

University of Dundee

Modelling the effects of multiple fractal dimensions on the flocculation and resuspension processes of cohesive sediment

Xu, Chunyang; Cuthbertson, Alan J. S.; Zhou, Yan; Dong, Ping; Chen, Yongping

Published in: Frontiers in Marine Science

DOI: 10.3389/fmars.2021.746630

Publication date: 2021

Document Version Early version, also known as pre-print

Link to publication in Discovery Research Portal

Citation for published version (APA): Xu, C., Cuthbertson, A. J. S., Zhou, Y., Dong, P., & Chen, Y. (2021). Modelling the effects of multiple fractal dimensions on the flocculation and resuspension processes of cohesive sediment. *Frontiers in Marine Science*, 8, [746630]. https://doi.org/10.3389/fmars.2021.746630

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain.
You may freely distribute the URL identifying the publication in the public portal.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Modelling the effects of multiple fractal dimensions on the flocculation and resuspension processes of cohesive sediment

Chunyang Xu¹, Alan J. Cuthbertson², Yan Zhou³, Ping Dong³, Yongping Chen^{1*}

¹College of Harbour, Coastal and Offshore Engineering, Hohai University, China, ²School of Science and Engineering, University of Dundee, United Kingdom, ³School of Engineering, Faculty of Science and Engineering, University of Liverpool, United Kingdom

Submitted to Journal: Frontiers in Marine Science

Specialty Section: Coastal Ocean Processes

Article type: Original Research Article

Manuscript ID: 746630

Received on: 24 Jul 2021

Revised on: 11 Nov 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

CX and AC designed the work. CX and YZ built and run the model. CX, PD and PC the performed analysis of model results. CX and AC wrote the manuscript and managed communication among all the authors. YZ prepared the figures. YC, PD and AC contributed to the revision of the manuscript. All authors reviewed and agreed to the final manuscript.

Keywords

Flocculation, Multifractal dimensions, Cohesive sediment, grid-stirred settling column, Mud resuspension, tidal channel.

Abstract

Word count: 220

The flocculation of cohesive sediments represents a critical process in coastal sediment transport, with its appropriate representation in numerical models crucial for the prediction of contaminant transport, coastal morphodynamics and engineering problems. In this study, a flocculation model considering the effects of multiple fractal dimensions is incorporated into a two-phase numerical modelling framework and used to investigate the effects of spatio-temporal variations in sediment concentrations on the temporal evolution of local floc sizes. Initially, the model is applied to simulate the aggregation of clay suspensions in a vertical grid-stirred settling column, with results confirming the importance of multiple fractal dimensions when predicting the time evolution of floc sizes. The adoption of multiple fractal dimensions, in particular, allows the two-phase numerical model to better match the measured settling column data with improved overall correlation. This is especially the case when predicting initial floc size growth during the early period of settling when the flocs tend to adjust more rapidly to their equilibrium sizes. The two-phase model is then applied to simulate field measurements of mud resuspension process in a tidally-driven channel. Again, by considering multiple fractal dimensions within the flocculation model, a better agreement is obtained between observed and modelled suspended sediment concentrations, while predicted floc sizes are also in general accord with previous field measurements made within the same estuary.

Contribution to the field

The flocculation of cohesive sediments represents a critical process in coastal sediment transport, with its appropriate representation in numerical models crucial for the prediction of contaminant transport, coastal morphodynamics and engineering problems. Consequently, in order to accurately predict the transport and fate of cohesive sediments within such aquatic environments, the transient nature of the physical floc properties throughout their life cycle needs to be better accounted for in predictive numerical models. Therefore, the main aim of the current study is to capture floc development under variable sediment concentrations and, thus, its influence on the modelling of cohesive sediment dynamics in a tidal driven channel. Therefore, a flocculation model that considers the effects of Spatio-temporal variations is incorporated into a two-phase numerical modelling framework and used to investigate the effects of Spatio-temporal variations in sediment concentrations on the temporal evolution of local floc sizes. By considering multiple fractal dimensions within the flocculation model, a stronger agreement is obtained between observed and modelled sediment concentrations.

Funding statement

This research was supported by the Natural Science Foundation of China [No.5151001005], Fundamental Research Funds for the Central Universities [B200204017], [B200202057], UK Engineering and Physical Science Research Council [EP/R02491X/1], and Natural Science Foundation of China [No.51709084].

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: No human studies are presented in this manuscript.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

1	Modelling the effects of multiple fractal dimensions on the
2	flocculation and resuspension processes of cohesive sediment
3	
4 5	Chunyang Xu ¹ , Alan J.S. Cuthbertson ² , Yan Zhou ³ , Ping Dong ³ , Yongping Chen ^{1,*}
6 7	¹ College of Harbor Coastal and Offshore Engineering, Hohai University, Nanjing, PR China
8 9	² School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
10 11	³ School of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
12	* Correspondence:
13	Corresponding Author
14	E-mail address: YPCHEN@HHU.EDU.CN
15	Keywords: flocculation, multifractal dimensions, cohesive sediment, grid-stirred
16	settling column, mud resuspension, tidal channel.
17	
18	Abstract
19	The flocculation of cohesive sediments represents a critical process in coastal sediment
20	transport, with its appropriate representation in numerical models crucial for the
21	prediction of contaminant transport, coastal morphodynamics and engineering
22	problems. In this study, a flocculation model considerings the effects of multiple fractal
23	dimensions is incorporated into a two-phase numerical modelling framework and used
24	to investigate the effects of Spatiospatio-temporal variations in sediment concentrations
25	on the temporal evolution of local floc sizes. Initially, the model is applied to simulate

26	the aggregation of clay suspensions in a vertical grid-stirred settling column, with
27	results confirming the importance of multiple fractal dimensions when predicting the
28	time evolution of floc sizes. The adoption of multiple fractal dimensions, in particular,
29	allows the two-phase numerical model to better match the measured settling column
30	data with improved overall correlation. This is especially the case when predicting
31	initial floc size growth during the early period of settling when the flocs tend to adjust
32	more rapidly to their equilibrium sizes. The two-phase model is then applied to simulate
33	field measurements of mud resuspension process in a tidally-driven channel. Again, by
34	considering multiple fractal dimensions within the flocculation model, stronger better
35	agreement is obtained between observed and modelled suspended sediment
36	concentrations, while predicted floc sizes are also in general accord with previous field
37	measurements made within the same estuary.

39 **1 Introduction**

40 <u>Understanding the The</u> flocculation of cohesive sediments is very important for the 41 accurate prediction of suspended sediment and contaminant transport in coastal 42 environments, and associated impacts initiated by coastal engineering works (Mayerle 43 et al., 2015; Guo et al., 2017; Watson et al., 2018). Flocculation occurs when fine

44	primary particles of cohesive sediment or small particle aggregates combine, due to
45	electrochemical or biological attraction, to form larger agglomerations, widely known
46	widely as flocs. These flocculation processes play a key crucial role in influencing other
47	cohesive sediment transport processes, such asincluding settling, deposition,
48	consolidation, erosion and, resuspension and consolidation within estuaries and or
49	coastal waters (Lick et al., 1992; Cuthbertson et al., 2010; Zhang and Zhang, 2011; Wan
50	et al., 2015; Li et al., 2017). Flocculation effects are <u>also</u> of significant importance to
51	the assessment of aquatic science and water treatment applications, as well as for
52	coastal engineering applications involving sediment management, such as maintenance
53	dredging of waterways and the reclamation of mudflats (Mikkelsen and Pejrup, 2000;
54	Son and Hsu, 2011; Zhu et al., 2014; Reisinger et al., 2017; Li et al., 2020).
55	An added complexity in cohesive sediment flocculation arises from the fact that the
56	physical floc properties (e.g. size, density and structure) are continually changing both
57	temporally and spatially within coastal waters (Manning, 2004; Manning et al., 2010;
58	Keyvani and Strom, 2014; Shen and Maa, 2016). According to Winterwerp (1998), the
59	water column residence time T_r and the time T_T during which flow turbulence
60	characteristics remain constant are two constraints affecting the possibility of cohesive
61	sediment flocs reaching their equilibrium floc size (i.e. where aggregation and floc

62	break-up processes balance). When the water column residence time is limited, even if
63	the flow turbulence remains more or less homogenous (i.e. $T_T > T_r$), the resulting flocs
64	may remain in a non-equilibrium state due to continual temporal changes in the
65	suspended sediment concentration (SSC) (Cuthbertson et al., 2010). Furthermore, the
66	effective density and yield strengths of the flocs, determined by the solids content, the
67	size and density of primary particles, as well as and the irregular shape and porous
68	structure of the flocs, determining their effective densities and yield strengths, the
69	irregular shape and porous structure of flocs, determining their effective density, solids
70	content and yield strength, can also vary during sedimentation, thus affecting deposition,
71	dewatering (i.e. consolidation) and erosion processes within cohesive sediment beds
72	(He et al., 2016; Xu, 2019; Yang et al., 2019). This spatio-temporal variability therefore
73	suggests that mere reliance on information associated with equilibrium floc sizes or
74	SSC may be insufficient to fully characterize flocculation processes in highly-dynamic
75	coastal marine-waters. Consequently, in order to accurately predict the transport and
76	fate of cohesive sediments within such aquatic environments, the transient nature of the
77	physical floc properties throughout their life cycle needs to be better accounted for in
78	predictive numerical models.

79	Flocculation is governed by two main processes, namely aggregation and break up
80	(Winterwerp, 2002; Son and Hsu, 2008), and Many-many flocculation models have
81	been proposed that account quantitatively for these aggregation and break upcompeting
82	effects. Earlier flocculation models (Thorn, 1981; Dyer, 1989) were rather simplistic in
83	their approach, with sediment floc settling velocities correlated directly to other
84	physical factors influencing sediment flocculation, such as turbulent shear rate G and
85	suspended sediment concentration c . Although these early flocculation models have
86	were readily been incorporated readily into cohesive sediment transport models, theirse
87	equations equations do not provide take any details on account of the spatio-temporal
88	variation in floc sizes and, as such, they are not always applicable for a wide range of
89	SSC values or variable hydrodynamic conditions. the precise physical details of the
90	flocculation processes are not described within them.
91	A more rigorous type of flocculation model is provided by population balance equations
92	(PBE), within which physical properties such as floc sizes, densities, and even floc size
93	distributions (FSD) are obtained by accounting more specifically for the physical
94	aggregation and break up mechanisms that influence flocculation processes (Verney et
95	al., 2011). A major disadvantage of these PBE models is that they are computationally
96	demanding as both the floc density and FSD evolve both temporally and spatially and

97	are thus difficult to incorporate efficiently into standard cohesive sediment transport
98	models. These PBE models also require many more empirical assumptions to be made
99	regarding the aggregation and break up processes controlling the evolution of the FSD
100	and are therefore limited to a relatively small number of floc size classes and simple
101	configurations [e.g. flocculation in a vertical settling column, Cuthbertson et al. (2018)].
102	The third type of flocculation model is based on a semi-empirical approach, first
103	proposed by Winterwerp (1998), where temporally and spatially-varying averaged floc
104	sizes can be obtained. These types of models are thus less computationally demanding
105	than PBE models, as they only track the evolution of a single representative floc size
106	rather than the whole FSD. A downside of these models is that they still contain several
107	empirical coefficients for sediment properties and aggregation and break-up rates that
108	require prior calibration. In these models, the fractal dimension and yield strength of
109	the cohesive sediment flocs are either assumed to be constant (Winterwerp, 1998) or
110	variable parameters (Khelifa and Hill, 2006). Recently, both laboratory experiments
111	and field measurements have indicated that similar-sized flocs of the same size-may
112	have different fractal dimensions or yield strengths (i.e. multiple floc structures) due to
113	the fact that these floctheys may have formed under different physical mechanisms or
114	have different masses and/or mass distributions_within them (Vahedi and Gorczyca,

115	2012; Vahedi and Gorczyca, 2014; Moruzzi et al., 2017; Fall et al., 2021). It has thus
116	been recently suggested recently that the flocculation models incorporating multiple
117	fractal dimensions may account more realistically for the physical relationships
118	between floc sizes, settling velocities and yield strengths or settling velocities (Xu and
119	Dong, 2017a).

120 For the validation of cohesive sediment transport models, most studies have focused on the prediction of SSC, as cohesive sediment flocculation characteristics are often not 121 122 measured directly (Winterwerp, 2002; Son and Hsu, 2011). Other studies have used only zero-dimension data to validate the flocculation model. (i.e. where flocculation 123 124 processes are considered only under constant shearing conditions) (Son and Hsu, 2009; 125 Strom and Keyvani, 2016; Xu and Dong, 2017a). Within coastal areas, however, the 126 mean floc sizes measured at a fixed point are influenced by the incoming or outgoing 127 sediment (or floc) fluxes that contribute to the forming formation of different floc 128 characteristics. However, fFew studies to-date have included the effects of variable 129 sediment concentrations, and thus volumetric floc fluxes, on the prediction of floc 130 evolution in space and time (Cuthbertson et al., 2018).

131	In this study, a one-dimensional-vertical (1DV) two-phase flow model is coupled with
132	two flocculation models that consider unique (i.e. fixed <u>constant</u>) and multiple (i.e.
133	variable) fractal dimensions for a given floc size, respectively, to simulate the spatio-
134	temporal evolution of flocs. The previously derived 1DV two-phase flow model by Xu
135	and Dong (2017b) did not consider any time evolution of floc sizes. Therefore, the new
136	developed models These models are applied, for the first time, to simulate a controlled
137	1D flocculation-sedimentation experiment conducted within a grid-stirred settling
138	column. Subsequently, the models are applied to predict flocculation and cohesive
139	sediment resuspension processes in a tidal channel of the Ems/Dollard estuary (Van
140	Der Ham et al., 2001). The main aim of the current study is therefore to capture floc
141	development under variable sediment concentrations and, thus, its influence on the
142	modelling of cohesive sediment dynamics in a tidally driven channel. Within these
143	model simulations, the effects of multiple fractal dimensions and yield strengths on the
144	flocculation and settling processes under variable sediment concentrations, as well as
145	the influence of volumetric floc fluxes on the spatial-temporal evolution of local floc
146	sizes, are considered
I	

148 **2 Model formulation**

149	Within this section, the governing equations for the 1DV Reynold-averaged two-phase
150	model for cohesive sediment suspensions (§2.1), the two flocculation models used to
151	predict unsteady cohesive sediment floc development (§2.2), the floc number density
152	equation (§2.3), and the coupling procedures between these models (§2.4) are presented
153	in detail.

154 **2.1 Two-phase flow model**

The 1DV two-phase model used in this study is a simplified version of Xu and Dong 155 (2017b). Eq. (1) represents the momentum equation for both the fluid and solid phases 156 157 in the horizontal direction, Eqs. (2) and (3) represent the continuity equations, and Eqs. 158 (4) and (5) represent the momentum equations for both phases in the vertical direction. 159 It is be noted Note that Eq. (1) is only required to be adopted when applied only applies 160 to field measurements where the rate of change of mean horizontal flow velocity $(\partial U/\partial t)$ 161 and horizontal pressure $(\partial P/\partial x)$ need to be considered. For modelling the simplified case of cohesive sediment settling vertically (i.e. within a settling column), the 162 163 horizontal flow terms and terms involving horizontal gradients are omitted.

164
$$\frac{\partial U}{\partial t} + \frac{1}{\rho_{mix}} \frac{\partial P}{\partial x} = \frac{\partial}{\partial z} \left((v + v_T) \frac{\partial U}{\partial z} \right)$$
(1)

165

166
$$\frac{\partial \alpha_f \rho_f}{\partial t} + \frac{\partial \alpha_f \rho_f w_f}{\partial z} = \frac{\partial \rho_f}{\partial z} \left(-\Gamma_T \frac{\partial \alpha_f \rho_f}{\partial z} \right)$$
(2)

168
$$\frac{\partial \alpha_s \rho_s}{\partial t} + \frac{\partial \alpha_s \rho_s w_s}{\partial z} = \frac{\partial \rho_s}{\partial z} \left(-\Gamma_T \frac{\partial \alpha_s \rho_s}{\partial z} \right)$$
(3)

169

170
$$\frac{\partial \alpha_f \rho_f w_f}{\partial t} + \frac{\partial \alpha_f \rho_f w_f w_f}{\partial z} = -\alpha_f \frac{\partial \rho_f}{\partial z} + \alpha_f \frac{\partial \tau_v}{\partial z} - \alpha_f \rho_f g + f_i$$
(4)

171

173

172
$$\frac{\partial \alpha_s \rho_s w_s}{\partial t} + \frac{\partial \alpha_s \rho_s w_s w_s}{\partial z} = -\alpha_s \frac{\partial \rho_f}{\partial z} + \alpha_s \frac{\partial \tau_v}{\partial z} - \alpha_s \rho_s g - f_i$$
(5)

174
$$\alpha_f + \alpha_s = 1 \tag{6}$$

Within Eqs. (1) - (6), U is the horizontal velocity for both phases (i.e. fluid phase is 175 denoted with subscript f and the solid phase with subscript S), $\rho_{mix} = \alpha_s \rho_s + \alpha_f \rho_f$ is 176 the bulk density of the fluid-sediment mixture, α_s and α_f are the volume fractions of 177 178 solid and fluid phase, ρ_s and ρ_f are the solid and fluid phase densities, respectively, t 179 is time, w_s and w_f are the floc settling velocities and fluid velocities, respectively, P 180 is the pressure of mixture (with p_f corresponding to the fluid pressure), g is the 181 gravitational acceleration, τ_v is the viscous shear stress of the mixture, and f_i is the momentum transfer between two phases. In this study, f_i is used to describe the drag 182 183 force from the other phase (i.e. the drag force exerted on the fluid phase from the solid 184 phase, or vice versa). The modified classical mixing length method is adopted to 185 calculate turbulent eddy viscosity (v_T) and eddy diffusivity (Γ_T) :

186
$$v_T = k^2 z^2 \left(1 - \frac{z}{h}\right) \frac{\partial u}{\partial z} F_v \tag{7}$$

188
$$\Gamma_T = \frac{\nu_T}{\sigma_T F_d} \tag{8}$$

189

190 where σ_T is the turbulent Prandtl-Schmidt number (usually specified as 0.7 or 1.0), κ 191 is the Karman constant, F_v and F_d are the correction coefficients for eddy viscosity and 192 eddy diffusivity, respectively, to describe the buoyancy effects caused by suspended 193 sediments, and *h* is the height of vertical water column. Here, the eddy viscosity is 194 modified by the formulation presented by Busch (1973), while the Munk-Anderson 195 formula is applied for the calculation of F_d :

196
$$F_{v} = \begin{cases} \exp(-2.3Ri) & Ri \ge 0, \\ (1 - 14Ri)^{0.25} & Ri < 0. \end{cases}$$
(9)

197
$$F_d = \begin{cases} (1+3.33Ri)^{1.5} & Ri \ge 0, \\ 1 & Ri < 0. \end{cases}$$
(10)

198 where, *Ri* is the gradient Richardson number, defined as:

199
$$Ri = \frac{-g \frac{\partial \rho_{mix}}{\partial z}}{\rho \left(\frac{\partial U}{\partial z}\right)^2}$$
(11)

200 Here, we assume the shear stress for the solid and fluid phases are equal (Chauchat et

201 al., 2013; Xu and Dong, 2017b), and is presented as:

202
$$\tau_{\nu} = \mu_{mix} [\nabla u_m + (\nabla u_m)^T]$$
(12)

where $u_m = \alpha_f u_f + \alpha_s u_s$ is the volume-averaged velocity and $\mu_{mix} = \mu_f (1 + \beta_a \alpha_s)$ is the augmented viscosity, where β_a is the amplification factor. With an increase of the solid fraction, the mixture goes through the transition from Newtonian to non-Newtonian fluid. To account for the non-Newtonian effects, the amplification factor β_a is specified as (Graham, 1981):

208
$$\beta_a = \frac{5}{2} + \frac{9}{4} \frac{1}{1+d^*} \left(\frac{1}{2d^*} - \frac{1}{1+2d^*} - \frac{1}{(1+2d^*)^2} \right) \frac{1}{\alpha_s}$$
(13)

209 where d^* is defined as non-dimensional inter-particle distance. From geometrical considerations, it is expressed as a function of sediment volumetric concentration $d^* =$ 210 $\left[1 - (\alpha_s/\alpha_s^{max})^{1/3}\right]/(\alpha_s/\alpha_s^{max})^{1/3}$, where $\alpha_s^{max} = 0.625$ is the maximum solid 211 volume of simple cubic packed spheres (Chauchat et al., 2013). The calculated viscosity 212 213 from Eqs. (12) and (13) are suitable for sediment transport with large variation of 214 sediment concentration, as the model results are consistent with results from both the classic formulae $\mu_{mix} = \mu_f (1 + 2.5\alpha_s)$ and $\mu_{mix} = \mu_f 9/8 [(\alpha_s^{max}/\alpha_s)^{1/3} - 1]^{-1}$ 215 for the dilute case (Einstein, 1905) and for the dense case (Frankel and Acrivos, 1967), 216 217 respectively.

In considering the aggregation and break up of flocs, Chauchat et al. (2013) suggested that the drag force should be given from a macroscopic point of view for the two-phase model. As the inverse of water flow resistance can be measured using the permeability 221 parameter K, here the generalized Darcy law is adopted to describe the drag force

222 (Toorman, 1996):

223
$$f_{i} = \frac{\rho_{f} g}{K} (w_{f} - w_{s})$$
(14)

224

L

Therefore, the closure issue need to find expression of *K*. Permeability *K* is usually applied only when the sediment concentration reaches the gelling concentration (Winterwerp and Van Kesteren, 2004). Based on the stress balance equation, Toorman (1999) also extended the permeability *K* to the cases of dilute sediment concentration, the sedimentation and consolidation processes giving a unified expression as: $W = K\alpha_s(\rho_s/\rho_f - 1)$ (15) where, *W* is the settling velocity including the hindered settling effects and specified as:

232
$$W = w_0 (1 - \alpha_s)^{n_f/2} (1 - \phi_f)^{n_f/2 - 1} \left(1 - \frac{\phi_f}{\phi_{f_{max}}} \right)$$
(16)

where, ϕ_f is the volumetric concentration of cohesive sediment flocs and $\phi_{f_{max}}$ is the maximum value. The fractal dimension is denoted as *nf*. In the right-hand side of Eq (16), the first two terms represent the effects of buoyancy, viscosity, and wake on the settling process of sediment particles. The $\phi_{f_{max}}$ is introduced to describe that the settling velocity of sediment particles approaches zero when ϕ_f is approaching $\phi_{f_{max}}$. Following Chauchat et al. (2013), the value of 0.85 is adopted for $\phi_{f_{max}}$, while w_0 is 13 the settling velocities of cohesive sediment flocs in the dilute case. To be consistent
with the flocculation models adopted in this work, the settling velocities of cohesive
sediment flocs are calculated based on fractal theory presented by Winterwerp (1998)
as follows:

243
$$w_0 = \frac{\alpha_1}{18} \frac{(\rho_s - \rho_w)g}{\mu} d^{3-nf} \frac{D^{nf-1}}{1 + 0.15R_e^{0.687}}$$
(17)

where, α_1 is a coefficient depending on the sphericity of cohesive sediment flocs, *Re* is the particle Reynold number and defined as $R_e = w_s D/v$, with *D* being the representative sizes of flocs. The boundary condition for sediment concentration, which also serves as the bed erodibility, is specified by van der Ham and Winterwerp (2001):

248
$$\Gamma_{T} \frac{\partial \alpha_{s} \rho_{s}}{\partial z} - \alpha_{s} \rho_{s} w_{s} = \begin{cases} M \rho_{s} \left(\left| \frac{\tau_{b}}{\tau_{cr}} \right| - 1 \right), |\tau_{b}| > \tau_{cr} \\ w_{s} \rho_{s} \alpha_{s}(z_{b}) \left(1 - \left| \frac{\tau_{b}}{\tau_{cr}} \right| \right), |\tau_{b}| \le \tau_{cr} \end{cases}$$
(18)

249 where, τ_b is the bed shear stress, τ_{cr} is the critical bed shear stress for sediment 250 erosion, and *M* is the erosion coefficient.

251 **2.2 Cohesive Sediment Flocculation models**

- 252 2.2.1 Flocculation Model with Constant Fractal Dimension (Model A)
- 253 Based on the assumption of a constant fractal dimension nf and yield strength F_y for
- 254 floc development, Winterwerp (1998) proposed a semi-empirical flocculation model
- that considered the effects of SSC c and fluid turbulent shear intensity G on the temporal

evolution of floc size:

257
$$\frac{dD}{dt} = \frac{k_A^{'}}{nf} \frac{c}{\rho_s} G d^{nf-3} D^{4-nf} - \frac{k_B^{'}}{nf} \left(\frac{\mu}{F_y}\right)^q G^{q+1} d^{-p} D^{2q+1} (D-d)^p$$
(19)

where d is the representative sizes of primary particles, while p, q , $\vec{k_A}$ and $\vec{k_B}$ are 258 model coefficients [for more details, see Winterwerp (1998)], $G = \sqrt{\varepsilon/v}$ is the shear 259 260 rate (with ε the turbulent dissipation rate of the fluid), and μ is the dynamic viscosity. 261 The aggregation term [i.e. first term on right-hand side of Eq. (19)] and break up term [i.e. second term on right-hand size of Eq. (19)] are proportional to sediment 262 concentration c and yield strength F_y , respectively. Within Eq. (19), the fractal 263 dimension nf and yield strength F_y are therefore required to be constant values for flocs 264 of the same size. For application of the flocculation model to the laboratory settling 265 column experiments, as the measured FSD is relatively narrow, and the time history of 266 267 flocculation relatively shortnarrow, the fractal dimension remains almost constant over 268 the range of floc sizes. However, within field measurements, where the FSD can be 269 considerably larger, and the time history of flocculation longerlarger, the fractal dimension might be expected to change with the variation of floc sizes (Khelifa and 270 271 Hill, 2006). To account for the effects of fractal dimension variation with floc size, the 272 constant floc yield strength F_{v} can be replaced, such that:

273
$$F_y = \tau_y D^2 = B_1 \left(\frac{D}{d}\right)^{2nf/3}$$
(20)

where, τ_y is the yield stress of cohesive sediment flocs and B_1 is an empirical coefficient.

275 2.2.2 Flocculation Model with Multiple Fractal Dimensions (Model B)

276 As discussed in the introduction, the fractal dimension *nf* does not appear to be unique 277 for any given floc size, with multiple fractal dimensions having been shown to exist 278 due to different flocculation mechanisms and/or mass distributions within specific floc 279 structures. Specifically, the concept of a normal distribution of fractal dimensions to 280 represent these multiple fractal dimensions has been introduced and incorporated into a settling velocity model, the results of which were found to compare well with 281 measured data (Vahedi and Gorczyca, 2012). The normal distribution for fractal 282 283 dimensions can be defined as follows:

284
$$P(nf)_D = \frac{1}{\sqrt{2\pi}\sigma_D} exp\left(-\frac{(nf-\mu_{nf})^2}{2\sigma_D^2}\right)$$
(21)

where $P(nf)_D$ is the probability density function for fractal dimensions of floc size *D*, and μ_{nf} and σ_D are the mean and standard deviation of fractal dimensions *nf* for a given floc size *D*, respectively.

In order to incorporate the effects of multiple fractal dimensions on cohesive sediment flocculation processes, Eq. (21) is adopted within the flocculation model. As such, to determine the probability of a specific *nf* value in Eq. (21), the mean and standard deviation of fractal dimensions for all flocs of size *D* need to be specified. For floc 292 populations composed of the same size D, multiple fractal dimensions therefore suggest 293 implies that multiple floc structures, and thus multi-yield strengths, must-may exist 294 within the floc population (Vahedi and Gorczyca, 2012). Consequently, some flocs (with lower F_{y} values) may break up while others (with higher F_{y}) may not under the 295 296 same turbulent shear rate G. It is also therefore important to determine the maximum fractal dimension nf_{max} that allows flocs of size D to break up under a specific 297 298 imposed turbulent shear condition (note: larger fractal dimensions normally correspond to larger yield strengths) (Khelifa and Hill, 2006). If we assume that only flocs with 299 yield strengths τ_y lower than the turbulent shear strength μG break up, then from Eq. 300 (20), the maximum fractal dimension nf_{max} can be calculated using $\mu G =$ 301 $B_1\left(\frac{D}{d}\right)^{2nf_{max}/3} D^{-2}$. Thus, the break-up term of the flocculation model with constant 302 fractal dimension [i.e. second term on the right hand side of Eq. (19)] can be revised 303 304 using an integral form to include the influence of multiple fractal dimensions, such that:

$$\frac{dD}{dt} = \frac{Gd^{\beta}}{\beta \ln(D/d) + 1} \left[\frac{k_{A}'}{3} \frac{c}{\rho_{s}} d^{nf-3} D^{-nf+4-\beta} - \frac{k_{B}'}{3} (\frac{\mu G}{B_{1}})^{q} D^{1-\beta+2q} d^{-p} (D-d)^{p} \right]$$

$$305 \qquad \qquad \int_{\mu_{D}-4\sigma_{D}}^{nf_{max}(D)} \left(\frac{D}{d} \right)^{-\frac{2q}{3}nf} \frac{1}{\sqrt{2\pi}\sigma_{D}} \exp\left(-\frac{(nf-\mu_{D})^{2}}{2\sigma_{D}^{2}} \right) dnf \qquad (22)$$

306 This flocculation model with multiple fractal dimensions is denoted as Model B. The 307 empirical aggregation and break-up coefficients k'_A and k'_B adopted in the two flocculation models [Eqs. (19) and (22)] are <u>constant values that</u> based on the equilibrium floe size in each case<u>are calibrated in section 3.1</u> to match both the initial flocculation rate and the maximum equilibrium floc size attained in settling column experiment under steady state conditions (i.e. constant turbulent shear and sediment concentration); further details are given in §3<u>.1</u>. Following—<u>Winterwerp</u> (1998)(Winterwerp, 1998; Son and Hsu, 2009), the empirical model coefficients *p* and *q* are adopted as 1.0 and 0.5, respectively.

315 **2.3 Number density of flocs**

The two flocculation models outlined in §2.1 relate to the time evolution of a representative floc size, while the two-phase model calculates the SSC. Therefore, the number density *N* of flocs may be introduced as an intermediate variable to link these models. The volumetric floc concentration ϕ can be linked to the number concentration of flocs *N* via the equation:

 $\phi_f = f_s N D^3 \tag{23}$

where, f_s is a floc shape factor. During the flocculation process, ϕ_f varies with floc size *D* and fractal dimension *nf*, and can be calculated from the sediment volumetric

324 concentration α_s as follows:

325
$$\phi_f = \alpha_s \left(\frac{\rho_s - \rho_w}{\rho_{floc} - \rho_w} \right) \tag{24}$$

326 where, ρ_{floc} is the density of flocs. According to fractal theory, the floc density can be

327 presented as (Kranenburg, 1994):

328
$$\rho_{floc} = \rho_f + \left(\rho_s - \rho_f\right) \left(\frac{D}{d}\right)^{nf-3}$$
(25)

From Eqs. (23) - (25), the variable floc size *D* can therefore be determined if the sediment volumetric concentration α_s and the number concentration *N* of flocs are known. Furthermore, the settling velocity of cohesive sediment flocs in a dilute suspension w_0 can be calculated from Eq (17). Therefore, the floc settling velocities can be linked to their number concentration *N*. As discussed above, the floc number concentration *N* also needs to be resolved. Here, following Winterwerp (2002), we propose the balance equation for number density as:

336
$$\frac{\partial N}{\partial t} + \frac{\partial N w_s}{\partial z} + \frac{\partial}{\partial z} \left(-\Gamma_T \frac{\partial N}{\partial z} \right) = F_N$$
(26)

337 where Γ_T is the turbulent diffusion coefficient and F_N is the flocculation term. The two 338 flocculation models [i.e. Model A and Model B, §2.2] are examined, in turn, by 339 combining each with the 1DV two-phase model (§2.1). These flocculation models are 340 first-order differential equations for floc size *D*, while F_N is in the form of a first-order 341 differential equation for number density *N*. As such, Eq. (19) can be rewritten as [see 342 (Winterwerp, 1998) for more details]:

343
$$F_{N} = -k_{A}^{'} G D^{3} N^{2} + k_{B}^{'} N G \left(\frac{D-d}{d}\right)^{p} \left(\frac{\mu G}{F_{y}/D^{2}}\right)^{q}$$
(27)

Based on Eq. (27), flocculation Model B has the form:

$$F_N = -k_A^{\prime} G D^3 N^2$$

346
$$+k_B^{'} NG \left(\frac{D-d}{d}\right)^p \int_{\mu_D-4\sigma_D}^{n_{fmax}} \left(\frac{\mu G}{\tau_y}\right)^q \frac{1}{\sqrt{2\pi\sigma_D}} exp\left(-\frac{(nf-\mu_D)^2}{2\sigma_D^2}\right) dnf \qquad (28)$$

347 2.4 Model Coupling Procedure

348 The flow chart in Fig. 1 shows the coupling procedures between the flocculation models and the 1DV two-phase model. For each time step, the governing equations of the two-349 350 phase model (Eqs. 1-6) are firstly solved to obtain the sediment concentration. This 351 concentration, and other relevant parameters, are then input into the flocculation models 352 to solve the number density equation (Eq. 26). From Eqs. (23)-(25), information on the floc size D, fractal dimension nf and floc density ρ_{floc} is obtained. Based on fractal 353 354 theory, the settling velocities w_0 of the cohesive sediment flocs are then calculated by Eq. 17. Finally, these settling velocities are used to determine the drag force closure for 355 356 the 1DV two-phase model (Eqs. 14-16).

3 Model application

3.1 Laboratory model setup

359	As discussed in the introduction, there have been many experiments conducted in both
360	the field and laboratory to investigate the characteristics of cohesive sediment flocs
361	(Burban et al., 1989; Dyer and Manning, 1999; Manning, 2004; Strom and Keyvani,
362	2016; Fall et al., 2021). Most _ above in the introduction, most previous_laboratory
363	experiments on cohesive sediment flocculation have been conducted under controlled,
364	idealized conditions within mixing tanks with pre-determined constant sediment
365	concentrations, turbulent shear rates and/or water salinities. However, under non-
366	equilibrium conditions, where sediment concentrations vary in both time and space,
367	flocculation processes become more complicated due to the relative influence of
368	residence and flocculation times on the floc sizes generated. The 1DV two phase
369	flocculation model proposed herein is designed to accurately capture the time evolution
370	of the cohesive sediment flocs, taking into account of both the effects of multiple fractal
371	dimensions for the flocs and variable sediment concentrations.
372	For this reason, the <u>1DV two-phase</u> model is applied to simulate recent grid-stirred
373	flocculation experiments conducted by Cuthbertson et al. (2018) for pure kaolin clay
374	suspensions within a vertical, grid-stirred settling column [details of the experimental

375	arrangement are given in Cuthbertson et al., 2010 and Cuthbertson et al., 2018]
376	(Cuthbertson et al., 2010; Cuthbertson et al., 2018)]. In this case, the calculations are
377	focused in the vertical direction, therefore horizontal flow terms and other terms
378	involving horizontal gradients in the two-phase model [Eqs. (1)-(6)] are omitted.
379	During individual experimental runs, a highly-concentrated kaolin suspension was fed
380	at a constant inflow rate via a peristaltic pump from an external mixing tank-at a
381	constant inflow rate via a peristaltic pump into the upper buffer mixing tank at the top
382	of the -main grid-stirred settling column section, placed above the main grid-stirred
383	settling column section. Within this buffer mixing tank, Two counter-rotating mixing
384	paddles within the buffer mixing tank generated an established circulation that diluted
385	the kaolin suspension within thea preset volume water (50 litres) and gradually
386	transferred the dilute clay suspension into the main column section via a gate openingin
387	the overall tank water volume. From there, The counter rotation of the two mixing
388	paddles generated an established circulation in the buffer tank leading to the gradual
389	transfer of the dilute clay suspension into the main column section. it was transferred
390	gradually into the main settling column, where it settled under the influence of the
391	controlled turbulent shear conditions generated by an interconnected array of oscillating
392	grids. Time series measurements of sediment concentrations were collected using

393 calibrated optical backscatter (OBS) probes located at 0.5 m and 1.2 m above the 394 bottom of the main column section. These OBS probes were calibrated over a wide range of pure kaolin clay suspensions (with mass concentrations ranging from C = 0 - 1395 1 g.l⁻¹), and relationships were established between turbidity (NTU) and suspended 396 397 sediment concentration (Cuthbertson et al., 2018). The time evolution of floc sizes was 398 collected at-0.4 m above the base of the column, via a macro-CCD camera (see 399 Cuthbertson et al., 2018). A macro CCD camera was set at 0.4 m above the base of the column to observe and record the time evolution of resulting floc sizes within a floc 400 401 viewing chamber.

Three datasets from the laboratory settling column experiments, denoted Cases 1 - 3, 402 403 are used for validation of the 1DV two-phase flocculation model. Due to variations in 404 the initial experimental conditions (i.e. sediment feed rate, duration, and input 405 concentration and turbulent shear rate), the time evolution of flocs and sediment 406 concentrations in the vertical direction are different between cases (see Table 1 for 407 details). In the model simulations of the settling column cases, the temporal variation of clay concentration at the upper model boundary is determined by specifying (i) the 408 clay input conditions (see Table 1) and (ii) the upper buffer tank volume and specified 409 410 mass transfer rate of clay from the buffer tank to the main column (i.e. through

411	adjustion with time series alay concentrations measured within the column by the
+11	canonation with time series eray concentrations measured within the column by $\underline{\mathbf{me}}$
412	OBS probes). The initial floc size of the clay suspension is set as the primary clay
413	particle size $d = 2.0 \mu m$, which is a regarded as a conservative value as it assumes no
414	flocculation occurs in the buffer tank. The sensitivity of the model predictions to this
415	initial floc size is also tested by varying this initial floc size d between 2 μ m and 10 μ m.
416	The turbulent shear rate G adopted in the simulations, and representing the turbulence
417	intensity, is set as <u>a</u> constant values for each case (see Table 1). These represent the
418	average shear rate values within the central flow region between the oscillating grid
419	pairs (Cuthbertson et al., 2010), which vary depending on the grid oscillation stroke
420	and frequency (for the fixed grid arrangement). The resulting zero-mean shear
421	turbulence fields are demonstrated to be quasi-homogeneous and near-isotropic within
422	the central flow region between the oscillating grid pairs (i.e. away from the grids
423	themselves). To determine the The mean fractal dimension within the two flocculation
424	models also needs to be determined., According according to Cuthbertson et al. (2010),
425	for floc sizes of pure clay smaller than 100, the majority of the fractal dimensions lie
426	in the range of $1.7 \le nf \le 2.0$ [see Fig. 11 in Cuthbertson et al. (2010)]. <u>As in a normal</u>
427	distribution the probability $P(\mu - 3\sigma < x < \mu + 3\sigma)$ is larger than 99%, the standard
428	deviation is estimated as (2.0-1.7)/6=0.05. Therefore, tThe mean fractal dimension and

429 standard deviation areis adopted as 1.85 and 0.05, respectively. The constant fractal 430 dimension in Model A is thus specified as 1.85, while the specific flocculation 431 parameters adopted in Models A and B for the three experimental cases considered are 432 summarized in Table 2. 433 To ensure a rational comparison between the two flocculation models (i.e. Models A 434 and B) for the predicted reproduced time evolution of clay flocs in the settling column 435 experiments, it is necessary to establish the baseline model parameters through 436 calibration. Here, the flocculation model coefficients are obtained by first calibrated to haveusingadopting the same final equilibrium floc size generated under the same fixed 437 438 sediment concentration and turbulent shear rate for each data set. Under these steady-439 state conditions, (i.e. final equilibrium floc size under the same sediment concentration 440 and turbulent shear rate) the radio ratio between the aggregation and break-up <u>parameters</u>, k'_A and $k'_{B^{\pm}}$ can be determined. Secondly, the value s for k'_A these two 441 coefficients are is selected (i.e. so is the value of k'_B , because the ratio of these two k'_A 442 and k'_{B} has been determined) to fit best of to the initial flocculation rate. 443

444 **3.2 Computational Results**

The time series measurements and model predictions results of sediment concentration

446 at 0.5 m and 1.2 m above the bottom of the main grid-stirred settling column section

447	are shown in Fig. 2 for Case 1 (Table 1). Using these measured time series of sediment
448	concentration to calibrate the upper clay input boundary condition (where $t = 0$ refers
449	to start of the sediment input into the column), the two flocculation models are capable
450	of reproducing the vertical profiles of sediment concentration. <u>which match well with</u>
451	the measured data at the two discrete measurement elevations in the column. The results
452	from Model A are shown to be very similar as those produced by Model B, due
453	primarily to the fact that the diffusion term [in Eq. (3)] dominates and settling effects
454	are relatively small (i.e. due to the overall small floc sizes generated). However, the
455	model results do show slight differences due to the different settling velocities that are
456	calculated and adopted in these respective models. In the experimental data, the
457	measured concentrations at 0.5 m and 1.2 m converge around 12000s (Fig. 2), with the
458	predictions results from both Models A and B converging around 13000s. In the later
459	part of experimental run, the measured data tend to approximately the same equilibrium
460	concentration levels within the column, again consistent with the predictions from both
461	Models A and B. It is also noted that a smaller vertical gradient of sediment
462	concentration was predicted obtained by Model B than that of Model A before
463	convergence. Similar trends were also predicted obtained in the model simulations of
464	Cases 2 and 3 (Table 1).

465	The measured and predicted reproduced modelled temporal variations in the root-mean-
466	square (rms) floc sizes generated in the settling column at $z = 0.4$ m, where the floc size
467	measurements were obtained, are shown in Figs. 3(a)-(c) for Cases 1-3, respectively.
468	The main feature of these measured data is that near quasi-equilibrium floc sizes are
469	already attained within the column by the time the flocs are first detected in the floc
470	viewing chamber within the lower part of the settling column (Cuthbertson et al., 2010).
471	The corresponding 1DV two-phase flocculation model predictions-results indicate that
472	Model B (i.e. multiple fractal dimension) provides far closer agreement with the
473	measured time evolution of rms floc sizes, both in terms of the initial rapid flocculation
474	and equilibrium floc size attained, while Model A significantly underpredicts the initial
475	flocculation rate before reaching the same equilibrium floc size at a later elapsed time.
476	Indeed, Model A is shown to be incapable of reproducing the measured temporal
477	evolution with of floc sizes with the settling column no matter what combination of k'_A
478	and k'_B are used, while Model A (i.e. constant fractal dimension) underpredicts this
479	temporal evolution significantly over the initial time $T = -16000s$ in each run. Indeed,
480	Specifically, the root-mean-square errors (RMSE) of the calculated time series of floc
481	sizes are 18.5 (Case 1), 26.6 (Case 2) and 26.9 (Case 3) for the results of Model A.
482	While for the results of Model B, the RMSEs are 4.3 (Case 1), 3.5 (Case 2) and 5.7

483	(Case 3), respectively, b By incorporating multiple fractal dimensions and thus variable
484	yield strengths, Model B is able to capture better the temporal characteristics of the
485	rapid initial floc size adjustment at earlier stages of the runs (i.e. T < 5000 s), after
486	which the predicted-calculated floc sizes increase only slowly and approach the quasi-
487	equilibrium floc size. By contrast, the predicted time evolution of rms floc size by
488	Model A is shown to increase more gradually to the final quasi-equilibrium floc size,
489	with the overall shape of the curves (i.e. dashed lines Fig. 3a-c) shown to have a similar
490	temporal evolution to the SSC at 0.5 m within the settling column.
491	To further demonstrate the temporal evolution of clay flocs in the settling column
492	simulations, vertical profiles of floc sizes predicted calculated by Models A and B are
493	compared in Figs. 4(a)-(c) with the floc size measurements (at $z = 0.4$ m in the settling
494	column) at three different elapsed times for Case 3 (Table 1). In addition, the
495	corresponding predicted-calculated vertical distributions of SSC are compared with the
496	measured OBS data obtained at the two elevations ($z = 0.5$ m and 1.2 m) at the same
497	elapsed times in Figs. 4(d)-(f). (Note: as the vertical profiles of sediment concentration
498	predicted by Models A and B are very similar, only Model B profiles are shown). At a
499	relatively early elapsed time (e.g. $T = 2000 \text{ s}$, Fig. 4d), the sediment concentration in
500	the upper column ($z/h > -0.5$) into which the sediment suspension is being transferred

501	continuously from the buffer mixing tank, increases with time, while in the lower
502	column ($z/h < \sim 0.25$), the concentration remains almost zero, as few sediment flocs
503	have reached this region by this elapsed time. At $T = 5000 \text{ s}$ (Fig. 4e), the total sediment
504	mass continues to increase in the main settling column with the sediment concentration
505	in the upper column remaining significantly higher than that in the lower region. Finally,
506	during the later stages of the experimental run at $T = 15000$ s (Fig. 4f), long after the
507	sediment feed has ceased (at $T = 9300$ s for Case 3, Table 1), the sediment concentration
508	becomes more uniformly distributed within the column, with values in the lower
509	column slightly higher than in the upper column. In all cases, these predicted
510	reproduced concentration distributions show excellent agreement with the equivalent
511	measured concentrations at the two elevations in the column.
512	During the experiments, it was assumed that the constant suspended sediment feed into
513	the main column from thethe sediment feed into, and mixing within, the buffer mixing
514	tank was assumed to remainedkeep cohesive sediments in a largely unflocculated state
515	when it begins to settle downward within the column (Cuthbertson et al., 2018). This
516	would have, resulted resulting in very smaller floc sizes occurring at the very top of the
517	column <u>during_over</u> the experimental run <u>duration</u> . In this <u>modelling</u> study <u>of the</u>
518	settling column experiments, the effects of the volumetric floc flux on the evolution of

519	local floc size are fully accounted for by solving sediment concentration and floc
520	number concentration simultaneously. With this imposed <u>upper</u> boundary condition,
521	the predicted maximum floc sizes are shown to occur in the upper-middle part of the
522	settling column [i.e. $z/h = \sim 0.7$ at T_=_2000 s and $z/h = \sim 0.8$ at T_=_5000 s (for Models
523	A and B), Fig. 4a,b]. This <u>floc size maximum</u> is therefore <u>shown to occur at a</u> different
524	to the elevation within the settling column compared to the elevation of the maximum
525	SSC (i.e. $z/h = 1.0$) at these elapsed times.
526	Again, a <u>A</u> t the later stages of the experimental run (i.e. $T = 15000$ s, Fig. 4c), a quasi-
527	equilibrium value of the floc size is predicted reproduced by Models A and B in the
528	vertical column profile, which becomes consistent with the overall shape of the
529	sediment concentration distribution in the column (Fig. 4f). However, as indicated
530	previously, during earlier stages of the <u>experimental</u> run (i.e. $T = 5000$ s, Fig. 4b), only
531	the predicted calculated floc size results from Model B, incorporating normal
532	distribution of fractal dimensions and yield strengths, agree well with the measured the
533	floc size data and is, thus, to only model capable of capture reproducing the temporal
534	characteristics of the <u>rapid</u> initially rapid floc size adjustment within the <u>settling</u> column.
1	

535 **3.3 Model application to field measurements**

536 In terms of the validation of flocculation models against field data from estuarine sites, it is difficult to find complete and synchronous datasets that include all hydrodynamic 537 conditions (i.e. flow velocities, bed shear stresses), suspended sediment concentrations 538 539 (SSC) and the physical characteristics of flocs (i.e. floc sizes, settling velocities) 540 generated throughout the tidal cycle. Van Der Ham et al. (2001) reported High-high frequency SSC measurements of SSC and flow velocities in the tidal channel of the 541 Ems/Dollard estuary were reported by Van Der Ham et al. (2001) over a 24 hour period. 542 543 Within this measurement area, The the horizontal gradients of SSC in the measurement area are known to be negligible, with horizontal and vertical salinity gradients also 544 small when the river discharge is low (Van Der Ham et al., 2001)-, These factors 545 546 makinge thisit an appropriate field site for the application of the 1DV two-phase model developed in the current study. This data set alone, however, cannot provide full 547 validation of the flocculation model as no corresponding floc information was available 548 549 over the same time period covered by Van Der Ham et al. (2001). Here, our primary aim is to evaluate the effects of multiple fractal dimensions on 550 551 flocculation and therefore the resuspension of cohesive sediment from the channel bed. 552 Most recent field studies on floc characterization in estuaries have tended to focus on

571 clay suspensions, the constant fractal dimension (in Model A) and mean fractal 572 dimension (in Model B) remained unchanged with an increase in the floc size. By 573 contrast, Khelifa and Hill (2006) collected more than 26 laboratory and field site 574 measurements of flocs to assess the size-dependency of fractal dimensions; their results 575 suggesting that the fractal dimension decreases with increasing floc size. Thus, Eq. (29) 576 is adopted for the calculation of both the constant fractal dimension (in Model A) and 577 the mean fractal dimension (in Model B) for their application to field measurements 578 (see Fig. 5b). It should be noted that for a given floc size D, the fractal dimension is 579 unique in Model A, while, in Model B multiple fractal dimensions are adopted for a given floc size D. 580

581
$$\mu_{nf} = \alpha \left(\frac{D}{d}\right)^{\beta}$$
(29)

where, α and β are coefficients and specified using following boundary conditions: 582

583
$$\mu_D = 3, \qquad \{ when \quad D = d \\ \mu_{nf} = nf_c, \qquad \{ when \quad D = D_c \end{cases}$$
(30)

where, nf_c is a characteristic fractal dimension when floc size D equals a characteristic 584 585 floc size D_c . In Eq. (29), the fractal dimension takes the maximum value of 3 when floc 586 size approaches the primary particle size d and takes a lower value nf_c when floc size 587 approaches the characteristic floc size D_c . The value of $nf_c = 2.0$ is adopted for 588 nf_c when the characteristic floc size $D_c \rightarrow approaching - 300 \ \mu m$, which is the typical value selected to calibrate the flocculation models (e.g. Winterwerp, 1998). As to the
variance of the fractal dimension, a logarithmic function is found to be physically more
realistic (Vahedi and Gorczyca, 2012):

593
$$\sigma_D = \alpha_2 \ln\left(\frac{D}{d}\right) \tag{31}$$

where, α_2 is an empirical coefficient. When the floc size approaches primary particle 594 595 size, the variance in fractal dimension is assumed to be zero (i.e. $3.0 \le nf = \le 3.0$), while for floc sizes approaching the characteristic size D_c , it is set at 0.6 (Winterwerp, 596 1998) (i.e. $1.7 \le nf \le 2.3$). Therefore, according to Eq. (31), α_2 can be determined 597 as 0.0174. In contrast to the settling column experiments, the shear rate $G = \sqrt{\varepsilon/\nu}$ 598 599 within the tidal channel is no longer constant, instead varying with the tidal cycles. As 600 such, Eqs. (32) and (33) are adopted to describe the turbulent kinetic energy k and 601 dissipation ε , as follows:

$$k = \frac{1}{\sqrt{c_u}} L^2 \left(\frac{\partial u}{\partial z}\right)^2$$
(32)

$$\varepsilon = C_{\rm D} \frac{k^{3/2}}{L} \tag{33}$$

where *L* is the Prandtl's mixing length, C_D and C_u are set at 0.1925 and 0.09 (Rodi, 1980), respectively. The coefficients adopted in the two flocculation models are 606 summarized in Table 3. In terms of the two-phase model, following van der Ham and Winterwerp (2001), the erosion rate for the cohesive sediment bed $M = 1.5 \times 10^{-8}$ 607 608 m/s is selected. The critical shear stress for the cohesive sediment erosion $\tau_{cr} = 0.1$ Pa is specified as 0.1, which is the averaged critical shear stress suggested by Kornman 609 610 and De Deckere (1998), based on erosion studies conducted at an adjacent tidal flat in 611 the Ems/Dollard estuary. The critical shear stress for the deposition is also specified as $\tau_b = 0.1$ Pa, while the <u>a</u> maximum depth-averaged sediment concentration $C_{max} = 0.5$ 612 kg.m⁻³ is applied in both models to account for the limited sediment availability from 613 the bed (van der Ham and Winterwerp, 2001). 614

615 **3.4 Model results for field measurements**

616 Fig. 6a presents the time series measurements of depth-averaged velocities and 617 elevations over a 24 hour period, indicative of approximately two full tidal cycles. 618 while Figs. 6b, c and d present corresponding measured velocities (red circles) and 619 predicted modelled velocity profiles (black lines, calculated by Model B) at three 620 different elapsed times. These (i.e. at 8:00, 12:00 and 16:00, represent hydrodynamic conditions at (high) slack water (08:00, Fig. 6b), around 1hour later than after the peak 621 622 ebb flow (12:00, Fig. 6c), and 1 hour before the peak flood flow (16:00, Fig. 6d), 623 respectively). The measured velocities (red circles) are obtained at elevations of 0.1m,

624	0.4m, and 1.0m above the bed surface. As the relative height z/h is adopted for the
625	vertical axis, and the overall water depth h varies over the measurement duration (i.e.
626	see elevations in Fig. 6a), the velocity measurements are located at different relative
627	heights in the individual figures. The RMSEs of the calculated time series of velocities
628	and shear stresses are 0.163 and 0.115, respectively for the results of Model B. For
629	Model A, RMSEs are 0.165 (velocities) and 0.114 (shear stresses). Overall, tThe
630	predicted results from Model B compare very well with the measured data (Note:
631	equivalent results from Model A are found to be very similar and, as such, are not shown
632	here). The measured and predicted shear stresses (calculated by Model B) at 0.4 m
633	above the bed are shown in Fig. 7. Again, the equivalent results predicted by Model A
634	are very similar (not plotted) and thus both models are capable of reproducing the
635	velocity profiles and shear stresses during the different tidal phases
636	results. Within the field study measurements, due to the low SSC found in the
637	Ems/Dollard estuary, the tidal-driven flow structure is relatively unaffected by sediment
638	load. As such, the results from both models suggest that the adoption of unique fractal
639	dimension or multiple fractal dimensions has only very minor influences on the
640	prediction of the tidal hydrodynamics.

641	The measured and predicted modelled SSC timeseries at elevations of 0.3 m and 1.4 m
642	above the bed level are shown in Fig. 8ba and \underline{cb} , respectively. The coefficients in the
643	both flocculation models are calibrated <u>here</u> to <u>allow-enable</u> the <u>predicted</u> model results
644	to capture the peak <u>SSC</u> values of <u>SSC</u> at the 0.3 m elevation above the bed. As such,
645	the SSC time series produced by both models (i.e. Models A and B) at 0.3 m and 1.4 m
646	above the bed the model predictions (i.e. Models A and B) of the SSC time series at
647	both 0.3 m and 1.4 m above the bed are shown to broadly follow the temporal trend of
648	the measured SSC data. The exception to this is around 04:00 and just after 16:00 in the
649	SSC measurements at 0.3 m (Fig. 8b), where there are abrupt increases in SSC values
650	[note: similar, but less abrupt increases are also seen 03:00 and 16:00 in SSC
651	measurements at 1.4 m (Fig. 8c)]. These abrupt changes in SSC can be are explained as
652	local increases in sediment availability (van der Ham and Winterwerp, 2001), while-
653	The approximately similar maximum SSC values occur during the flood and ebb tides,
654	despite the larger shear stresses calculated being generated during the ebb tide (Fig. 7b).
655	When compared with the results of Model A, Model B showed better overall prediction
656	and fit to these field measurements. Model A typically predicts a larger SSC value than
657	the field measurements at the peak point around 12:00 at the 0.3 m measurement
658	location, while in general predicting lower SSC values than the field measurements

659	during slack water periods (e.g. around 8:00 at the 0.3m measurement above the bed,
660	Fig. 8b). Similarly, at the 1.4 m measurement elevation (Fig. 8c), lower SSC values are
661	typically predicted by Model A than the field measurements or Model B predictions.
662	The RMSE values for the SSC timeseries results from both models, when compared
663	directly with the field measurements are calculated at the 0.3 m and 1.4 m elevation
664	above the bed as 0.296 and 0.177 (for Model A) and 0.223 and 0.130 (for Model B).
665	According to Van Der Ham et al. (2001), a main feature of the measured <u>concentration</u>
666	data is a small vertical gradient in SSC <u>values that</u> , suggeststing a well-mixed
667	conditions (in terms of SSC) exists within the estuary (at least in terms of SSC). The
668	results from Model B also again appear to capture this feature better best than Model
669	A[(e.g. at around 13:00 (i.e. ebb tidal phase), the difference of thein calculated SSC
670	values at the 0.3 m and 1.4 m elevations are 0.8 kg.m ⁻³ for Model A and 0.5 kg./m ⁻³
671	for Model A and B, respectively, see Figs. 8b and c])., which shows a larger gradient in
672	the predicted SSC values between the 0.3 m and 1.4 m elevations The root-mean-
673	square error (RMSE)RMSEs for both models predictions of SSC are calculated when
674	compared directly with the field measurements. At the 0.3 m elevation above the bed,
675	the RMSE values for Model A and B predictions are 0.296 and 0.223, respectively,
676	while at 1.4 m elevation, the corresponding RMSE values are 0.177 and 0.130, 38

677	respectivelyThus, the predictions of Model B, which adopts the multiple fractal
678	dimensions approach, show better overall correlation with the field data. To further
679	illustrate the vertical structure of physical properties predicted by the two modelsModel
680	<u>B</u> , vertical profiles of SSC <u>, floe sizes and settling velocities</u> during both the slack (high)
681	water period and subsequent peak (ebb) tidal velocity period are presented in Figs. 9a
682	and b. For slack water conditions, Model B results show Unfortunately, as there are no
683	direct field measurements of the floc sizes and settling velocities at the site, only the
684	measured SSC values at the 0.3 m and 1.4 m elevations above the bed are plotted in Fig.
685	9c and Fig.9f. During slack water (Figs. 9a c), larger floc sizes are predicted by Model
686	B (solid line, especially around $z/h = 0.4$, Fig. 9a) than Model A (dotted line, Fig. 9a),
687	meaning that larger settling velocities are adopted in Model B than A (Fig 9b). As a
688	result, <u>L</u> ower SSC <u>values</u> are predicted to remain in the upper part of the water column,
689	with larger SSC gradients formed in the near-bed flow region for Model B predictions
690	during the slack water (Fig. 9ba). By contrast, Dduring the peak ebb tidal velocity period,
691	the vertical distribution of SSC represents well mixed conditions (Fig. 9ab). Overall,
692	the suspended predicted sediment concentration profiles predicted by Model B matches
693	well the measured <u>SSC</u> data at 0.3 m and 1.4 m elevations above the bed (i.e. black

1	
694	triangles, Figs. 9a, bc),). whereas the concentration profile predicted by Model A
695	(dotted line, Fig. 9c) is significantly lower than the measured data at slack flow.
696	By contrast, during the peak ebb tidal velocity period (Figs. 9d-f), smaller floc size are
697	predicted by both models (Fig. 9d) due to the increase in the shear rate compared to the
698	slack water period. Smaller floc sizes are predicted by Model B (solid line, Fig. 9d)
699	than by Model A (dotted line, Fig. 9d), resulting in lower settling velocities being
700	adopted in Model B than A (Fig. 9e). Consequently, the vertical distribution of SSC
701	represent well-mixed conditions (i.e. relatively uniform concentrations with depth, Fig.
702	9f), with the predicted SSC gradient slightly larger for Model A than for Model B, the
703	latter of which is again more consistent with the measured SSC data (i.e. black triangles,
704	Fig. 9f).

4 Discussion 705

The current study has considered the application of a new 1DV two-phase flocculation 706 model to predict both cohesive sediment floc evolution and SSC vertical distributions 707 within an idealized laboratory grid-stirred settling column and within the tidal channel 708 of the Elms/Dollard estuary. 709

4.1 Model application to settling column experiments 710

711	In the simulation of the grid-stirred settling column experiments with pure kaolin clay
712	suspensions, the development of sediment concentration profiles within the column was
713	shown to be well-represented by the 1DV two-phase model with either of the two
714	flocculation models (i.e. with fixed or variable fractal dimensions) incorporated (Fig.
715	2). By contrast, significant variability in the temporal development of rms floc sizes
716	between the two models suggested that the adoption of a multiple fractal dimension
717	approach (i.e. Model B) better replicated the floc size development in the settling
718	column. Though direct measurements of floc settling velocities of kaolin clay generated
719	in the grid-stirred settling column are not presented by Cuthbertson et al. (2018),
720	insteadthey it was are shown in another research a previous study by Cuthbertson et al.
721	(2010). Here, Tthe measured kaolin clay flocs sizes and their corresponding settling
722	velocities lay-of kaolin clay all fall within between two predicted settling rate curves
723	[with fractal dimensions $nf = 1.7$ and $nf = 2.3$, see Fig. 11 in Cuthbertson et al. (2010)].
724	The corresponding Model B results for floc sizes and settling velocities measured in
725	the settling column tests were found to be consistent with this conclusion.
726	the two lines (i.e. nf=1.7 and nf 2.3 Fig. 11 in Cuthbertson et al. (2010)), the calculated
727	settling velocities of Model B keep consistent with this conclusion.

728	Indeed, the fact that specification of either a constant or multiple fractal dimension
729	approach within the flocculation model did not appear to affect significantly the
730	predicted spatio-temporal evolution of elay concentration in the column indicates (i)
731	the dominance of the turbulent diffusion over settling processes, and (ii) the strong
732	influence of the clay input conditions (i.e. initial floc size, input rate and concentration)
733	at the upper boundary. There is uncertainty in the specification of the clay input
734	boundary conditions, particularly the appropriate initial clay floc size D_0 to use.
735	As mentioned previously, a <u>A</u> conservative value of the is initial floc size ($D_0 = 2 \mu m$)
736	was adopted for simulations with both flocculation models. However, sensitivity of the
737	model predictions to the specification of D_0 needs to be tested. Fig. 10 shows sensitivity
738	analysis runs of the predicted temporal development of the rms floc size for both
739	flocculation models, where D_0 is set at 2 μ m, 5 μ m and 10 μ m. It is apparent that the
740	different D_0 values influence floc development in both models, particularly during the
741	initial stages of floc size evolution. Specifically, by increasing the initial floc size D_0 in
742	Model B, the initial rapid floc size development occurs earlier, with the final floc
743	adjustment to quasi-equilibrium floc sizes shown to converge for all D_0 after T = ~5000
744	s. The initial rapid growth in floc sizes occurs as smaller flocs, with higher density and
745	larger yield strengths, are more difficult to break up [i.e. with the aggregation term in

746	Model B (Eq. 22) thus dominant]. Specification of larger D_0 therefore takes a shorter
747	time to reach floc sizes where the break-up term in Model B (Eq. 22) becomes more
748	important (i.e. represented by the change in gradient of the temporal floc size
749	development) and floc sizes then adjust more gradually to their quasi-equilibrium floc
750	size. For Model A, the effect of D_0 on the initial floc development is less consistent.
751	Indeed, when D_0 is set at 10.0 µm (i.e. blue dotted line, Fig. 10), the predicted rms floc
752	size actually decreases initially before increasing steadily with time. This floc size
753	reduction is due to the sediment concentration being initially very low in the column,
754	resulting in low aggregation rates, while the initial break-up term for the $D_0 = 10 \ \mu m$
755	flocs is higher [i.e. break-up > aggregation on right-hand side of Eq. (19)]. This initial
756	reduction in rms floc size also means that convergence with the temporal floc size
757	evolution for $D_0 = 5 \ \mu m$ occurs significantly earlier than with the $D_0 = 2 \ \mu m$ condition.
758	As with Model B, once the temporal development of rms floc sizes have converged for
759	all D_0 values (at T = ~8000 s, Fig. 10), the subsequent more steady adjustment to the
760	quasi-equilibrium floc size again also coincide
761	To better explain observed differences in the Model A and Bthe results-predictionsof
762	the settling column experiments by Model B, both flocculation models can be presented
763	in the simplified general form $F = A_f - B_f$, where A_f and B_f represent the aggregation

764	and break up terms, respectively. As indicated previously, smaller flocs with sizes
765	approaching that of the primary particles (or small particle aggregates) have a denser
766	structure (i.e. higher fractal dimension) and larger yield strength, making them more
767	difficult to break up. For this particular condition, the turbulent stress μG is less than
768	the floc yield strength τ_y , and the maximum fractal dimension nf_{max} (i.e. from $\mu G =$
769	$B_1(\frac{D}{d})^{2nf_{max}(D)/3}D^{-2}$), is smaller than the value at which the flocs will break up. In
770	other words, this indicates that the break up term $B_f \rightarrow 0$ in Model B and, hence, the
771	aggregation term will be dominant when floc sizes are small. This is the primary reason
772	for the predicted rapid increase in floc size by Model B during the earlier stages of the
773	runs. By contrast, within Model A, where a constant fractal dimension is specified (nf
774	= 1.85), the break up term B_f becomes more important even for very small floc sizes
775	and, thus, the balance between A_f and B_f terms results in a more gradual temporal growth
776	of the rms floc size (or even a slight initial reduction when $B_f > A_f$ at larger D_0 values).
777	The distinctly different rates of floc evolution demonstrated by adopting a multiple
778	fractal dimension approach (Model B), as opposed to a constant fractal dimension
779	(Model A), potentially has even greater implications for modelling floc evolution in
780	estuaries, where tidal hydrodynamics also have significant influence on these cohesive
781	sediment flocculation processes.

782 **4.2 Model application to field measurements**

783	Application of the 1DV two-phase flocculation model to predict the temporal variations
784	and vertical distributions of floc sizes and SSC values generated in the Ems/Dollard
785	estuary tidal channel is now further analyzed and discussed. Variations in the predicted
786	calculated floc sizes during slack waterebbslack water (Fig. 9a11a) and ebb-slack
787	waterebb (Fig. 9d11d) tidal phases indicate, firstly, a greater spatio-temporal variability
788	in floc sizes is obtained with Model B than with Model A. This finding reflects (i)
789	increased aggregation rates in Model B during slack water periods (i.e. floc sizes D up
790	to ~55 µm at $z/h = 0.4$, Fig. 11da-), compared to Model A (i.e. D up to ~30 µm at $z/h =$
791	0.4, Fig. 11da), and (ii) increased break up rates in Model B during high (ebb) tidal
792	velocity periods (i.e. $D \approx 5 - 14 \ \mu m$ over z/h range, Fig. 11ad), compared to Model A
793	(i.e. $D \approx 7 - 22 \ \mu m$ over z/h range, Fig. 11ad). This clearly suggests that the inclusion
794	of variable fractal dimensions for all floc sizes (Model B) provides a more responsive
795	flocculation model that better represents spatio-temporal floc evolution due to changing
796	hydrodynamic conditions and SSC values within the tidal channel.
797	An interesting feature of the vertical distributions of floc sizes in Fig. 11ad (i.e. during

the ebb tidal flow) is the general uniform and even a slight_ly-reduction in predicted

floc size by both models from the water surface to the bed surface (i.e. $z/h = 1 \rightarrow 0$).

800	As, the largest turbulent shear rates are generated near bed, which result in smaller flocs,
801	while the strong diffusion effects (ebb tidal flow) result in a more general uniform
802	distribution. In this regard, the <u>current</u> model results for floc distributions within the
803	water column are entirely consistent with previous observations by Guo et al. (2017) in
804	the Yangtze river estuary. According to Guo et al. (2017), during the flood/ebb phase
805	acceleration in tidal currents, the <u>vertical distributions in</u> measured <u>mean</u> floc sizes were
806	relatively uniform (i.e. decreasinge only slightly from the upper layer of the water
807	column to the bed surface) and generally smaller than flocs generated under slack water
808	conditions.
809	By contrast, vertical floc size distributions are more variable during slack water, with
810	the largest floc sizes obtained during slack water are shown (Fig. 11da) to occur at z/h
811	= 0.4, with <u>and</u> -a significant <u>size</u> reductions observed <u>both</u> in the <u>upper</u> -water column
812	<u>above (as approaching</u> the water surface is approached, $z/h \rightarrow 1$) and in the lower water
813	columnbelow (as approaching the bed surface is approached, $z/h \rightarrow 0$) this maximum.
814	It is anticipated that this <u>variable</u> FSD occurs as the larger flocs tend to settle out <u>more</u>
815	quicklyer under more quiescent conditions (i.e. during slack water) leaving only smaller
816	flocs in the upper water column. The calculated-model results also show that average
817	the floc sizes (so as theand, thus, settling velocities) are larger during the slack water

818 <u>are larger than that induring the peak flood/ebb phases, a trend that is again entirely</u>
 819 <u>consistent with the field measurements by Guo et al. (2017). The model results are</u>
 820 <u>consistent the field measurements.</u>

821 The Ffloc sizes and effective floc densities are two key parameters that determininge 822 the sediment settling velocities of flocs. Previous field studies in the Ems/Dollard estuary by Dyer et al. (2000) provided direct measurements of floc sizes and settling 823 824 velocities during the flood phase of the tidal cycle (i.e. 2.13 hours and 0.14 hours before HW). These can be compared, at least in a qualitative sense, with the current model 825 predictions, albeit under different tidal conditions. Dyer et al. (2000) found that most 826 827 smaller flocs measured in the estuary ($d < 80 \mu m$) had effective floc densities between 160 kg.m⁻³ and 1600 kg.m⁻³, with corresponding settling velocities between 0.01 mm.s⁻ 828 ¹ and 1.0 mm.s⁻¹. By comparison, the calculated mean floc sizes within the Ems/Dollard 829 830 estuary from the present modelling study (using Model B) during both peak flood/ebb phases and slack water periods are plotted in Fig. 12 versus their corresponding settling 831 velocities. These calculated mean floc sizes are shown to typically vary between D=10832 - 60 µm, with effective densities between 160 - 1600 kg.m⁻³ and settling velocities 833 between 0.01 - 1.0 mm.s⁻¹. These values are therefore in broad agreement with the field 834

835 measurements by Dyer et al. (2000) within the same estuary and provide further
 836 validation of the flocculation mModel B with variable fractal dimensions.

837 <u>Also in the Dollard estuary, Dyer et al. (2000) carried out the field measurements, the</u>

838 results show that for flocs less than 80 μ m, the effective densities are between 160-

839 <u>1600 kg/m³. The calculated results of Model B are shown in Fig. 12, which are</u>
 840 consistent with the field measurements (Dyer 2000).

Fettweis et al. (2006) also conducted field measurements of SSC, flow velocity and floc 841 842 size in the Belgian coastal zone and concluded that the Kolmogorov turbulent length scale was typically 3-10 times larger than the cohesive sediment flocs generated. 843 844 Considering the field measurements from the Elms/Dollard estuary tidal channel used in the current study, the Model B predicted time series of average floc sizes at 0.4 m, 845 846 0.7 m and 1.0 m elevations above the bed (i.e. equivalent to the elevations of the 847 velocity measurements in Fig. 6b-d) are shown in Fig. <u>1112</u>, along with the predicted 848 Kolmogorov scales at these elevations. It is shown that the predicted averaged floc sizes 849 are generally significantly smaller than the Kolmogorov length scale, and only during 850 periods of high SSC levels (i.e. on the flood and ebb phases, prior to slack water, Fig. 8b, c) do we see significant floc growth ($D \approx 80 - 220 \ \mu m$, Fig. <u>112</u>) at the three 851

852	measurement elevations, which diminishes rapidly again at slack water, primarily due
853	to floc settlement and the corresponding rapid reduction in SSC values (Fig. 8b, c).
854	Importantly, the corresponding Kolmogorov length scales at these elapsed times with
855	high SSC values (and largest floc sizes) vary between about 400 and 720 $\mu m,$ with the
856	Kolmogorov length scale to peak floc size length ratio therefore varying between $3-5$,
857	in full accord with the findings of Fettweis et al. (2006). This floc growth trend is also
858	similar to that observed by Guo et al. (2017) in the Yangtze estuary, whereby the
859	measured flow sizes during the flood/ebb deceleration phases and around high/low
860	water slack periods were significantly larger (and more varied in size) than those
861	measured during flood/ebb acceleration and peak flood/ebb phases. Similarly, Dyer et
862	al (2000) found floc sizes within the Dollard estuary (i.e. same as in current study)
863	increased prior to high water slack, with an average peak flow size $D = \sim 150 \mu m$, in
864	general accord with the current predictions with flocculation Model B.
865	The current findings are also consistent with the assumption in the Winterwerp (1998)
866	semi-empirical flocculation model [Eq. (19)] that the Kolmogorov length represents the
867	upper limit on the attainable equilibrium floc size generated under steady state
1	

868 conditions (i.e. constant concentration c and shear rate G).–

869 4.3 Comparison with other modelling approaches

870	It is informative to compare the semi-empirical methods used in this study to simulate
871	cohesive sediment flocculation (based either on constant or multiple fractal dimensions)
872	with other numerical approaches, as well as defining and discussing their relative merits
873	and limitations. At one end of the scale, simple empirical equations connecting floc
874	settling velocities with SSC are easiest to incorporate into cohesive sediment transport
875	models. However, these equations do not provide any details on the spatio-temporal
876	variation in floc sizes and are not always applicable for a wide range of SSC values.
877	This means that for aquatic environments with significant spatio-temporal variations in
878	SSC, different equations are needed and all the relevant empirical coefficients need to
879	be calibrated (Winterwerp, 2001). The semi-empirical flocculation methods presented
880	in this study therefore provide more information on the physical floc properties (i.e.
881	mean floc size, floc volumetric concentration), and the effects of floc fluxes on the
882	spatio-temporal evolution of floc sizes and their corresponding floc settling velocities
883	at an acceptable computational cost. Obviously, to provide more detailed information
884	on the FSD, and the corresponding range of physical floc properties over this
885	distribution, we need to adopt more computationally-intensive models, such as PBEs.
886	These PBE models also require many more empirical assumptions to be made regarding

1	
887	the aggregation and break up processes controlling the evolution of the FSD and are
888	limited to a relatively small number of floc size classes and simple configurations [e.g.
889	flocculation in a vertical settling column, Cuthbertson et al. (2018)]. As such, they are
890	not suitable for incorporation into cohesive sediment transport models for use in
891	coastal/estuarine environment with complex hydrodynamics and highly variable SSC
892	values.
893	4.4 Effect of sediment composition
894	This current research has focus on predicting floc evolution and SSC variability within
895	laboratory and field environments that consist of pure cohesive sediments (e.g. clays
896	and muds). It is acknowledged, however, that bed sediments in many near-shore coastal
897	environments (e.g. estuaries and tidal inlets) often consist of mixed cohesive and non-
898	cohesive sediments, including organic particulates, that can have a strong influence the
899	evolution of flocs. These factors are generally not accounted for in current flocculation
900	models and improvements are urgently needed to make these approaches more
901	applicable to mixed sedimentary environments. Some recent research has, however,
902	begun to address this issue. Tran and Strom (2017) found that during the flocculation
903	process for silt-mud suspensions under specific turbulent mixing conditions, the non-
904	cohesive silt particles did not appear to modify floc sizes generated, with most silt

905	particles being bound into the floc structures themselves. The presence of non-cohesive
906	silts in the floc structures may, however, affect aggregation efficiency (i.e. floc
907	stickiness) and yield strength of the flocs, as well as altering their settling rate (through
908	increased density), thus affecting SSC levels through enhanced sedimentation.
909	Cuthbertson et al. (2018) also investigated the effect of low sand particle concentrations
910	on the flocculation of kaolin clay suspensions within the grid-stirred settling column.
911	Unlike Tran and Strom (2017), they found no evidence of sand particles being
912	incorporated into flocs, while under low grid-generated shear conditions, the presence
913	of the sand particles appeared to generate an additional floc break up mechanism, due
914	to direct sand particle-clay floc interactions, that limits clay floc growth. This effect
915	was incorporated into a PBE model and successfully represented this hindered floc
916	development in sand clay suspensions. In general, however, these multi-fractional
917	(sand, silt, clay) interactions are difficult to incorporate into flocculation models as the
918	causal physics that leads to hybrid mud-silt floc development or inhibited mud floc
919	growth due to direct sand-mud interactions remains largely unresolved.
920	Recently, more attention has also been paid to the effects of suspended organic content,
921	the cohesiveness and density of which is significantly different from cohesive sediment
922	particles. Recent studies by Fall et al. (2021) and Li et al. (2021) suggest that the water

923	content within a mud floc can be displaced by organic content without changing the
924	inorganic floc structure. Other studies, such as Maggi and Tang (2015), indicate that
925	fractal dimensions, the most common method by which cohesive sediment floc
926	structures are described, illustrate nonlinearities against floc densities and organic
927	content. This means that the required assumption of scale invariance for floc structure
928	(Kranenburg, 1994) is no longer valid and the calculation methods of floc yield strength
929	need to be updated to incorporate the effects of organic matter.
930	In summary, the multiple fractal dimension flocculation model proposed in this study,
931	when incorporated into a 1DV two-phase numerical modelling framework, provides an
932	improved representation of both floc evolution and SSC variability in laboratory and
933	field environments, particularly in representing rapid changes in their spatio-temporal
934	characteristics in response to changing environmental conditions. The authors, however,
935	acknowledge that further fundamental experimental research, leading to the
936	development of more complex flocculation models, is needed for multi-fractional
937	sediment suspensions (i.e. clay, silt, sand, organic content) and the modification of floc
938	variables such as yield strength, composition and aggregation and break up efficiencies.

939 **5 Conclusions**

A new two-phase model that accounts for detailed cohesive sediment flocculation 940 941 processes was applied to simulate the time evolution of floc sizes measured in an 942 idealized, grid-stirred settling column. The effects of spatio-temporal variations in SSC 943 on the evolution of floc sizes were shown to be particularly well reproduced by 944 flocculation model Model B, where multiple fractal dimensions and yield strengths were incorporated for different floc sizes. These predictions captured the rapid increase 945 946 of floc sizes during the initial stage of the experimental run, as well as the more gradual increase to quasi-equilibrium floc sizes observed as SSC levels continue to increase in 947 the settling column during the latter stages of the experimental runs. The flocculation 948 949 model is then successfully applied to simulate field measurements of cohesive sediment resuspension processes within the tidal channel of the Elms/Dollard estuary. The 950 951 predicted time series of SSC at two elevations in the water column are shown to 952 compare well with measured data. More importantly, flocculation Model B, with multiple fractal dimensions and floc yield strengths, predicts a lower SSC gradient in 953 954 the vertical direction during the peak ebb tidal velocities, demonstrating better overall 955 correlation coefficient with the measured SSC data. This model also provides 956 reasonable predictions of temporal variations and vertical distributions of floc sizes

957	within the water column, although no-only limited field measurements of floc sizes and
958	settling rates were available for validation. The predictive capabilities of Model B,
959	however, appear to better support the hypothesis that flocs with the same overall size
960	may have entirely different structures that can only be represented by the incorporation
961	of multiple fractal dimensions. As such, the model simulations reported herein conclude
962	that this structural variability in cohesive sediment flocs should be accounted for in all
963	operational flocculation models in order to provide improved representation of
964	flocculation, settling and resuspension processes in cohesive sedimentary environments
965	
966	Funding

967 This research was supported by the Natural Science Foundation of China
968 [No.5151001005], Fundamental Research Funds for the Central Universities
969 [B200204017], [B200202057], UK Engineering and Physical Science Research
970 Council [EP/R02491X/1], and Natural Science Foundation of China [No.51709084].

971

972 Acknowledgements

We would like to thank Wen Luo and Lu Jiang for help with the data collection andediting equations.

976 **References**

- Burban, P.-Y., Lick, W., and Lick, J. (1989). The flocculation of fine-grained sediments in
 estuarine waters. J. Geophys. Res. 94(C6), 8323-8330.
- Busch, N.E. (1973). On the Mechanics of Atmospheric Turbulence. Workshop on
 Micrometeorology.
- 981 Chauchat, J., Guillou, S., Pham Van Bang, D., and Dan Nguyen, K. (2013). Modelling
 982 sedimentation–consolidation in the framework of a one-dimensional two-phase flow
 983 model. J. Hydraul. Res. 51(3), 293-305. doi: 10.1080/00221686.2013.768798.
- 984 Cuthbertson, A.J.S., Dong, P., and Davies, P.A. (2010). Non-equilibrium flocculation
 985 characteristics of fine-grained sediments in grid-generated turbulent flow. *Coastal Eng.*986 57(4), 447-460. doi: 10.1016/j.coastaleng.2009.11.011.
- 987 Cuthbertson, A.J.S., Samsami, F., and Dong, P. (2018). Model studies for flocculation of sand988 clay mixtures. *Coastal Eng.* 132, 13-32. doi:
 989 <u>https://doi.org/10.1016/j.coastaleng.2017.11.006</u>.
- Dyer, K.R. (1989). Sediment processes in estuaries: future research requirements. J. Geophys.
 Res. Ocean. 94(C10), 14327-14339.
- Dyer, K.R., and Manning, A.J. (1999). Observation of the size, settling velocity and effective
 density of flocs, and their fractal dimensions. J. Sea Res. 41(1–2), 87-95. doi:
 http://dx.doi.org/10.1016/S1385-1101(98)00036-7.
- Einstein, A. (1905). Eine neue bestimmung der moleküldimensionen. Ann. Phys. 324(2), 289306. doi: https://doi.org/10.1002/andp.19063240204.
- Fall, K.A., Friedrichs, C.T., Massey, G.M., Bowers, D.G., and Smith, S.J. (2021). The
 Importance of Organic Content to Fractal Floc Properties in Estuarine Surface Waters:
 Insights From Video, LISST, and Pump Sampling. *J. Geophys. Res. Ocean.* 126(1). doi:
 10.1029/2020jc016787.
- Fettweis, M., Francken, F., Pison, V., and Van den Eynde, D. (2006). Suspended particulate
 matter dynamics and aggregate sizes in a high turbidity area. *Mar. Geol.* 235(1-4), 6374. doi: 10.1016/j.margeo.2006.10.005.
- Frankel, N.A., and Acrivos, A. (1967). On the viscosity of a concentrated suspension of solid
 spheres. *Chem. Eng. Sci.* 22(6), 847-853.
- Graham, A.L. (1981). On the viscosity of suspensions of solid spheres. *Appl. Sci. Res.* 37(3-4),
 275-286.
- 1008 Guo, C., He, Q., Guo, L., and Winterwerp, J.C. (2017). A study of in-situ sediment flocculation

- in the turbidity maxima of the Yangtze Estuary. *Estuar. Coast. Shelf Sci.* 191, 1-9. doi:
 1010 10.1016/j.ecss.2017.04.001.
- 1011 He, J., Chu, J., Tan, S.K., Vu, T.T., and Lam, K.P. (2016). Sedimentation behavior of flocculant-
- 1012treated soil slurry. Mar. Georesour. Geotechnol. 35(5), 593-602. doi:101310.1080/1064119x.2016.1177625.
- Keyvani, A., and Strom, K. (2014). Influence of cycles of high and low turbulent shear on the
 growth rate and equilibrium size of mud flocs. *Mar. Geol.* 354, 1-14. doi:
 1016 10.1016/j.margeo.2014.04.010.
- 1017 Khelifa, A., and Hill, P.S. (2006). Models for effective density and settling velocity of flocs. J.
 1018 *Hydraul. Res.* 44(3), 390-401. doi: 10.1080/00221686.2006.9521690.
- 1019 Kornman, B.A., and De Deckere, E.M.G.T. (1998). Temporal variation in sediment erodibility
 1020 and suspended sediment dynamics in the Dollard estuary. *Geological Society, London*,
 1021 Special Publications 139(1), 231-241.
- 1022 Kranenburg, C. (1994). The fractal structure of cohesive sediment aggregates. *Estuar. Coast.*1023 *Shelf Sci.* 39(6), 451-460.
- Li, D., Li, Y., and Xu, Y. (2017). Observations of distribution and flocculation of suspended
 particulate matter in the Minjiang River Estuary, China. *Mar. Geol.* 387, 31-44. doi:
 1026 10.1016/j.margeo.2017.03.006.
- Li, G., Wang, J., Liu, B., Meng, X., Kan, G., Han, G., et al. (2020). In situ acoustic properties
 of fine-grained sediments on the northern continental slope of the South China Sea. *Ocean Engineering* 218. doi: 10.1016/j.oceaneng.2020.108244.
- Li, Z.-y., Zhang, J.-f., Zhang, Q.-h., Shen, X.-t., and Chen, T.-q. (2021). Effects of organic
 matter and salinity on the flocculation of kaolinites in a settling column. *Journal of Hydrodynamics* 33(1), 150-156. doi: 10.1007/s42241-021-0017-9.
- Lick, W., Lick, J., and Ziegler, C.K. (1992). Flocculation and its effect on the vertical transport
 of fine-grained sediments. *Hydrobiologia* 235(1), 1-16.
- Maggi, F., and Tang, F.H.M. (2015). Analysis of the effect of organic matter content on the
 architecture and sinking of sediment aggregates. *Mar. Geol.* 363, 102-111. doi:
 10.1016/j.margeo.2015.01.017.
- Manning, A. (2004). The observed effects of turbulence on estuarine flocculation. J. Coast. Res.,
 90-104.
- Manning, A.J., Baugh, J.V., Spearman, J.R., and Whitehouse, R.J.S. (2010). Flocculation
 settling characteristics of mud: sand mixtures. *Ocean Dynam*. 60(2), 237-253. doi:
 1042 10.1007/s10236-009-0251-0.
- Mayerle, R., Narayanan, R., Etri, T., and Abd Wahab, A.K. (2015). A case study of sediment
 transport in the Paranagua Estuary Complex in Brazil. *Ocean Engineering* 106, 161-

- 1045 174. doi: 10.1016/j.oceaneng.2015.06.025.
- Mehta, A.J. (1986). Characterization of cohesive sediment properties and transport processes
 in estuaries. *Lecture notes on coastal and estuarine studies* 14, 290-325.
- Mikkelsen, O.A., and Pejrup, M. (2000). In situ particle size spectra and density of particle
 aggregates in a dredging plume. *Mar. Geol.* 170(3), 443-459. doi:
 <u>https://doi.org/10.1016/S0025-3227(00)00105-5</u>.
- Moruzzi, R.B., de Oliveira, A.L., da Conceição, F.T., Gregory, J., and Campos, L.C. (2017).
 Fractal dimension of large aggregates under different flocculation conditions. *Science of The Total Environment* 609, 807-814. doi: 10.1016/j.scitotenv.2017.07.194.
- 1054 Reisinger, A., Gibeaut, J.C., and Tissot, P.E. (2017). Estuarine Suspended Sediment Dynamics:
 1055 Observations Derived from over a Decade of Satellite Data. *Frontiers in Marine*1056 *Science* 4. doi: 10.3389/fmars.2017.00233.
- Rodi, W. (1980). *Turbulence Models and Their Application in Hydraulics: A State of the Art Review.* The Netherlands: International Association for Hydraulic Research.
- Shen, X., and Maa, J.P.Y. (2016). A camera and image processing system for floc size
 distributions of suspended particles. *Mar. Geol.* 376, 132-146. doi:
 1061 10.1016/j.margeo.2016.03.009.
- Son, M., and Hsu, T.-J. (2008). Flocculation model of cohesive sediment using variable fractal
 dimension. *Environ. Fluid Mech.* 8(1), 55-71. doi: 10.1007/s10652-007-9050-7.
- Son, M., and Hsu, T. (2011). The effects of flocculation and bed erodibility on modeling
 cohesive sediment resuspension. J. Geophys. Res. 116(C3), C03021. doi:
 1066 10.1029/2010jc006352.
- Son, M., and Hsu, T.J. (2009). The effect of variable yield strength and variable fractal
 dimension on flocculation of cohesive sediment. *Water Res.* 43(14), 3582-3592. doi:
 1069 10.1016/j.watres.2009.05.016.
- Strom, K., and Keyvani, A. (2016). Flocculation in a decaying shear field and its implications
 for mud removal in near-field river mouth discharges. *J. Geophys. Res. Ocean.* 121(4),
 2142-2162. doi: 10.1002/2015jc011169.
- Thorn, M.F.C. (Year). "Physical processes of siltation in tidal channels", in: *In: Proceedings for Hydraulic Modelling applied to Maritime Engineering Problems*: ICE), 47-55.
- 1075 Toorman, E. (1999). Sedimentation and self-weight consolidation: constitutive equations and
 1076 numerical modelling. *Geotechnique* 49(6), 709-726.
- 1077 Toorman, E.A. (1996). Sedimentation and self-weight consolidation: general unifying theory.
 1078 *Geotechnique* 46(1), 103-113.
- Tran, D., and Strom, K. (2017). Suspended clays and silts: Are they independent or dependent
 fractions when it comes to settling in a turbulent suspension? *Cont. Shelf Res.* 138, 81-

- 1081 94. doi: 10.1016/j.csr.2017.02.011.
- 1082 Vahedi, A., and Gorczyca, B. (2012). Predicting the settling velocity of flocs formed in water
 1083 treatment using multiple fractal dimensions. *Water Res.* 46(13), 4188-4194. doi:
 1084 10.1016/j.watres.2012.04.031.
- 1085 Vahedi, A., and Gorczyca, B. (2014). Settling velocities of multifractal flocs formed in chemical
 1086 coagulation process. *Water research* 53, 322-328.
- 1087 Van Der Ham, R., Fontijn, H., Kranenburg, C., and Winterwerp, J. (2001). Turbulent exchange
 1088 of fine sediments in a tidal channel in the Ems/Dollard estuary. Part I: Turbulence
 1089 measurements. *Cont. Shelf Res.* 21(15), 1605-1628.
- 1090 van der Ham, R., and Winterwerp, J.C. (2001). Turbulent exchange of fine sediments in a tidal
 1091 channel in the Ems/Dollard estuary. Part II. Analysis with a 1DV numerical model.
 1092 Cont. Shelf Res. 21(15), 1629-1647. doi: <u>http://dx.doi.org/10.1016/S0278-</u>
 1093 4343(01)00011-5.
- 1094 Verney, R., Lafite, R., Claude Brun-Cottan, J., and Le Hir, P. (2011). Behaviour of a floc
 1095 population during a tidal cycle: Laboratory experiments and numerical modelling. *Cont.*1096 *Shelf Res.* 31(10), S64-S83. doi: 10.1016/j.csr.2010.02.005.
- Wan, Y., Wu, H., Roelvink, D., and Gu, F. (2015). Experimental study on fall velocity of fine
 sediment in the Yangtze Estuary, China. *Ocean Engineering* 103, 180-187. doi:
 1099 10.1016/j.oceaneng.2015.04.076.
- Watson, S.J., Cade-Menun, B.J., Needoba, J.A., and Peterson, T.D. (2018). Phosphorus Forms
 in Sediments of a River-Dominated Estuary. *Frontiers in Marine Science* 5. doi:
 10.3389/fmars.2018.00302.
- Winterwerp, J.C. (1998). A simple model for turbulence induced flocculation of cohesive
 sediment. J. Hydraul. Res. 36(3), 309-326. doi: 10.1080/00221689809498621.
- Winterwerp, J.C. (2002). On the flocculation and settling velocity of estuarine mud. *Cont. Shelf Res.* 22(9), 1339-1360.
- Winterwerp, J.C., and Van Kesteren, W.G. (2004). *Introduction to the physics of cohesive*sediment in the marine environment. Elsevier Science Limited.
- Xu, C., and Dong, P. (2017a). A Dynamic Model for Coastal Mud Flocs with Distributed Fractal
 Dimension. J. Coast. Res. 33(1), 218-225. doi: 10.2112/JCOASTRES-D-15-00110.1.
- 1111 Xu, C., and Dong, P. (2017b). Two-phase flow modelling of sediment suspension in the
 1112 Ems/Dollard estuary. *Estuar. Coast. Shelf Sci.* 191, 115-124. doi:
 1113 10.1016/j.ecss.2017.04.011.
- 1114 Xu, Y. (2019). Approach to the erosion threshold of cohesive sediments. *Ocean Engineering*1115 172, 183-190. doi: 10.1016/j.oceaneng.2018.11.036.
- 1116 Yang, Z., Zhu, Y., Liu, T., Sun, Z., Ling, X., and Yang, J. (2019). Pumping effect of wave-

- induced pore pressure on the development of fluid mud layer. *Ocean Engineering* 189.
 doi: 10.1016/j.oceaneng.2019.106391.
- 1119 Zhang, J.-F., and Zhang, Q.-H. (2011). Lattice Boltzmann simulation of the flocculation process
- 1120 of cohesive sediment due to differential settling. *Cont. Shelf Res.* 31(10), S94-S105.
- doi: 10.1016/j.csr.2010.03.009.
- 1122Zhu, Q., Yang, S., and Ma, Y. (2014). Intra-tidal sedimentary processes associated with1123combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze
- 1124 River Delta, China. Mar. Geol. 347, 95-106. doi: 10.1016/j.margeo.2013.11.005.
- 1125

1126	Captions
1127 1128	Fig. 1 The flow chart of cohesive sediment transport model showing how the flocculation models are coupled within the 1DV two-phase modelling framework.
1129	
1130 1131	Fig.2 Modelled and measured time series of SSC at elevations 0.5 m and 1.2 m within the grid-stirred settling column for Case 1 (see Table 1).
1132113311341135	Fig. 3 Modelled and measured time evolution of floc size at 0.4 m elevation in grid- stirred settling column for (a) Case 1, (b) Case 2, and (c) Case 3 (see Table 1 for details).
1 136 1137 1138 1139 1140	Fig. 4 Vertical profiles of <u>reproduceded</u> floc sizes (models A and B) and SSC (model B only) at elapsed times of (a, d) 2000 s (b, e) 5000 s, and (c, f) 15000 s for Case 1 (see Table 1). Red diamonds and triangles denote measured floc sizes and SSC levels, respectively.
1141 1142 1143 1144 1145	Fig. 5 (a) Temporal evolution of floc sizes calculated by model Eqs. (19) and (22) for Elms/Dollard estuary calibration run with fixed shear rate condition of $G = 2 \text{ s}^{-1}$ and constant SSC of $c = 0.3 \text{ kg/m}^3$, and (b) variability in fractal dimensions adopted by Eq. (19) and Eq. (22). In (b), solid line shows mean fractal dimension, while green shaded area shows the wide distribution of fractal dimensions adopted in Eq. (22).
1146	
1147 1148 1149 1150 1151	Fig. 6 (a) Water surface elevations and depth-averaged flow velocities in Elms/Dollard estuary tidal channel over approximately two tidal cycles, (b-d) measurements (red circles) and predicted vertical profiles (solid black lines) of flow velocity at <u>0</u> 8:00, 12:00 hours-and 16:00 hours
115211531154	Fig. 7 (a) as above in caption for Fig. 6(a), (b) time series of measured and calculated shear stresses at elevation 0.4 m above the bed. Note: equivalent shear stress predictions by Model A are very similar to Model B and are thus not plotted.
1122	

1156 Fig. 8 (a)	as above in caption for Fig	. 6(a), (b, c) measurements (Van Der Ham et al.,
-----------------	-----------------------------	-------------------------------	---------------------

- 1157 2001) and predictions (Models A and B) of time series variations in SSC at elevations
- 1158 (b) 0.3 m and (c) 1.4 m above the bed in Elms/Dollard estuary tidal channel.

- 1160 Fig. 9 Model predictions of the vertical distributions of SSC in Elms/Dollard estuary
- 1161 tidal channel. Dotted and solid lines represent Model A and B predictions, respectively
- 1 162 <u>at (a) 08:00 and (b) 11:00 hours, while the solid triangles are the measured SSC data.</u>

1163

Fig. 10 Time series plots of measured and predicted floc sizes generated in the gridstirred settling column (Case 1, Table 1) showing the sensitivity of Model A and B
predictions to the initial clay floc size specified at the upper column boundary.

1167

Fig. 11 Model predictions of the vertical distributions of (a, d) floc size, (b, e) settling
velocities, and (c, f) SSC in Elms/Dollard estuary tidal channel. Dotted and solid lines
represent Model A and B predictions, respectively at (a) 08:00 and (b) 11:00 hours,
while the solid triangles are the measured SSC data.

1172

1173

1Fig. 11-1312 Time series plots of predicted average floc sizes (Model B, dotted lines)1175and calculated Kolmogorov turbulent scale (solid lines) at elevations (a) 1.0 m, (b) 0.71176m, and (c) 1.00.4 m above the bed.

1177

1179	Table 1 Summary of main parameters for the modelled grid-stirred settling column
1180	experiments

	Feed			Г	G(1	Initial	Shear rate G
	rate	Concentration (lrg/m^3)	(s)	(s ⁻¹)	(m)	floc size	(s^{-1})
	(1 min ⁻¹)	(Kg/III)				(µm)	
Case 1*	0.3	1.2	9120	0.4	0.05	2.0	2.07
Case 2*	0.3	1.2	11520	0.6	0.05	2.0	3.79
Case 3*	0.3	1.8	9300	0.6	0.05	2.0	3.79

* Case 1 = run TN4, Case 2 = run TN7, Case 3 = run TN8 [see Cuthbertson et al. (2018)]

1181

1182 Table 2 Calibrated flocculation model coefficients and prescribed parameters for thesimulations of grid-stirred settling column experiments

	Model	$ ho_s$ (kg/m ³)	k_A'	k'_B	μ_{nf}	σ_D	B_1
Casa 1	A	2590	7.2	0.0094	1.85	-	$1.5 imes 10^{-12}$
Case 1	В	2590	7.2	0.0009	1.85	0.05	1.1×10^{-13}
Case 2	A	2590	8.8	0.0087	1.85	-	1.4×10^{-12}
	В	2590	8.8	0.001	1.85	0.05	2.1×10^{-13}
Case 3	А	2590	6.0	0.0087	1.85	-	1.2×10^{-12}
	В	2590	6.0	0.0012	1.85	0.05	2.16×10^{-13}

1184

1185 Table 3 Calibrated flocculation model coefficients and prescribed parameters for the

1186 simulations of the Elms/Dollard estuary tidal channel.

Model	d(µm)	$ ho_s$ (kg/m ³)	k_A'	k_B'	μ_{nf}	σ_D	B_1
А	4	2650	54	0.0012	Eq. (29)	Eq. (31)	1.0×10^{-12}
В	4	2650	8.0	0.001	Eq. (29)	Eq. (31)	2.75×10^{-12}

1187

1188

Figure 10.JPEG

