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SIMULATION OF RADIAL OSCILLATIONS OF A SPRING-LOADED ROLL  
IN A ROLL COMPACTOR

Abstract. Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when interacting the powder 
being compacted with the rolls. Considering the separation of the feed and compaction areas in the contact area of the roll 
with the material being compacted, we obtain the dependence of the force acting on the roll on the gap size between the rolls. 
It is shown that this dependence is non-linear, and it can be described with a sufficiently high accuracy degree by an 
exponential function with a negative exponent in the working range. The given numerical solution of the equation of free 
nonlinear oscillations of the spring-loaded roll has shown that considering the deformation of the material being compacted 
leads to a reduction of the natural frequency of the system by 20–25 % compared to the case, where the pressure force of the 
powder on the roll is assumed to be independent of the gap size. The nonlinearity of the dependence of the pressure force on 
the gap also leads to the increase by 10 % in the calculated values of the maximum displacements. The developed approach to 
the calculation of oscillations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities  
of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows estimating the 
frequencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the occurrence  
of resonance in the machine is not possible. 
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МОДЕЛИРОВАНИЕ РАДИАЛЬНЫХ КОЛЕБАНИЙ ПОДПРУЖИНЕННОГО  
ВАЛКА ВАЛЬЦ-ПРЕССА

Аннотация. Выполнено моделирование колебаний подпружиненного валка вальц-пресса при взаимодействии 
прессуемого порошка с валками. С учетом выделения в области контакта валка с прессуемым материалом зон пода-
чи и прессования, получена зависимость силы, действующей на валок, от величины зазора между валками. Показано, 
что эта зависимость имеет нелинейный характер, причем в рабочем диапазоне с достаточно высокой степенью точ-
ности может быть описана степенной функцией с отрицательным показателем степени. Приведено численное реше-
ние уравнения свободных нелинейных колебаний подпружиненного валка, которое продемонстрировало, что учет 
деформирования сжимаемого материала приводит к снижению частот собственных колебаний системы на 20–25 % 
по сравнению со случаем, при котором сила давления порошка на валок принимается не зависящей от величины за-
зора. Нелинейность зависимости силы давления от зазора приводит также к увеличению на 10 % расчетных значе-
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ний максимальных смещений. Разработанный подход к расчету колебаний подрессоренного валка вальц-пресса по-
зволяет учесть особенности деформирования прессуемого порошка при его взаимодействии с валками, а также по-
зволяет, наряду с оценкой частот и амплитуд колебаний, установить оптимальный диапазон значений коэффициента 
жесткости пружины, при котором появление резонанса в машине будет невозможно.

Ключевые слова: вальц-пресс, порошок, валки, колебания, силы упругости, резонанс, моделирование
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Introduction. The functioning of a roll compactor is determined both by the characteristics of the 
machine itself and by the parameters of the material being compacted. In an ideal case, the compacting 
process would be stationary and the rolls would be constantly in a true equilibrium if all powder particles 
being compacted have the same size, constant material density and as well as constant pressure value 
which ensures uniform powder feeding, etc. Variations in the above parameters, however, lead to 
oscillations of the rolls in a radial direction. To ensure a continuous compacting process and to reduce 
the forces acting on the rolls, which are caused by load variations, one of the rolls is spring-loaded. In 
the case of resonance, roll’s oscillation can lead to inhomogeneity of the flakes, which in turn can have  
a negative effect on the quality of the final product.

To exclude resonance from the operating mode it is necessary to know oscillation parameters of the 
spring-loaded roll, which depend both on the mass of oscillating parts and spring rate, and on the amount 
and characteristics of the material being compacted and located between the rolls.

The information available in the literature on powder compacting machines for the production  
of granulated fertilizers, including potassium chloride (KCl), is mostly of descriptive or promotional 
nature [1–3]. The theoretical basis to determine the specifications of the used equipment has remained 
practically unchanged since the 1980s at the territory of the CIS countries [4–6].

Over recent years, there appeared a number of papers dealing with the determination of forces acting 
on rolls during powder compacting [7–9]. Both analytical and numerical methods are used for this 
purpose. In the paper [10] powder deformation model has been developed. This model enables to 
determine the forces acting on the rolls. However, the processes associated with oscillations of spring-
loaded rolls have not been considered in these papers.

In the paper [11], an attempt is made to estimate the natural frequencies of a spring-loaded roll 
crusher. However, in this work it is assumed that the change of forces acting on the roll occurs according 
to the linear law, which does not correspond to the actual distribution of such forces. The purpose of this 
work is to develop an algorithm for calculating the oscillations of a spring-loaded roll of a roll compactor, 
taking into account the peculiarities of interaction between the powder being compacted and the rolls. 

Results and their discussion. Figure 1 shows a computational scheme designed to describe the 
oscillations of a spring-loaded roll. 

During rolls rotation that drives the powder being pressed, they are subjected to distributed forces 
from the material being compacted. The projections of these forces are indicated in the figure by Fx and 
Fy. The elastic force Fel prevents horizontal movement. The dynamic equation of motion of the spring-
loaded roll can be written as follows

 el.xmx F F= -                               (1)

When the rolls move by a distance x from the position at 
which there is no spring deformation, elastic forces arise, 
and they are proportional to the spring deformation

Fel = cx,

where c is the spring rate.
Calculation of force Fx acting on the roll 2 (see Fig. 1) 

will be performed according to the procedure described in 
the paper [10]. To describe powder compression, we introduce 
the angle q changing from zero (horizontal line connecting 

 

      
 

Fig. 1. Computational scheme of spring-loaded 
roll oscillations: 1 – a roll with a fixed axis;  

2 – a roll with a movable axis; 3 – material being 
compacted
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the rolls centres) to a as an argument (beginning the contact area between the powder and the roll). The 
contact area is divided into a feed area and a sealing area [12]. The feed area corresponds to the variation 
range of the angle q from g to a. The angle q is determined by the formula 

 

1 sinarcsin ,
2 sin

 ϕ a = ϕ +  d  

where arctg( ),fϕ =  f is the coefficient of friction between the powder mixture and the surface of the 
roll; d is an angle of internal friction of the powder material (rad). 

In the feed area, the dependence of the mean axial stress s (also called hydrostatic pressure) on the 
angle q is given by the differential equation 

 

2 cos (1 sin )(tg ) tg ,
2 (1 cos ) (1 sin )(1 tg )s

d R f
d h R f

 s q + d q -
= s - q q + - q - d + q 

  (2)

where R is the radius of the roll; hs is distance between roll surfaces (gap).
The boundary condition for the beginning of the powder-roll contact region is 

  0( ) ,
1 sin

p
s a =

- d  
 (3)

where p0 is the feed pressure.
Solving the equation (2) taking into account (3), we obtain 

 

0
supply( ) exp ( ) .

1 sin
p Q d

a

q

 
s q = - ς ς 

- d  
∫

The function introduced here is defined by the formula

 
supply

2 cos (1 sin )(tg )( ) tg .
2 (1 cos ) (1 sin )(1 tg )s

R fQ
h R f

 ς + d ς -
ς = - ς + - ς - d + ς 

Having the dependence σ(θ), the standard pressure p on the roll and shear stress tf can be calculated 

 
, .

1 tg fp fp
f
s

= t =
+ q

The angle g corresponding to the transition to the sealing area is obtained by solving a non-linear 
equation 

 
2

sin (1 sin )(tg )1 2cos tg 12,
2 (1 sin )(1 tg )cos

sh fK
R f

g + d g - - g + = - g  - d + gg  

where K is compaction index [12].
In the sealing area, for the average axial stress instead of the formula (2), one should use the equation 

 

2 costg 1 .
2 (1 cos )s

d RK
d h R

 s q
= s q - q + - q 

  (4)

The continuity equation is used as the boundary condition

  supply pressing( ) ( ) .s g = s g   (5)

Solving the equation (4) with regard for (5) gives

 

0
supply pressing( ) exp ( ) exp ( ) ,
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p Q d Q d
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g q
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where

 
pressing

2 cos( ) tg 1 .
2 (1 cos )s

RQ K
h R

 ς
ς = ς - + - ς 



 Доклады Национальной академии наук Беларуси. 2021. Т. 65, № 6. С. 742–748 745

The standard pressure on the roll and the shear stress can be expressed as the function s(q) and for 
the sealing area the corresponding formulas are as follows 

 
2

(1 sin ) tg ;

tg 2sin 2 (1 cos )1 .
1 sin 2 cos(1 tg )(1 sin )

f

s
f

p

h RK
R

= s + d - t q

 s q d + - q t = + -  - d q+ q + d   

The projection of the equivalent force Fx acting on the roll of length H, in turn, is determined by 
integrating the combination of normal and shear forces distributed over the contact surface of the powder 
with the roll

 0
( cos sin ) .x fF RH p d

a
= q + t q q∫

Figure 2 shows the force dependence on gap size between the rolls, obtained for the case R = 0.5 m, 
H = 0.1 m, f = 0.3, K = 3. This dependence is approximated with a high degree of accuracy by the 
following expression 
 Fx = 253hx

–1,814.  (6)

Since the dependence Fx(hs) is non-linear, the eq. (1) is the non-linear differential equation of the 
second order. Its solution enables to find the parameters of free and forced oscillations of the rolls arising 
during operation. 

Assume that the roll is made of steel and that its mass is m = 900 kg. If the nominal roll gap makes  
hs = 6 mm, then it follows from fig. 2 that the corresponding value of the pressing force is Fx = 2732 kN. 
If we set that the undeformed state of the support spring corresponds to roll gap hs0 = 4 mm, we obtain 
the following spring rate of the support spring 

 
с 

3
6

0

2732 10 1366 10
0,006 0,004

x

s s

Fñ
h h

⋅
= = = ⋅

- -  
Н/м.

Consequently, taking the position corresponding to the undeformed state of the support spring and 
substituting the expressions of the applied forces in the eq. (1), we obtain 

 

6
1,814

253900 1366 10 .
( 0,004)

x x
x

= - ⋅
+

   (7)

Figure 3 shows graphs of free roll oscillations obtained by the Runge–Kutta’s Fourth Order Method 
for the case when at the initial moment of time the roll gap hs was 5 mm and the initial speed of coordinate 
variation x was absent. The solid line corresponds to the differential eq. (7), and the dashed line to the 
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 Fig. 2. Dependence of the force Fx on the gap hs between the rolls at the feed pressure p0 = 106 Pa: the solid line is the exact 
dependence; the dashed line is an approximation by the eq. (6)
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version in which the force from the side of the material being compacted was assumed constant (this 
version corresponds to the well-studied linear oscillations of a material system with single degree  
of freedom). 

From the graphs provided, one can see that taking into account the deformation of the material being 
compacted results in a 20–25 % decrease in the natural frequencies of the system. Due to the nonlinear 
dependence of the force Fx on the displacement, the maximum displacement from the equilibrium 
position is approximately 10 % higher compared to the case of linear oscillations. 

The considered case of roll oscillations corresponds to nonlinear oscillations of the considered 
system. In the case of small deviations Δx from the equilibrium position, dependence (6) can be 
linearized [13]. In this case, the expression for the pressure force on the roll of the material being 
compacted in the neighborhood of the point with the coordinate x is written in the following form 

 Fx = Fx0 – kΔx,  (8)

where Fx0 is the value of the pressing force corresponding to the coordinate x; k is the stiffness coefficient 
determining the deformation of the material being compacted in the area under consideration.

The value of the rate k can be obtained by differentiation of the dependence, shown in Fig. 2, with 
respect to parameter hx: 
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Fig. 3. Graphs of free roll oscillations considering the deformation features of the material being pressed (solid line)  
and without such consideration (dashed line)
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Figure 4 shows graph of the stiffness coefficient of the material being compacted depending on the 
gap between the rolls. 

Substitution of the expression (8) into the eq. (1) leads to obtaining the small oscillations’ equation  
of a spring-loaded roll 0 ,xmx F kx cx= - - the known solution of which [13] enables to estimate the fre-
quencies of small natural oscillations corresponding to specific gap between the rolls using the formula 

 
.c k

m
+

w =

Thus, the developed approach to the calculation of oscillations of the spring-loaded roll in the roll 
compactor enables to take into account the peculiarities of deformation of the powder being compacted 
during its interaction with the rolls. In addition, the considered approach allows estimating the fre-
quencies and oscillation amplitudes and setting the optimum range of spring rate values, at which the 
occurrence of resonance in the machine is not possible. 

Conclusion. Carried out simulation of oscillations of a spring-loaded roll in a roll compactor when 
interacting the powder being compacted with the rolls. Considering the separation of the feed and com-
paction areas in the contact area of the roll with the material being compacted, we obtain the dependence 
of the force acting on the roll on the gap size between the rolls. It is shown that this dependence is non-
linear, and it can be described with a sufficiently high accuracy degree by an exponential function with  
a negative exponent in the working range. The given numerical solution of the equation of free nonlinear 
oscillations of the spring-loaded roll has shown that considering the deformation of the material being 
compacted leads to a reduction of the natural frequency of the system by 20–25 % compared to the case, 
where the pressure force of the powder on the roll is assumed to be independent of the gap size. The 
nonlinearity of the dependence of the pressure force on the gap also leads to an increase by 10 % in the 
calculated values of the maximum displacements. The developed approach to the calculation of oscil-
lations of the spring-loaded roll in the roll compactor enables to take into account the peculiarities  
of deformation of the powder being compacted during its interaction with the rolls. In addition, it allows 
estimating the frequencies and oscillation amplitudes and setting the optimum range of spring rate 
values, at which the occurrence of resonance in the machine is not possible.
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