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We consider the minimum weight and smallest weight minimum-size dominating set problems in vertex-
weighted graphs. The latter is a two-objective optimization problem, which is concerned with optimizing
both weight and cardinality of the dominating set. First, we reduce the two-objective optimization
problem to the minimum weight dominating set problem by using Integer Linear Programming (ILP)
formulations. Then, under different assumptions, we employ the probabilistic method to obtain new
upper bounds on the minimum weight dominating sets in graphs. We also describe the correspond-
ing randomized algorithms for finding small-weight dominating sets in graphs and use computational
experiments to illustrate the results for two types of random graphs.

Weighted domination in graphs and networks can be used, for example, for modelling a problem
of the placement of a number of transmitters in a communication network such that every site in the
network either has a transmitter or is connected by a direct communication link to a site that has such
a transmitter. There are usually some ‘costs’ associated with placing a transmitter in each particular
location of the network, i.e. a vertex of the corresponding graph. The minimum weight dominating
set problem usually does not place any restrictions on the size of the dominating set, i.e. the number of
transmitters in this case – we only need to find a smallest weight/cost dominating set in a vertex-weighted
graph. However, the total emitted radiation in the environment would be smaller with fewer transmitters
installed. Similar facility location problems in road networks [2] and social networks [4] can be generalized
to vertex-weighted graphs and two-criteria optimization as well. See also network problems in [5].

Given a simple graph G of order n, the weight assigned to each vertex vi is denoted by wi, i = 1, ..., n.
The total weight of the graph, the minimum, maximum, and average vertex weights of G are denoted by
wG, wmin, wmax, and wave, respectively. The minimum vertex degree of G is denoted by δ = δ(G). A
set X of vertices of G is called a dominating set of G if every vertex not in X is adjacent to at least one
vertex in X. The minimum cardinality of a dominating set of G is called the domination number of G
and is denoted by γ(G). We denote by γw(G) the smallest weight of a dominating set in a graph G, and
by γ∗w(G) the smallest weight of a minimum-cardinality dominating set X in G.

The problem of finding an exact value of γ∗w(G) and the corresponding dominating set X can be
formulated as an ILP problem:

minimize z(x1, x2, . . . , xn) =
n∑
i=1

xi +
n∑
i=1

wi
wG

xi

subject to:
∑

vi∈N [vj ]

xi ≥ 1, j = 1, . . . , n,

xi ∈ {0, 1}, i = 1, . . . , n,

(1)

where a (0, 1)-decision variable xi ∈ {0, 1} is associated with each vertex vi ∈ G to indicate whether the
vertex is in the solution set X or not, having xi = 1 if and only if vi is in X, i = 1, ..., n. Reassigning
the graph vertex weights to w′i = 1 + wi

wG
, i = 1, ..., n, the ILP formulation becomes the single-objective

optimization problem of finding γw′(G) and the corresponding minimum weight dominating set in G with
respect to the vertex weights w′i, i = 1, ..., n. At optimum, we have γw′(G) = z∗ = z(x∗1, x∗2, ..., x∗n) and
as

n∑
i=1

wi

wG
x∗i < 1, we also have γ∗w(G) =

n∑
i=1

wix
∗
i . In light of these results, the problems of finding γ(G)

and γ∗w(G) in G can be considered as particular cases of the more general problem of finding γw(G) in G.
We use the probabilistic method to find several new upper bounds for γw(G) in a graph G. These

results are generalizations of the probabilistic method for the following classic upper bound for γ(G):
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Theorem 1. [1, 3] For any graph G with δ ≥ 1,

γ(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
n.

The generalizations are based on the following general probabilistic construction and randomized
algorithmic framework. First, given a certain probability pi, i = 1, ..., n, we decide whether to include
each vertex vi of G into a set A, i = 1, 2, ..., n. Next, we consider the set of vertices that are not in A
and do not have a neighbour in A, which is denoted by B. The set D = A∪B will then be a dominating
set of G. By computing the expected total weight of the vertices in D, we obtain an upper bound for
γw(G). We use different ways to compute pi to obtain the upper bounds and corresponding randomized
algorithms. As the dominating set should have both small size and weight, we set pi = p · x, where p
depends on vertex degrees in G, and x depends on vertex weights in G. By trying different expressions
for x and optimizing the expected weight of D for p, we obtain the following upper bounds:
Theorem 2. For any graph G with δ ≥ 1,

γw(G) ≤
(

1− δ

(1 + δ)1+1/δ

)
wG.

Theorem 3. For a graph G with δ ≥ 1, k = wmax/wave ≤ δ + 1, and p = 1−
(

k
δ+1

)1/δ
≤ wmin/wmax,

γw(G) ≤ npwmax +
n∑

i= 1
wi (1− p)di+1 ≤

(
1− δk1/δ

(δ + 1)1+1/δ

)
kwG.

Theorem 4. For a graph G with δ ≥ 1, z = wmax/wmin ≤ δ + 1, and q = 1−
(

z
δ+1

)1/δ
,

γw(G) ≤ qzwG +
n∑

i= 1
wi (1− q)di+1 ≤

(
1− δz1/δ

(δ + 1)1+1/δ

)
zwG.

There are problem instances where the conditions of Theorem 3 are satisfied, but not those of Theorem
4 and vice versa. Also, Theorem 2 implicitly assumes that the ratio wmax/wmin is reasonably close to 1.

We implemented and tested the deterministic and randomized heuristic solution methods for both
problems on random graph instances of two types, one of which is the classic Erdös-Rényi random graph
type, and the other is a random graph type used to prove asymptotic sharpness of the upper bounds of
Theorem 1. Using the ILP formulations and a generic ILP solver (FICO R© Xpress), the exact deterministic
solutions to the problems of computing γ∗w(G) and γw(G) were found in a reasonable amount of time
of at most three hours for Erdös-Rényi random graphs of only at most 200 vertices, and the other type
of graphs of at most 560 vertices. Then, three randomized heuristics based on Theorems 2, 3, and 4
were run on each of the random graph instances. In the case of the Erdös-Rényi random graphs, the
three randomized algorithms performed similarly by the dominating set size, but the algorithm based
on Theorem 2 was less successful when searching for better solutions by weight. For the other type of
graphs, the algorithms corresponding to Theorems 3 and 4 performed better than that based on Theorem
2 by both parameters. Therefore, Theorems 3 and 4, whilst requiring stronger conditions, provide better
randomized heuristics.
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