x € {—1,1}".

20:7
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» Definition 9 (Approximate degree). For every € > 0, the e-approximate degree of a
function f: {—1,1}" — {=1,1} is defined to be the minimum degree of a real polynomial
p:{-1,1}" — R that uniformly approximates f to error . That is,

deg. (f) = min {deg(p) : [p(x) — f(x)| <& for all z € {~1,1}"}.
Unless specified otherwise, we drop € from the subscript and assume ¢ = 1/3.

We assume familiarity with quantum computing [19], and use Q. (f) to denote the e-error
query complexity of f. Unless specified otherwise, we drop ¢ from the subscript and assume
e=1/3.

» Theorem 10 ([4]). Let f: {-1,1}" — {—1,1} be a function. Then Q(f) > d’(\aé(f)/l

2.2 Communication complexity

We assume familiarity with communication complexity [16].

» Definition 11 (Two-party function). We call a function G : {—1,1} x {=1,1}* — {-1,1}
a two-party function to indicate that it corresponds to a communication problem in which
Alice is given input x € {—1,1}j, Bob is given input y € {—1, l}k, and their task is to
compute G(z,y).

» Remark 12. Throughout this paper, we use uppercase letters to denote two-party functions,
and lowercase letters to denote functions which are not two-party functions.

» Definition 13 (Composition with two-party functions). Let f : {-1,1}" — {-1,1} be
a function and let G : {-1,1} x {—1,1}]C — {=1,1} be a two-party function. Then
F=foG:{-1,1}"7 x {~1,1}"* = {=1,1} denotes the two-party function corresponding
to the communication problem in which Alice is given input X = (X1,...,X,) € {-1,1}"",
Bob is given Y = (Yi,...,Y,) € {—=1,1}"", and their task is compute F(X,Y) =
f(G(X1,Y1),...,G(X,, Yy)).

» Definition 14 (Inner Product function). For every positive integer n, define the function IP,, :
{=1,1}" x{-1,1}" = {=1,1} by IP,,(z,y) = (z,y). In other words, IP,, = PARITY,, 0AND.
» Observation 15. For all positive integers k,t, PARITY o IPy = IPy,.

We also assume familiarity with quantum communication complexity [23]. We use Q¢°(G)
and Q¢*(G) to represent the e-error quantum communication complexity of a two-party
function G in the models without and with unlimited shared entanglement, respectively.
Unless specified otherwise, we drop ¢ from the subscript and assume ¢ = 1/3.

» Definition 16 (Balanced probability distribution). We call a probability distribution p :
{=1,1}" = R balanced w.r.t. a function f:{~1,1}" = {=1,1} if 3 ;13 f(z)pu(z) = 0.

» Definition 17 (Discrepancy). Let G : {—1, 1 x {-1,1}F = {=1,1} be a function and X
be a distribution on {—1,1}7 x {=1,1}*. For every S C {~1,1} and T C {~1,1}*, define

discy (S x T,G) = Z Gz, )\ (z,y)| -

z,y€SXT

The discrepancy of G under the distribution \ is defined to be

discy(G) = max discA(S x T, G),
SC{-11},7C{-1,1}*

and the discrepancy of [ is defined to be disc(G) = miny discy(G).
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2.3 Additional concepts from quantum computing

The Bernstein-Vazirani algorithm [5] is a quantum query algorithm that takes an n-bit string
as input and outputs a (logn)-bit string. The algorithm has the following properties:
the algorithm makes one quantum query to the input and
if the input € {—1,1}" satisfies # € +H (s) for some s € {—1,1}'°®"™  then the algorithm
returns s with probability 1.

Consider a symmetric Boolean function f:{—1,1}" — {—1,1}. Define the quantity
I'(f) =min{|2k —n+ 1| : f(x) # f(y) if || =k and |y| = k + 1}

from [20]. One can think of I'( f) as essentially the length of the interval of Hamming weights
around n/2 where f is constant (for example, for the majority and parity functions this
would be 1, and for OR,, this would be n — 1).

» Theorem 18 ([4, Theorem 4.10]). For every symmetric function f:{-1,1}" — {-1,1},
we have Q(f) = O(\/(n —T(f))n).

The upper bound follows from a quantum algorithm that exactly counts the Hamming weight
|z| of the input if |z| <t or |x| > n —t for t = [(n —T'(f))/2], and that otherwise learns |z|

is in the interval [t + 1,n — t — 1] (which is an interval around n/2 where f(z) is constant).

By the definition of T'(f), this information about |z| suffices to compute f(z). In Section 3
we use this observation to give an efficient quantum communication protocol for a two-party
function f o G.

We will need a unitary protocol that allows Alice and Bob to implement an approximate
reflection about the n-dimensional maximally entangled state

1 Ny
M_ﬁ Yo 1ol

iE{O,l}log n

Ideally, such a reflection would map |¢) to itself, and put a minus sign in front of all states

orthogonal to |¢). Doing this perfectly would requires O(logn) qubits of communication.

Fortunately we can derive a cheaper protocol from a test that Aharonov et al. [2, Theorem 1]
designed, which uses O(log(1/¢)) qubits of communication and checks whether a given
bipartite state equals |¢), with one-sided error probability e. By the usual trick of running
this protocol, applying a Z-gate to the answer qubit, and then reversing the protocol, we
can implement the desired reflection approximately.? A bit more precisely:

» Theorem 19. Let Ry, = 2|y 9| — I be the reflection about the mazimally entangled
state shared between Alice and Bob. There exists a protocol that uses O(log(1/e)) qubits of

communication and that implements a unitary Ry, such that HRf/) - Ry H <eand be|¢> = |¢).

We use UPP““(F) to denote unbounded-error quantum communication complexity of
two-party function F'. It is folklore (see for example [15]) that the unbounded-error quantum
communication complexity® of F equals its classical counterpart up to a factor of at most 2

2 Possibly with some auxiliary qubits on Alice and Bob’s side which start in |0) and end in |0), except in
a part of the final state that has norm at most e.

3 The unbounded-error model does not allow shared randomness or prior shared entanglement (which
yields shared randomness by measuring) between Alice and Bob, since any two-party function F' would
have constant communication complexity in that setting.

20:9
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so it does not really matter much whether we use UPP® for classical unbounded-error com-
munication complexity (as it is commonly used) or for quantum unbounded-error complexity.
Crucially, for both the complexity of IP,, is linear in n:

» Theorem 20 ([10]). Let n be a positive integer. Then UPP“(IP,,) = Q(n).

3 No log-factor needed for symmetric functions

We present a version of quantum amplitude amplification that still works if the reflections
involved are not perfectly implemented. In particular, the usual reflection about the uniform
superposition will be replaced in the communication setting by an imperfect reflection about
the n-dimensional maximally entangled state, based on the communication-efficient protocol
of Aharonov et al. [2, Theorem 1] for testing whether Alice and Bob share that state. This
allows us to avoid the logn factor that would be incurred if we instead used a BCW-style
distributed implementation of standard amplitude amplification, with O(logn) qubits of
communication to implement each query. Our main technical contribution for proving
Theorem 3 is the following general theorem, which allows us to search among a sequence
of two-party instances (X1,Y1),...,(Xy,Y,) for an index i € [n] where G(X;,Y;) = —1, for
any two-party function G.

» Theorem 21. Let G : {—1,1}Y x {~1,1}* — {=1,1} be a two-party function,
X = (X1,...,X,) € {-1,1}7 and Y = (Yi,...,Y,) € {-1,1}"". Define = =
(G(X1,Y1),...,G(X,,Y,)) € {—1,1}". Assume Alice and Bob start with [logn] shared
EPR-pairs.
There exists a quantum protocol using O(v/n Q5 (QG)) qubits of communication that finds
(with success probability > 0.99) an i € [n] such that z; = —1 if such an i exists, and says
“no” with probability 1 if no such i exists.

If the number of —1s in z is within a factor of 2 from a known integer t, then the
communication can be reduced to O(\/n/t Q% (G)) qubits.

We prove Theorem 21 in Appendix A. Consider a symmetric Boolean function f :
{=1,1}" — {—1,1}. As we explained in Section 2.3, there is an integer t = [(n — T'(f))/2]
such that we can compute f if we learn the Hamming weight |z| of the input z € {—1,1}"
or learn that |z| € [t + 1,n — ¢t — 1]. The bounded-error quantum query complexity is
Q(f) = ©(\/tn) (Theorem 18). We now prove Theorem 3 assuming Theorem 21.

For a given two-party function G : {—1,1} x{—1,1}* — {—1,1}, we have an induced two-
party function F: {—1,1}" x {=1,1}"™" — {—1,1} defined as F(X1, ..., Xn,Y1,...,Yy) =
f(G(X1,Y1),...,G(X,,Y,)). Define

z = (G(leyl)a e 7G(XnaYn)) € {_L 1}n

Then F(X,Y) = f(z) only depends on the number of —1s in z. The following theorem allows
us to count this number using O(Q(f) Q% (G)) qubits of communication.

» Theorem 22. For every t between 1 and n/2, there exists a quantum protocol that starts
from O(tlogn) EPR-pairs, communicates O(Vtn Q%(G)) qubits, and tells us |z| or tells us
that |z| > t, with error probability < 1/8.

Proof. Abbreviate ¢ = Q$(G). Our protocol has two parts: the first filters out the case
|z| > 2t, while the second finds all solutions if |z| < 2t.
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Part 1. First Alice and Bob decide between the case (1) |z| > 2t and (2) |z| < t (even
though |z| might also lie in {t + 1,...,2t — 1}) using O(y/ng) qubits of communication,
as follows. They use shared randomness to choose a uniformly random subset S C [n] of
[n/(2t)] elements. Let FE be the event that z; = —1 for at least one ¢ € S. By standard
calculations there exist p1,ps € [0, 1] with p1 = pa + (1) such that Pr[E] > p; in case (1)
and Pr[E] < po in case (2). Alice and Bob use the distributed-search protocol from the
first bullet of Theorem 21 to decide E, with O(1/|S|q) = O(y/n q) qubits of communication
(plus a negligible O(logn) EPR-pairs) and error probability much smaller than p; — p2. By
repeating this a sufficiently large constant number of times and seeing whether the fraction
of successes was larger or smaller than (p; + p2)/2, they can distinguish between cases (1)
and (2) with success probability > 15/16. If they conclude they’re in case (1) then they
output “|z| > t” and otherwise they proceed to the second part of the protocol.

Note that if |z| € {t + 1,...,2t — 1} (the “grey zone” in between cases (1) and (2)), then
we can’t give high-probability guarantees for one output or the other, but concluding (1)
leads to the correct output “|z| > ¢” in this case, while concluding (2) means the protocol
proceeds to Part 2. So either course of action is fine if |z| € {t +1,...,2t — 1}.

By Newman’s theorem [18] the shared randomness used for choosing S can be replaced
by O(logn) bits of private randomness on Alice’s part, which she can send to Bob in her
first message, so Part 1 communicates O(y/n g) qubits in total.

Part 2. We condition on Part 1 successfully filtering out case (1), so from now on assume
|z| < 2t. Our goal in this second part of the protocol is to find all indices ¢ such that
z; = —1 (we call such i “solutions”), with probability > 15/16, using O(v/tn¢q) qubits
of communication. This will imply that the overall protocol is correct with probability
1-1/16 —1/16 = 7/8, and uses O(v/tn q) qubits of communication in total. For an integer
k > 1, consider the following protocol Pj.

Algorithm 1 Protocol Py.

Input: An integer k£ > 1

repeat

1. Run the protocol from the last bullet of Theorem 21 with ¢ = 2¢~1,
(suppressing some constant factors, assume for simplicity that this uses

n/2F g qubits of communication, logn shared EPR-pairs at the start, and has
probability > 1/100 to find a solution if the actual number of solutions is in
[t/2,2t]).

2. Alice measures and gets outcome 4 € [n] and Bob measures and gets outcome
J € [n], respectively.

3. Alice sends ¢ to Bob, Bob sends j to Alice.

4. 1f i = j then they verify that G(X;,Y;) = —1 by one run of the protocol for G,
and if so then they replace X;,Y; by some pre-agreed inputs X/, Y/,
respectively, such that G(X/,Y/) =1 (this reduces the number of —1s in z by 1)

until 200\/%q qubits have been sent;

> Claim 23.  Suppose |z| € [2¥71,2F). Then protocol Py uses O(v2¥n q) qubits of com-
munication, assumes O(2* logn) EPR-pairs at the start of the protocol, and finds at least
|z| — 2F~1 41 solutions, except with probability < 1/2.

20:11
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Proof. The upper bound on the communication is obvious from the stopping criterion of Pj.

As long as the remaining number of solutions is > 2¢~1, each run of the protocol has
probability > 1/100 to find another solution. Hence the expected number of runs of the
protocol of Theorem 21 to find at least |z| — 28~ + 1 solutions, is < 100(|z| — 2F~1 4 1).
By Markov’s inequality, the probability that we haven’t yet found |z| — 2~ + 1 solutions
after < 200(|z| — 25~ + 1) < 100 - 2% runs, is < 1/2. The communication cost of so many
runs is 100 - 2%(y/n/2% ¢ +logn) < 200v/2Fn ¢ qubits. Hence by the time that the number
of qubits of the stopping criterion have been communicated, we have probability > 1/2 of
having found at least |z| — 2¥~! 4 1 solutions. The assumed number of EPR-pairs at the
start is logn per run, so O(2¥logn) in total. <

Note that if we start with a number of solutions |z| € [2¥71,2F), and P, succeeds in
finding at least |z| — 2¥~! 4 1 new solutions, then afterwards we have < 2*~1 solutions left.
The following protocol runs these Py in sequence, pushing down the remaining number of
solutions to 0.

Algorithm 2 Protocol P.

for k = [log,(2t)] downto 1 do
1. Run Py a total of 7, = [logy(2t)] — k + 5 times (replacing all —1s found by

+1s in 2).
2. Output the total number of solutions found.
end

> Claim 24. If |z| < 2t then protocol P uses O(v/tn q) qubits of communication, assumes
O(tlogn) EPR-pairs at the start of the protocol, and outputs |z|, except with probability
< 1/16.

Proof. First, by Claim 23, the total number of qubits communicated is

[logy(2t)] [og,(2t)]—1
S e -0(W2ng) =0(Ving) - Y. (€+5)/V2 = 0(Ving),

k=1 £=0

where we used a variable substitution k = [log,(2t)] — £. Second, the number of EPR-pairs
we're starting from is

[log, (20)] Mg, (26)] 1
Z e - O(2% logn) = O(tlogn) - Z (¢ +5)/2" = O(tlogn).
k=1 =0
Third, by Claim 23 and the fact that we are performing r; repetitions of Py, if the kth round
of P starts with a remaining number of solutions that is in the interval [2¥~1, 2¥) then that
round ends with < 2¥~! remaining solutions, except with probability at most 1/2"*. By the
union bound, the probability that any one of the [log,(2t)] rounds does not succeed at this,

is at most
|—10g2(2t)-\ 1 B ]—10g2(2t)-\—1 1 _ 1
Z ore Z 205 = 16"
k=1 =0

Since 21022291 > 2¢ and we start with |z| < 2¢, if each round succeeds, then by the end of
‘P there are no remaining solutions left. Thus, the protocol P finds all solutions and learns
|z| with probability at least 15/16. <
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Part 1 and Part 2 each have error probability < 1/16, so by the union bound the protocol
succeeds except with probability 1/8. If |z| > 2¢ then Part 1 outputs the correct answer
“lz| > t7; if |z| < t then all solutions (and hence |z|) are found by Part 2; and if |z| €
{t+1,...,2t — 1} then either Part 1 already outputs the correct answer “|z| > t” or the
protocol proceeds to Part 2 which then finds all solutions. <

We can use the above theorem twice: once to count the number of —1s in z (up to t) and
once to count the number of 1s in z (up to ¢). This uses O(vtn Q¥(G)) = O(Q(f) Q¥(G))
qubits of communication, assumes O(tlogn) shared EPR-pairs at the start of the protocol,
and gives us enough information about |z| to compute f(z) = F(X,Y). This concludes the
proof of Theorem 3 from the introduction, restated below.

» Theorem 25 (Restatement of Theorem 3). For every symmetric Boolean function f :
{=1,1}" = {=1,1} and two-party function G : {—1,1} x {~1,1}* — {0,1}, we have
Qe (f o G) = O(Q()QE(G)).

If Q(f) = ©(V/tn), then our protocol in the proof of Theorem 3 assumes a shared state
of O(tlogn) EPR-pairs at the start. We remark that for the special case where G = AND5,
our upper bound matches the lower bound proved by Razborov [22], except for symmetric
functions f where the first switch of function value happens at Hamming weights very close

to n. In particular, if f = AND,, and G = ANDs, then Q°°(f o G) = 1 but Q(f) = ©(\/n).

4 Necessity of the log-factor overhead in the BCW simulation

In this section we prove Theorem 5. We exhibit a function f : {—1, 1}2"2 — {-1,1} for
which Q(f) = O(n) and UPP(f o) = Q(nlogn) for O € {ANDy, XORs}.

The proofs of Theorem 5 and Theorem 6 each involve proving a query complexity upper
bound and a communication complexity lower bound. The proofs of the query complexity
upper bounds are along similar lines and follow from Theorem 29 and Corollary 30 (see
Section 4.1). The proofs of the communication complexity lower bounds each involve a
reduction from a problem whose communication complexity is easier to analyze (see Lemma 31
in Section 4.2). We complete the proof of Theorem 5 in Section 4.2.1. See the full version of
our paper [8] for a proof of Theorem 6.

4.1 Quantum query complexity upper bound

For total functions f, g, let f o g denote the standard composition of the functions f and
g. We also require the following notion of composition of a total function f with a partial
function g.

» Definition 26 (Composition with partial functions). Let f: {—1,1}" — {—1,1} be a total
function and let g : {—1,1}" — {=1,1,x} be a partial function. Let f S g:{—1,1}"" —
{—1,1} denote the total function that is defined as follows on input (X1, ..., X,) € {-1,1}"",
where X; € {—1,1}"" for all i € [n].

fl9(Xa),...,9(Xy)) if g(Xi) € {=1,1} for alli€ [n],
-1 otherwise.

ng(Xl,,Xn):{

That is, we use f © g to denote the total function that equals f o g on inputs when each copy
of g outputs a value in {—1,1}, and equals —1 otherwise.

STACS 2022
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Recall that we index coordinates of n-bit strings by integers in [n], and also interchangeably
by strings in {—1,1}'**™ via the natural correspondence. For z € {—1,1}", let —z € {—1,1}"
be defined as (—x); = —z; for all i € [n]. We use the notation +x to denote the set {z, —z}.

logn

» Definition 27 (Hadamard Codewords). For every positive integer n and s € {—1,1}°%",
let H(s) € {~1,1}" be defined as (H(s)); = [;s,—_1ti forall t € {—1,1}8" Ifz €
{=1,1}" is such that x = H(s) for some s € {—1,1Y'°%™ we say = is a Hadamard codeword
corresponding to s.

That is, for every s € {—1,1}°8"  there is an n-bit Hadamard codeword corresponding to s.

This represents the enumeration of all parities of s.
We now define how to encode a two-party total function G on (logj + log k) input bits
to a partial function hg on (j + k) input bits, using Hadamard encoding.

» Definition 28 (Hadamardization of functions). Let j,k > 1 be powers of 2, and
let G : {—1‘,1}log3 x {—=1,1}°8% 5 {—1,1} be a function. Define a partial function
he : {=1, 1% = {~1,1,+} by

hole.y) G(s,t) ifx € +H(s),y € £H(t) for some s € {—1,1}°87 te{—1,1}'°8"
x,y) =
iy * otherwise.

We next prove the following theorem. (See Figure 2 for a visual description of hg.)

> Theorem 29. Let G : {—1,1}'*%7 x {~1,1}'*" — {~1,1} and r : {~1,1}" — {~1,1}.
Then the quantum query complexity of the function r © hg : {—1, l}n(JJrk) — {—1,1} is given

by Q(r © hg) = O(n+ /n(j +k)).

Proof. Recall from Definition 26 that the function r ¢ hg : {—1, 1}"(j+k) — {—1,1} is defined
as 1 o ha((X1,Y1),..., (Xn, Yn)) =roha((X1,Y1), ..., (X,, Y0)) if ha((X;,Y5)) € {-1,1}
for all 4 € [n], and —1 otherwise.

Quantum query algorithm

View inputs to r & hg as (X1,Y1,...,Xn,Yy), where X; € {—1,1} for all i € [n] and

Y; € {—1,1}" for all i € [n]. We give a quantum algorithm and its analysis below.

1. Run 2n instances of the Bernstein-Vazirani algorithm: 1 instance on each X; and 1 instance
on each Y;, to obtain 2n strings x1,...,Zn, Y1, - -, Yn, where each z; is a (log j)-bit string
and each y; is a (log k)-bit string.

2. For each X; and Y;, query (X;)i0es and (Y;)i0er to obtain bits b;,¢; € {—1,1} for all
i €[n].

3. Run Grover’s search [11, 6] to check equality of the following two (nj + nk)-bit strings:
(b1H(z1),...,bpH(zn),c1HW1), -, cnH(yn)) and (Xq,..., X, Y1,...,Y,).

4. If the step above outputs that the strings are equal, then output
r(G(z1,y1) -+, G(n,yn)). Else, output —1.

Analysis of the algorithm

If the input is indeed of the form (X1,Y1),...,(Xn,Ys) where each X; € +H(x;) and
Y; € +H(y;) for some z; € {—1,1}'°87 and y; € {—1,1}'*** then Step 1 outputs the
correct strings x1,...,%n, Y1, - - -, Yn with probability 1 by the properties of the Bernstein-
Vazirani algorithm. Step 2 then implies that X; = b, H(z;) and Y; = ¢; H(y;) for all i € [n].
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Next, Step 3 outputs that the strings are equal with probability 1 (since the strings whose
equality are to be checked are equal). Hence the algorithm is correct with probability 1
in this case, since (r S hg)(X1,Y1,..., X0, Yo) = r(G(21,91), .-, G(Zn, Yn))-

If the input is such that there exists an index ¢ € [n] for which X; ¢ +H (x;) for every
z; € {~1,1}'°%7 or Y; ¢ +H(y;) for every y; € {—1,1}'°% then the two strings for
which equality is to be checked in the Step 3 are not equal. Grover’s search catches a
discrepancy with probability at least 2/3. Hence, the algorithm outputs —1 (as does
r S hg), and is correct with probability at least 2/3 in this case.

Cost of the algorithm

Step 1 accounts for 2n quantum queries. Step 2 accounts for 2n quantum queries. Step 3
accounts for O(4/n(j + k)) quantum queries. Thus, Q(r © hg) = O(n + /n(j + k)). <

As a corollary to Theorem 29, we obtain the following on instantiating j = k =n and r
as a Boolean function with quantum query complexity O(n).

» Corollary 30. Let G : {—1,1}'%" x {—1,1}'°®" — {—1,1} be a non-constant function and

let r: {=1,1}" — {=1,1} be a total function with Q(r) = ©(n). Then the quantum query
complezity of the total function r 3 hg : {—1,1}"" — {~1,1} is Q(r 3 hg) = O(n).

Proof. The upper bound Q(r S hg) = O(n) follows by plugging in parameters in Theorem 29.

For the lower bound, we show that Q(r S hg) > Q(r). Since G is non-constant, there
exist @1,y1, 2,52 € {—1,11'°5" such that G(z1,y1) = —1 and G(a,72) = 1. Let X; =
H(xz1),Yy = H(y1), Xo = H(xzz) and X5 = H(y2). Consider r S hg only restricted to
inputs where the inputs to each copy of hg are either (X1,Y7) or (X3,Y3). Under this
restriction, r © hg : {—1,1}2"2 — {—1,1} is the same as r : {—1,1}" — {—1,1}. Thus
Q(r S hg) > Q(r) = Q(n). <

4.2 On the tightness of the BCW simulation

In this section we first state a communication lower bound (under some model) on (r ¢ hg)oO

in terms of the communication complexity of r o G (in the same model of communication).

We state the lemma below (Lemma 31) for the case where the models under consideration
are the bounded-error and unbounded-error quantum models, since these are the models of
interest to us.

» Lemma 31. Let r : {—1,1}" — {-1,1}, G : {—1,1}'°%7 x {—1,1}/°¢F - {-1,1},
O € {AND3, XOR,} and CC € {Q®*, UPP*}. Then CC((r 3 hg) o) > CC(ro Q).

The proof of this lemma follows by a simple reduction. We refer the reader to the full
version [8] for a formal proof.
4.2.1 Proof of Theorem 5

The total function f: {—1, 1}2"2 — {—1, 1} that we use to prove Theorem 5 is f = r S hg,
where » = PARITY,, and G = IP1og,. The following claim shows that f is transitive.

> Claim 32.  Let n > 0 be a power of 2. Let r = PARITY,, : {—1,1}" — {-1,1} and
2

G =Progp : {—1,1}°8" x {—1,1}/°8™ — {—1,1}. The function f =7 3 hg : {—1,1}"" —

{—1,1} is transitive.
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Proof. We first show that hq : {—1,1}*" — {—1,1} is transitive. We next observe that s o ¢
is transitive whenever s is symmetric and ¢ is transitive. The theorem then follows since
PARITY, is symmetric.

Towards showing transitivity of hg, let ™ € Sap, and (oy, 04) € Sop, for £ € {1, 1}l°g”
be defined as follows. (Here oy € S,,; the first copy acts on the first n coordinates, and the
second copy acts on the next n coordinates.)

(k) = {k+n k<n

k—n k>n.
That is, on every string (z,y) € {—1,1}*", the permutation 7 maps (z,y) to (y, z).

For every £ € {—1,1}'°®™ the permutation o, € S, is defined as

o) =i @ ¢, 2)

where i @ ¢ denotes the bitwise XOR of the strings ¢ and ¢. That is, for every input
(z,y) € {—1,1}"" and every k € {—1,1}°5" the input bit z, is mapped to zzee and yj is
mapped to Yrge-

For every (z,y) € {—1,1}*" and i,j € {—1,1}'°®", the permutation oigj(z,y) swaps x;
and z;, and also swaps y; and y;. If for i, j € {1, 1}1°gn, our task was to swap the 7’th index
of the first n variables with the j’th index of the second n variables, then the permutation
0ij o m does the job. That is, for every (z,y) € {—1,1}*" and i,j € {~1,1}'°®", the
permutation ¢;g,; o ™ maps x; to y;. Thus the set of permutations {r, {0, : £ € {—1, 1}y
acts transitively on Ss,.

Now we show that for all z,y € {—1,1}*" and all £ € {—1,1}'®", we have
ha(oe(@), oe(y)) = ha(w,y). Fix € {~1,1}'"

If x € £H(s) and y € £ H (t) are Hadamard codewords, then z, = (k, s) and y, = (k,t)

for all k£ € {—1,1}1°g”, and G(z,y) = (s,t). Thus, for every k € {—1, l}log" we have

oe(zr) = xpee = (kDL s) = (L, s) - (k,s). Hence op(x) € £H(s) (since (¢,s) does
not depend on k, and takes value either 1 or —1). Similarly, o4(y) € £H(t). Thus
ha(oe(z,y)) = ha(@,y).

If = (y, respectively) is not a Hadamard codeword, then a similar argument shows that

for all £ € [n], o¢(z) (04(y), respectively) is also not a Hadamard codeword.

Using the fact that (s,t) = (t,s) for every s,t € {—1,1}'°®", one may verify that
ha(m(x,y)) = ha(z,y) for all z,y € {—1,1}°".

Along with the observation that PARITY,, is a symmetric function, we have that f =
rS hg: {-1, 1}2n2 — {—1,1} is transitive under the following permutations:

S, acting on the inputs of PARITY,,, and

The group generated by {7} U {(oy,0¢) : £ € [n]} acting independently on the inputs of

each copy of hg, where oy is as in Equation (2). <

Proof of Theorem 5. Let n > 0be a power of 2. Let r = PARITY,, : {—1,1}" — {—1,1} and
G = Progn : {—1,1}'%5" 5 {~1,1}'¥" = {~1,1}. Let f =73 hg : {~1,1}>" — {~1,1}.
By Claim 32, f is transitive. By Corollary 30 we have Q(f) = ©(n). For the communication
lower bound we have

UPP*(f o 0) = UPP((r 5 h¢) o 0J)

> UPP““(PARITY,, 0 IP1og 1) by Lemma 31
= UPP*(IP,, 10 ) Observation 15
= Q(nlogn). by Theorem 20

<
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A Noisy amplitude amplification and a new distributed-search protocol

In this section we prove Theorem 21, restated below.

» Theorem 33 (Restatement of Theorem 21). Let G : {—1,1} x {—1,1}F — {=1,1} be
a two-party function, X = (X1,...,X,) € {~1,1}” and Y = (Y1,...,Y,) € {—1,1}”k.
Define z = (G(X1,Y1),...,G(Xn,Yy)) € {—1,1}". Assume Alice and Bob start with [logn]
shared EPR-pairs.
There exists a quantum protocol using O(v/n Q5% (QG)) qubits of communication that finds
(with success probability > 0.99) an i € [n] such that z; = —1 if such an i exists, and says
“no” with probability 1 if no such i exists.
If the number of —1s in z is within a factor of 2 from a known integer t, then the
communication can be reduced to O(\/n/t Q% (G)) qubits.

» Remark 34. The logn shared EPR-pairs that we assume Alice and Bob share at the start
could also be established by means of logn qubits of communication at the start of the
protocol. For the result in the first bullet, this additional communication does not change
the asymptotic bound. For the result of the second bullet, if t < nQS$(G)?/(logn)?, then
this additional communication does not change the asymptotic bound either. However, if
t = w(n/(logn)?) and Q%(G) = O(1) then the quantum communication O(\/n/t Q% (G)) is
o(logn) and establishing the logn EPR-pairs by means of a first message makes a difference.

As a corollary, we obtain a new O(y/n)-qubit protocol for the distributed search problem
composed with G = AND2 (whose decision version is the Set-Disjointness problem).

A.1 Amplitude amplification with perfect reflections

We first describe basic amplitude amplification in a slightly unusual recursive manner, similar
o [14]. We are dealing with a search problem where some set G of basis states are deemed
“good” and the other basis states are deemed “bad.” Let Pg = 3 . [g)g| be the projector
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onto the span of the good basis states, and Og = I — 2Pg be the reflection that puts a “—’
in front of the good basis states: Oglg) = —|g) for all basis states g € G, and Og|b) = |b) for
all basis states b ¢ G.

Suppose we have an initial state |¢)) which is a superposition of a good state and a bad
state:

|¢p) = sin(6)|G) + cos(0)[B),

where |G) = Pglu)/ |[Pgl) | and |B) = (I - Pg)[)/ | (I — Po)l)|l. For example in Grover's
algorithm, with a search space of size n containing ¢ solutions, the initial state |1)) would be
the uniform superposition, and its overlap (inner product) with the good subspace spanned
by the ¢t “good” (sometimes called “marked”) basis states would be sin(0) = /t/n.

We'd like to increase the weight of the good state, i.e., move the angle 6 closer to 7/2.
Let R, denote the reflection about the state |1), i.e., Ry|¢) = [¢) and Ry|¢) = —|¢) for
every |¢) that is orthogonal to |1). Then the algorithm A; = Ry, - Og is the product of two
reflections, which (in the 2-dimensional space spanned by |G) and |B)) corresponds to a
rotation by an angle 26, thus increasing our angle from 6 to 36. This is the basic amplitude
amplification step. It maps

[t) — A1) = sin(30)|G) + cos(36)|B).
We can now repeat this step recursively, defining
Ay = ARy AT - Og - A

Note that A; Ry, A7 is a reflection about the state A;|y). Thus As triples the angle between
Ai[tp) and |B), mapping

[t) — Az|y)) = sin(90)|G) + cos(96)|B).
Continuing recursively in this fashion, define the algorithm

Aji1 = AjRypAj - Og - Aj. (3)
The last algorithm A will map

[1) = Ag|t)) = sin(3%0)|G) + cos(3%0)|B).

Hence after k recursive amplitude amplification steps, we have angle 3%6. Since we want to
end up with angle ~ 7/2, if we know 6 then we can choose

k = [logy(m/(20))] - (4)

This gives us an angle 30 € (7/6,7/2], so the final state Ax|t)) has overlap sin(6) > 1/2
with the good state |G).

Let Cj denote the “cost” (in whatever measure, for example query complexity, or
communication complexity, or circuit size) of algorithm Ay. Looking at its recursive definition
(Equation (3)), C is 3 times Ck_1, plus the cost of Ry plus the cost of Og. If we just
count applications of Og (“queries”), considering Ry to be free, then Cyy1 = 3Cy + 1. This
recursion has the closed form Cj = Zf;ol 3 < 3. With the above choice of k we get
Cr = O(1/6). In the case of Grover’s algorithm, where § = arcsin(+/t/n) & \/t/n, the cost
is Cr = O(4/n/t).
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A.2 Amplitude amplification with imperfect reflections

Now we consider the situation where we do not implement the reflections R, perfectly, but
RS, - R¢’
Ry, with the additional property that R |¢) = [¢) (this one-sided error property will be
important for the proof). We can control this error €, but smaller ¢ will typically correspond
to higher cost of Rj. The reflection Og will still be implemented perfectly below.

We again start with the initial state

instead implement another unitary R, at operator-norm distance < e from

[¢) = sin(0)|G) + cos()|B).

For errors 1, ..., that we will specify later, recursively define the following algorithms.
Ay =R} -Og and Ajy = A;R7TAT-Og - Aj.

These algorithms will map the initial state as follows:
[0 > [165) = Az ) = sin(370)|G) + cos(376) | B) + | E;), (5)

where |Ej;) is some unnormalized error state defined by the above equation; its norm 7;
quantifies the extent to which we deviate from perfect amplitude amplification. Our goal here
is to upper bound this 7;. In order to see how n; can grow, let us see how Aij;“A;f -Og
acts on sin(376)|G) + cos(3760)|B) (we’ll take into account the effects of the error term |E;)
later). If Rflf“ were equal to Ry, then we would have one perfect round of amplitude
amplification and obtain sin(3/710)|G) + cos(37716)|B); but since Rf/j“ is only €;41-close
to Ry, additional errors can appear. First we apply Og, which flips the phase of |G) and
hence changes the state to

—sin(370)|G) + cos(370)|B) = [vb;) — | E;) — 2sin(370)|G).
Second we apply V = Aij/j+1A;f. Let V! = A; Ry A}, and note that Vi;) = V'[4;) = |¢5)

and |V = V]| = HRw - RZ’“ < ¢j41. The new state is

V(I;)—|Ej) —25in(3'0)|G)) = V' (ly;) — | E;) — 25in(370)|G)) + (V' =V)(|E;) + 25in(3'6)|G))
= V/(—sin(370)|G)+cos(370)| B))+ (V' = V)(|E;) + 2sin(370)|G))
=sin(37'0)|G) + cos(37710)|B)+ (V' = V) (|E;) + 25in(370)|G)).

Putting back also the earlier error term |E;) from Equation (5) (to which the unitary VOg
is applied as well), it follows that the new error state is

|Ejr1) = [¢j41) — (sin(3710)|G) + cos(37710)|B))

=VOg|E;) + (V' = V)(|E;) + 2sin(370)|G)).

Its norm is
ni+1 < VOg|Ep| +||(V! = V)(IE;) + 25sin(370)|G))||
< nj + i1 (1 +25in(370)) = (1 +j41)1; + 2¢541 5in(376).

Since ny = 0, we can “unfold” the above recursive upper bound to the following, which is
easy to verify by induction on k:

k
e < Z H 1+ £¢)2¢,sin(37710). (6)

k
J=1t=j+1
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For each 1 < j <k, choose

o 1
7710045

(7)

Note that o = Z§=1 e < 1/300. With this choice of ¢;’s, and the inequalities 1 + = < 7,
e? < 1.5 and sin(z) < x for < w/2 (which is the case here), we can upper bound the norm
of the error term |Ey) after k iterations (see Equation (5)) as

k k
<) €230 < > (3/4)7 <

Jj=1

Accordingly, up to very small error we have done perfect amplitude amplification.

A.3 Distributed amplitude amplification with imperfect reflection

We will now instantiate the above scheme to the case of distributed search, where our
measure of cost is communication, that is, the number of qubits sent between Alice and Bob.
Specifically, consider the intersection problem where Alice and Bob have inputs = € {—1,1}"
and y € {—1,1}", respectively. Assume for simplicity that n is a power of 2, so logn is an
integer. Alice and Bob want to find an i € {0,...,n—1} = {0,1}1°8" such that z; = y; = —1,
if such an 7 exists.

The basis states in this distributed problem are |i)|j), and we define the set of “good”
basis states as

G =Alol) [ =i =y; = -1},

even though we are only looking for 7, j where i = j (it’s easier to implement Og with this
more liberal definition of G). Our protocol will start with the maximally entangled initial
state [¢) in n dimensions, which corresponds to logn EPR-pairs:

1
) = —= [i)li) = sin(9)|G) + cos(8)|B),
\/ﬁ ie{(%logn

where we assume there are t ¢’s where x; = y; = —1, i.e., t solutions to the intersection
problem, so

0 = arcsin(y/t/n). 9)

and

¢ (i,3)€G

It costs [logn] qubits of communication between Alice and Bob to establish this initial
shared state, or it costs nothing if we assume pre-shared entanglement. Our goal is to end
up with a state that has large inner product with |G).

In order to be able to use amplitude amplification, we would like to be able to reflect
about the above state |1)). However, in general this perfect reflection Ry costs a lot of
communication: Alice would send her logn qubits to Bob, who would unitarily put a —1
in front of all states orthogonal to |1}, and then sends back Alice’s qubits. This has a
communication cost of O(logn) qubits, which is too much for our purposes. Fortunately,
Theorem 19 gives us a way to implement a one-sided e-error reflection protocol Rj, that only
costs O(log(1/€)) qubits of communication.

20:21

STACS 2022



20:22

Symmetry and Quantum Query-To-Communication Simulation

«w_»

The reflection Og puts a in front of the basis states |i)|j) in G. This can be
implemented perfectly using only 2 qubits of communication, as follows. For the variables
x; € {—1,1}, let &; denote their {0, 1}-valued counterparts. That is, Z; = 1 if 2; = —1 and
Z; = 0 if ; = 1. To implement the reflection Og on her basis state |i), Alice XORs |#;) into
a fresh auxiliary |0)-qubit and sends this qubit to Bob. Bob receives this qubit and applies
the following unitary map:

[)]5) = y71b)17), b€ {0,1}.5 € [n].

He sends back the auxiliary qubit. Alice sets the auxiliary qubit back to |0) by XOR~ing
Z; into it. Ignoring the auxiliary qubit (which starts and ends in state |0)), this maps
li)|j) = (=1)i=vi==13)|j). Hence we have implemented Og correctly: a minus sign is
applied exactly for the good basis states, the ones where z; = y; = —1.

Now consider the algorithms (more precisely, communication protocols):

Al = prl . Og and Aj+1 = A7R21+1A; . Og . Aj

with the choice of ¢;’s from Equation (7). If we pick k = |logs(m/(26))], like in Equation (4),
then 3%0 € (7/6,7/2]. Hence by Equation (5) and Equation (8), the inner product of our
final state with |G) will be between sin(3*0) — 36/100 > 0.4 and 1.

At this point Alice and Bob can measure, and with probability > 0.42 they will each see
the same ¢, with the property that x; = y; = —1.

From Equation (3) and Theorem 19, the recursion for the communication costs of these
algorithms is

Cjt1 =3C; + O(log(1/gj41)) + 2.

Solving this recurrence with our ¢;’s from Equation (7) and the value of § from Equation (9)

we obtain
k k
Cr =35 9(0(log(1/2)) +2) = 3 8470(j) = O(3%) = O(/nft).

Thus, using O(1/n/t) qubits of communication we can find (with constant success probability)
an intersection point 7. This also allows us to solve the Set-Disjointness problem (the decision
problem whose output is 1 if there is no intersection between = and y). Note that if the ¢
we used equals the actual number of solutions only up to a factor of 2, the above protocol
still has Q(1) probability to find a solution, and O(1) repetitions will boost this success
probability to 0.99. In case we do not even know ¢ approximately, we can use the standard
technique of trying exponentially decreasing guesses for ¢ to find an intersection point with
communication O(y/n).

Note that there is no log-factor in the communication complexity, in contrast to the
original O(y/nlogn)-qubit Grover-based quantum protocol for the intersection problem of
Buhrman et al. [7]. Aaronson and Ambainis [1] earlier already managed to remove the
log-factor, giving an O(y/n)-qubit protocol for Set-Disjointness as a consequence of their local
version of quantum search on a grid graph (which is optimal [22]). We have just reproved
this result of [1] in a different and arguably simpler way.

The above description is geared towards the intersection problem, where the “inner”
function is G = AND;: we called a basis state |i)|j) “good” if z; = y; = —1. However,
this can easily be generalized to the situation where Alice and Bob’s respective inputs are
X =(X1,....,Xpn)and Y = (Y1,...,Y,) and we want to find an ¢ € [n] where G(X;,Y;) = —1
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for some two-party function G, and define the set of “good” basis states as G = {|i)|j) |
G(X;,Y;) = —1}.4 The only thing that changes in the above is the implementation of the
reflection Og, which would now be computed by means of an exact quantum communication
protocol for G(X;,Y;), at a cost of 2Q%(G) qubits of communication.” Note that because we
can check (at the expense of another Q% (G) qubits of communication) whether the output
index 7 actually satisfies G(X;,Y;) = —1, we may assume the protocol has one-sided error: it
always outputs “no” if there is no such ¢. This concludes the proof of Theorem 21.

4 We intentionally use the letter “G” to mean “good” in G and and to refer to the two-party function G,
since G determines which basis states |i)|j) are “good.”

® The factor of 2 is to reverse the protocol after the phase G(X;,Y;) has been added to basis state |3)|5),
in order to set any workspace qubits back to |0).
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