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ABSTRACT The field of adversarial machine learning has experienced a near exponential growth in the
amount of papers being produced since 2018. This massive information output has yet to be properly
processed and categorized. In this paper, we seek to help alleviate this problem by systematizing the
recent advances in adversarial machine learning black-box attacks since 2019. Our survey summarizes
and categorizes 20 recent black-box attacks. We also present a new analysis for understanding the attack
success rate with respect to the adversarial model used in each paper. Overall, our paper surveys a wide body
of literature to highlight recent attack developments and organizes them into four attack categories: score
based attacks, decision based attacks, transfer attacks and non-traditional attacks. Further, we provide a new
mathematical framework to show exactly how attack results can fairly be compared.

INDEX TERMS Adversarial machine learning, adversarial examples, adversarial defense, black-box attack,
security, deep learning.

I. INTRODUCTION
One of the first works to popularize Convolutional Neural
Networks (CNN) [1] for image recognition was published
in 1998. Since then, CNNs have been widely employed for
tasks like image segmentation [2], object detection [3] and
image classification [4]. Although CNNs are the de facto
choice formachine learning tasks in the imaging domain, they
have been shown to be vulnerable to adversarial examples [5].
In this paper, we discuss adversarial examples in the context
of images. Specifically, an adversarial example is an input
image which is visually correctly recognized by humans, but
has a small noise added such that the classifier (i.e. a CNN)
misclassifies the image with high confidence.

Attacks that create adversarial examples can be divided
into two basic types, white-box and black-box attacks.White-
box attacks require knowing the structure of the classifier as
well as the associated trained model parameters [5]. In con-
trast to this, black-box attacks do not require directly knowing
the model and trained parameters. Black-box attacks rely on
alternative information like query access to the classifier [7],
knowing the training dataset [6], or transferring adversarial
examples from one trained classifier to another [9].
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In this paper, we survey recent advances in black-box
adversarial machine learning attacks. We select this scope
for two main reasons. First, we choose the black-box adver-
sary because it represents a realistic threat model where the
classifier under attack is not directly visible. It has been
noted that a black-box attacker represents a more practical
adversary [10] and one which corresponds to real world
scenarios [6]. The second reason we focus on black-box
attacks is due to the large body of recently published lit-
erature. As shown in Figure 1, many new black-box attack
papers have been proposed in recent years. These attacks
are not included in current surveys or systematization of
knowledge papers. Hence, there is a need to categorize and
survey these works, which is precisely the goal of this paper.
To the best of our knowledge, the last major survey [11] on
adversarial black-box attacks was done in 2020. A graphical
overview of the coverage of some of the new attacks we
provide (versus the old attacks previously covered) are shown
in Figure 2. The complete list of important attack papers
we survey are graphically shown in Figure 1 and also listed
in Table 1.

While each new attack paper published contributes to the
literature, they often do not compare with other state-of-art
techniques, or adequately explain how they fit within the
scope of the field. In this survey, we summarize 20 recent
black-box attacks, categorize them into four basic groups and
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FIGURE 1. Timeline of recent black-box attack developments. The transfer based attacks are show in red. The original transfer
attack (Local Substitute Model) was proposed in [6]. The score based attacks are shown in blue. One of first widely adopted score
based attacks (ZOO) was proposed in [7]. The decision based attacks are shown in green. One of the first decision based attacks
(Boundary Attack) was proposed in [8]. The references corresponding to each attack can be found in Table 1. The dates above
correspond to when the e-prints for the corresponding attacks were first made available on arXiv.

create a mathematical framework under which results from
different papers can be compared.

A. ADVANCES IN ADVERSARIAL MACHINE LEARNING
In this subsection we briefly discuss the history and devel-
opment of the field of adversarial machine learning. Such a
perspective helps illuminate how the field went from a white-
box attack like FGSM [5] in 2014 which required complete
knowledge of the classifier and trained parameters, to a black-
box attack in 2021 like SurFree [12] which can create an
adversarial example with only query access to the classifier
using 500 queries or less.

The inception point of adversarial machine learning can be
traced back to several source papers. However, identifying the
very first adversarial machine learning paper is a difficult task
as the first paper in the field depends on how the term ‘‘adver-
sarial machine learning’’ itself is defined. If one defines
adversarial machine learning as exclusive to CNNs, then
in [13] the vulnerability of CNNs to adversarial examples
was first demonstrated in 2013. However, others [14] claim
adversarial machine learning can be traced back as early
as 2004. In [14], the authors claim evading linear classifiers
which constituted email spam detectors was one of the first
examples of adversarial machine learning.

Regardless of the ambiguous starting point of adversarial
examples, it remains a serious open problem which occurs
across multiple machine learning domains including image

recognition [5] and natural language processing [15]. Adver-
sarial machine learning is also not just limited to neural
networks. Adversarial examples have been shown to be prob-
lematic for decision trees, k-nearest neighbor classifiers and
support vector machines [16].

The field of adversarial machine learning with respect to
computer visions and imaging related tasks, first developed
with respect to white-box adversaries. One of the first and
most fundamental attacks proposed was the Fast Gradient
Sign Method (FGSM) [5]. In the FGSM attack, the adversary
uses the neural networkmodel architectureF , loss function L,
trained weights of the classifier w and performs a single
forward and backward pass (backpropagation) on the network
to obtain an adversarial example from a clean example x.
Subsequent work included methods like the Projected Gradi-
ent Descent (PGD) [17] attack, which used multiple forward
and backward passes to better fine tune the adversarial noise.
Other attacks were developed to better determine the adver-
sarial noise by forming an optimization problem with respect
to certain lp norms, such as in the Carlini & Wagner [18]
attack, or the Elastic Net attack [19]. Even more recent
attacks [20] have focused on breaking adversarial defenses
and overcoming false claims of security which are caused by
a phenomena known as gradient masking [21].

All of the aforementioned attacks are consideredwhite-box
attacks. That is, the adversary requires knowledge of the net-
work architecture F and trained weightsw in order to conduct
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the attack. Creating a less capable adversary (i.e., one that
did not know the trained model parameters) was a motivating
factor in developing black-box attacks. In the next subsection,
we discuss black-box attacks and the categorization system
we develop in this paper.

B. BLACK-BOX ATTACK CATEGORIZATION
We can divide black-box attacks according to the general
adversarial model that is assumed for the attack. The four
categories we use are transfer attacks, score based attacks,
decision based attacks and non-traditional attacks. We next
describe what defines the different categorizations and also
mention the primary original attack paper in each category.

1) TRANSFER ATTACKS
One of the first of black-box attacks was called the local
substitute model attack [6]. In this attack, the adversary was
allowed access to part of the original training data used
to train the classifier, as well as query access to the clas-
sifier. The idea behind this attack was that the adversary
would query the classifier to label the training data. After
this was accomplished, the attacker would train their own
independent classifier, which it is often referred to as the
synthetic model [22]. Once the synthetic model was trained,
the adversary could run any number of white-box attacks on
the synthetic model to create adversarial examples. These
examples were then submitted to the unseen classifier in the
hopes the adversarial examples would transfer over. Here
transferability is defined in the sense that adversarial exam-
ples that are misclassified by the synthetic model will also be
misclassified by the unseen classifier.

Recent advances in transfer based attacks include not need-
ing the original training data like in the DaST attack [9] and
using methods that generate adversarial example with higher
transferability (Adaptive [22] and PO-TI [23]).

2) SCORE BASED ATTACKS
The zeroth order optimization based black-box attack
(ZOO) [7] was one of the first accepted works to rely on
a query based approach to creating adversarial examples.
Unlike transfer attacks which require a synthetic model, score
based attacks repeatedly query the unseen classifier to try and
craft the appropriate adversarial noise. As the name implies,
for score based attacks to work, they require the output from
the classifier to be the score vector (either probabilities or in
some cases the pre-softmax logits output).

Score based attacks represent an improvement over transfer
attacks in the sense that no knowledge of the dataset is
needed since no synthetic model training is required. In very
broad terms, the recent developments in score based attacks
mainly focus on reducing the number of queries required
to conduct the attack and/or reducing the magnitude of the
noise required to generate a successful adversarial example.
New score based attacks include qMeta [24], P-RGF [25],
ZO-ADMM [26], TREMBA [27], Square attack [28],
ZO-NGD [29] and PPBA [30].

3) DECISION BASED ATTACKS
We consider the type of attack that does not rely on a synthetic
model and does not require the score vector output to be a
decision based attack. Compared to either transfer based or
score based attacks, decision based attacks represent an even
more restricted adversarial model, as only the hard label out-
put from the unseen classifier is required. The first prominent
decision based attack paper was the Boundary Attack [8].
Since then, numerous decision based attacks have been pro-
posed to improve upon the number of queries to successfully
attack the unseen classifier, or reduce the noise required in
the adversarial examples. The new decision attacks we cover
in this paper include qFool [31], HSJA [10], GeoDA [32],
QEBA [33], RayS [34], SurFree [12] andNonLinear-BA [35].

4) NON-TRADITIONAL ATTACKS
The last category of attacks that we cover in this paper
are called non-traditional black-box attacks. Here, we use
this category to group the attacks that do not use standard
black-box adversarial models. Transfer based attacks, score
based attacks, and decision based attacks typically focus on
designing the attack with respect the l2 and/or the l∞ norm.
Specifically, these attacks either directly or indirectly seek
to satisfy the following condition: ||x − xadv||p ≤ ε where
x is the original clean example, ε is the maximum allowed
perturbation and p = 2,∞. However, there are attacks that
work outside of this traditional scheme.

CornerSearch [36] proposes a black-box attack based
on finding an adversarial example with respect to the l0
norm. Abandoning norm based constraints completely, Patch
Attack [37] replaces a certain area of the image with an adver-
sarial patch. Likewise, ColorFool [38] disregards norms and
instead recolors the image to make it adversarial. While the
non-traditional norm category is not strictly defined, it gives
us a concise grouping that highlights the advances beingmade
outside of the l2 and l∞ based black-box attacks.

C. ATTACK SCOPE AND RELATED ADVERSARIAL
MACHINE LEARNING SURVEYS
In this subsection, we brieflymotivate the scope of our survey
and discuss several related but distinctly different adversarial
surveys that have been done. We specifically focus on the
black-box adversary because this assumes a more realistic
attacker that does not have knowledge of the architecture of
the model and the trained model parameters. This lack of
knowledge of the model parameters is the common feature
that unites transfer, score based, decision based and non-
traditional black-box attacks. Where these four categories
differ slightly is in which auxiliary information is available
to the attacker. In most transfer attacks, part or all of the
original training data is available to the attacker (for training a
synthetic model). In many decision and score based attacks,
query access is the only power given to the attacker. While
these categories are by no means absolute, they give us a
convenient way to better grasp how the field of black-box
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FIGURE 2. Graph of different black-box attacks with the respective date they were proposed (e-print
made available). The query number refers to the number of queries used in the attack on an ImageNet
classifier. The orange points are attacks covered in previous survey work [11]. The blue points are
attacks covered in this work. We further denote whether the attack is targeted or untargeted by
putting a U or T next to the text label in the graph. A square point represents an attack done with
respect to the l2 norm and a circular point represents attacks done with respect to the l∞ norm.

TABLE 1. Attacks covered in this survey, their corresponding attack
categorization, publication date (when the first e-print was released) and
author.

adversarial machine learning advances. Since the focus of
this survey is on black-box attack development, we don’t
discuss gray-box and white-box attacks in this paper. That
is because advances in gray and white-box attacks are just
as numerous as black-box attacks and could merit their own
separate survey.

Similar to our work, related literature surveys have been
done in adversarial machine learning, albeit in different areas
other than black-box attacks. In [14] one of the first surveys of

adversarial machine learning was done that discusses adver-
sarial examples in terms of evasion and poisoning attacks,
as well as some adversarial defenses. The work in [14] does
not specifically focus on black-box attacks, and does not
include developments in the field after 2018.More recently in
2020, a survey from the defender’s perspective was released
in [39] that specifically discusses recent adversarial machine
learning defenses. The work in [39] uses a similar taxonomy
to us, but does not look at recent strides made in black-box
attack development. Another defense survey [40] summarizes
the advances made in the methods used to detect adversarial
examples.

Lastly, in [11] they look at advances in adversarial machine
learning black-box attacks. Our work is a natural extension
of [11] in the sense that the black-box progress in [11] only
goes up to 2019 (see Figure 2). In our work we provide
summaries of some of the most recent black-box attacks
(20 different attack papers), as well as other contributions
which we further detail in the following subsection.

D. PAPER ORGANIZATION AND MAJOR CONTRIBUTIONS
In this paper we survey state-of-the-art black-box attacks
that have recently been published. We provide three major
contributions in this regard:

1) In-Depth Survey: We summarize and distill the
knowledge from 20 recent significant black-box adver-
sarial machine learning papers. For every paper,
we include explanation of the mathematics necessary
to conduct the attacks and describe the correspond-
ing adversarial model. We also provide an experi-
mental section that brings together the results from
all 20 papers, reported on three datasets (MNIST,
CIFAR-10 and ImageNet).

2) Attack Categorization: We organize the attacks into
four different categories based on the underlying adver-
sarial model used in each attack. We present this
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organization so the reader can clearly see where
advances are being made under each of the four adver-
sarial threat models. Our break down concisely helps
new researchers interpret the rapidly evolving field of
black-box adversarial machine learning.

3) Attack Analysis Framework: We analyze how the
attack success rate is computed based on different
adversarial models and their corresponding constraints.
Based on this analysis, we develop an intuitive way to
define the threat model used to compute the attack suc-
cess rate. Using this framework, it can clearly be seen
when attack results reported in different papers can be
compared, and when such evaluations are invalid.

The rest of our paper is organized as follows: in
Section II, we summarize score based attacks. In Section III,
we cover the papers that propose new decision based attacks.
In Section IV, we discuss transfer attacks. The last type of
attack, non-traditional attacks are described in Section V.
After covering all the new attacks, we turn our attention to
analyzing the attack success rate in Section VI. Based on
this analysis, we compile the experimental results for all the
attacks in Section VII, and give the corresponding threat
model developed from our new adversarial model framework.
Finally, we offer concluding remarks in Section VIII.

II. SCORE BASED ATTACKS
In this section we summarize recent advances in adversarial
machine learning with respect to attacks that are score based
or logit based. The adversarial model for these attacks allow
the attacker to query the defense with input x and receive the
corresponding probability outputs p1(x), . . . , pk (x), where k
is the number of classes. We also include logit based black-
box attacks in this section. The logits are the pre-softmax
outputs from the model, l1(x), . . . , lk (x).
We cover 7 recently proposed score type attacks. These

attacks include the square attack [28], the Zeroth-Order Nat-
ural Gradient Descent attack (ZO-NGD) [29], the Projection
and Policy Driven Attack (PPBA) [30], the Zeroth-order
Optimization Alternating Direction Method of Multiplers
(ZO-ADMM) attack [26], the prior-guided random gradient-
free (P-RGF) attack [25], the TRansferable EMbedding
based Black-box Attack (TREMBA) [27] and the qMeta
attack [24].

A. SQUARE ATTACK
The Square attack is a score based, black-box adversarial
attack proposed in [28] that focuses primarily on being query
efficient while maintaining a high attack success rate. The
novelty of the attack comes in the usage of square shaped
image perturbations which have a particularly strong impact
on the predicted outputs of CNNs. This works in tandem with
the implementation of the randomized search optimization
protocol. The protocol is independent of model gradients and
greedily adds squares to the current image perturbation if they
lead to an increase in the target model’s error. The attack

solves the following optimization problem:

min
x̂∈[0,1]d

L(f (x̂), y), s.t. ‖x̂ − x‖p ≤ ε (1)

where f is the classifier function, K is the number of classes,
x̂ is the adversarial input, x is the clean input, y is the ground
truth label, and ε is the maximum perturbation.

Untargeted: L(f (x̂), y) = fy(x̂)−maxk 6=yfk (x̂)

Targeted: L(f (x̂), t) = −ft (x̂)+ log(
∑K

i=1
efi(x̂)) (2)

The attack algorithm begins by first applying random noise to
the clean image. Then an image perturbation, δ, is generated
according to a perturbation generating algorithm defined by
the attacker. If L(f (x̂ + δ), y) < L(f (x̂), y) δ is applied to the
current x̂. This step is done iteratively until the targetedmodel
outputs the desired label or until the max number of iterations
are reached.

The distributions used for the iterative and initial image
perturbations are chosen by the attacker. In [28] two different
initial and iterative perturbation algorithms are proposed for
the l2 and l∞ norm attacks.

For the l∞ norm the perturbation is initialized by applying
one pixel wide vertical stripes to the clean image. The color
of each stripe is sampled uniformly from {−ε, ε}c where c
is the number of color channels. The distribution used in
the iterative step generates a square of a given size at a
random location such that the magnitude of the perturbation
in each color channel is chosen randomly from {−2ε, 2ε}.
The resulting, clipped adversarial image will then differ
from the clean image by either ε or −ε at each modified
point.

The l2 norm attack is initialized by generating a grid-
like tiling of squares on the clean image. The perturbation
is then rescaled to have l2 norm ε and is clipped to [0, 1]d .
The iterative perturbation is motivated by the realization that
classifiers are particularly susceptible to large, localized per-
turbations rather than smaller, more sparse ones. Thus the
iterative attack places two squares of opposite sign either
vertically or horizontally in line with each other, where each
square has a large magnitude at its center that swiftly drops
off but never reaches zero. After each iteration of the attack
the current xadv is clipped such that ‖xadx − x‖p < ε and
xadv ∈ [0, 1]d , where d is the dimensionality of the clean
image.

The attack is tested on contemporary models like
ResNet-50, Inception v3, and VGG-16-BN which are trained
on ImageNet. It achieves a lower attack failure rate while
requiring significantly less queries to complete than attacks
like Bandits, Parsimonious, DFO-MCA, and SignHunter.
Similarly the square attack is compared to the white box
Projected Gradient Descent (PGD) attacks on theMNIST and
CIFAR-10 datasets where it performs similarly to PGD in
terms of attack success rate despite operating within a more
difficult threat model.
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B. ZEROTH-ORDER NATURAL GRADIENT
DESCENT ATTACK
The Zeroth-Order Natural Gradient Descent (ZO-NGD)
attack is a score-based, black box attack proposed in [29]
as a query efficient attack utilizing a novel attack optimiza-
tion technique. In particular the attack approximates a Fisher
information matrix over the distribution of inputs and subse-
quent outputs of the classifier. The attack solves the following
optimization problem:

min
δ

f (x + δ, t), ‖δ‖∞ ≤ ε (3)

f (x + δ, t) = max{log p(t|x + δ)

−max
i6=t
{log p(i|x + δ))},−k} (4)

where x is the clean image, δ is an image perturbation, ε is the
maximum allowed image perturbation, t is the clean image’s
ground truth label, p(i|x) is the classifier’s predicted score for
class i given input x, and f is the attack’s loss. The attack is
an iterative algorithm that initializes the image perturbation,
δ, as a matrix of all zeros. At each step the algorithm first
approximates the gradient of the loss function, f , according
to the following equation:

∇̂f (δ) =
1
R

R∑
j=1

f (δ + µuj, t)− f (δ, t)
µ

uj (5)

where each uj ∼ N (0, Id ) is a random perturbation chosen
i.i.d. from the unit sphere, µ is a smoothing parameter, and
R is a hyper parameter for the number of queries used in the
approximation. Next, the attack approximates the gradient of
the log-likelihood function. This is necessary for calculating
the Fisher information matrix and subsequently the perturba-
tion update.

∇̂log p(t|x + δ) =
1
Rµ

R∑
j=1

(log p(t|x + δ + µuj)

−log p(t|x + δ))uj (6)

Here the notation is consistent with the notation seen in
Equation 5. This can be calculated using the same queries
that were used in Equation 5. The Fisher information matrix
is approximated and δ is updated according to the following
equations:

F̂ = ∇̂log p(t|x + δ)∇̂log p(t|x + δ)T + γ I (7)

δk+1 =
∏

(δk − λF̂−1∇̂f (δk )) (8)

where γ is a constant and λ is the attack learning rate.∏
is the projection function which projects its input onto

the set S = {δ | (x + δ) ∈ [0, 1]d , ‖δ‖∞ ≤ ε}. It is
also worth recognizing that δ is represented as a matrix since
images, like x, are also represented as matrices. This makes
the addition seen in Equation 8 valid. The iterative process
can be continued for a predetermined number of iterations or
until the perturbation yields a satisfactory result. The Fisher
information matrix is a powerful tool, however its size can

prove it impractical for use on datasets with larger inputs, thus
an approximation of δk+1 may be necessary.
The attack is tested on the MNIST, CIFAR-10, and Ima-

geNet datasets where it achieves a similar attack success rate
to the ZOO, Bandits, and NES-PGD attacks while requir-
ing less queries to be successful. The attack is then also
shown to have an extremely high attack success rate within
1200 queries on all three aforementioned datasets.

C. PROJECTION AND PROBABILITY DRIVEN ATTACK
The Projection and Probability-driven Black-box Attack
(PPBA) proposed in [30] is a score based, black box attack
that achieves high attack success rates while being query
efficient. It achieves this by shrinking the solution space
of possible adversarial inputs to those which contain low-
frequency perturbations. This is motivated by an observation
that contemporary neural networks are particularly suscep-
tible to low frequency perturbations. The attack solves the
following optimization problem:

min
δ

L(δ) = [f (x + δ)t −max
j6=t

f (x + δ)j]+ (9)

where f (x)j is the model’s predicted probability that the input
is of class j, x is the clean image, t is the ground truth label,
δ is the adversarial perturbation, and [·]+ is shorthand for
max(·, 0). The attack utilizes a sensing matrix, A, which is
composed of a Discrete Cosine Transform matrix, 9, and
a Measurement matrix, 8, along with the corresponding
measurement vector, z. The exact design of the measurement
matrix varies according to practice [41] [42]. The relationship
between all these variables is as follows: A = 98, z = Aδ,
δ ≈ AT z.

One point to note is that8 should be an orthonormalmatrix
which allows δ ≈ AT z to be true. Once A is calculated the
attack utilizes a query efficient version of the random walk
algorithm. In particular, the attack stores a Confusion matrix
Cj for each dimension j of1z, which is the change in z at each
iteration. Cj can be seen below:

−ρ 0 ρ

# effective steps e−ρ e0 eρ
# ineffective steps i−ρ i0 iρ

where ρ is a predefined step size, ev is the number of times the
loss function descended when 1zj = v, and iv is the number
of times the loss function increased or remained the same
when1zj = v for v ∈ {−ρ, 0, ρ}. The algorithm then usesC
to determine its sampling probability for 1zj as seen below:

P(a|1zj = v) =
ev

ev + iv
, v ∈ {−ρ, 0, ρ} (10)

P(1zj = v) =
P(a|1zj = v)∑
u P(a|1zj = u)

, u, v ∈ {−ρ, 0, ρ} (11)

where a is a probabilistic variable that is true when the step
is determined to be effective. The attack algorithm begins by
first calculating A and then initializing all values of C to be 1.
The iterative part of the algorithm then begins, at each step
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the algorithm generates a new1z according to the probability
distribution described in Equation 11. If L(AT (z + 1z)) <
L(AT z) then z is updated as z = clip(z + 1z). Here the
clip function forces x + z to remain within the clean image’s
input space, [0, 1]d . If at any point the perturbation generated
causes the model to output an incorrect class label the attack
terminates and returns the penultimate perturbation.

PPBA is tested on the ImageNet dataset with the classifiers
ResNet50, Inception v3 and VGG-16. PPBA achieves high
attack success rates while maintaining a low query count. It is
also tested on Google Cloud Vision API where it achieves a
high attack success rate in this more realistic setting.

D. ALTERNATING DIRECTION METHOD OF MULTIPLERS
BASED BLACK-BOX ATTACKS
A new black-box attack framework is proposed in [26]
based on the distributed convex optimization technique, the
Alternating Direction Method of Multiplers (ADMM). The
advantage of using the ADMM technique is that it can be
directly combined with the zeroth-order optimization attack
(ZOO-ADMM) or Bayesian optimization (BO-ADMM) to
create a query-efficient, gradient free black-box attack. The
attack can be run with score based or decision based output
from the defense.

The main concept presented in [26] is the conversion
of the black-box attack optimization problem from a tra-
ditional constrained optimization problem, into an uncon-
strained objective function that can be iteratively solved using
ADMM. The original formulation of the black-box attack
optimization problem can be written as:

minimize
δ

f (x0 + δ, t)+ γD(δ)

subject to (x0 + δ) ∈ [0, 1]d , ‖δ‖∞ ≤ ε (12)

where f (·) is the loss function of the classifier, δ is the pertur-
bation added to the original input x0, t is the target class that
the adversarial example (x0 + δ) should be misclassified as
and D is a distortion function to limit the difference between
the adversarial example and x0. In Equation 12, γ controls
the weight given to the distortion function and ε specifies the
maximum tolerated perturbation.

Instead of directly solving Equation 12, the constraints can
be moved into the objective function and an auxiliary variable
z can be introduced in order to write the optimization problem
in an ADMM style form:

minimize
δ,z

f (x0 + δ, t)+ γD(δ)+ I(z)

subject to z = δ (13)

where I(z) is 0 if (x0 + z) ∈ [0, 1]d , ‖z‖∞ ≤ ε and
∞ otherwise. The augmented Lagrangian of Equation 13 is
written as:

L(z, δ, u) = γD(z)+ I(z)+ f (x0 + δ, t)

+
ρ

2
‖z− δ +

1
ρ
u‖ −

1
2ρ
‖u‖22 (14)

where u is the Lagrangian multiplier and ρ is a pen-
talty parameter. Equation 14 can be iteratively solved using
ADMM in the k th step through the following update
equations:

zk+1 = arg min
z

L(z, δk , uk ) (15)

δk+1 = arg min
δ

L(zk+1, δ, uk ) (16)

uk+1 = uk + ρ(zk+1 − δk+1) (17)

While Equation 15 has a closed form solution, minimiz-
ing Equation 16 requires a gradient descent technique like
stochastic gradient decent, as well as access to the gradi-
ent of f (x0 + δ, t). In the black-box setting this gradient is
not available to the adversary and hence must be estimated
using a special approach. If the gradient is estimated using
the random gradient estimation technique, then the attack
is referred to as ZOO-ADMM. Similarly, if the gradient is
estimated using bayesian optimization, the attack is denoted
as BO-ADMM.

The new attack framework is experimentally verified on
the CIFAR-10 and MNIST datasets. The results of the
paper [26] showZOO-ADMMoutperforms both BO-ADMM
and the original boundary attack presented in [8]. This perfor-
mance improvement comes in the form of smaller distortions
for the l1, l2 and l∞ threat models and in terms of less queries
used for the ZOO-ADMM attack.

E. IMPROVING BLACK-BOX ADVERSARIAL ATTACKS
WITH TRANSFER-BASED PRIOR
Initial adversarial machine learning black-box attacks were
developed based on one of two basic principles. In query
based black-box attacks [8], the gradient is directly estimated
through querying. In transfer based attacks, the gradient is
computed based on a trainedmodel’s gradient that is available
to the attacker [6]. In [25] they propose combining the query
and transfer based attacks to create a more query efficient
attack which they call the prior-guided random gradient-free
method (P-RGF).

The P-RGF attack is developed around accurately and
efficiently estimating the gradient of the target model f .
The original random gradient-free method [43] estimates the
gradient as follows:

ĝ =
1
q

q∑
i=1

f (x + σui, y)− f (x, y)
σ

· ui (18)

where q is the number of queries used in the estimate, σ is
a parameter to control the sampling variance, x is the input
with corresponding label y and {ui}

q
i=1 are random vectors

sampled from distribution P . It is important to note that by
selecting {ui}

q
i=1 carefully (according to priors) we can create

a better estimate of g. In P-RGF this choice of {ui}
q
i=1 is

done by biasing the sampling using a transfer gradient v. The
transfer gradient v comes from a surrgoate model that has
been independently trained on the same data as the model
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whose gradient is currently being estimated. In the attack it
is assumed that we have white-box access to the surrogate
model such that v is known.

The overall derivation of the rest of the attack from [25]
goes as follows: first we discuss the appropriate loss function
L(·) for ĝ. We then discuss how to pick {ui}

q
i=1 such that

L(·) is minimized. To determine how closely ĝ (the estimated
gradient) follows g (the true model gradient) the following
loss function is used [25]:

min
b≥0

E‖∇x f (x)− bĝ‖22 (19)

where b is a scaling factor included to compensate for the
change in magnitude caused by ĝ and the expectation is
taken over the randomness of the estimation algorithm. For
notational convenience we write ∇x f (x) as ∇f (x) in the
remainder of this subsection. It can be proven that if x is
differentiable at f then the loss function given in Equation 19
can be expressed as:

lim
σ→0

L(ĝ) = ‖∇f (x)‖22 −
H (C, x)2

(1− 1
q )H (C2, x)+ 1

qH (C, x)2)

(20)

where H (C, x) = ∇f (x)TC∇f (x) and C = E[uiuTi ].
Through careful choice of C , L(ĝ) can be minimized to
accurately estimate the gradient, thereby making the attack
query efficient. C can be decomposed in terms of the transfer
gradient v as:

C = λvvT +
1− λ
D− 1

(I − vvT ) (21)

where {λi}Di=1 and {vi}
D
i=1 are the eigenvalues and orthonormal

eigenvectors of C . To exploit the gradient information of the
transfer model, ui is then randomly generated in terms of v to
satisfy Equation 21:

ui =
√
λ · v+

√
1− λ · (I − vvT )ξi (22)

where λ controls the magnitude of the transfer gradient v
and ξi is a random variable sampled uniformly from the unit
hypersphere.

The overall P-RGF method for estimating the gradient g is
as follows: First α, the cosine similarity between the transfer
gradient v and the model gradient g is estimated through a
specialized query based algorithm [25]. Next λ is computed
as a function of α, q and the input dimension size D. Note we
omitted the λ equation and explanation in our summary for
brevity. After computing λ, the estimate of the gradient ĝ is
iteratively doneQ times in a two step process. In the first step
of the qth iteration, uq is generated using Equation 22. In the
second step ĝ is calculated as: ĝ = ĝ+ f (x+σuq,y)−f (x,y)

σ
· uq,

where q denotes the qth iteration. AfterQ iterations have been
complete, the final gradient estimate is given as ĝ← 1

Q ĝ.

The P-RGF attack is tested on ImageNet. The surro-
gate model to get the transfer gradient in the attack is set
as ResNet-152. Attacks are done on different ImageNet

CNNs which include Inception v3, VGG-16 and ResNet50.
The P-RGF attack outperforms other completing techniques
in terms of having a higher attack success rate and lower
number of queries for most networks.

F. BLACK-BOX ADVERSARIAL ATTACK WITH
TRANSFERABLE MODEL-BASED EMBEDDING
The TRansferable EMbedding based Black-box Attack
(TREMBA) [27] is an attack that uniquely combines transfer
and query based black-box attacks. In conventionally query
based black-box attacks, the adversarial image is modified by
iteratively fine tuning the noise that is directly added to the
pixels of the original image. In TREMBA, instead of directly
altering the noise, the embedding space of a pre-trainedmodel
is modified. Once the embedding space is modified, this is
translated into noise for the adversarial image. The advantage
of this approach is that by using the pre-trained model’s
embedding as a search space, the amount of queries needed
for the attack can be reduced and the attack efficiency can be
increased.

The attack generates the perturbation δ for input x using a
generator network G. The generator network is comprised of
two components, an encoder E and a decoderD. The encoder
maps x to z, a latent space i.e., z = E(x). The decoderD takes
z as input. The outputs of the decoderD is used to compute the
perturbation δ which is defined as δ = εtanh(D(z)). The tanh
function is used to normalize the output of the decoder D(z)
between−1 and 1 such that the final adversarial perturbation
δ is bounded i.e. ||δ||∞ ≤ ε.

To begin the untargeted version of the attack, the generator
network G is first trained. For an individual sample (xi, yi),
we denote the probability score associated with the correct
class label during training as:

Ptrue(xi, yi) = Fs(ε · tanh(G(xi))+ xi))yi (23)

where ε is the maximum allowed perturbation, G(·) is the
output from the generator and Fs(·)i is the ith component of
the output vector of the source model Fs. In this attack for-
mulation the adversary is assumed to have white-box access
to a pre-trained source model Fs which is different from the
target model under attack. The incorrect class label with the
maximum probability during training is:

Pfalse(xi, yi) = max
j6=yi

Fs(ε · tanh(G(xi))+ xi))j (24)

Using Equation 23 and Equation 24 the loss function for
training the generator for an untargeted attack is given as:

Luntarget (xi, yi) = max(Ptrue(xi, yi)− Pfalse(xi, yi),−κ)

(25)

where (xi, yi) are individual training samples in the train-
ing dataset and κ is a transferability parameter (higher κ
makes the adversarial examples more transferable to other
models [18]).

Once G is trained the perturbation δ can be calculated as a
function of the embedding space z. The embedding space z is
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iteratively computed:

zt = zt−1 −
η

b

b∑
i=1

Luntarget∇zt−1 log(N (vi|zt−1, σ 2)) (26)

where t is the iteration number, η is the learning rate, b is
the sample size, vi is a sample from the gaussian distribution
N (zt−1, σ 2) and ∇zt−1 is the gradient of zt estimated using
the Natural Evolution Strategy (NES) [44].

Experimentally TREMBA is tested on both theMNIST and
ImageNet datasets. The attack is also tested on the Google
Cloud Vision API. In general, TREMBA achieves a higher
attack success rate and uses less queries for MNIST and
ImageNet, as compared to other attack methods. These other
attack methods compared in this work include P-RGF, NES
and AutoZOOM.

G. QUERY-EFFICIENT META ATTACK
In the query-efficient meta attack [24], high query-efficiency
is achieved through the use of meta-learning to observe pre-
vious attack patterns. This prior information is then leveraged
to infer new attack patterns through a reduced number of
queries. First, a meta attacker is trained to extract information
from the gradients of various models, given specific input,
with the goal being to infer the gradient of a new target model
using few queries. That is, an image x is input to models
M1, . . . ,Mn and a max-margin logit classification loss is
used to calculate losses l1, . . . , ln as follows:

li(x) = max [log[Mi(x)]t − max
j6=t

log[Mi(x)]j, 0] (27)

where t is the true label, j is the index of other classes,
[Mi(x)]t is the probability score produced by the modelMi,
and [Mi(x)]j refers to the probability scores of the subsequent
classes.

After one step back-propagation is performed, n training
groups for the universal meta attacker are assembled, con-
sisting of input images X = {x} and gradients Gi = {gi},
i = 1, . . . , n where gi = ∇x li(x). In each training iteration,
K samples are drawn from a task Ti = (X,Gi). For meta
attacker model A with parameters θ , the updated parameters
θ ′ are computed as: θ ′i := θ − α∇θLi(Aθ ), where Li is the
loss corresponding to task Ti.
The meta attack parameters are optimized by incorporating

θ ′i across all tasks {Ti}i = 1, . . . , n according to:

θ := θ + ε
1
n

n∑
i=1

(θ ′i − θ ) (28)

The training loss of this meta attacker Aθ employs mean-
squared error, as given below:

Li(Aθ ) =‖Aθ (Xs)−Gs
i‖

2
2 (29)

where the set (Xs,Gs
i ) refers to the K samples selected for

training from (X,Gi) for θ to θ ′i.
The high-level objective of such a meta attacker model

A is to produce a helpful gradient map for attacking that

is adaptable to the gradient distribution of the target model.
To accomplish this efficiently, a subsection q of the total p
gradient map coordinates are used to fine-tune A every m
iterations [24], where q � p. In this manner, A is trained to
be able to produce the gradient distribution of various input
images and learns to predict the gradient from only a few sam-
ples through this selective fine-tuning. It is of importance to
note that query efficiency is further reinforced by performing
the typically query-intensive zeroth-order gradient estimation
only every m iterations.
Empirical results on MNIST, CIFAR-10, and tiny-

ImageNet attain comparable attack success rates to other
untargeted black-box attacks. However, the attack signifi-
cantly outperforms prior attacks in terms of the number of
queries required in the targeted setting [24].

III. DECISION BASED ATTACKS
In this section, we discuss recent developments in adversarial
machine learning with respect to attacks that are decision
based. The adversarial model for these attacks allows the
attacker to query the defense with input x and receive the
defense’s final predicted output. In contrast to score based
attacks, the attacker does not receive any probabilistic or logit
outputs from the defense.

We cover 7 recently proposed decision based attacks.
These attacks include the Geometric decision-based
attack [32], Hop Skip Jump Attack [10], RayS Attack [34],
Nonlinear Black-BoxAttack [35], Query-Efficient Boundary-
Based Black-box Attack [33], SurFree attack [12], and the
qFool attack [31].

A. GEOMETRIC DECISION-BASED ATTACKS
Geometric decision-based attacks (GeoDA) are a subset of
decision based black box attacks proposed in [32] that can
achieve high attack success rates while requiring a small
number of queries. The attack exploits a low mean curvature
in the decision boundary of most contemporary classifiers
within the proximity of a data point. In particular the attack
uses a hyperplane to approximate the decision boundary in
the vicinity of a data point to effectively find the local normal
vector of the decision boundary. The normal vector can then
be used to modify the clean image in such a way that the
model outputs an incorrect class label. Thus the attack solves
the following optimization problem:

min
v
‖v‖p

s.t. wT (x + v)− wT xB = 0 (30)

where w is a normal vector to the decision boundary, and
xB is point on the decision boundary and close to the clean
image, x. xB can be found by adding random noise, r , to x
until the classifier’s predicted label changes, then performing
a binary search in the direction of r to get xB as close to the
decision boundary as possible:

xB = x +min
r
‖r‖2

s.t. k̂(xB) 6= k̂(x) (31)
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where k̂(·) returns the top-1 label of the target classifier. The
normal vector to the decision boundary is found in the fol-
lowing way: N image perturbations, ηi, are randomly drawn
from a multi-variate normal distribution ηi ∼ N (0, 6) [31].
The model is then queried on the top-1 label of each xB + ηi
where xb is a boundary point close to the clean image, x. Each
ηi is then classified as follows:

Sadv = {ηi | k̂(xb + ηi) 6= k̂(x)} (32)

Sclean = {ηi | k̂(xb + ηi) = k̂(x)} (33)

From here the normal vector to the decision boundary can
then be estimated as:

ŵN =
µ̄N

‖µ̄N‖2
(34)

where µ̄N =
1
N

∑N

i=1
ρiηN

and ρi =
{

1 ηi ∈ Sadv
−1 ηi ∈ Sclean

(35)

Finally the image can bemodified using the following update:

xadv = x + r̂ ŵN (36)

where r̂ = min{r > 0 | k̂(x + rv) 6= k̂(x)}

and v =
1

‖ŵN‖a
� sign(ŵ) (37)

Here � refers to the point-wise product and a = p
p−1 .

This process is done iteratively, at each iteration the previous
iteration’s xadv is used to calculate ŵ which is then added to
the original x to find the current iteration’s xadv as seen above.
The attack is experimentally tested on the ImageNet

dataset. The experiments show GeoDA outperforms the Hop
Skip Jump Attack, Boundary Attack, and qFool by producing
smaller image perturbations and requiring less iterations, and
thus less queries, to complete.

B. HOP SKIP JUMP ATTACK
The Hop Skip Jump Attack (HSJA) is a decision based,
black-box attack proposed in [10] that achieves both a high
attack success rate and a low number of queries. The attack
is an improvement on the previously developed Boundary
Attack [8] in that it implements gradient estimation tech-
niques at the edge of a model’s decision boundary in order
to more efficiently create adversarial inputs to the classifier.
Similarly to many other adversarial attacks, HSJA attempts
to change the predicted class label of a given input, x, while
minimizing the perturbation applied to the input. Thus the
following optimization problem is proposed:

min
x ′

d(x ′, x∗) s.t. φx∗ (x ′) = 1 (38)

φx∗ (x ′) = sign(Sx∗ (x ′)) (39)

Sx∗ (x ′) =


max
c6=c∗

Fc(x ′)− Fc∗ (x ′) (Untargeted)

Fc† (x
′)−max

c6=c†
Fc(x ′) (Targeted) (40)

Here Fc is the predicted probability of class c, x ′ is the adver-
sarial input, x∗ is the clean input, and d is a distance metric.

This unique optimization formulation allows HSJA to
approximate the gradient of Equation 40 and thus more accu-
rately and efficiently solve the optimization problem.
The attack algorithm starts by adding random noise, δ,

to the clean image, x∗, until the model’s predicted class
label changes to the desired label. Once a desired random
perturbation is found the iterative process is initiated and
x∗ + δ is stored in x0 which becomes an iterative parameter
written as xt for step number t . From here a binary search is
performed to find the decision boundary between x∗ and xt .
At the decision boundary the following operation is used to
approximate the gradient of the decision boundary:

1̂S(xt , δt ) =
1

1− B

B∑
b=1

(φx∗ (xt + δtub)− φx∗ )ub (41)

φx∗ =
1
B

B∑
b=1

φx∗ (xt + δtub) (42)

where δt = d−1t ‖xt−1 − x∗‖p and d0 = ‖x0 − x∗‖ is a
small, positive parameter. Each ub is randomly drawn i.i.d.
from the uniform distribution over the d-dimensional sphere.
The additional term, φx∗ , is used to attempt to mitigate the
bias induced into the estimation by δ. Once the gradient of
the decision boundary is found an update direction is found
using the following formulation:

vt (xt , δt ) =
{
1̂S(xt , δt )/‖1̂S(xt , δt )‖2 if p = 2
sign(1̂S(xt , δt )) if p = ∞

(43)

Once this update direction is found a step size must be deter-
mined. The step size is initialized as ξt = ‖xt − x∗‖p/

√
t

and is halved until φx∗ (xt + ξtvt ) 6= 0. Then xt is updated by
xt = xt + ξtvt and dt is updated by dt = ‖xt − x∗‖p. This
process is continued for a predetermined T iterations.
In [10] HSJA is tested on the MNIST, CIFAR-10,

CIFAR-100, and ImageNet datasets. HSJA outperforms the
Boundary Attack and Opt Attack in terms of median pertur-
bation magnitude and attack success rate. HSJA is also tested
against multiple defenses on the MNIST dataset, where it
performs better than Boundary Attack and Opt Attack when
all attacks are given an equal number of queries.

C. RayS ATTACK
The RayS attack is a query efficient, decision based, black-
box attack proposed in [34] as an alternative to zeroth-order
gradient attacks. The attack employs an efficient search algo-
rithm to find the nearest decision boundary that requires
less queries then other contemporary decision based attacks
while maintaining a high attack success rate. Specifically, the
attack formulation turns the continuous problem of finding
the closest decision boundary into a discrete optimization
problem:

min
d∈{−1,1}n

g(d) = arg min
r

1{f (x +
rd
‖d‖2

) 6= y} (44)

where x is the clean sample which is assumed to be a vector
without loss of generality, y is the ground truth label of the
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clean sample, f is the classifier’s prediction function, d is a
direction vector determining the direction of the perturbation
in the input space, r is a scalar projected onto d determining
the magnitude of the perturbation, and n is the dimensionality
of the input. This converts the continuous problem of finding
the direction to the closest decision boundary into a discrete
optimization problem over d ∈ {−1, 1}n which contains 2n

possible options.
The attack algorithm finds a direction, d , and a radius, r ,

in the input space as its final output for the attack. They can
then be converted into a perturbation by projecting r onto d .
The attack begins by choosing some initial direction vector,
d , and setting r = ∞. The iterative process comes in multiple
stages, s, where at each stage d is cut into 2s equal and
uniformly placed blocks. The algorithm then iterates through
each of these blocks, swapping the sign of each value in the
current block at a given iteration and storing the modified d
into dtemp. If f (x+r ·dtemp) = y the algorithm skips searching
dtemp as it requires a larger perturbation than d to change the
classifier’s predicted label. If f (x+r ·dtemp) 6= y the algorithm
performs a binary search in the direction of dtemp to find the
smallest r such that f (x + r · dtemp) 6= y remains true. Finally
d is updated to dtemp and r is updated to be the smallest radius
found in the binary search.

The RayS attack is experimentally tested in [34] on the
MNIST, CIFAR-10, and ImageNet datasets. It outperforms
other black-box attacks like HSJA and SignOPT in terms of
both average number of queries and attack success rate on
theMNIST andCIFAR-10 datasets. On the ImageNet dataset,
HSJA achieves a lower number of average queries than RayS,
but attains a significantly lower attack success rate. The RayS
attack is also compared to white box attacks like Projected
Gradient Descent (PGD) where it outperforms the attack on
the MNIST and CIFAR-10 datasets, in terms of the attack
success rate.

D. NONLINEAR PROJECTION BASED GRADIENT
ESTIMATION FOR QUERY EFFICIENT
BLACKBOX ATTACKS
The Nonlinear Black-box Attack (NonLinear-BA) is a
query efficient, nonlinear gradient projection-based boundary
blackbox attack [35]. This attack innovatively overcomes
the gradient inaccessibility of blackbox attacks by utiliz-
ing vector projection for gradient estimation. AE, VAE, and
GAN are used to perform efficient projection-based gradient
estimation. [35] shows that NonLinear-BA can outperform
the corresponding linear projections of HSJA and QEBA,
as NonLinear-BA provides a higher lower bound of cosine
similarity between the estimated and true gradients of the
target model.

There are three components of NonLinear-BA: the first is
gradient estimation at the target model’s decision boundary.
While high-dimensional gradient estimation is computation-
ally expensive, requiring numerous queries [35], projecting
the gradient to lower dimensional supports greatly improves
the estimation efficiency of NonLinear-BA. This desired low

dimensionality is achieved through the latent space represen-
tations of generative models, e.g., AE, VAE, and GAN.

The gradient projection function f is defined as
f : Rn

→ Rm, which maps the lower-dimensional repre-
sentative space Rn to the original, high-dimensional space
Rm, where n ≤ m. The sample unit latent vectors vb’s in Rn

are randomly sampled to generate the perturbation vectors
ub = f (vb) ∈ Rm.
Thus, the gradient estimator is as follows:

∇̃S(x(t)adv) =
1
B

B∑
b=1

sgn(S(x(t)adv + δf (vb)))f (vb) (45)

where ∇̃S is the estimated gradient, xadv is the boundary
image at iteration t, S is the difference function that indicates
whether the image has been successfully perturbed from the
original label to the malicious label, the function sgn(S(·))
denotes the sign of this difference function, and δ is the size
of the random perturbation to control the gradient estimation
error.

The second component of NonLinear-BA is moving the
boundary-image xadv along the estimated gradient direction:

x̂t+1 = x(t)adv + ξt ·
∇̃S

‖∇̃S‖2
(46)

where ξt is a step size chosen by searching with queries.
Finally, in order to enable the gradient estimation in the

next iteration and move closer to the target image, the adver-
sarial image xadv is mapped back to the decision boundary
through binary search. This search is aided by queries which
seek to find a fitting weight αt :

x(t+1)adv = αt · xtgt + (1− αt ) · x̂t+1 (47)

where xtgt is the target image, i.e., the original image whose
correct label xadv seeks to achieve with a crafted perturbed
image.

NonLinear-BA is evaluated on both offline model Ima-
geNet, CelebA, CIFAR10 and MNIST datasets, as well as
commercial online APIs. The nonlinear projection-based
gradient estimation black-box attacks achieve better per-
formance compared with the state-of-the-art baselines. The
authors in [35] discover that when the gradient patterns are
more complex, the NonLinear-BA-GANmethod fails to keep
reducing the MSE after a relatively small number of queries
and converges to a poor local optima.

E. QEBA: QUERY-EFFICIENT BOUNDARY-BASED
BLACKBOX ATTACK
Black-box attacks can be query-free or query-based. Query-
free attacks are transferability based; query access is not
required, as this type of attack assumes the attacker has access
to the training data such that a substitute model may be
constructed. Query-based attacks can be further categorized
into score-based or boundary-based attacks. In a score-based
attack, the attacker can access the class probabilities of the
model. In a boundary-based attack, only the final model
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prediction label, rather than the set of prediction confidence
scores, is made accessible to the attacker. Both score-based
and boundary-based attacks require a substantial number of
queries.

One challenge of reducing the number of queries needed
for a boundary-based attack is that it is difficult to explore the
decision boundary of high-dimensional data without making
many queries. The Query-Efficient Boundary-based Black-
box Attack (QEBA) seeks to reduce the queries needed
by generating queries through adding perturbations to an
image [33]. Thus, probing the decision boundary is reduced
to searching a smaller, representative subspace for each
generated query. Three representative subspaces are stud-
ied by [33]: spatial transformed subspace, low frequency
subspace, and intrinsic component subspace. The optimality
analysis of gradient estimation query efficiency in these sub-
spaces is shown in [33].

QEBA performs an iterative algorithm comprised of three
steps: first, estimate the gradient at the decision boundary,
which is based on the given representative subspace, second,
move along the estimated gradient, and third, project to the
decision boundary with the goal of moving towards the target
adversarial image. These steps follow the same mathemati-
cal details as given in Equation 45 to 47 in Section III-D.
Representative subspace optimizations from spatial, fre-
quency, and intrinsic component perspectives are then conse-
quently explored; these subspace-based gradient estimations
are shown to be optimal as compared to estimation over the
original space [33].

Results for the attack are provided for models trained on
ImageNet and models trained on the CelebA dataset. The
results show the MSE vs the number of queries, indicating
that the three proposed query efficient methods outperform
HSJA significantly. The authors also show that the proposed
QEBA significantly reduces the required number of queries.
In addition, the attack yields high quality adversarial exam-
ples against both offline models (i.e. ImageNet) and online
real-world APIs such as Face++ and Azure.

F. SurFree: A FAST SURROGATE-FREE BLACKBOX ATTACK
Many black-box attacks rely on substitution, i.e., a surrogate
model is used in place of the target model, the aim being that
adversarial examples crafted to attack this surrogate model
will effectively transfer to the target classifier. Accordingly,
an accurate gradient estimate to create the substitute model
requires a substantial number of queries.

By contrast, SurFree is a geometry-based black-box
attack that does not query for a gradient estimate [12].
Instead, SurFree assumes that the boundary is a hyperplane
and exploits subsequent geometric properties as follows.
Consider the pre-trained classifier to be f : [0, 1]D → RC .
A given input image x produces the label cl(x) :=

arg maxk fk (x), where fk (x) is the predicted probability of
class k, 1 ≤ k ≤ C . The goal of an untargeted attack is to find
an adversarial image xa that is similar to a classified image xo
such that cl(xa) 6= cl(xo). Thus, an outside region is defined

as O := {x ∈ RD: cl(x) 6= cl(xo)} The desired, optimal
adversarial image is then:

x∗a = arg min
x∈O

||x − xo|| (48)

A key assumption of SurFree is that if a point y ∈ O, then
there exists a point xb ∈ xoy which can be found that lies
on the boundary, denoted as ∂O. Further, it is assumed that
the boundary ∂O is an affine hyperplane that passes through
xb,1 inRD with normal vector N . Considering a random basis
with span (xb,1 − xo)⊥ composed of D − 1 vectors {vi}

D−1
i=1 ,

the inner product between N and (xb,k − xo) ∝ uk can be
iteratively increased by:

N>uk =
D−k∏
i=1

cos(ψD−i) (49)

where uk is the vector that spans the plane containing xo, and
xb,D ∈ O and (xb,D − xo) is colinear with N , which points to
the projection of xo along the boundary of the hyperplane.
Additionally, restricting perturbations to a low dimensional

subspace improve the estimation of the projected gradient.
The low dimensional subspace is carefully chosen to incor-
porate meaningful, prior information about the visual content
of the image. This further aids in implementing a low query
budget.

It is experimentally shown that SurFree bests state-of-the-
art techniques for limited query amounts (e.g., one thou-
sand queries) while attaining competitive results in unlimited
query scenarios [12]. The geometric details of approximating
a hyperplane surrounding a boundary point are left to [12].

The authors present attack results using the criteria of
number of queries, and the resulting distortion on the attacked
image, on the MNIST and ImageNet datasets. SurFree drops
significantly faster than other compared attacks (QEBA
and GeoDA) to lower distortions (most notably from 1 to
750 queries.

G. A GEOMETRY-INSPIRED DECISION-BASED ATTACK
qFool is a decision-based attack that requires few queries for
both non-targeted and targeted attacks [31]. qFool relies on
exploiting the locally flat decision boundary around adver-
sarial examples. In the non-targeted attack case, the gradient
direction of the decision boundary is estimated based upon
the top-1 label result of each query. An adversarial example
is then sought in the estimated direction from the original
image. In the targeted attack case, gradient estimations are
made iteratively from multiple boundary points from a start-
ing target image. Query efficiency is further improved by
seeking perturbations in low-dimensional subspace.

Prior literature [45] has shown that the decision boundary
has only a small curvature near the presence of adversarial
examples. This observation is thus exploited by [31] to com-
pute an adversarial perturbation v. It conceptually follows that
the direction of the smallest adversarial perturbation v for
the input sample x0 is the gradient direction of the decision
boundary at xadv. Due to the blackbox nature of attack, this
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gradient cannot be computed directly; however, from the
knowledge that the boundary is relatively flat, the classifier
gradient at point xadv will be nearly identical to the gradient of
other neighboring points along the boundary. Therefore, the
direction of v can be suitably approximated by ξ , the gradient
estimated at a neighbor point P. Thus, an adversarial example
xadv from x0 is sought along ξ .

The three components of the untargeted qFool attack
involve an initial point, gradient estimation, and a directional
search. To begin with, the original image x0 is perturbed by a
small, random Gaussian noise to produce a starting point P
on the boundary:

P := x0 +min
r
‖r‖2 s.t. fθ (P) 6= fθ (x0), r ∼ N (0, σ ) (50)

Noise continues to be added (P = x0 + rj) until the image
is misclassified. Next, the top-1 label of the classifier is used
to estimate the gradient of the boundary ∇f (P):

zi =

{
−1 f (P + νi) = f (x0)
+1 f (P + νi) 6= f (x0)

, i = 1, 2, . . . , n (51)

where νi are randomly generated vectors with the same norm
to perturb P and f (P + νi) is the label produced by querying
the classifier.

For the final step of qFool, the gradient direction at point
xadv can be approximated by the gradient direction at point
P , i.e., ∇f (P) ≈ ξ . The adversarial example xadv can thus be
found by perturbing the decision boundary in the direction of
ξ until the decision boundary is reached. Using binary search,
this costs only a few queries to the classifier.

For a targeted attack, the objective becomes perturbing
the input image to be classified as a particular target class,
i.e., fθ (x0 + v) = t for a target class t . Thus, the starting
point of this attack is selected to be an arbitrary image xt
that belongs to the target class t . Due to the potentially large
distance between x0 and xt , the assumption of a flat decision
boundary between the initial and targeted adversarial regions
no longer holds. Instead, a linear interpolation in the direction
of (xt − x0) is utilized to find a starting point P0:

P0 := min
α

(x0 + α ·
xt − x0
‖xt − x0‖2

) s.t. fθ (P0) = t (52)

The gradient direction estimation of ξ0 at P0 follows the
same method as outlined for untargeted attacks.

The qFool attack is experimentally demonstrated on the
ImageNet dataset by attacking VGG-19, ResNet50 and
Inception v3. The results show that qFool is able to achieve
a smaller distortion in terms of MSE, as compared to the
Boundary Attack when both attacks use the same number of
queries. However, the overall attack success rate for qFool is
not reported. The authors also test qFool on the Google Cloud
Vision API.

IV. TRANSFER ATTACKS
In this section, we explore recent advances in adversarial
machine learning with respect to transfer attacks. The adver-
sarial model for these attacks allows the attacker to query

the target defense and or access some of the target defense’s
training dataset. The attacker then uses this information to
create a synthetic model which the attacker then attacks using
a white box attack. The adversarial inputs generated from the
white box attack on the synthetic model are then transferred
to the targeted defense.

We cover 3 recently proposed transfer attacks. These
attacks include the Adaptive Black-Box Transfer attack [22],
DaST attack [9] and the Transferable Targeted attack [23].

A. THE ADAPTIVE BLACK-BOX ATTACK
A new transfer based black-box attack is developed in [22]
that is an extension of the original Papernot attack proposed
in [6]. Under this threat model the adversary has access to
the training dataset (X ,Y ), and query access to the classifier
under attack, C . In the original Papernot formulation of the
attack, the attacker labels the training data to create a new
training dataset (X ,C(X )). The adversary is then able to train
synthetic model S on (X ,C(X )) while iteratively augmenting
the dataset using a synthetic data generation technique. This
results in a trained synthetic model S(ws). In the final step of
the attack, a white-box attack generation method φ(·) is used
in conjunction with the trained synthetic model S in order to
create adversarial examples Xadv:

Xadv = φ(Xclean, S,ws) (53)

where Xclean are clean testing examples and φ is a white-box
attack method i.e. FGSM [5].

The enhanced version of the Papernot attack is called the
mixed [22] or adaptive black-box attack [46]. Where as in
the original Papernot attack 0.3% of the training data is used,
the adaptive version increases the strength of the adversary
by using anywhere from 1% to 100% of the original training
data. Beyond this, the attack generation method φ is varied to
account for newer white-box attack generation methods that
have better transferability. In general the most effective ver-
sion of the attack replaces φFGSM with φMIM, the Momentum
Iterative Method (MIM) [47]. The MIM attack computes an
accumulated gradient [47]:

gt+1 = µ · gt +
J (xadvt , y)

||∇xJ (xadvt , y)||1
(54)

where J (·) is the loss function,µ is the decay factor and xadvt is
the adversarial sample at attack iteration t . For a L∞ bounded
attack, the adversarial example at iteration t is:

xadvt+1 = xadvt +
ε

T
· sign(gt+1) (55)

where T represents the total number of iterations in the attack
and ε represents the maximum allowed perturbation.

In [22], the attack is tested using the CIFAR-10 and
Fashion-MNIST datasets. The adaptive black-box attack is
shown to be effective against vanilla (undefended) networks,
as well as a variety of adversarial machine learning defenses.
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B. DaST: DATA-FREE SUBSTITUTE TRAINING FOR
ADVERSARIAL ATTACKS
As described in the SurFree attack in III-F, substitute mod-
els can be difficult or unrealistic to obtain, particularly if a
substantial amount of real data labeled by the target model
is needed. DaST is a data-free substitute training method
that utilizes generative adversarial networks (GANs) to train
substitute models without the use of real data [9]. To address
the potentially uneven distribution of GAN-produced sam-
ples, a multi-branch architecture and label-control loss for the
GAN model is employed.

To describe the necessary context for DaST, let X denote
samples from the target model T , ȳ and y′ denote the true
labels and target labels of the samples X , respectively, and let
T (y|X , θ) denote the target model parameterized by θ . Then,
the objective of a targeted attack becomes:

min
ε
||ε|| subject to argmax

yi
T (yi|X = X + ε, θ) = y′

and ||ε|| ≤ r (56)

where ε and r are the sample and upper bounds of the pertur-
bation, respectively, and X = X + ε refer to the adversarial
examples that lead the target model T to misclassify a sample
with a selected wrong label.

To further provide adequate context for DaST, a white-
box attack under these settings would have full access to the
gradient construction of the target model T and thus leverage
this information to generate adversarial examples. In a black-
box substitute attack under these settings, a substitute model
T̂ would stand-in for the target model, and the adversarial
examples generated to attack T̂ would then be transferred to
attack T . Thus, coming to the settings of a data-free black-
box substitute attack, DaST utilizes a GAN to synthesize a
training set for T̂ that is as similar as possible to the training
set of the target model T .
To this end, the substitute training set crafted by the GAN

aims to be evenly distributed across all categories of labels,
which are produced from T . To accomplish this, for N
categories, the generative network in [9] is designed to con-
tain N upsampling deconvolutional components, which then
share a post-processing convolutional network. The genera-
tive model G randomly samples a noise vector z from the
input space as well as the variable label n. z then enters
the n-th upsampling deconvolutional network and the shared
convolutional network to produce the adversarial sample
X̂ = G(z, n). The label-control loss for G is given as:

Lc = CE(T (G(z, n)), n) (57)

where CE is the cross-entropy.
To approximate the gradient information of T to train a

label-controllable generative model, the following objective
function is used:

min
D

d(T (X̂ ),D(X̂ )) (58)

For the same inputs, the outputs of D will approach
the outputs of T for the same inputs as training proceeds.

Thus, D replaces T in Equation 57:

Lc = CE(D(G(z, n)), n) (59)

The loss of G is then updated as:

LG = e−d(T ,D) + αLc (60)

where α is the weight of the label-control loss.
As the training stage progresses, as does the imitation

quality ofD, leading to a diverse set of synthetically generated
samples labeled by T . These data-free substitute training-
produced samples are then used to attack T .
DaST reduces the need for adversarial substitute attacks

by utilizing GANs to generate synthetic samples, and thus
can train substitute models without the requirement of any
real data. Authors present results on using DaST to train
a substitute model for adversarial attacks on the CIFAR-10
and MNIST trained models. The substitute models trained
by DaST perform better than baseline models on FGSM and
C&W attacks (targeted).

C. TOWARDS TRANSFERABLE TARGETED ATTACK
Crafting targeted transferable examples has the dual chal-
lenges of noise curing, i.e., the decreasing gradient magnitude
in iterative attacks that results in momentum accumulation,
and the difficulty of moving adversarial examples toward a
target class while creating distance from the true class. To this
end, Li et al. [23] propose a novel targeted, transferable attack
that applies the Poincaré distance to combat noise curing by
creating a self-adaptive gradient, and employsmetric learning
to improve the distance from an adversarial example’s true
label.

To overcome the drawback of the Poincaré distance fused
logits failing to satisfy ‖l(x)‖2 < 1, this attack normalizes
logits by the l1 distance. To overcome the problem of potential
infinite distances between a point and its target label, a con-
stant of ξ = 0.0001 is subtracted from the one-hot target
label y. The Poincaré distance metric loss is given as:

LPo (x, y) = d(u, v) = arccosh(1+ δ(u, v)) (61)

where d refers to the Poincaré distance, lk (x) indicates the
output logits of the k-th model, u = lk (x)/‖lk (x) ‖1, v =
max{y − ξ, 0}, and l(x) refer to the fused logits. By con-
trast, this attack formulates adversarial examples through the
fusion of logits from a combination of models, as shown
below:

l(x) =
K∑
k=1

wk lk (x) (62)

where K is the number of ensemble models, lk (x) indicates
the output logits of the k-th model, and wk is the ensemble
weight of the k-th model, with wk > 0,

∑K
k=1 wk = 1. Note

that the fused logits are the average of the ensemble models.
Triplet loss is a popular targeted attack loss function

that increases the distance between the adversarial example
and the true label, while decreasing the distance between
the adversarial example and the target label [48]. A common
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triplet loss function appears as:

Ltrip(xa, xp, xn) = [D(xa, xp)− D(xa, xn)+ γ ]+ (63)

where xa, xp, xn are the anchor, positive, and negative exam-
ples, respectively, where xa and xp are of the same class,
while xn is of a different class than xa. The distance d is
based on the embedding vector for the anchor, positive, and
negative networks in the triplet configuration. Additionally,
γ ≥ 0 is a hyperparameter that regulates the margin between
the distance metrics D(xa, xp) and D(xa, xn).
A drawback of standard triplet loss is the need to sam-

ple new data, which is often infeasible in a targeted attack.
Instead, this work formulates the triplet input as the logits of
clean images, l(xclean), the one-hot target label, ytar , and the
true label, ytrue:

Ltrip(ytar , l(xi), ytrue) = [D(l(xi), ytar )

−D(l(xi), ytrue)+ γ ]+ (64)

Due to l(xadv) not being normalized, angular distance is used
as a distance metric (note that xi corresponds to xadv below):

D(l(xadv), ytar ) = 1−
|l(xadv) · ytar |
‖l(xadv)‖2‖ytar‖2

(65)

However, the usage of angular loss does not account for the
influence of the norm on the loss value. Thus, an additional
triplet loss term appears in the final loss function, as shown
below:

Lall = LPo (l(x), ytar )+ λ · Ltrip(ytar , l(xi), ytrue) (66)

where x is the original, clean input image and xi is the result of
the i-th iteration of the perturbation of x, with the final result
being xadv.
Results on ImageNet illustrate that this attack [23] achieves

improved success rates over traditional attacks for white and
black-box models in the targeted setting.

V. NON-TRADITIONAL NORM ATTACKS
In this section, we discuss recent developments in black-box
attacks that use non-traditional norm threat models. In all
attacks covered in previous sections the focus has been on
adversaries which try to create adversarial examples with
respect to the l2 or l∞ norms. We denote the l2 and l∞ as
‘‘traditional’’ norms simply because that is what a majority
of the literature (17 of the 20 attacks) thus far have focused
on.While this is not a strictly technical definition, it gives us a
convenient and simple way to categorize the different attacks.

We cover three non-traditional norm attacks in this section.
The first attack we summarize is the sparse and imperceivable
attack [36] which focuses on black-box attacks with respect
to the l0 norm. The second non-traditional norm attack we
survey is Patch Attack [37]. The Patch Attack is based on
completely replacing small part of the original image with
an adversarial generated square (patch). The last attack we
cover in this section is ColorFool [38]. This attack is based
on manipulating the colors within the image as opposed to
directly adding adversarial noise.

A. SPARSE AND IMPERCEIVABLE ATTACK
The Sparse and Imperceivable attacks proposed in [36]
are l0, black-box attacks that produce adversarial inputs while
minimizing the number of perturbed pixels. The attacks come
in multiple forms, but the general goal and scheme remains
the same. Each attack relies on having the score based output
of the network to operate, and each version of the attack
attempts to solve the following optimization problem:

min γ (x ′ − x)

s.t. arg max f (x ′) 6= arg max f (x) (67)

where x is the clean image, x ′ is an adversarial image, f is
a function returning the classifier’s score vector, and γ is a
distance function defined as follows:

γ (x ′ − x) =
d∑
i=1

max
j
1[x ′ij − xij] 6= 0 (68)

where xij refers to the ith pixel of the jth color channel. It is
important to note that color images are typically represented
as three 2-D matrices, with one matrix corresponding to each
color channel. However, in the mathematical formulation for
these attacks, they treat each color channel as a 1-D matrix
for notational convenience.

In Equation 68, essentially γ counts the number of pixels
in the adversarial image that deviate from the original image.
There are three versions of the attack: l0, l0+l∞, l0+σ .Where
l0+ l∞ and l0+σ add their own additional constraints on the
optimization problem as outlined below:

attack type Additional Constraint
l0 + l∞ ‖x ′ − x‖ ≤ ε
l0 + σ Perturbations must be imperceivable

where ε is the maximum allowed perturbation magnitude.
Each of the attack variants follow the same scheme, with the
main difference being the amount each pixel is perturbed.

The attack begins by first iterating through each pixel in
the image and generating a set of pixel perturbations {x ′ij}
according to the following equations:

Attack Type Pixel Perturbation
l0 x ′ij ∈ {0, 1}

l0 + l∞ x ′ij = xij ± ε
l0 + σ x ′ij = (1± κσij)xij

Here σ is the standard deviation of the image in color channel
j in proximity to pixel xij. It is calculated as follows:

σij

√
min{σ yij, σ

x
ij } (69)

where σ xij is the standard deviation of xij and the two pixels
adjacent to it horizontally in color channel j, and σ yij is the
same but for the two pixels adjacent to xij vertically. The σ
term is essential to what makes the l0+σ attack imperceivable
to humans. It allows the attack to avoid perturbations near
edges in the image as they are more easily perceivable. It also
focuses the attack on increasing the intensity of pixels rather
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than modifying their color. Each pixel perturbation is then
clipped into the [0, 1] range. After this each generated x ′i,j
is sorted in decreasing order according to the value of the
following equation:

π r (x ′ij) = fr (x ′ij)− fc(x
′
ij) (70)

where c is the ground truth label of x, r is any class label other
than c, π r (x ′) is the score of perturbation x ′ with respect to
class r , and fr is the model’s predicted value for class r in the
score vector. The perturbations x ′i,j are then sorted by their π

r

score for each r .
After the sorting, an iterative process begins. At each iter-

ation a number of maximum pixels perturbed, k , is chosen,
starting at one pixel and progressing to kmax by the end.
During each of these iterations an inner loop iterative process
begins. The inner loop iterates through each of the possible
class labels, r , other than c, applying k of the top N sin-
gle pixel perturbations with respect to class r to the clean
image. If at any point in the algorithm a perturbation leads
to a changed class label, the algorithm stops and returns the
penultimate perturbation. The attack is tested on the MNIST
and CIFAR-10 datasets where it achieves a high attack suc-
cess rate while perturbing a small amount of total pixels on
average. The attack is compared to both white-box and black-
box attacks where it achieves a similar attack success rate to
attacks like C&W attack and Sparse Fool while having the
median least pixels perturbed per attack.

B. PATCH ATTACK
The Patch Attack is a black box attack proposed in [37] that
utilizes textured patches and reinforcement learning to gener-
ate adversarial images. Each patch is cut out from images in
a pre-generated library of textures. Each texture is designed
such that neural networks strongly associate them with a par-
ticular class label in a given dataset. The attack is perceivable
to the human eye and applies a large magnitude perturbation
to the clean image. However, the perturbation is localized
and can be shrunk through optimization techniques. In this
attack the reinforcement learning agent solves the following
optimization problem:

min L(y, y′) = −r · ln(P) (71)

where L is the attack loss, y is the target model’s predicted
score for the ground truth class, y′ 6= y is the model’s
predicted score for a class other than y, r is the reinforcement
learning agent’s reward, and P is the agent’s output proba-
bility of taking action a that lead to the most recent reward.
r = ln(y′) in a targeted attack, and r = ln(y′ − y) in an
untargeted attack. The reinforcement learning agent’s policy
network is represented by an LSTM and a fully connected
layer. An action is defined as follows:

a = {u1, v1, i, u2, v2} (72)

where i is a texture index in the texture library, u1 and v1 are
corner positions used to crop the texture, and u2 and v2 are

corner positions denoting where the cropped texture should
be placed on the clean image. The attack algorithm is iter-
ative, at each time step the environment state is determined
and an agent is trained. Once trained the agent outputs a
probability distribution over the possible actions. One action
is sampled from the distribution and the associated patch is
applied.

Before the attack the texture images must be obtained
externally or generated by an algorithm. In the latter case the
generation algorithm is initialized with a CNN trained on the
target dataset. In our description of the attack, we denote this
CNN as the texture CNN to distinguish it from the CNNbeing
attacked. A set of data is also chosen to be used for the texture
generation. The data is pre-processed using Grad-CAM [49]
which masks out areas of the image that are irrelevant to the
primary texture information. For each convolutional layer, j,
in the ith block of the texture CNN, a feature map F ji is
generated. Furthermore, the corresponding Gram matrix, Gji
is also calculated for each feature activation of each image.
Each F ji and G

j
i will help encode the most important texture

information in input image according to the texture CNN.
The computation of the feature maps and Gram matrices are
described in detail in [50].

For each image, the Gram matrices generated are then
flattened and concatenated into the vector Ḡ which encodes
the texture information. From here, the Ḡs are organized
by the original class label of the input that generated them.
This is done so that the final textures can be labeled and
to maximize the effectiveness of each patch. For each class
label, the Ḡs are clustered into N clusters. In [37] N is chosen
to be 30 in order to have sufficient diversity in the texture
pool. In practice, the best value of N will vary based upon
dataset and application. For each cluster, Ḡc, is then used to
generate a feature embedding of the final texture images. This
is done by minimizing the following optimization problem
over Gt :

L = λ(Ḡ− Gt )2 (73)

where λ is a weight constant and Gt is the feature embedding
of the texture image used to generate the final texture image.
We omitt some details of the attack explanation for brevity,
further details are given in [51].

The attack is tested on the ImageNet dataset where it
achieves a high attack success rates while covering small
portions of the clean image with patches. The attack also
shows an ability to maintain its high attack success rate even
when defense techniques are applied to the classifier.

C. ColorFool: SEMANTIC ADVERSARIAL COLORIZATION
ColorFool [38] presents a content-based black-box adver-
sarial attack with unrestricted perturbations that selectively
manipulates colors within chosen ranges to thwart classifiers,
while remaining undetected by humans. ColorFool operates
on the independent a and b channels of the perceptu-
ally uniform Lab color space [52]. Color modifications
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are implemented without changing the lightness, L, of the
given image. Further, ColorFool solely selects perturbations
within a defined natural-color range for particular acceptable
categories [53].

ColorFool divides images into sensitive and non-sensitive
regions to be considered for color modification. Sensitive
regions, defined S = {Sk}Sk=1 are separated from non-

sensitive regions, defined S = {Sk}
S
k=1, where S = S ∪ S.

The color of the sensitive regions, S, is modified to gener-
ate the adversarial set Ṡ as follows:

Ṡ = {Ṡk : Ṡk = γ (Sk )+ α[0,N a
k ,N

b
k ]
T
}
S
k=1 (74)

where color channel a ranges from green (−128) to
red (+127), color channel b ranges from blue (−128) to
yellow (+127), and the brightness L ranges from black (0)
to white (100) within the Lab color space [52]. Further,
γ (·) converts the intensities of an RGB image to the Lab
colorspace, andN a

k ∈ N a
k andN b

k ∈ N b
k are randomly chosen

adversarial perturbations from the set of natural color ranges
N a
k and N b

k [53] within the a and b channels.
The color of the non-sensitive regions, S, is modified as

follows to produce to the set ˙S:
˙S = {˙Sk : ˙Sk = γ (Sk )+ α[0,N

a
,N

b
]T }Sk=1 (75)

whereN
a
,N

b
∈ {−127, . . . 128} are randomly chosen within

the ranges of a and b, respectively. Note that the full ranges
of a and b are considered, as non-sensitive regions are able to
undergo greater intensity changes.

The modified sensitive and non-sensitive regions are com-
bined to generate the adversarial image Ẋ , as shown below:

Ẋ = Q(γ−1(
S∑

k=1

Ṡk +
S∑

k=1

˙Sk )) (76)

where Q(·) is the quantization function that keeps the gen-
erated adversarial image within the dynamic range of pixel
values, i.e., Ẋ ∈ Zw,h,c, and γ−1(·) is the inverse function
that converts image intensities from the Lab color space
to RGB.

ColorFool provides robustness to defenses that utilize fil-
ters, adversarial training or modified training loss functions.
Additionally, ColorFool is less detectable than restricted
attacks, including JPEG compression. The empirical results
were presented on the Private-Places365, CIFAR-10, and
ImageNet datasets, indicating higher success rates in the
previously mentioned categories.

VI. ATTACK SUCCESS RATE ANALYSIS
In this paper we compile the experimental results from many
different sources and present them together in tabular form.
While it may be tempting to directly compare attack success
rates, here we give a theoretical analysis to show the fallacy
of direct comparisons.

The definition of a successful adversarial example varies
between papers based on which constraints are enforced
during the execution of the attack. We can formalize this as

follows: For classifier C , the associated set of clean correctly
identified examples is denoted as X (C) such that:

X (C) = {(xi, yi) ∈ Xt C(xi) = yi}. (77)

where Xt is the entire set of testing images. When classi-
fier C is attacked, we can formally define the constraints
on the attacker for a query-based black-box attack using
the following threat vector: Wthreat = [wc,wq,wε] where
wi ∈ {0, 1}. wc = 1 corresponds to a successful attack def-
inition where the classifier must produce the wrong class
label i.e., C(xadv) 6= yi. Likewise, wq = 1 corresponds to a
successful attack where the adversarial example is generated
within a fixed number of queries qadv, and the number of
queries are less than the query budget q: (q − qadv) ≥ 0.
Lastly wε = 1 ensures that the adversarial example falls
within a certain ||l||p distance ε of the original example xi:
||xadv−xi||p ≤ ε. If any of the values inWthreat are 0, it simply
means that the corresponding condition is not used in defining
a successful adversarial example.

We denote φ(xi, yi) as the adversarial attack method used
with respect to clean sample (xi, yi) returned within qadv
queries. Written explicitly (xadv, qadv) = φ(xi, yi) and we
assume φ(·) to be deterministic in nature. While this assump-
tion may not hold true for all attacks, this simplifies the nota-
tion for the theoretical attack success rate. The attack success
rate α over the clean set X (C) with respect to classifier C is:

α =

∣∣∣∣∣∣∣∣


(xi, yi) ∈ X (C):
(xadv, qadv) = φ(xi, yi)⇒
(C(xadv) 6= yi ∨ wc = 0)∧

wq(q− qadv) ≥ 0 ∧ wε ||xadv − xi||p ≤ ε


∣∣∣∣∣∣∣∣

|X (C)|
, (78)

FromEquation 78, it can be seen that under themost restricted
threat model (Wthreat = [1, 1, 1]), the attack must produce an
adversarial example that is misclassified i.e., C(xadv) 6= yi,
created using limited query information i.e., qadv ≤ q and
within an acceptable ||l||p norm. Such a threat model requires
specification of the attack parameters q, p and ε. That is q the
maximum allowed number of queries per sample, p the norm
measurement and ε the maximum allowed perturbation.

Our framework for a vector defined threat model Wthreat
and corresponding attack success rate α is useful for two
reasons. First, it allows us to categorize every query based
black-box attack according to the three value system. Second
and most importantly, this framework allows us to see where
comparisons between attack success rates reported in differ-
ent papers are legitimate. We next illustrate these points with
examples from the literature.

Consider the Square attack [28] and the Zeroth-
Order alternating direction method of multipliers attack
(ZO-ADMM) [26]. The untargeted attack success rate of both
attacks is reported with respect to an Inception v3 network
trained on ImageNet. The Square attack reports an attack
success rate α of 92.2% while the ZO-ADMM reports an
attack success rate of 100%. Using ONLY these two values
without our threat model framework makes it seem like the
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ZO-ADMM attack is much stronger than the Square attack,
as it never fails. However, let us now consider the threat mod-
els. The threat model for ZO-ADMM is: Wthreat = [wc = 1,
wq = 0,wε = 0]. The Square attack on the other hand has
the following threat model: Wthreat = [wc = 1,wq = 0,
wε = 1]. Essentially the Square attack is reporting a high
attack success rate under a MORE restrictive threat model
where the adversarial example must be wrongly classified
and under a certain l2 distance from the original clean exam-
ple. The ZO-ADMM attack success rate is reported only on
examples that are wrongly classified, a much weaker threat
model.

Our new framework can be used not only for invalidating
certain comparisons, but also for legitimizing new obser-
vations. For example, let us consider the Projection and
Probability Driven Black-Box Attack (PPBA) [30] and the
Prior-guided Random Gradient-free attack (P-RGF) [25] for
attacking a ResNet50 trained on ImageNet. The attack suc-
cess rate of P-RGF is higher than PPBA (99.6% vs 96.6%)
and requires a lower number of averages queries per attack
(388 vs 481). Since both P-RGF and PPBA use the same
threat model Wthreat = [wc = 1,wq = 0,wε = 1], our
framework validates the claim that P-RGF outperforms PPBA
in this scenario. Likewise, for black-box transfer attacks using
our framework can also yield insights. Consider the targeted
Adaptive [46] and DaST [9] attack on CIFAR-10. Although
each respective attack is done on a slightly different classifier
(ResNet56 and VGG-16), both use the same threat model
Wthreat = [wc = 1,wq = 0,wε = 1]. Under this threat
model we can that the targeted transfer attack in general is
difficult to perform for all transfer attacks, with only a 22.3%
attack success rate for the Adaptive attack and 19.78% attack
success rate for DaST.

Our above examples clearly demonstrate both the utility
and necessity of our new attack analysis framework. Not only
does our framework clearly showwhen attack comparison are
not valid, it can also be used to see under which threat models
attack comparisons are accurate. Using our attack analysis we
can also make new observations about the attack success rate
under different adversarial threat models.

VII. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results for all of
the black-box attacks. Broadly speaking there are three com-
mon datasets that are used in measuring the attack success
rate of black-box attacks.

1) MNIST - The MNIST dataset [54] consists of 60,000
training images and 10,000 test images. The dataset
has 10 classes, each class is a different handwritten
digit, 0-9. Each digit is a 28 × 28 grayscale image.
In general, the maximum allowed perturbation ε for
MNIST is high as compared to other dataset. For exam-
ple, ε = 0.2, 0.3 as seen in Table 5. This may generally
be due to the fact that MNIST images can have large
perturbations, while still being visually recognizable to
humans.

TABLE 2. Adversarial threat models used to determine the attack success
rate in each paper. wc = 1 corresponds to an attack success rate where
misclassificaiton (or targeted misclassification) defines a successful
adversarial attack. wq = 1 corresponds to a successful adversarial attack
done within a fixed query budget. wε = 1 corresponds to a successful
attack when the adversarial example is within a certain perturbation
bound ε of the clean example.

2) CIFAR-10 - The CIFAR-10 dataset [55] consists of
50,000 training images and 10,000 test images. The
10 classes in CIFAR-10 are airplane, car, bird, cat,
deer, dog, frog, horse, ship and truck. Each image is
32× 32× 3 (color images).

3) ImageNet - The ImageNet dataset [56] contains
over 14 million color images that are labeled from
≈20, 000 categories. The images in ImageNet are color
images, however the exact size of each image varies.

In the following subsection we break down the analyses
according to the four different attack categories.

A. SCORE BASED ATTACK ANALYSIS
In Table 3, we show the compiled results drawn across all
the papers we surveyed for the score based attacks on Ima-
geNet classifiers. We report MNIST and CIFAR-10 results
in Table 5 and Table 6. As the majority of the attacks are
done with respect to the ImageNet dataset, we relegate our
discussion and analysis to those results in this subsection.

Let us consider the l∞ = 0.05 norm adversary, untargeted
attack with adversarial model wc = 1,wq = 0,wε = 1.
Under this adversarial threat model, three attacks have a 99%
or greater attack success rate (Square, p-RGF and TREMBA).
While all three attacks are done on ResNet classifiers, there
is a slight difference (TREMBA and P-RGF are tested on
ResNet34 and the Square attack is tested on ResNet50).
Aside from this difference, if we compare results, the Square
attack and TREMBA are both able to achieve a remarkable
double digit query count while still maintaining a 99% or
greater attack success rate. Square attack requires 73 queries
on average while TREMBA requires 27.
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TABLE 3. Score based black-box attacks on ImageNet classifiers. The corresponding success rate (ASR) and adversarial threat model are shown for each
attack along with the source paper from which the results are drawn from.

TABLE 4. Decision based black-box attacks on ImageNet CNNs. The corresponding success rate (ASR) and adversarial threat model are shown for each
attack along with the original source paper.

TABLE 5. Decision and score based black-box attacks on MNIST CNNs. The corresponding success rate (ASR) and adversarial threat model are shown for
each attack along with the original source paper.

While no attack in Table 3 uses the most restrictive threat
model (i.e. wc = 1,wq = 1,wε = 1) we can see that the
most common threat model is wc = 1,wq = 0,wε = 1
making comparison between attack that use this threat
model and the same classifier possible. Alternatively, one
attack (ZO-ADMM) uses a highly unrestricted adversarial
model wc = 1,wq = 0,wε = 0 making it impossible to

directly determine the fidelity of the ZO-ADMM attack in
relation to other state-of-the-art attacks.

B. DECISION BASED ATTACK ANALYSIS
In Table 4 we give the results for all decision based attacks
that were conducted on ImageNet classifiers. Likewise,
results for decsion based attacks on MNIST and CIFAR-10
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TABLE 6. Decision and score based black-box attacks on CIFAR-10 CNNs. The corresponding success rate (ASR) and adversarial threat model are shown
for each attack along with the original source paper.

TABLE 7. Transfer based and non-traditional attacks on various datasets (MNIST, CIFAR-10 and ImageNet). NiN stands for Network-in-Network.

can be found in Table 5 and Table 6. Due to the large number
of attacks and datasets, in this subsection we specifically
focus on the decision based attacks for ImageNet CNNs.

Let us first consider the l2 norm decision based attacks
that are targeted. For this setting, when looking at the most
restricted threat model (wc = 1,wq = 1,wε = 1)
we can see that SurFree gives the best query efficient
attack (on ResNet18) with a 90% attack success rate using
only 500 queries. However, in terms of minimal distortion
(ε = 0.001), QEBA-S and NonLinear-BA can both achieve
an 80% attack success rate or higher with a query budget of
10, 000. Alternatively, if we consider the l∞ norm and an
untargeted attack, it is clear the RayS attack is the best attack.
RayS achieves a 98.9% attack success rate on Inception v3
using an average of 748.2 queries per sample. This same
holds true for datasets like MNIST and CIFAR-10. In both
cases RayS can achieve a 99% or higher attack success rate.

It is important to note that certain threat models make
attack results opaque and difficult to compare. For example,
the threat model (wc = 0,wq = 1,wε = 0) is used to report
attack results for GeoDA and qFool. In this case, the median
distortion is considered the independent variable (i.e. the
one that changes between different attacks). However, when

only the median distortion is reported this does not give any
information about what percent of adversarial examples are
actually misclassified (which would constitute a successful
attack). Reporting the median also does not give the full
picture in terms of the average distortion required to create
a successful adversarial example in the attack.

C. TRANSFER BASED ATTACKS AND
NON-TRADITIONAL ATTACKS
In Table 7 the results for the transfer based attacks and non-
traditional attacks are shown. For the transfer attacks, each
attack is done under slightly different assumptions making
direction comparison difficult. For example, the Adaptive
attack requires all the training data to be available to the
attacker, where as in DaST the attack is specifically built
around not having direct access to the original training data.
Overall, we can claim that the transfer based attacks, just in
terms of attack success rates, are not as high as the best score
based and decision based black-box attacks. For example, the
Adaptive attack has a 74% attack success rate on CIFAR-10
for the l∞ based attacker. The decision based RayS attack has
a 99.8% attack success rate for CIFAR-10 (again l∞ norm
based attack).
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For the non-traditional attacks, we can see several interest-
ing trends. First, the patch attack has an extremely high attack
success rate on ImageNet (greater than 99%) regardless of
whether the attack is targeted or untargeted. Likewise, the l0
based CornerSearch attack can also achieve a high untargeted
attack success rate (greater than 97%) across both MNIST
and CIFAR-10 datasets.

The only attack that performs relatively poorly (less than
50% attack success rate) is ColorFool. This may partially
be due to the fact that the ColorFool attack can be run in
both white-box and black-box form. The ColorFool black-
box reported attack results are based on a transfer style attack
as opposed to a query based method. As wementioned above,
the new score and decision based attacks (which use query
information) that we survey have a higher attack success
rates than the new transfer based attacks for the l2 and l∞
norms. Essentially, we conjecture there may still be room to
improve the black-box ColorFool attack using a query based
methodology.

VIII. CONCLUSION
Adversarial machine learning is advancing at a fast pace, with
new attack papers being proposed every year. In light of these
recent developments, we have surveyed the current state-
of-the-art black-box attack and have provided three major
contributions. First, our survey covers 20 new attack papers
with detailed summaries, mathematics and attack explana-
tions. Our second contribution is a categorization of these
attacks into four different types, score based, decision based,
transfer based and non-traditional attacks. This organization
assists new readers in comprehending the field and helps
current researchers understand where each new attacks fits in
the rapidly growing black-box adversarial machine learning
literature.

Lastly, we offer a new mathematical framework for defin-
ing the adversarial threat model. Our new framework pro-
vides a convenient and efficient way to quickly determine
when attack success rates from different attacks can be com-
pared. Without this framework, we have shown that directly
comparing attack success rates from different papers with
different threat models can lead to highly misleading conclu-
sions. Overall, our work and comparative evaluations provide
insight, organization and systemization to the developing
field of adversarial machine learning.
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