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Abstract 

Many uncertainties exist regarding the chemical composition of semi-volatile and intermediate 

volatility organic compounds (S/IVOCs), as traditional gas chromatographic methods are 

unable to separate them adequately.  Air samples were collected at four sites in central London 

and were analysed using thermal desorption coupled to comprehensive gas chromatography 

time-of-flight mass spectrometry (GC×GC-ToF-MS).  

 

Main S/IVOC groups identified and quantified include C13-C36 alkanes (linear and branched 

alkanes), C12-C25 monocyclic alkanes, C13-C27 bicyclic alkanes and C10-C24 monocyclic 

aromatics in the gas phase and particle phase. Diagnostic ratios of n-alkanes as well as 

correlation analysis of S/IVOCs and traffic tracers suggest traffic is a major contributor with a 

minor contribution from other sources. The distribution of hydrocarbons is similar in 

background and roadside air, indicating the importance of road traffic as a source of 

hydrocarbons in the urban atmosphere of London. Emission factors estimated in this study are 

broadly similar to those measured elsewhere in the world, despite differences in traffic fleet 

composition. Gas-particle partitioning of n-alkanes is discussed and compared between sites.  

The S/IVOC concentrations identified contribute to a small fraction of the total OH reactivity 

and SOA formation in background London.  
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Chapter 1 Research background 

This chapter describes the research background of this study, giving a brief introduction of the 

traffic-emitted particles, semi-volatile organic compounds (SVOCs) and intermediate volatility 

organic compounds (IVOCs) within traffic emitted particles, the composition of traffic emitted 

S/IVOCs as well as the contribution of S/IVOCs to the potential formation of secondary organic 

aerosol (SOA). Then, a description of the reason why we choose the GC×GC-ToF-MS as an 

analysis method by reviewing the advantages of GC×GC technology and previous S/IVOC 

studies analysed by GC/ GC×GC methods. This chapter shows the research questions and the 

aim of this study.  

 

1.1  Traffic emitted particles 

With the increasing population living in cities, urban air quality has become an important factor 

in global health. Recent epidemiological studies have consistently demonstrated the link 

between particulate matter exposure and cardiovascular health outcomes (Rissler et al., 2012; 

Fan et al., 2006; Masiol et al., 2012). Roadside particle is a complex mixture that consists of 

pollutants from multiple emission sources include anthropogenic sources and biogenic sources. 

Anthropogenic primary particles are typically from vehicle exhaust and lubricating oil residues, 

tyre and brake lining wear, and weathered street surface while natural biogenic particles are 

mainly from the leaves and other parts of plant pulverised by the passing traffic (Omar et al., 

2007). The particles emitted from traffic consist of exhaust type and non-exhaust types. Exhaust 

type is the fuel-related emission while non-exhaust type comes from abrasion of vehicles parts 

such as brakes, clutch, and tyres (Alam et al., 2016b; Pant and Harrison, 2013). As a major 

emission source within the urban environment, particulate matter originated from traffic has 

gained many interests over the last few decades. However, a number of research questions 
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remain knowledge gaps, concerning the properties of road traffic-emitted particulate matter, 

especially the composition of primary vehicle exhaust particles and its contribution to the 

formation of the secondary organic aerosol (SOA).  

 

Around 72% of particles by number arose from traffic on the adjacent roadway at a London 

roadside, which 38% of those in the nucleation mode (Dp <30 nm) and 53% in the exhaust solid 

mode (Aitken, 30< Dp< 100nm) (Harrison et al., 2016; Harrison et al., 2011).The majority of 

ultrafine particles (UFP, diameter Dp <100 nm) within the urban environment arise from road 

traffic emissions, especially the diesel associated emissions. Road traffic is identified as the 

largest emission source of UPF in the UK national emission inventory (AQEG, 2005). The 

settlement of fine particles is prolonged, and their suspension in the air can remain for a 

considerable time. The sinking process is driven by the emission of new particles (i.e., vehicle 

exhaust), dry deposition, resuspension, street sweeping and precipitation, contributing to a 

considerable amount of the particles and toxic substance to the atmosphere (Rogge et al., 1993b; 

Rogge et al., 1993c). The majority of the fine roadside particles is carbonaceous and can be 

emitted directly as primary organic aerosol and/or formed as secondary organic aerosol (Alam 

et al., 2016b). Medical studies have proved that the fine fraction of aerosol particles can be 

embedded deeply in human lung tissue, causing respiratory diseases and exacerbating 

cardiovascular diseases (Miller et al., 1979; Utell and Samet, 1996; Omar et al., 2007). In 

addition to the harmful health outcomes, particulate matter also speeds the building 

deterioration and decreases visibility (Rajkumar and Chang, 2000). Organic compounds occupy 

10–40% of the PM2.5 and PM10 in mass in the polluted urban environment while they represent 

around 30–50% of the PM10 in mass in the rural area (Chow et al., 1994). 
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There are more than 37 million vehicles in the UK (Alam et al., 2016b). In 1994, 7.4% of the 

total vehicles were using the diesel engine, and this number increased to 34.5% by 2013. In 

2014, 50% of the vehicles were diesel-powered cars while 48% were petrol-powered vehicles 

and 2% were vehicles using alternative fuel in the UK (Alam et al., 2016b; SMMT, 2015; 

ExxonMobil, 2014). The significant increase in the use of diesel indicates the great contribution 

from diesel vehicles to the emission of roadside particles. The organic composition of the diesel 

exhaust has been characterised in several past studies (Schauer et al., 1999; Isaacman et al., 

2012; Alam et al., 2018). The contribution of diesel-related primary emissions to the fine 

particle emission in the atmosphere has also been discussed in the literature via organic 

chemical tracer techniques and transport modelling studies (Schauer et al., 1999).  

 

1.2  Combustion in the engine and emissions from the tailpipe 

The organic compounds can emit from the engine to the atmosphere via different pathways, 

such as exhaust of gasoline and diesel engines and also via non-tailpipe emissions (i.e., 

evaporation from gasoline vehicles) (Gentner et al., 2013; Gentner et al., 2009; Gentner et al., 

2012). Emitted organics are of liquid fuel origin, including uncombusted hydrocarbons (CxHy), 

incomplete combusted products (e.g., paraffinic, olefinic or aromatic) and probably oxygenated 

compounds (Gentner et al., 2013). Hydrocarbons are not the substances that expected to be 

found in high-temperature combustion gases unlike nitric oxide (NO) and carbon monoxide 

(CO). Chemical equilibrium calculations suggest that the quantities of hydrocarbon in 

homogeneous high-temperature combustion and the oxidation reactions for hydrocarbons under 

such conditions are immeasurable. Therefore, the presence of unburned hydrocarbons in the 

engine exhaust must be related to the temperature or heterogeneity combustion but not the 

homogeneous part of the combustion system (Springer, 2012). The reaction produces hydrogen 
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peroxide (H2O2) and releases heat at relatively low temperatures (around 700K). Ignition in 

engine occurs when the temperature reaches where H2O2 thermally decomposes (Westbrook, 

2000). The effect of heterogeneity on unburned hydrocarbons can be explained as ignition 

inhibition. Ignition of reactants occurs when the internal heat generation caused by pre-

combustion within the parcel of reactants exceeds the heat loss from the fuel-air mixture. Thus, 

a layer of unburned fuel-air mixture next to the cool combustion chamber walls cannot be 

ignited successfully due to the walls can cause large heat losses from the mixture. Under typical 

engine operation conditions, a significant portion of reactant mixtures quenched by the cold 

combustion chamber walls are burned during the expansion process or in the post exhaust 

system (Springer, 2012), while the comparison between fuel composition and engine-out 

hydrocarbons indicates that a fraction of the initial fuel survives the combustion and subsequent 

combustion oxidative processes during the expansion and exhaust system (Kirchstetter et al., 

1999; Leppard et al., 1992). Temperature and fuel-air ratios are important factors that determine 

the final concentrations emitted from exhaust system (Springer, 2012). The unburned 

compounds in gasoline and diesel dominate the gas-phase reactive carbon in vehicle emission 

that can be potential sources of SOA (Kirchstetter et al., 1996; Schauer et al., 1999). Gentner et 

al. (2012) reported that emission factors of unburned gas-phase organic carbons detected in 

diesel exhaust are more than twice those in gasoline exhaust. A previous study showed that 

non-tailpipe emission accounts for around 30% of the emissions from gasoline vehicles in the 

urban environment (Gentner et al., 2009). 

 

A number of previous studies have reported that the organic composition detected in the engine 

exhaust strongly correlated with the liquid fuels as the products from the incomplete 

combustion are expected to present in the exhaust (Gentner et al., 2012; Kirchstetter et al., 1999; 
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Leppard et al., 1992; Alam et al., 2018). Kirchstetter et al. (1999) reported a linear relationship 

between some of the individual organics in gasoline and a tunnel in San Francisco, indicating 

a substantial fraction of the nonmethane organic carbon (NMOC) detected in the tunnel were 

of unburned gasoline origin. Combustion produced species (i.e., ethene, propene, isobutene, 

and formaldehyde) did not present in gasoline, but presented in the tunnel and contributed to 

the overall reactivity of organic tunnel emissions. Organics presented in gasoline and detected 

in the tunnel were higher than expected as running loss evaporation emissions were suggested 

to contribute the emissions of unburned gasoline. VOCs were abundant in the gasoline emission 

and C1-C3 organics accounted for around 20% of the NMOC mass in the tunnel (Kirchstetter et 

al., 1999; Leppard et al., 1992).  

 

Alam et al. (2018) compared the chemical composition of diesel fuel and the emission from a 

diesel-powered engine, suggesting the similarities in the chemical composition and differences 

in the relative amounts of the compound classes. The major components of the gas-phase 

exhaust originated from diesel fuel and all of the compounds found in diesel fuel were shown 

to present in the gas-phase emissions. There was a decrease in the high molecular weight 

branched alkanes (>C20), probably due to the efficient combustion of these homologues or 

partitioning into the particle phase. Alkanes (n+i) in the gas-phase exhaust were lower than 

those in diesel fuel, which might attribute to the preferred combustion of these species (Burcat 

et al., 2012). In contrast, cyclic alkanes (monocyclic and bicyclic) and aromatics (monocyclic 

and bicyclic) were observed to have increased relative amounts in the gas-phase emission 

compared with those in the diesel fuel, probably as a result of them being formed by the 

combustion of larger molecules. Several oxygenates (i.e. ketones and carboxylic acids) were 
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also identified in gas-phase emission as combustion products of diesel fuel but only accounted 

little fraction of the total gas-phase exhaust (Alam et al., 2018).  

 

Oxides of nitrogen (NOx) from vehicle emission have gained considerable attentions in decades 

as the fate of NOx can play an important role in different environmental aspects, such as regional 

ozone formation, secondary particle formation and eutrophication (Carslaw et al., 2011). 

Oxides of nitrogen (i.e. NO, NO2 and N2O2) are products of the combustion processes within 

the engine and appear in engine exhaust at high temperatures (Newhall, 1969), while are not 

thermodynamically stable at room temperature and destroyed slowly during the exhaust 

transport at atmospheric conditions (Springer, 2012). Nitrogen oxides may also settle in the 

lungs to form dilute nitric acid. The harmful health effect of nitrogen oxides is relatively small 

as the amount of formed nitric acid is minute and dilute, while long-time accumulation can 

cause problems (Springer, 2012). The primary nitrogen oxide formed in the engine is nitric 

oxide (NO), but it can be oxidised subsequently to form nitrogen dioxide in the atmosphere 

(McConnell, 1963). Nitric oxide is formed from the N2 and O2 with the existence of high 

temperatures. In general, NO can be formed during the combustion process in three ways, 

including (a) forms from the oxidation of chemically bound nitrogen in the fuel (b) forms from 

molecular nitrogen in the radical-rich flame zone (the main combustion zone for hydrocarbons) 

(c) forms from molecular nitrogen initiated by oxygen radicals and assisted by OH radicals at 

high temperature in the post-flame zone (Merker et al., 1993). Based on the chemical 

equilibrium calculation, NO concentrations in combustion products under high temperature 

could reach levels from several hundred parts per million (ppm) up to several mole percent 

determined by temperature and the ratio of fuel to air. The regular assumption for these 

calculations is that there is sufficient time for combustion products to reach the chemical 
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equilibrium at particular temperatures while some investigations point out that the burned 

products often cool down immediately before NO can achieve the peak temperature chemical 

equilibrium levels. Equilibrium calculation also predicts that NO could largely decompose to 

N2 and O2 at relatively low temperature after combustion while the reality shows that the 

decomposition is much slow and consequently the NO concentrations in engine remains at fixed 

level formed during the high temperature combustion processes (Springer, 2012). The 

formation of nitrogen oxides in an engine is not a new observation as a few old studies have 

reported it (Eyzat and Guibet, 1968; Spindt et al., 1956; Lavoie et al., 1970; McConnell, 1963).  

 

The proportion of diesel-powered light-duty vehicles (LDVs) has grown in the UK in the last 

decade. The numbers of gasoline-powered LDVs and diesel-powered LDVs are similar in the 

UK currently while most of the heavy-duty vehicles (HDVs) in Europe are diesel-powered 

(Carslaw et al., 2011; Hassler et al., 2016). Diesel contributes to the majority of burned fuel for 

transportation in the UK (Dunmore et al., 2015).  Since only the gasoline-powered vehicles 

have shown a remarkable reduction in NOx emissions in the past two decades, and the NOx 

emission from diesel vehicles have not declined much during the same period (Carslaw and 

Rhys-Tyler, 2013), the roadside NOx emission have remained stable in the UK (Carslaw et al., 

2011; Hassler et al., 2016).   

 

1.3  Traffic emitted SVOCs and IVOCs  

Semi-volatile particles make an important contribution to the total particle number emitted from 

the traffic source (Harrison et al., 2016; Harrison et al., 2011). Semi-volatile organic compounds 

(SVOCs) and intermediate volatility organic compounds (IVOCs) can partition between the gas 
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and particle phase under ambient conditions. SVOCs refer to organic species with an effective 

saturation concentration 𝐶∗ between 1 and 103 μgm−3 while IVOCs refer to species with 𝐶∗ 

between 104 and 107 μgm−3  (Robinson et al., 2007). Once particles are emitted, they can be 

modified by a number of physical and chemical processes. As the particles disperse away from 

the emission source, the semi-volatile organic component of the particles may partially 

evaporate with atmospheric dilution caused by the lack of equilibrium between the gas and the 

particle phase, creating substantial amounts of low-volatility gas-phase compounds (Robinson 

et al., 2007). S/IVOCs subsequently oxidise to form lesser volatile compounds which 

recondense onto solid particles, giving an increased particle mass.  

 

S/IVOC emissions from traffic mainly comprise of aliphatic and aromatic hydrocarbons 

ranging between C12 and C35, and are typically dominated by alkanes, cyclic alkanes and 

monocyclic aromatics (Worton et al., 2014; Gentner et al., 2012; Weitkamp et al., 2007; Alam 

et al., 2018). The organic carbon emission from gasoline- and diesel-powered vehicles can be 

classified into volatile organic compounds (VOCs), intermediate volatility organic compounds 

(IVOCs) and semi-volatile organic compounds (SVOCs) based on their vapour pressure. 

Gentner et al. (2012) reported the organic carbon emissions from diesel and gasoline present 

the different distribution based on carbon number. Most of the gasoline emitted hydrocarbons 

are VOCs while some aromatics can extend to the intermediate volatile range. The exhaust of 

unleaded gasoline contains a considerable amount of aromatic hydrocarbons, and 

monitoring this hydrocarbon group has become more important (Kerbachi et al., 2006).  

Only 30% of diesel emitted hydrocarbons are VOCs while most of them are less volatile 

(S/IVOCs). Gasoline emissions are mainly in the carbon number range below C12 while diesel 

fuel emissions are mainly in the range from C8 to C25 (Gentner et al., 2012). There are very few 



9 

 

studies on the abundance of gaseous longer chain hydrocarbons (≥C12) (Dunmore et al., 2015) 

although the traffic emitted S/IVOCs consists of mostly higher molecular species containing 

12-35 carbon atoms (Alam et al., 2018). The role of the hydrocarbons above C12 in the 

atmosphere has not been fully addressed due to the lack of detailed emission information for 

these species.   

 

1.4  Chemical composition of traffic emitted S/IVOCs 

Despite huge research interest and many contributions from the last decades, many uncertainties 

exist regarding the identities and chemical composition of the traffic emitted S/IVOCs. A key 

reason is that the vast majority of S/IVOC mass cannot be separated and characterised by 

traditional one-dimensional gas-chromatography (1D-GC) based analytical techniques 

(Schauer et al., 1999; 2002; Jathar et al., 2012). Instead, 90% of the hydrocarbon content of the 

atmospheric sample are largely uncharacterised, as presenting an unresolved complex mixture 

(UCM) and creating a large hump within the chromatogram (Fraser et al., 1998; Schauer et al., 

1999).  The UCM is often observed in samples associated with the use of fossil fuel (Nelson et 

al., 2006; Frysinger et al., 2003; Ventura et al., 2008), and comprises more than 80% of the 

semi-volatile hydrocarbons emitted from diesel and gasoline derived engines (Schauer et al., 

2002; 1999; Chan et al., 2013). Unresolved complex mixture (UCM) contains a large number 

of isomers, and is mainly dominated by co-eluting linear (straight chain), branched and cyclic 

alkanes (Robinson et al., 2007; Isaacman et al., 2012; Jathar et al., 2012; Mao et al., 2009) while 

a minor fraction is aromatic compounds (van Deursen et al., 2000).  

 

Previous researches on atmospheric samples processed by one-dimensional gas-

chromatography (1D-GC) based analytical techniques have focused on a limited range of 
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homologous series and tracer compounds that can be distinguished from the bulk of UCM, 

generally involved n-alkanes, PAHs, hopanes and steranes (Alam et al., 2016b; Schauer et al., 

1999; 2002). These species only represent a small portion of the total mass or number of 

compounds in the exhaust. The remaining semi-volatile emissions can play an important role 

in photochemical smog formation and contribute to the generation of secondary organic aerosol 

(SOA) (Schauer et al., 1999; Alam et al., 2018). Past studies typically classified the alkane 

homologues by volatility based on the retention times due to the challenges in speciating alkane 

isomers (Grieshop et al., 2009; Presto et al., 2012; Dunmore et al., 2015). Lack of understanding 

on the molecular structure can cause uncertainties on the study of the SOA formation from these 

hydrocarbons, as SOA yields change with the alkane structure (linear, branched and cyclic) and 

number of rings (Pye and Pouliot, 2012; Loza et al., 2014; Lim and Ziemann, 2009b; Tkacik et 

al., 2012). Therefore, studies on the molecular structure are crucial to understanding the 

environmental fate of these semi-volatile compounds.  

 

A number of studies have reported the chemical components of organic compounds in the 

ambient air or heavy traffic influenced regions by using one dimensional GC-MS or GC×GC-

MS (Lewis et al., 2000; Pio et al., 2001; Xu et al., 2003b; Xu et al., 2003a; Hamilton and Lewis, 

2003; Kawashima et al., 2006; Omar et al., 2007; Chan et al., 2013).  Lewis et al. (2000) worked 

on the analysis of the volatile organic compounds in the urban air by GC×GC technology.  They 

collected urban air samples from the centre of Melbourne (Australia) and showed the presence 

of over 500 chemical species ranging from C2 to C14, including more than 100 multi-substituted 

monoaromatics and volatile oxygenated hydrocarbons. The comparison between the 

composition of urban air samples with those of gasoline and diesel vapours shows high 

similarities, indicating the use of fuel is the most possible source of the aromatic species 
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identified in their study. The chemical composition and relative emission source types in 

Melbourne reported by Lewis et al. (2000) are broadly similar to those reported in the United 

Kingdom; however, the use of diesel-powered vehicles increased recently in the UK, shifting 

the balance of emissions in favour of those aromatic and aliphatic species with longer-chains. 

Pio et al. (2001) collected aerosol samples at a rural site in Portugal and identified about 400 

individual organic compounds, including aliphatic compounds, PAHs, oxy-PAHs, alcohols, 

aldehydes, ketones, n-alkanoic acids, n-alkenoic acids, aliphatic dicarboxylic acids, terpenic 

constituents and some volatile organic compound (VOC) oxidation products. In 2003, an 

atmospheric VOC study isolated the organic compounds in air samples by TD- GC ×GC–FID 

and GC ×GC–TOF-MS (Xu et al., 2003a; Xu et al., 2003b). The compounds they observed 

include cyclic and acyclic alkanes, PAHs, oxygenated aromatics, alcohols, aldehydes, ketones, 

C7-C11 aromatic and n-alkane.   

 

Hamilton and Lewis (2003) analysed the monoaromatic component in gasoline, gasoline 

vapours and urban air by comprehensive GC ×GC. The presence of 147 mono-aromatic 

compounds with up to 8 carbon substituents on the ring was detected in the urban samples, 

while 130 of such species were observed in gasoline. The similarities they found in some 

aromatic regions for urban air and gasoline vapours prove the impact of fuel usage to the urban 

air quality. Hamilton et al. (2004) analysed the PM2.5 aerosol samples collected at a roadside 

location in London, UK. Over 10,000 individual organic compounds were isolated by thermal 

desorption coupled to comprehensive gas chromatography-time of flight mass spectrometry 

(GC×GC-TOF-MS). They pointed out that the current knowledge of the chemical composition 

of urban organic aerosol is far from clear understanding. 
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In a roadside measurement in Japan, Kawashima et al. (2006) examined 47 species of C6-C12 

hydrocarbons by GC-MS, including benzene, toluene, and others. Kallio et al. (2006) identify 

the organic compounds in the air samples by GC×GC–TOF–MS collected from a forest in 

Finland, as a part of the QUEST campaign. Around 50 compounds were identified, and some 

of them for the first time. The compounds they isolated and identified included acyclic alkanes, 

acyclic alkenes, ketones, aldehydes, oxidised monoterpenes, aldehydes, aromatic compounds 

and also a few alcohols and acids. Omar et al. (2007) studied the organic composition of 

airborne particles and roadside dust particles in Kuala Lumpur, Malaysia. They reported the 

concentrations of organic source tracers, such as n-alkanes, PAHs, unresolved complex mixture 

(UCM), petroleum molecular markers, n-alkanols, triterpenoids and n-alkanoic acids. He et al. 

(2008) worked on the characterisation of PM2.5 emissions in a Tunnel in China, and the organic 

compounds they quantified include n-alkanes, n-alkanoic acids, PAHs and hopanes.  Williams 

et al. (2010a) and Zhao et al. (2013) identified multiple types of primary POA and SOA from 

air sample in California, and apply PMF (positive matrix factorisation) analysis to investigate 

the emission source. 

 

Chan et al. (2013) analysed the UCM components of semi-volatile aliphatic hydrocarbons 

collected in the urban atmosphere of California. They reported the masses of C20-C25 linear, 

branched and cyclic alkanes, and studied the emission source of alkane isomers based on the 

carbon number preference (CPI) of n-alkanes. Worton et al. (2014) worked on the composition 

of vehicle POA and the similarity between POA and lubricating oil. The compound classes 

characterised by their GC method includes linear alkanes, branched alkanes, branched 

cycloalkanes and aromatics. More recently, Dunmore et al. (2015) collected air samples from 

an urban background site North Kensington in winter London and analysed samples by using 
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GC×GC-ToF-MS. The authors grouped and identified low molecular weight hydrocarbons (≤ 

C12) based on their functionality and carbon number, showing the concentrations of C6-C13 

aliphatic and C2-C4 substitute mono aromatics in the gas phase. The separation of linear n-

alkanes, branched alkanes and cyclic alkanes is not sufficient at carbon numbers above C6 on 

the GC×GC chromatogram, so they are not fully characterised and treated as a group of 

aliphatic compounds (Dunmore et al., 2015).  

 

This study chooses alkane isomers (linear, branched and cyclic) and monocyclic aromatics as 

target compounds based on two previous studies processed in the engine laboratory from the 

FASTER research group (Alam et al., 2016b; Alam et al., 2018). Alam et al. (2016b) 

characterised and quantified the composition of S/IVOCs in the exhaust of diesel engine by 

GC×GC-ToF-MS, reporting the diesel engine associated S/IVOCs are predominated by linear 

and branched alkanes (C11-C33), alkyl-cyclohexane (C11-C25), alkyl-benzenes, PAHs and 

various cyclic aromatics. The typical chromatogram shows the hydrocarbons up to C20 present 

in diesel fuel while C18–C36 compounds form UCM and dominate in lubricating oil (Figure 1.1). 

Compounds observed in the gas phase of diesel exhaust are similar to those identified in diesel 

fuels (mainly below C20) while compounds in the particle phase are similar to lubricating oil 

(mainly C21-C27). To provide a more comprehensive view on the isomer sets,  Alam et al. (2017) 

mapped and quantified isomer sets previously unresolved in UCM in diesel fuel, lubricating oil 

and diesel emission samples by the GC×GC coupled to variable ionisation ToF-MS. Exhaust 

from diesel engines have been reported to be comprised of a limited number of compound 

classes, but one class consists of a substantial number of individual compounds. In addition to 

the typical tracer compounds linear n-alkanes, Alam et al. (2017) has expanded to more polar 

compound classes with larger number of carbon atom (above C12), mainly including 
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monocyclic alkanes, bicyclic alkanes, tricyclic alkanes, monocyclic aromatics, bicyclic 

aromatics and alkyl-biphenyls. To compare the S/IVOC groups observed in ambient air with 

fuel (diesel fuel as well as lubricating oil) reported by Alam et al. (2017), this study developed 

a chromatogram template to map and quantify the semi-volatile organic components in air 

sample, mainly include alkanes, monocyclic alkanes, bicyclic alkanes and monocyclic 

aromatics. More details have been developed in Chapter 2 Methods. 

 

 

Figure 1.1: Typical GC×GC-ToF-MS chromatograms (contour plots) display diesel fuel and 

engine lubricant oil. x-Axis separation bases on the volatility and y-axis separation bases on the 

polarity. Each coloured spot represents an individual species, and the colour represents the 

intensity of the corresponding compound. Intensity decreases from the warmer colour (i.e., red) 

to colder colour (i.e., blue) (Alam et al., 2016b). 
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1.5  Contribution to the potential SOA formation 

Recent studies reported the photo-oxidation of low-volatility gas-phase species could make a 

significant contribution to the formation of secondary organic aerosol (SOA) (Jathar et al., 2012; 

Robinson et al., 2007; Pye and Seinfeld, 2010; Weitkamp et al., 2007; Leskinen et al., 2007). 

Since the molecular identity of the majority of the S/IVOC mass is elusive, SOA formation 

attributed by these constituents of particles cannot be studied or modelled in the same manner 

as traditional SOA precursors, such as benzene and alpha-pinene (Jathar et al., 2012). Secondary 

organic aerosol (SOA) arises from chemical transformation and condensation of volatile and 

semi-volatile species, representing a significant portion of the submicron dry atmospheric 

aerosol mass (Zhang et al., 2007; Jathar et al., 2012). SOA arises from speciated VOCs has 

been defined as traditional SOA (T-SOA). The main fraction of SOA formation is thought to 

be attributed to the first-generation oxidation products of high flux volatile organic compounds 

(VOCs), like terpenes and single-ring aromatics (Jathar et al., 2012). However, a number of 

studies reported the simulations systematically underestimate the organic aerosol levels in 

chemical transport models (Heald et al., 2005; Vutukuru et al., 2006; Johnson et al., 2006; 

Morris et al., 2006).  Laboratory experiments and field studies show that photo-oxidation of 

diesel emissions rapidly generates organic aerosols, considerably over what can be explained 

by known SOA precursors (i.e. T-SOA models) (Robinson et al., 2007; Jathar et al., 2012). 

Robinson et al. (2007) attributed the unexplained SOA formation to the oxidation of 

unspeciated gas-phase low-volatility organics, such as semi-volatile and intermediate volatility 

organic compounds (S/IVOCs). SOA produced by S/IVOCs is defined as non-traditional SOA 

(NT-SOA). S/IVOCs are co-emitted from combustion procedure and less volatile than VOC.  

Due to the low vapour pressure of S/IVOCs, their oxidation is expected to have higher SOA 

yields than the more volatile precursors; thus, could contribute to a substantial fraction of the 
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SOA within the urban area (Chan et al., 2013; Presto et al., 2010; Lim and Ziemann, 2009a). 

However, these species are not often accounted for in models because many of them cannot be 

speciated and do not contribute significantly to ozone chemistry mechanisms; furthermore, 

measurement of S/IVOCs requires hard-to-use sorbents (Jathar et al., 2012). SVOCs, IVOCs 

and VOCs form SOA in the same fundamental manner. The oxidation process in the gas phase 

adds functional groups precursor molecule, producing lower-volatility compounds that 

condense into the particle phase (Jathar et al., 2012). Pye and Seinfeld (2010) estimated the 

global production of organic aerosol from primary emission of S/IVOCs, predicting more 

abundant aerosol production is attributed to S/IVOC oxidation rather than the oxidation of 

traditional parent hydrocarbons (terpenes, isoprene and aromatics). In a more recent study, Zhao 

et al. (2014) reported a substantial fraction of predicted SOA formation comes from primary 

IVOC UCM (45%) while other fractions come from oxygenated IVOC UCM (19%), 

unspeciated primary SVOC (12%), speciated IVOCs (12%) and VOC (12%). Accounting for 

the partitioning and photochemical processing of S/IVOCs from the UCM will bring a better 

agreement between the atmospheric organic aerosol observed in the real world and that 

predicted based on modelling the traditional SOA precursors.  

 

However, there are still many uncertainties on the extent of SOA formation from the 

photooxidation of diesel-derived atmospheric organics (Gentner et al., 2012; Bahreini et al., 

2012). Robinson et al. (2007) reported a rapid and significant SOA formation from the 

photooxidation of diesel exhaust in a chamber, while disagreements were reported by several 

studies (Samy and Zielinska, 2010; Chirico et al., 2010; Bahreini et al., 2012). Samy and 

Zielinska (2010) and Chirico et al. (2010) observed that negligible SOA production was 

transformed from the diesel exhaust unless hydrocarbons or OH radicals were added to the 
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chamber to enhance the reactivity. Bahreini et al. (2012) did not observe significant SOA 

formation from diesel emission either in Los Angeles Basin (USA) and suggested the reduction 

on SOA formation can be achieved by reducing the gasoline-related emission on local to global 

scales. 

 

The SOA formation involves the multigeneration oxidation of the parent organic. After the 

parent organics are consumed by the chemical reaction with the hydroxyl radicals (OH radicals), 

products may subsequently react with OH radicals as well, contributing to a rising level of 

evolving products (Yee et al., 2012). The atmospheric organics can be oxidised and transformed 

in various chemical conditions, such as in the gas phase, at the interface of the gas phase and 

particle phase, and within the bulk of organics or aqueous phase (Kroll et al., 2011). In the gas 

phase, two general types of reaction, functionalisation (the oxidative addition of polar 

functional group to the carbon skeleton) and fragmentation (the oxidative cleavage of C-C bond) 

occur, together with the interplay between these two fundamental classes of reactions (Yee et 

al., 2012; Kroll et al., 2011). The volatility of the products would have a progressive decrease 

when the product becomes more functionalised with oxygen-containing moieties, so that 

increase their propensity to partition to the particle phase (Jimenez et al., 2009; Kroll et al., 

2011). 

 

Long-chain alkanes can play an essential role in the formation of SOA as they are the main 

components of the unresolved complex mixture (UCM) in the fuel associated exhaust (Schauer 

et al., 2002; 1999; Robinson et al., 2007). Jordan et al. (2008) modelled the SOA formation 

from C7-C12 n-alkanes based on the previous laboratory work, suggesting the majority of SOA 

(88-99%) formed from C8-C12 n-alkanes derives from the second- and third-generation 
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compounds while the corresponding percentage for C13-C17 n-alkanes is 69-78%.  SOA 

transformed from alkanes with shorter chains is through the first and higher generation 

oxidation products while SOA oxidised from the alkanes with very long chains is mainly from 

the first-generation products (Lim and Ziemann, 2005; Pye and Pouliot, 2012; Jordan et al., 

2008). Studies observed different distributions of alkane chain length and structures (i.e. 

straight linear chain, branched, cyclic and the combination of branched and cyclic 

conformations) in gasoline and diesel fuel (Isaacman et al., 2012; Gentner et al., 2012). A large 

number of studies pointed out that the various chemical structure leads to the difference in the 

chemical processes of the SOA formation based on laboratory work (Lim and Ziemann, 2005; 

Lim and Ziemann, 2009a; Lim and Ziemann, 2009c; Lim and Ziemann, 2009b; Lipsky and 

Robinson, 2006; Presto et al., 2010; Presto et al., 2009; Lambe et al., 2012; Tkacik et al., 2012) 

and modelling work (Pye and Pouliot, 2012; Aumont et al., 2012; Jordan et al., 2008; Zhang 

and Seinfeld, 2013; Cappa et al., 2013). Chan et al. (2013) modelled the transformations into 

SOA from branched and linear alkanes and pointed out branched alkanes may present a more 

critical role in the oxidation of UCM and the SOA formation based on the consideration of 

gas/particle partitioning, emissions and reaction rates. 

 

Monocyclic aromatics are important species to balance OH sources within the urban air due to 

their rapid reaction with OH radicals. The potential ozone production from aromatic 

hydrocarbons is substantial, and SOA can be generated from the primary and secondary 

oxidation products of aromatics. Toluene is the most studies aromatic species, but all 

monocyclic aromatics are believed to form the potential SOA in the same manner (Hamilton 

and Lewis, 2003). Hamilton and Lewis (2003) discussed the potential contribution of larger 

monoaromatics to the formation of secondary organic aerosol (SOA) by modelling the OH 



19 

 

reaction with polluted urban air, showing the gas-phase oxidation generates both ring retaining 

and ring cleaved products. Chan et al. (2009) discussed the contribution of photooxidation of 

low-volatility organics to SOA formation from different anthropogenic emission sources, 

including diesel exhaust, wood burning and other sources (i.e. gasoline and cooking). Their 

target compounds are PAHs, aromatics and long-chain alkanes, showing that the oxidation from 

aromatics and long chain n-alkanes contribute to a smaller amount of SOA than PAHs, but still 

significant. Similar results from Pye and Pouliot (2012) shows that SOA from the oxidation of 

alkanes and PAHs have small magnitude but still occupied a substantial percentage of SOA 

formed by anthropogenic sources. Alkane classes can contribute to a more significant level of 

SOA formation when the vehicle fleet shifts to the diesel-powered vehicles and result in higher 

emission of long-chain alkanes (>C13)   (Pye and Pouliot, 2012).  

 

1.6  GC×GC-ToF-MS technology  

1.6.1 The advantages of comprehensive gas chromatography technique 

As the most common method, the traditional gas chromatography-mass spectrometry (GC-MS) 

cannot entirely separate and identify the large number of compounds due to the complexity of 

the S/IVOC chemical composition (Schauer et al., 1999; 2002; Jathar et al., 2012; Chan et al., 

2013) and the near-continuous range of physicochemical properties of hydrocarbons in the 

complex mixture (Alam et al., 2018). Comprehensive gas chromatography (GC×GC) enable to 

resolve the UCM into many thousands of individual compound peaks due to an enhanced 

separation capability, producing large amounts of data with rich information. The information 

is often more detailed and scientifically useful than the bulk of hydrocarbon to compare the 

main compositional attributes of samples (Alam et al., 2018). The main advantages of GC×GC 

include a more powerful separation ability, expanded separation space and improved sensitivity. 
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By reviewing a large number of publications, Arsene et al. (2011) concluded that the separation 

power of GC×GC had been considerably improved during last decades. GC×GC technique is 

an ideal application for analysing the components of volatile or semi-volatile compounds in 

various fields of research, such as food and beverages, environmental science, petrochemicals 

and fragrances (Arsene et al., 2011). 

 

A two-dimensional separation approach is separating compounds on two columns based on 

different separation mechanisms. The analytes on the first column are separated mainly 

depending on their vapour pressure as they would be in a traditional single GC. The separation 

on the second column mainly depend only on the polarity of the analytes. The two columns are 

connected in series by a modulator which is applied to trap and release sequential portions of 

the 1st column effluent and injects it into the 2nd column rapidly of different selectivity for 

further separation (Dalluge et al., 2002).  

 

Comprehensive GC×GC technique is able to couple with different detection techniques, such 

as time-of-flight mass spectrometer (TOF-MS), quadrupole mass spectrometers (qMS) and 

flame ionization detector (FID) (Tranchida et al., 2010; Kallio et al., 2006; Welthagen et al., 

2003; Arsene et al., 2011; Dunmore et al., 2015; Laitinen et al., 2010). In this study, two-

dimensional gas chromatography (GC×GC) paired with high-speed mass spectrometry 

(GC×GC–MS) produced a more comprehensive understanding of the composition of the traffic 

emitted S/IVOCs. GC×GC provides the two-dimensional chemical ordering (shown by 

retention times) that is for recognising the individual compounds or compound homologues, 

and mass spectrometry (MS) provides structure information for chemical identification 

(Reichenbach et al., 2005). A flame ionisation detector is used to allow the generic 



21 

 

quantification of any part of the chromatogram based on the retention times, but it is laborious 

to assign the complex comprehensive and set-up-dependent chromatogram objectively (Alam 

et al., 2018).  More details of the two-dimensional separation settings are showed in Section 2.2 

GC×GC-ToF-MS analysis.  

 

1.6.2 General view on the previous gas chromatography studies 

A number of studies have compared the application of conventional GC-MS and the advanced 

comprehensive GC×GC -MS on the study of chemical composition of particles in the ambient 

or roadside air (Arsene et al., 2011; Lewis et al., 2000; Hamilton and Lewis, 2003; Alam et al., 

2018). Alam et al. (2018) reviewed the applications of the traditional single GC and 

comprehensive GC×GC to the studies of volatile and semi-volatile organic compounds in 

airborne particles and emphasised the recent advantages of GC×GC have led to its successful 

application in measuring an extensive range of VOCs and S/IVOCs compared to single GC. 

However, there are much fewer studies worked on atmospheric S/IVOCs by using GC×GC in 

the literature compared with the extensive application of 1D GC to ambient air samples.  Arsene 

et al. (2011) reviewed the analysis of volatile/semi-volatile organic compounds by 

comprehensive GC×GC and reported only few studies worked on atmospheric measurements 

by GC×GC, and the studies mainly focus on the lower molecular weight species (below C13), 

oxygenates, or forest atmospheres.  

 

Lewis et al. (2000) ran the urban air samples and compared the generation from comprehensive 

chromatogram (GC×GC) and the one-dimensional separation. Clear co-eluting was found in 

the first retention time. In many regions of the first column separation, no single compound was 

observed at a sufficient concentration above the baseline what is described as a composite of 
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the elution of many chemical species with low concentrations. Compared with the single-

column separation, the comprehensive separation allows to isolate a greater number of peaks 

and have a broader chemical classification. They believed that comprehensive gas 

chromatography separates and includes a significantly greater number of aromatic species 

compared to single column studies. Similar to the previous study of  Lewis et al. (2000), 

Hamilton and Lewis (2003)  emphasized that the co-elution always occurs in low-volatility 

regions of the conventional single column based technique (such as GC-FID and GC-MS), and 

the vast number of low concentration species can be hidden so that single column method is not 

able to speciate and present all analytes. Blumberg et al. (2008) compared the performance of 

the GC×GC and single GC under control conditions by analysing a text mixture of 131 known 

semi-volatiles. The authors evaluated the peak capacities of both techniques and showed the 

modulator is the crucial factor that limits the separation performance of existing GC×GC. To 

achieve the full potential of GC×GC, they suggested to reduce the injection duration from the 

modulator to the second column by an order of magnitude. Besides, the improvement on the 

resolving power of GC×GC can be achieved through more powerful techniques, such as peak 

deconvolution in both first and second dimensional separations. Laitinen et al. (2010) analysed 

organic compounds in particles with the size of 30–100 nm from wood combustion and reported 

the concentrations of PAHs and n-alkanes. Particles were analysed by aerosol mass 

spectrometry (AMS) and three chromatographic techniques, including comprehensive 

GC×GC-TOF-MS, GC-TOF-MS and GC-qMS. Particle analysis was performed directly from 

the emission sources in the case of AMS, whereas particles were collected by the filter and 

analysed off-line after the extraction processes in the case of chromatographic techniques. They 

evaluated the advantages and disadvantages of the four analytical techniques and concluded 
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that GC×GC-TOF-MS has the best separation efficiency and provides the most reliable 

identification and quantifications.  

 

GC×GC allows a sufficient separation while the TOF-MS system offers mass spectral data for 

identification of all separated compounds. A number of studies have applied GC × GC–MS 

system rather than GC-MS to provide a more comprehensive analysis on the chemical 

composition of ambient air samples (Ochiai et al., 2007; Lewis et al., 2000; Xu et al., 2003b; 

Xu et al., 2003a; Hamilton et al., 2004; Hamilton and Lewis, 2003; Dunmore et al., 2015; Kallio 

et al., 2006). Ochiai et al. (2007) characterised the nanoparticles in the roadside atmosphere and 

worked on the quantitative analysis of selected PAHs by use of GC × GC–MS with a limited 

scan range. Kallio et al. (2006) analysed the air sample collected from the forest by GC×GC–

TOF–MS and compared the manual and automated search in identification procedure and found 

that the manual search is more accurate although it is laborious and time-consuming. An 

automated procedure is preferable when processing a vast number of samples, but manual 

search allows the researcher to use common knowledges when deciding whether there is a 

reasonable match between the target compound and the reference in a library. Kallio et al. (2006) 

also applied the technique GC×GC -FID and showed n-alkanes ranging from C12 to C24 were 

nicely separated from those compounds with more polarity. These n-alkanes were nicely spaced 

on the first retention dimension although this system cannot see structure-related information. 

The target compounds of the samples they reported were selected PAHs and n-alkanes ranging 

from C10 to C30.   

 

Although GC × GC–MS system can provide a more sufficient separation and identification 

compared with the 1D GC-MS system, the data can still be enormously complex as over 
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thousands of peaks can be detected in a typical PM2.5 sample within the urban environment 

(Welthagen et al., 2003). To provide a more overall view on the hydrocarbon homologues, 

GC×GC allows compounds with a similar chemical structure to be grouped based on their 

volatility and polarity (1st and 2nd retention time). Grouping is always seen when there is a large 

number of isomers in a group. Many studies worked on concentrate the chemical groups rather 

than structurally specific identifications (Dunmore et al., 2015). Compounds belonging to the 

same chemical group have similar physicochemical properties, facilitating the classification 

and identification when separate them into groups. Welthagen et al. (2003) applied direct 

thermal desorption–gas chromatography–time-of-flight-mass spectrometry (DTD–GC–TOF-

MS) and comprehensive two-dimensional gas chromatography–time-of-flight mass 

spectrometry (GC×GC–TOF-MS) to analyse S/IVOCs detected in urban aerosol samples. They 

developed search criteria and rules based on the GC×GC retention time and TOF-MS 

fragmentation patterns to identify different chemical groups with bubble plots, facilitating the 

interpretation of more than 15,000 compounds. Several other studies also identified the 

chemical classes with similar physicochemical properties as groups to provide an overall view 

on the chemical composition of S/IVOCs (Dunmore et al., 2015; Alam et al., 2018). 

 

1.7  The aim of this study 

There are still many uncertainties on the composition and behaviour of S/IVOCs in the carbon 

number range above C12, although these compounds are important components of traffic emitted 

particles. Traditional gas chromatography-mass spectrometry (GC-MS) can limit the 

characterisation of chemical compounds and present them as unresolved complex mixture 

(UCM), which plays an important role in the formation of SOA. As a part of the FASTER study 

(Fundamental Studies of the Source, Properties and Environmental Behaviour of Exhaust 
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Nanoparticles from Road Vehicles), this research aims at the composition, emission source and 

behaviour of S/IVOCs emitted from road vehicles. Samples were collected at four locations in 

central London (UK), including the roadside of the heavily trafficked Marylebone Road (MR), 

two rooftop sites (WM and RU) near MR, and an urban background site Eltham (EL) during 

different times from January to April 2017. To achieve a better characterisation on compounds, 

this study collected samples by using solvent extraction (particle phase) and thermal desorption 

(gas phase), and applied thermal desorption coupled to comprehensive gas chromatography 

time-of-flight mass spectrometry (TD-GC×GC-ToF-MS) combined with the mapping and 

grouping methodology to classify, identify and quantify the compounds classes. 

 

This study identifies and quantifies S/IVOCs ranging from C10 to C36 in both the gas phase and 

particle phase, to provide a further understanding of the composition and properties of the 

hydrocarbons from traffic. The main S/IVOC classes identified in this research include C13-C36 

alkanes (n+i) (defined as the sum of n-alkanes and branched alkanes), C12-C25 monocyclic 

alkanes, C13-C27 bicyclic alkanes and C10-C24 monocyclic aromatics. Chapter 1 and Chapter 2 

describes the research background and the details of methodology respectively. Chapter 3 

mainly compares the composition of S/IVOCs and the average concentrations of the main 

chemical classes among sites. Chapter 4 investigates the emission sources and dilution of 

S/IVOCs in the street canyon of MR. Molecular diagnostic parameters of n-alkanes and the 

correlation analysis between S/IVOCs and traffic indicators are applied to distinguish the 

emission source of the collected S/IVOCs. The spatial distribution of S/IVOC concentrations 

and the effect of wind direction on the dispersion of traffic emitted pollutants in the street 

canyon is considered.  Chapter 5 estimates the emission factors (EFs) for n-alkanes and the 

main S/IVOC groups at the roadside site MR, and compares the estimated EFs of n-alkanes 
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with those in published studies. Chapter 6 discusses the partitioning of n-alkanes between the 

gas phase and the particle phase.  Large quantities of gas-phase S/IVOCs contribute to 

secondary pollutant generation following the reaction with OH radicals. The primary OH 

reaction and potential SOA formation from the main chemical groups are considered. Chapter 

7 gives an overall conclusion of this research.  
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Chapter 2 Methodology 

This chapter describes the methods used in the London Campaign 2017, starting with the 

description of the sampling and data collection, proceeding to the settings and experimental 

work on GC×GC-ToF-MS, identification and mapping /grouping of the S/IVOC groups, 

calibration and quantification of S/IVOCs.  

 

2.1  Sampling and data collection 

2.1.1 Sampling locations 

 

Figure 2.1: Map of the study area.  The left-hand panel shows the locations of the University of 

Westminster (WM), Marylebone Road (MR) and Regent’s University (RU) sampling sites 

(WM-MR-RU), while the right-hand panel shows the locations of the WM-MR-RU and Eltham 

(EL) sites on an expanded scale. 

 

Multiple-site measurements were applied in central London (UK) to quantify the changes in the 

composition of S/IVOCs during the advection (horizontal transport) from the traffic to the 

cleaner atmosphere of the park. During the London field campaign 2017, ambient air samples 

in both the gas phase and particle phase were collected by an in-house auto-sampler at WM-
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MR-RU (Figure 2.1 left panel and Figure 2.2) and EL sampling sites (Figure 2.1 right panel) 

from 24 Jan to 18 April 2017. A summary of sampling information is shown in Table 2.1. 

 

Figure 2.2: A schematic diagram shows the locations of WM, MR and RU sampling sites. 

 

University of Westminster (WM) 

Air samples were collected between 24 Jan 2017 and 19 Feb 2017 on a roof of the University 

of Westminster above the heavily trafficked Marylebone Road. The Marylebone Campus of the 

University of Westminster is located on Marylebone Road directly opposite Baker Street 

underground station.  Sampling instruments were sited on the roof of a building (around 26 

metres high) at the south side of the road overlooking the ground level Marylebone Road (MR) 

monitoring station. 

 

Regent’s University (RU) 

Simultaneous measurements were conducted on a roof (around 16 metres high) of Regent’s 

University (RU) from 24 January 2017 to 19 February 2017. Regent's University is located to 

the south of the Inner Circle of Regent’s Park, where a 166-hectares (410 acres) park is lies 

https://en.wikipedia.org/wiki/Baker_Street_tube_station
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within north-west London. The site is located away from local roads and is about 380m north 

of heavily-trafficked Marylebone Road, which is the nearest major highway.   

 

Marylebone road station (MR) 

Samples were collected in a kerbside cabin on the south side of Marylebone Road directly 

below the WM monitoring site from 22 March to 18th April 2017. Marylebone Road is the 

nearest road, which is approximately 1 metre from the station. Marylebone Road has three 

traffic lanes for each direction, and the traffic flow is over 80,000 vehicles per day pass the site 

with frequent congestion. The surrounding buildings are education buildings, shops and tourist 

attraction, and housing, forming a street canyon. The instruments were housed in a large cabin 

placed on the sidewalk of Marylebone Road with an inlet around 2.5 metres above ground level.  

 

Eltham (EL) 

Samples were collected in an urban background site Eltham (EL) from 23 Feb to 21 March 

2017. The monitoring site is located in the south-east of London. The nearest road A210 Bexley 

Road is approximately 25m to the south of the site. There is a small car park next to the 

monitoring station, and the surrounding area consists of lawn, trees, ponds, housing and a 

nearby golf club. 

 

 

 

https://en.wikipedia.org/wiki/South_London
https://en.wikipedia.org/wiki/London
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WM RU EL MR 

Date 24/01/2017-

19/02/ 2017 

23/02/2017-

21/03/2017 

22/03/2017-

18/04/2017 

Number of valid samples* 27 27 19 25 

*The valid samples are the samples used for data analysis. The invalid samples are samples that did not show 

reasonable chromatograms due to the potential contamination during the transport, storage and extraction 

processes.  

Table 2.1: A summary of the sampling information.  

 

2.1.2 S/IVOC sample collection 

 

Figure 2.3: A schematic diagram of the in-house auto-sampler when the instrument is working 

on channel 1. Filter holder contains a PTFE filter inside to collect the particle phase, and an 

adsorption tube behind the filter holder is set to collect the gas phase samples. 
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An in-house auto-sampler was designed to collect 24h duration samples for continually seven 

days (Figure 2.3). The sampler has seven channels and one channel run for 24 hours. It would 

be turned to next channel automatically after 24h. A vacuum pump draws air through a 

polypropylene backed PTFE filter (47mm, 1𝜇m pore, Whatman, Maidstone, UK) to collect the 

particle phase, and then through a stainless-steel thermal adsorption tube packed with 1cm 

quartz wool, 300mg Carbograph 2TD 40/60 (Markes International) to collect the gas phase. A 

flow rate meter is set to control the flow rate, which was set as 1.5 L/min during the field 

measurement. A calibrator (Gilian Gilibrator-2 NIOSH Primary Standard Air Flow Calibrator, 

SENSIDYNE, Schauenburg, German) was applied to measure the flow rate at the inlet to ensure 

the flow rate is consistent with the reading of the flow rate meter.  After 24h duration sampling, 

filters were transferred to pre-cleaned filter cases which are then enclosed with aluminium foil. 

Adsorption tubes were capped properly. Both filter cases and tubes were stored under 

conditions of approximately –18℃ prior to extraction and GC×GC-ToF-MS analysis.  

 

2.1.3 Adsorption tube breakthrough test 

Adsorption tube breakthrough was evaluated with two tubes in series (Figure 2.4). The vacuum 

pump draws air through the particulate filter (PTFE) to stop the particle phase S/IVOCs from 

being collected onto the adsorption tubes, and then through the thermal adsorption tube A and 

B to test the breakthrough issue. The sampling pump is attached to the exhaust end of the back-

up tube. 
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Figure 2.4: Breakthrough test settings. 

 

The breakthrough percentage can be calculated by the equation below,  

Breakthrough percentage (%) = 
𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑛𝑎𝑙𝑦𝑡𝑒𝑠 𝑖𝑛 𝑡𝑢𝑏𝑒 𝐵

𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑛𝑙𝑦𝑡𝑒𝑠 𝑖𝑛 𝑡𝑢𝑏𝑒 𝐴+𝑡𝑢𝑏𝑒 𝐵
                   Equation 2.1 

If target analytes are collected efficiently on adsorption tube A, then only a minor fraction or 

no breakthrough (<10%) would be observed in tube B. On the contrary, if a target analyte is 

presented in adsorption B at >10% of the concentration in adsorption tube A, breakthrough is 

significant. The compounds that experience >10% breakthrough was removed from analysis 

and reporting of data in this study. These compounds and corresponding breakthrough 

percentage include C11 alkanes (21%), C12 alkanes (>10%), C11 monocyclic alkanes (25%), C11 

bicyclic alkanes (15%), C12 bicyclic alkanes (10%), C9 monocyclic aromatics (30%), C8 (65%) 

and C9 aldehydes (45%), tetralin (13%) and methyl tetralin (15%). 

 

2.1.4 Measurement of BC data 

Measurements of the black carbon (BC) content of airborne particles were carried 

simultaneously with the collection of S/IVOC samples at the roof sites WM and RU by using 

aethalometers (2 Wavelength Magee Aethalometer AE22).  The real-time measurement 

measures the mass concentration of BC by measuring the light absorbed by suspended particles 

at two wavelengths, including 370 nm (UV) for measuring the ‘UV components’ of aerosols 

Adsorption tube B Adsorption tube A 
PTFE 

Filter 

Flow 

Pump 
Inlet 
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and 880 nm (IR) for quantitating the BC concentrations. Certain organic compound classes 

(such as aromatics and specific compounds in wood smoke, tobacco smoke and diesel exhaust) 

would present strong UV absorbance at shorter wavelengths below 400nm; therefore, the ‘UV 

components’ of aerosols can be a tracer for fuel/oil emission. A digital keypad with the interface 

is used for calibration and operation. The BC data were stored on a compact flash within the 

instrument so that they can be easily transferred to a computer for further analysis.  

 

2.1.5 Network supporting data 

Department for Environment, Food & Rural Affairs (DEFRA) (https://uk-

air.defra.gov.uk/networks/) is the government department responsible for environmental 

protection in the UK. DEFRA monitors and reports air pollution in the UK by measuring 

pollutants at monitoring stations located all over the UK. The sampling sites MR and EL in this 

study were located in or next to the Marylebone Road and Eltham monitoring stations of 

DEFRA. DEFRA Automatic Hydrocarbon Network (https://uk-

air.defra.gov.uk/networks/network-info?view=hc) measures hydrocarbon data by automatic 

instruments named as Perkin Elmer gas chromatographs. Hourly concentrations of at least 29 

VOCs were measured, including n-alkanes ranging from C2-C8 and benzene at Marylebone 

Road and Eltham. DEFRA black carbon network (https://uk-

air.defra.gov.uk/networks/network-info?view=ukbsn) measures black carbon by Magee 

Aethalometer (AE22) at Marylebone Road. DEFRA Automatic London Network (https://uk-

air.defra.gov.uk/networks/network-info?view=aln) measures NOx in 14 London sites, 

including Marylebone Road and Eltham. The hourly pollutant concentrations provided by 

DEFRA network were averaged as 24h duration to keep consistent with this study. DEFRA 

https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs
https://uk-air.defra.gov.uk/networks/
https://uk-air.defra.gov.uk/networks/
https://en.wikipedia.org/wiki/United_Kingdom_government_department
https://en.wikipedia.org/wiki/Environmental_quality
https://uk-air.defra.gov.uk/networks/network-info?view=hc
https://uk-air.defra.gov.uk/networks/network-info?view=hc
https://uk-air.defra.gov.uk/networks/network-info?view=ukbsn
https://uk-air.defra.gov.uk/networks/network-info?view=ukbsn
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North Kensington (NK) monitoring site is an urban background site in London, and the data 

(i.e. NOx) from NK were used to represent the urban background level of London.  

 

London Heathrow airport, located west of central London, is the closest station to provide 

comprehensive meteorological information for the sampling sites above the roof. The Heathrow 

site is within 25 km of the London sampling sites.  Using data from UK sites, Manning et al. 

(2000) showed that wind data from airfield sites are representative of wind fields up to 40 km 

from the site.  The Heathrow data represent winds above the street canyon; those within the 

canyon are very different. Harrison et al. (2019) showed diagrammatically the circulations 

within the Marylebone Road canyon (Figure 4.4).  Daily mean wind direction data from London 

Heathrow airport monitoring station (Met Office, 2006) were used to sort the 24h duration 

S/IVOC samples into the north wind (N), south wind (S) and undefined wind (Duffy and Nelson, 

1996) based on the predominant direction during each sampling interval. As shown in Figure 

2.5, the wind angles 300-360° and 0-60° are defined as a north wind while wind angles 120-

240º are defined as a south wind in this study. Marylebone Road is a relatively straight road 

with the direction of west-east. North wind and south wind are both cross-canyon flows, whilst 

an undefined wind (Duffy and Nelson, 1996) represents the along-street flows, including wind 

angles 60−120° (east wind) and 240-300° (west wind). The uncertainty of this method is  

negligible by comparing the wind directions sorted based on west-east axis and Marylebone 

Road which is around 15° to the west-east axis (Figure 2.1). Temperature information during 

the London Campaign 2017 was also taken from Heathrow airport station (Met Office, 2006) 

to represent the temperature at the sampling sites. The temperature in Heathrow is slighter lower 

than central London (average 1-2℃) due to the influence of urban heat island. The percentage 
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differences in temperature are very small and hence insignificant as the temperature is 

eventually expressed in Kelvin.  

 

 

Figure 2.5: Wind direction.  It shows the angles of north wind (N), south wind (S) and undefined 

wind (UF). 

 

2.2  GC×GC-ToF-MS analysis  

2.2.1 Comprehensive GC×GC 

The most common separation and quantification method is gas chromatography equipped with 

mass spectrometry detection. Conventional gas chromatography is unable to separate and 

characterise complex chemical components adequately, presenting an unresolved complex 

mixture (UCM) within the chromatogram. A two-dimensional separation approach separating 

compounds in a mixture by volatility and polarity was adopted. Figure 2.6 shows the separation 

mechanisms used in single-dimensional GC and comprehensive GC×GC analysis. During the 

first separation of comprehensive GC×GC analysis, chemicals are separated based on their 

volatility in the first column and then be retained in a cryogenic modulator, which essentially 

works like a cold trap. The modulator is switched off after the trapping of each fraction and 

release the retained compounds to inject them rapidly into the second column. The second 
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column is much shorter and narrower than the first column, result in a much more rapid 

separation according to their polarity (Dalluge et al., 2002). The raw GC×GC chromatograms 

can be transformed to generate two-dimensional (2D) chromatograms. The axes of 2D 

chromatograms represent the retention time of the first-dimensional column and the second-

dimensional column respectively. One convenient interpretation way is to view the contour 

plots where the colours and shading of the peaks represent the intensity of the signal.  Peaks or 

plots are located and identified by their coordinate (first and second retention time) in the 

contour plots.  

 

Figure 2.6: Schematic diagram shows the separation processes in single-dimensional GC and 

comprehensive GC (LECO, 2019). 
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2.2.2 GC×GC-ToF-MS setting 

Analyses were conducted using thermal desorption (Unity 2, Markes International, Llantrisant, 

UK) coupled to an Agilent 7890B gas chromatograph (Agilent Technologies, Wilmington, DE, 

U.S.A.) equipped with a Zoex ZX2 cryogenic modulator (Houston, TX, U.S.A.). The first 

dimension was equipped with a nonpolar capillary SGE BPX5 column (30m, 0.25mm ID, 

0.25 μm -5% phenyl polysilphenylene-siloxane). The second-dimension column was SGE 

BPX50 (4m, 0.1mm ID, 0.1 μm-50% phenyl polysilphenylene-siloxane) (Alam et al., 2016b). 

The comprehensive GC was coupled with a BenchToF-Select-time-of-flight mass spectrometer 

(Markes International, Llantrisant, UK) operated with traditional electron impact ionisation at 

70 ev. The scan speed was 50 Hz with a mass resolution of >1200 full 

width at half maximum (fwhm). The GC sensitivity derived from the injection of 1pg 

octafluoronaphthalene (m/z =272), showing an S/N (signal to noise) ratio of >2000:1 rms (Alam 

et al., 2016a). A modulation time of 11s was applied while a total run time for each sample was 

120min. Subsequent data processing was conducted using GC Image_ v2.6 (Zoex Corporation).  

 

2.2.3 Extraction of samples 

The internal standard (IS) mixture contains nine deuterated standards namely, dodecane-d26, 

pentadecane-d32, eicosane-d42, pentacosane-d52, triacontane-d62, biphenyl-d10, n-

butylbenzene-d14, n-nonylbenzene-2, 3, 4, 5, 6-d5 (Chiron AS, Norway) and p-terphenyl-d14 

(Sigma Aldrich, UK). The internal standard mixture was used in the extraction process for 

further identification and quantification.  
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Gas-phase sample analysis 

Adsorption tubes were desorbed using thermal desorption. The tubes were spiked with 1ng of 

deuterated internal standard for qualification. Then tubes desorbed onto the cold trap at 350℃ 

for 15 min (trap held at 20℃), and then trap released chemicals into the column with a split 

ratio of 100:1 (split ratio changed based on sampling sites) at 350℃ for 4 min. The primary 

oven was held at the initial temperature 90℃ for 2 min and then had an increase of 2℃/min to 

240℃, followed by an increase of 3℃/min to 310 ℃ and held for 5 min. The secondary oven 

was held at the initial temperature (40℃) for 2 min and then had an increase of 3℃/min to 

250℃, followed by an increase of 1.5℃/min to 315℃ and held for 5 min. Helium was used as 

carrier gas at a constant flow rate of 1 ml/min (Alam et al., 2016b). 

 

Particle-phase sample analysis 

Whole FTFE filters were spiked with 5 𝜇l internal standards (1ng/µL). Filters were extracted 

with dichloromethane (HPLC grade), using ultrasonic agitation at room temperature 20 ℃ for 

20 mins.  The filtrate was concentrated using a stream of dry nitrogen gas, to a volume of 

approximately 50 𝜇l.  1𝜇L of the extracted sample was injected with a split ratio of 100:1 (split 

ratio changed based on sampling sites) at 300℃. The primary oven was held at the initial 

temperature (120 ℃) for 2 min. Temperature increased to 210℃ by 2℃ per min, and then 

increased to 325 ℃ by 1.5 ℃ per min. The initial temperature of the secondary oven was the 

same as the primary oven (120℃) but increased at 3℃ per min to 200℃, followed by 2 ℃ per 

min to 300 ℃ and a final increase of 1 ℃ per min to 330 ℃ to ensure all species passed through 

the column. The transfer line temperature and the ion source temperature were 330 ℃ and 

280℃ respectively. Carrier gas was Helium at a constant flow rate of 1 mL per min (Alam et 
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al., 2016b). Blank filters were prepared, processed, and analysed in the same manner as the real 

particle phase samples to mitigate the analytical bias and precision.  

 

2.2.4 Identification of the individual compounds 

Comprehensive gas chromatography (GC×GC) equipped with high-speed mass spectrometry 

provides rich information for identifying the chemical composition of a sample. GC×GC is a 

powerful technology to separate the chemicals by retention times that is useful for identifying 

the individual compounds and grouping compounds. A 3D view of the peaks separated by 

GC×GC in a typical particle-phase London atmospheric sample is shown as Figure 2.7. 

However, GC×GC does not provide structural information on chemical identification, and one 

of the greatest challenges is to identify a large number of constituents. Mass spectrometry 

provides masses of the ionised molecule and its fragment. There are several approaches for the 

chemical identification with GC×GC-ToF-MS, including library search, pattern matching, and 

rule-based system (Reichenbach et al., 2005). In library research, sample data are compared 

with the reference data in NIST (National Institute of Standards and Technology) mass spectral 

library associated with chemical structure information. In pattern match, data are compared 

with the pattern of previously observed data to help build the GC×GC retention time templates. 

Rules-based system expresses the reasons and/or criteria for chemical identification (More 

details of the rules-based system are shown in Section 2.2.5).  

 

Two match factors are typically used to estimate the similarities between the library records 

and measured mass spectra, including match factor (Chirico et al.) and reverse match factor 

(RMF). MF illustrates how well the entire mass spectrum of the selected peak in chromatogram 

matches the library equivalent, and MF values for positive identification are above 750. RMF 
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describes how well the mass measured for the selected peak matches the explicit mass present 

in the library equivalent, and RMF values for positive identification are above 800 (Dalluge et 

al., 2002; Özel et al., 2010; Alam et al., 2013).  

 

 

Figure 2.7: A three-dimensional image view of a typical particle-phase atmospheric sample in 

London produced by GC Image™ software. The white line behind the chromatogram shows 

the corresponding 1D chromatography.  

 

Although an automated procedure is preferred as there were a large number of data files need 

to be processed but misidentification may sometimes occur (i.e. when the spectrum of the target 

compound was not present in the NIST library or the main fragments of two compounds are 

similar) (Kallio et al., 2006). Manual identification can be more accurate as it allows the 

researcher to elevate the intensities of the fragments in spectra and the match with the library. 

The individual compounds identified in this study mainly include n-alkanes, alkyl-cyclohexane 

and several PAHs. These individual compounds were identified in one sample and saved as a 

template after manually checked carefully. The automated search was applied to all samples for 
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saving time and template gave an overview of compounds position on the chromatogram. After 

that, the individual compounds were manually checked to avoid misidentification.   

 

2.2.5 Grouping of unresolved complex mixture 

Recently studies have reported the diesel derived organic compounds are predominantly found 

from C13-C20, is part of an unresolved complex mixture (UCM) (Dunmore et al., 2015; Alam et 

al., 2016b). The number of possible structural isomers increases with the increase of carbon 

atom (Goldstein and Galbally, 2007), and beyond around C9 it is a challenge to identify the 

structure of all compounds present in the ambient air (Dunmore et al., 2015). A substantial 

number of compounds are not able to be identified due to the insufficient data available in the 

mass spectral library. Compounds did not match with NIST library were further investigated 

and isomer sets were positively identified based on their retention time. It is possible to assign 

individual compounds to particular chemical classes and functionalities based on their retention 

behaviour in comprehensive chromatography. The physicochemical similarities of isomers 

within the same compound class and their constant changes with the increasing carbon number 

and molecular sizes enable the further identification of the ordered appearance of compounds 

in the chromatogram. It allows the identification of species based on both of the unique mass 

spectral and the pattern of the database. This study grouped the chemical compounds into 

isomer sets based on their carbon number and functional group (Figure 2.8). Compounds within 

the same chemical group in a mixture have similar physicochemical properties, facilitating the 

identification as they were separated based on the physical and chemical properties.  

 

Linear n-alkanes were identified as having a well-defined m/z 57 fragment ion and molecular 

ions. The area between two consecutive linear alkanes (usually carbon number ± 1) was 
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integrated to give an estimate of the total alkanes (linear and branched alkanes) within this 

volatility range with a specific carbon number. The graphics of monocyclic alkanes were built 

based on the same theory for alkanes. Alkyl-cyclohexanes were identified based on the well-

defined m/z 83 peak and their molecular weight. The area between two consecutive alkyl-

cyclohexanes was integrated to estimate the total monocyclic alkanes with that carbon number. 

The boundaries are shown on a contour plot (chromatogram) in Figure 2.8, where for example, 

the least polar homologues are alkanes, increasing in carbon number with the increase in the 

first retention time. For instance, C12 alkane group comprises of n-alkanes and branched alkanes 

with 12 carbon atoms. The retention behaviour facilitates to locate more homologous series 

with higher polarity on the chromatogram, such as aromatics. GC×GC has clear advantages 

over the tradition 1D case. The considerable peaks with a higher second dimension retention 

time (polarity) in Figure 2.8 that would co-elute with the aliphatic groups if the retention 

window is co-sampled (Dunmore et al., 2015).  
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Figure 2.8: Typical GC×GC-ToF-MS chromatogram of a particle-phase air sample. It 

demonstrates the grouping of compounds within a sample collected on the roof of the University 

of Westminster (WM) in Feb 2017. X and y-axis are the retention time on the first and second 

column respectively, with the intensity of the compounds shown by the coloured contours. 

Colder colours (i.e. blue) are less intense than the warmer colours (i.e. red). Each coloured spot 

represents an individual compound and has the corresponding full mass spectrum. (A) A 

contour plot (chromatogram) displays C12-C36 alkanes, C11-C25 monocyclic alkanes, C11-C27 

bicyclic alkanes, C9-C24 monocyclic aromatics, C8-C9 benzaldehydes, C11-C16 naphthalenes, 

C13-C15 biphenyls, C15-C16 phenanthrenes/anthracenes, C14-C15 fluorenes and C11-C13 tetralins. 

Each region fenced by a coloured polygon marks out the grouped isomers of a chemical 

(A) 

(B) 
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homologue with a particular carbon number. (B) A zoomed-in contour plot displays the carbon 

number distribution of grouped alkanes (blue), monocyclic alkanes (pink), bicyclic alkanes 

(black) and monocyclic aromatics (red). 

 

A significant problem in mapping the boundaries for each group is the overlapping of one 

carbon number group into the left-right adjacent group in one homologue (i.e. carbon number 

±1) and the overlapping of two up-down adjacent homologues (i.e. monocyclic alkanes and 

bicyclic alkanes). Reichenbach et al. (2005) developed a language called the Computer 

Language for Identifying Chemicals (CLIC) for chemicals identification with comprehensive 

two-dimensional gas chromatography and mass spectrometry. CLIC allows expressions that 

describe rules and constraint on multiple retention times and mass fragmentation patterns 

(Reichenbach et al., 2005). CLIC expression was applied in this study to allow for a more 

stringent grouping of the isomer sets depending on their functional properties and mass 

spectrometric factors rather than retention behaviour only. This method identified each 

individual compound belonging to the appropriate compound class. The polygon selection tool 

within the GC Image software allows to only involve the compounds that meet the specific 

rules set for the polygon (Alam et al., 2018). Any peaks within the overlap area were forced to 

belong to the supposed compound class over another via a strict selection of mass fragmentation 

and molecular ion. An example of CLIC expression used for identifying C10-substituted 

monocyclic aromatics is shown as Figure 2.9. In this study, the rules that CLIC expression set 

for the polygons of alkanes, monocyclic alkanes, bicyclic alkanes and monocyclic aromatics 

mainly depended on their retention times and molecular ions. The CLIC expression used for 

tetralin, biphenyls, fluorene and phenanthrene/anthracene was more complex, and examples 

were illustrated in the Appendix B CLIC expression. 
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Previous FASTER work has investigated the same isomer sets within the diesel fuel, lubricating 

oil and diesel emissions (gas phase and particle phase separately) by the same analysis 

techniques (Alam et al., 2018). The previous study employed the mass spectrometry not only 

with traditional ionization energy (70 ev) to compare the mass spectral patterns with libraries, 

but also with a lower ionization energy (10–14 eV) to explore the compounds with less 

fragmentation, hence retaining a larger fraction of the molecular ion and thus a better identify 

on the molecule (Alam et al., 2016a; Alam et al., 2018). The comparison between the mass 

spectra patterns resulted by 14 and 70 ev ionization benefited the identification of unknown 

species in diesel emissions and provided a reference of the identical retention times for a given 

species for this study. The polygon boundaries were established independently on the diesel 

fuel/emission chromatograms (Alam et al., 2018) and air chromatograms (this study) to ensure 

the applicability and reproducibility of mapping based on the identical retention times and 

interpretative mass spectrum in different samples or different runs. All the polygons can be 

linked to internal standards and saved as a comprehensive template in the GC Image software 

(Figure 2.8). Although retention times for both chromatographic dimensions might be different 

in separate runs due to the column changes or GC×GC maintenance, the overall template can 

be easily aligned in the event of slight shifts in the retention times (Alam et al., 2018).  

 

GC×GC-ToF-MS analysis identifies 90 S/IVOC groups in atmospheric samples, including 25 

alkanes, 15 monocyclic alkanes, 17 bicyclic alkanes, 16 monocyclic aromatics, 2 benzaldehydes, 

5 naphthalenes, 3 biphenyls, 2 phenanthrenes/anthracenes, 2 fluorenes and 3 tetralins. Only the 

compounds within the coloured polygon were integrated, and these compounds accounted for 

approximately 78% of the total ion current of the chromatogram.  



46 

 

 

Figure 2.9: A contour plot displays C10-substituted monocyclic aromatics identified by the 

CLIC expression. All C10-substituted monocyclic aromatics are located within the marked red 

polygon displayed.  

 

2.2.6 Calibrate the quantification of compounds 

The relationship between the amount of target compound and the corresponding 

chromatographic response must be established before the quantitative analysis in GC×GC 

system. Natural standards were chosen for calibration and quantification, including n-alkanes 

(C11-C36), phytane and pristane  (Sigma Aldrich, UK), n-alkyl-cyclohexanes (C11 -C25), n-

alkylbenzenes (C10, C12, C14, C16 and C18), tetralin, alkyl-tetralins (methyl-, di-, tri- and tetra-), 

cris- and trans-decalin, alkyl-naphthalenes ( C11, C12, C13 and C16) (Chrion AS, Norway) and 

13 polycyclic aromatic hydrocarbons (Thames Restek UK Ltd). The term natural standard 

refers to the 1H isotope of the target compound, in order to distinguish from the deuterated 

isotope (2D) of the internal standard. The authentic standard mixture (72 natural standards and 

9 internal standards) was expected to cover as much of the whole chromatogram as possible 

and can be applied to calibrate the quantification of target compounds. Briefly, a known amount 

of authentic standard was injected into the GC×GC -MS system to determine the corresponding 
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response. A full 5-point calibration was conducted to establish the calibration curve between 

the amount and chromatographic response of each natural standard.  

 

The relative response factor (RRF) of the target compound can be calculated based on the 

following equation,  

RRF=
𝐴𝑁𝐴𝑇

𝐴𝐼𝑆
×

𝐶𝐼𝑆

𝐶𝑁𝐴𝑇
                                            Equation  2.2 

where 𝐴𝑁𝐴𝑇 and 𝐴𝐼𝑆 are the peak area of natural standard and internal standard respectively 

while 𝐶𝑁𝐴𝑇 and 𝐶𝐼𝑆 are the concentrations of natural standard and internal standard respectively. 

Ideally, the standard deviation of the RRF for a target compound in 5-point calibration should 

not exceed 10%. The RRF values were used for calculating the concentrations of target 

compounds later.  

 

2.2.7 Quantification of individual and grouped compounds 

Individual compounds were quantified based on the ratio of the chromatographic response and 

amount of the corresponding natural standards with the same carbon number and functionality. 

The concentration of target compounds can be calculated based on the equation below, 

Concentration= 
𝐴𝑁𝐴𝑇

𝐴𝐼𝑆
×

1

𝑅𝑅𝐹
×

𝑀𝐼𝑆

𝑆𝑆
                                                 Equation 2.3 

where 𝐴𝑁𝐴𝑇 and 𝐴𝐼𝑆 are the peak area of natural standard and internal standard respectively; 

RRF is the relative response factor of target the compound (see Equation 2.2); 𝑀𝐼𝑆 is the mass 

of internal standard and SS is the sample size (m3). 
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Groups of isomers were quantified by applying the corresponding individual compounds with 

the same carbon number and functionality as surrogates. For instance, the response for C13 n-

alkanes (n-tridecane, m/z 184) was used to quantify all isomers identified within the C13 alkane 

polygon. As discussed in section 2.2.5, C13 alkane polygon only counts those C13 isomers (m/z 

184) selected by CLIC expression (based on retention times and mass spectra). The integrated 

ion current within a single polygon was estimated by using the response ratio of the closest 

internal standard on chromatogram to the corresponding natural standard with the same carbon 

number and functionality. The quantification of isomer sets has been discussed in Alam et al., 

(2018), and they reported the overall uncertainties of this method as 24% by comparing the 

difference between the concentrations estimated with the authentic standards and generic 

standards. 
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Chapter 3 Measured S/IVOCs in the London campaign 2017  

This chapter gives a view on the grouped chemical compounds observed in the London 

Campaign 2017 by showing the S/IVOC chemical composition at four sampling sites. Also, it 

shows the carbon number distribution of alkanes (n+i), monocyclic alkanes, bicyclic alkanes, 

monocyclic aromatics and polycyclic aromatic hydrocarbons (PAHs) in the gas phase and 

particle phase. 

 

3.1  Introduction 

Aerosol particles are the unhealthiest components of air pollution and their health effects 

depend on their size and components (Rissler et al., 2012; Masiol et al., 2012). Vehicles are 

important emission sources in the urban environment, especially diesel-powered vehicles.  The 

vehicle fleets shift to the diesel-powered vehicles in the UK in recent years, and 50% of the 

vehicles are diesel-powered in 2014 (Alam et al., 2016b; SMMT, 2015; ExxonMobil, 2014). 

The majority of traffic emitted fine particles are carbonaceous, directly emitted as primary 

organic aerosol (POA) or formed as secondary organic aerosol (SOA) (Jimenez et al., 2009). A 

substantial fraction of the POA from traffic emission is semi-volatile (May et al., 2013; 

Robinson et al., 2007).  The traffic emitted S/IVOCs are mainly comprised of aliphatic species 

with a carbon number from C12 to C35 (Alam et al., 2018). The majority of the gasoline emitted 

hydrocarbons are VOCs (Gentner et al., 2012) while gasoline emitted S/IVOCs mainly have 

volatility similar to C12-C14 n-alkanes and comprise of aliphatic species, aromatics and a large 

fraction of unspeciated unresolved complex mixture (UCM) (Drozd et al., 2019; Zhao et al., 

2016). Only 30% of diesel emitted hydrocarbons are VOCs while most of them are S/IVOCs 

(Gentner et al., 2012).  Jacobson et al. (2005) reported the diesel exhaust contains primarily 

unburned fuel (C15-C23 organics), unburned lubricating oil (C15-C36 organics) and sulfate. A 
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more recent study investigated the separation of engine oil and diesel fuel by GC×GC-ToF-MS 

and concluded that the diesel fuel contains hydrocarbons up to C20 while engine lubricating oil 

forms UCM at C18 to C36 (Alam et al., 2016b). It is essential to identify the constituents in 

diesel fuel and engine oil as both of them derive from engine exhaust emission.  

 

Detailed knowledge of the S/IVOC chemical composition has been limited by the traditional 

analytical technique gas chromatographic methods, which are unable to separate and 

characterise complex mixture adequately. The mixture of cyclic, branched and unsaturated 

hydrocarbons are usually regarded as a part of the unresolved complex mixture (UCM) 

(Mandalakis et al., 2002). The homologous series that have been studied only represent a small 

fraction of the total concentrations of S/IVOCs that emit from traffic, leading to the lack of 

information on their chemical composition and the underestimation of the harmful effects of 

S/IVOCs on human health.  

 

In this study, samples were collected at four sites in central London, and a comprehensive gas 

chromatography coupled with time-of-flight mass spectrometry (GC×GC-ToF-MS) provided 

identification and quantification for the compound classes. This study identified and quantified 

S/IVOCs from C10 to C36 to offer a more comprehensive understanding of the chemical 

composition of S/IVOCs, and particularly to investigate the impact of diesel exhaust emission 

on urban air. The differences of S/IVOC composition in four sampling sites were compared, 

and the concentrations of five main S/IVOC groups were presented and discussed in this chapter, 

including alkanes (n+i) (defined as a sum of linear n-alkanes and branched alkanes), monocyclic 

alkanes, bicyclic alkanes, monocyclic aromatics and PAHs. The S/IVOC composition identified 

in the London Campaign 2017 was compared with those reported for diesel fuel exhaust. 
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3.2  S/IVOC chemical composition  

The identified and quantified chemical groups were C13-C36 alkanes (n+i), C12-C25 monocyclic 

alkanes, C13-C27 bicyclic alkanes, C10-C24 monocyclic aromatics, C11-C16 naphthalenes, C12-C13 

tetralins and other species, including C13-C15 biphenyls, C14-C15 fluorenes, C15-C16 

phenanthrenes/anthracenes (PHE/ANT).  Figure 3.1 shows bar charts and stacked area graphs 

comparing the organic compound composition, expressed as the relative abundance in total 

mass concentrations (sum of gas and particle phase) collected at the four sampling sites. 

Samples were collected on the roof of University of Westminster (WM) above Marylebone 

Road and a roof of Regent’s University (RU) located in Regent’s Park simultaneously from 24 

Jan to 19 Feb 2017. Acyclic alkanes (n+i) were the most abundant hydrocarbons (52% at WM 

and 57% at RU) followed by monocyclic alkanes (19% at WM and 17% at RU) and monocyclic 

aromatics (16% at WM and 16% at RU). Samples were collected at the urban background site 

Eltham from 23 Feb to 21 March 2017, and after that MR sampling was run from 22 March to 

18th April 2017. The chemical composition at EL followed a similar pattern with WM and RU 

as alkanes (n+i) contributed to 48% of total compounds while monocyclic alkanes occupied the 

second largest percentage (23%).  At MR, alkanes (n+i) were still dominant but dropped to 36% 

as there were more significant contributions from monocyclic alkanes (24%), bicyclic alkanes 

(15%) and monocyclic aromatics (18%).  Average concentrations of grouped compounds 

appear in Table S1, and of specific individual compounds in Table S2. 

 

The concentrations of total hydrocarbons collected at four sites were higher in the gas phase 

(WM 463 ng/m3, RU 294 ng/m3, MR 1743 ng/m3 and EL 837 ng/m3) than in the particle phase 

(WM  341 ng/m3, RU 293 ng/m3, MR 705 ng/m3 and EL 548 ng/m3). Expectedly S/IVOC 

concentrations at MR were the highest of all sites as it is a heavily trafficked site. The 



52 

 

concentrations of hydrocarbons at the urban background EL were found to be higher than the 

two roof sites WM and RU, and concentrations at roof site WM were higher than RU.  Figure 

3.1 shows two major peaks at C11  to C20  and at C21 to C28 consistently presented at four 

sampling sites, similar to the carbon distribution of S/IVOCs observed in diesel exhaust (Alam 

et al., 2016b; Alam et al., 2018), implying these two peaks may derive from diesel fuel and 

engine oil respectively.  

 

Few published studies have reported the S/IVOC composition of diesel fuel (mainly below C20) 

(Isaacman et al., 2012; Welthagen et al., 2007; Gentner et al., 2012; Alam et al., 2018). Gentner 

et al. (2012) reported the mass distribution of hydrocarbons ranging from C8 to C25 in diesel 

fuel, demonstrating a sharp peak at around C10 to C13 and a broader peak at around C16-C20. 

These peaks were attributed to cycloalkanes and aromatics as alkanes were distributed relatively 

evenly between C10 and C20, which is in broad agreement with the carbon distribution in this 

study (Figure 3.1). Isaacman et al. (2012) reported that the diesel fuel composition in the carbon 

number range of C15-C25 consisted of 73% aliphatic and 27% aromatics. More specifically, 

alkanes occupied nearly half (41%) of the observed mass fraction of diesel fuel, followed by 

14% cycloalkanes, 11% bicyclic alkanes and 6% benzenes (Isaacman et al., 2012). These results 

are broadly consistent with the result of Alam et al. (2018), who reported that the diesel fuel 

which they analysed comprised 62% alkanes (n+i), 14% monocyclic alkanes, 5% bicyclic 

alkanes, and 5% benzenes.  

 

SVOCs emitted from gasoline- and diesel-powered engines (above C20) are mainly from engine 

oil (Drozd et al., 2019; Alam et al., 2016b).  Studies worked on the chemical composition of 

engine lubricating oil reported that the most abundant groups were straight, branched and cyclic 
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alkanes (≥80%) and the most substantial contribution was from cycloalkanes (≥27%) (Worton 

et al., 2014; Sakurai et al., 2003). Sakurai et al. (2003) claimed the organic compounds ranging 

from C24 to C32 within the diesel exhaust almost entirely came from unburned oil. Worton et al. 

(2014) reported that the observed chemical composition of vehicle POA (C22-C32) collected in 

a tunnel was similar to fresh lubricating oil. Liang et al. (2018), also using a GC × GC-ToF-MS 

method analysed three motor oils, a mineral oil and a base oil.  The motor engine oils (two 

5W30 synthetics and one 5W30 semi-synthetic) comprised 5-8% n-alkanes, 24-35% branched 

alkanes and 30-41% cyclic alkanes with a carbon number distribution peaking at C24-C26.  Use 

of the oils in an engine for up to six months caused a reduction in the overall hydrocarbon 

content, but little change in the overall distribution of compounds by carbon number (Liang et 

al., 2018). The chemical composition of diesel fuel and lubricating oil in the literature well 

explains the overwhelming presence of acyclic alkanes and cyclic alkanes in the urban air 

samples. The similarities found in the aliphatic and aromatic region above C12 in urban air and 

diesel exhaust demonstrate the impact of diesel-powered vehicles on urban air quality. 
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Figure 3.1: The S/IVOC composition (sum of gas and particle phase) identified at WM, RU, 

MR and EL, London Campaign 2017. 
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3.3  Alkanes (n+i) 

Figure 3.2: Concentrations of alkanes (n+i) in the gas phase and particle phase at WM, RU, 

MR and EL, London Campaign 2017.  
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Many studies have worked on alkanes as they are especially suited for investigating the origin 

and fate of atmospheric aerosols. Alkane constituents are usually the dominant organic 

components of the atmospheric particles (Alves, 2008). Alkanes can derive from biogenic and 

anthropogenic sources and can be differentiated based on their carbon preference. Biogenic 

sources include particles shed from the epicuticular waxes of plants, suspended pollen, 

microorganisms and insects. Anthropogenic sources include the combustion of fossil fuels, 

agricultural debris and wood (Rogge et al., 1993d). Thus, alkanes present in all aerosols, 

including urban, rural area and maritime samples. The abundant presence in aerosols, relatively 

low reactivity and low volatility make alkanes suitable as monitoring tracers for investigating 

the origin and transport of particles under the ambient atmospheric conditions (Omar et al., 

2007). Alkane classes (acyclic and cyclic) are abundant in gasoline, diesel fuel and lubricating 

oil; therefore, alkane classes (acyclic and cyclic) are identified as major components of vehicle 

emitted exhaust (He et al., 2008; Alam et al., 2018). 

 

Alkane (n+i) homologues including linear n-alkanes and branched alkanes were grouped 

depending on their carbon number. Alkanes (n+i) from C13  to C31 were detected in the gas 

phase and C13 to C36 were detected in the particle phase (Figure 3.2). The low molecular weight 

C13 to C18 alkanes were the most abundant homologues in the gas phase, while the homologues 

above C20 were the most abundant in the particle phase. Incomplete combustion of diesel fuel 

and engine lubricating oil emit alkanes in the range of C5-C34 (Omar et al., 2007). Under the 

ambient atmosphere, plant wax is the other major contributor to high molecular weight alkanes 

ranging from C25 to C37. In this case, odd carbon numbers are predominant and Cmax is in the 

range from C25-C33 depending on the plant species and locations (Omar et al., 2007). Carbon 

preference index (CPI) and Cmax of n-alkanes are discussed in Section 4.2. 
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Alam et al. (2018) compared the chemical composition of S/IVOCs identified in diesel fuel, 

lubricating oil and diesel exhaust (both gas phase and particle phase) by using the same 

techniques as in this study, suggesting the majority of S/IVOCs identified in the diesel gas-

phase exhaust were consistent with the diesel fuel but showed significantly difference in their 

relative concentrations. Alkanes (n+i) were the most abundant class in the diesel gas-phase 

exhaust (around 40%) but lower than that for diesel fuel probably due to their preferred 

combustion. Bearing in mind the substantial vapour contribution to compounds of  ≤C19, the 

distribution of the acyclic and cyclic alkane classes (Figure 3.2, Figure 3.3 and Figure 3.5) is 

very similar to that reported for gas-phase diesel exhaust measured by Alam et al. (2018). The 

most abundant concentrations of particle-phase alkane classes (acyclic and cyclic) were 

observed at around C21-C27, consistent with lubricating oil and the particle-phase diesel exhaust. 

Chan et al. (2013) analysed the particle-phase C20-C25 acyclic (linear and branched) alkanes in 

the urban atmosphere of California and reported a peak at C23, which is similar to the distribution 

of the particle-phase alkanes in this study. 

 

In the ambient atmosphere, diesel-related hydrocarbon emissions are overwhelming in the gas 

phase (Dunmore et al., 2015), consistent with the laboratory and tailpipe studies (Gordon et al., 

2013). For the roof sites WM and RU, lighter alkanes (Cn ≤ C20) that may derive from diesel 

fuel combustion made the greatest contribution to the concentrations of the gas-phase alkanes 

(around 82%). For the roadside site MR, shorter-chain alkanes (Cn ≤ C20) occupied a larger 

fraction of gas-phase alkanes (90%). In contrast to the great contribution to the roadside 

emission, only 69% of the total gas-phase alkanes at the urban background site EL have carbon 

atoms of ≤ C20, indicating the responsibility of other emission sources to the heavier alkanes 

and/or the possibility that chemical reactions have comsumed the reactive gas-phase alkanes in 
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the urban background. In the particle phase, the contribution from alkanes (Cn ≤ C20) that may 

derive from diesel fuel combustion was significantly lesser (20% for WM, 22% for RU, 17% 

for MR and 20% for EL) whilst a greater percentage of alkanes were high molecular weight 

homologues that may derive from engine oil or plant wax.  
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3.4  Monocyclic alkanes and bicyclic alkanes 

Figure 3.3: Concentrations of monocyclic alkanes in the gas phase and particle phase at WM, 

RU, MR and EL, London Campaign 2017.  
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Figure 3.4: Chemical structure of typical monocyclic alkanes observed in this study. From left 

to right, the monocyclic alkanes are alkyl-cyclopentane, alkyl-cyclohexane and alkyl-

cycloheptane (include isomers).  

 

In organic chemistry, hydrocarbons not only exist in the linear chain form but also as rings. The 

monocyclic alkanes are the saturated hydrocarbons, consisting of only hydrogen and carbon 

atoms arranged in the structure containing a single ring with single carbon-carbon bonds and 

alkyl side chain/chains. The chemical structure of bicyclic alkanes contains two rings with 

single carbon-carbon bonds. In past studies, the mixture of cyclic alkanes and branched alkanes 

were typically regarded as part of the unresolved complex mixture (UCM) (Mandalakis et al., 

2002) or were classified as groups of compounds (Dunmore et al., 2015). This study elucidated 

the composition of the “traditionally unresolved complex mixture” (UCM) by separating the 

monocyclic alkanes and bicyclic alkanes components from UCM based on the GC ×GC 

retention behaviour.  

 

Monocyclic alkanes ranging from C12 to C18 were detected in the gas phase while C12 to C25 

were detected in the particle phase (Figure 3.3).  Alkyl-cyclopentane, alkyl-cyclohexane and 

alkyl-cycloheptane and their derivatives were dominant in the monocyclic alkane groups 

(Figure 3.4). Alkenes were observed but not well separated from the monocyclic alkane 

polygons. The observed alkenes had very low concentration so that the influence of alkenes on 
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the group concentration was estimated as negligible. Based on the chemical composition 

analysis of gasoline and diesel fuel, it is unlikely to observe significant alkene quantities in 

traffic emitted organics (Gentner et al., 2012). Bicyclic alkanes ranging from C13 to C17 were 

detected in the gas phase while C13 to C27 were detected in the particle phase (Figure 3.5). 

Figure 3.6 shows the chemical structure of the typical bicyclic alkanes detected in this study. 

Monocyclic alkanes were the second dominant compound class of the S/IVOCs detected in this 

study and responsible for 17-24% of the total S/IVOC composition (sum of the gas and particle 

phases) while bicyclic alkanes contributed less to the total S/IVOCs (8% -15%) (Figure 3.1). 

The majority of the traffic-derived monocyclic alkanes and bicyclic alkanes detected in the gas 

phase may come from diesel fuel combustion as they are all low molecular weight compounds 

(<C20). Isaacman et al. (2012) reported the semi-volatile organic compound composition of 

diesel fuel, and cycloalkanes accounted for a more significant fraction of diesel fuel (14%) than 

bicyclic alkanes (11%), consistent with the urban air samples. Within the monocyclic alkane 

groups, individual alkyl-cyclohexanes from C12 to C25 were separated and quantified in this 

study. Concentrations of alkyl-cyclohexanes presented a similar carbon distribution to grouped 

monocyclic alkanes and on average accounted for 34% of the monocyclic alkane groups. The 

detailed concentrations of alkyl-cyclohexanes are shown in Table S2.  
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Figure 3.5: Concentrations of bicyclic alkanes in the gas phase and particle phase at WM, RU, 

MR and EL, London Campaign 2017.  
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Figure 3.6: Chemical structure of typical bicyclic alkanes observed in this study. From left to 

right, the bicyclic alkanes are decalin and alkyl-decalin (include methyl-, ethyl-, propyl- etc. 

and methyl-, dimethyl-, trimethyl- etc.).  
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3.5  Monocyclic aromatics 

Figure 3.7: Concentrations of monocyclic aromatics in the gas phase and particle phase at WM, 

RU, MR and EL, London Campaign 2017.  
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Aromatic hydrocarbons account for a significant fraction of the S/IVOC emitted by traffic in 

the urban atmosphere (Bailey and Eggleston, 1993; Carr et al., 2002; Hwa et al., 2002). 

Approximately 30% of the gasoline mass and 20% of the diesel fuel mass are aromatics while 

the remaining components are mainly comprised by alkane classes (acyclic and cyclic)   

(Gentner et al., 2013). Monocyclic aromatic hydrocarbons are toxic and some of them are 

considered as carcinogens, such as benzene (Fernandes et al., 2002). Besides, monocyclic 

aromatics participate in the photochemical reactions, contributing to the formation of SOA.  

Monocyclic aromatics, especially benzene, toluene, ethylbenzene, (m,p)-and o-xylene (BTEX), 

have become important targets for assessment. Many recent studies only quantitated BTEX due 

to the lack of appropriate standards (Kerbachi et al., 2006; Zhao et al., 2004). 

 

The present study has classified the monocyclic aromatics as groups based on their retention 

behaviour and mass spectrum patterns. Monocyclic aromatics ranging from C10 to C19 were 

detected in the gas phase while C10 to C24 were detected in the particle phase. Monocyclic 

aromatic homologues occupied the third largest percentage of the total chemicals (16% at WM 

and RU, 18% at MR, 15% at EL) (Figure 3.1). Concentrations of C10 to C11 were the highest 

homologues in the gas phase with a peak at C15 while concentrations in the particle phase were 

steady throughout the carbon range C10 to C19 and had a slight increase above C19 (Figure 3.7). 

Alam et al. (2018) reported 23.5% and 6% of monocyclic aromatics (C11-C33) in the gas-phase 

and particle-phase diesel emissions respectively. Monocyclic aromatics ranging from C10 to C11 

represent a large fraction of the IVOC emission of gasoline exhaust (Drozd et al., 2019), 

suggesting the light monocyclic aromatics in the gas phase may derive from both gasoline- and 

diesel-powered vehicles. The similarities between particle-phase monocyclic aromatics in 
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urban air and diesel emissions reported by Alam et al. (2018) imply the contribution of 

lubricating oil to the emissions of particle-phase monocyclic aromatics.  

 

3.6 Polycyclic aromatic hydrocarbons  

Polycyclic aromatic hydrocarbons (PAHs) are more investigated than the other organic classes 

as some congeners are carcinogenic and/or mutagenic. PAHs are produced in a number of 

processes in which the incomplete combustion of carbon-containing materials occurs. The 

major anthropogenic source responsible for the emission of PAHs in the urban environment is 

fossil-fuel combustion, such as the operation of diesel engines and gasoline engines, 

incineration, domestic heating and various industrial processes. The natural sources of PAHs 

include forest fire, microbiological processing of detritus and biosynthesis processes carried by 

algae, plants and bacteria (Alves et al., 2016; Cincinelli et al., 2007).  Atmospheric PAHs in the 

ambient air can partition between the gas phase and the particle phase, being incorporated onto 

aerosols via adsorption and condensation processes (Alves, 2008; Leal-Granadillo et al., 2000). 

Collins et al. (1998) concluded the carcinogenicity of PAHs based on the data from 

International Agency for Research on Cancer (IARC) and Environmental Protection Agency 

(DePaul and Sheih), reporting that naphthalene, acenaphthylene, fluorene, phenanthrene, 

anthracene, fluoranthene, perylene are unclassifiable as to carcinogenicity, whilst chrysene, 

benz[a]anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene are 

considered to be carcinogenic. 

 

Table 3.1 shows the average concentrations of PAHs in the gas and particle phases observed in 

the London Campaign 2017. The concentrations of gas-phase PAHs occupied on average 76% 

to 97% of the total concentrations of PAHs (sum of the gas and particle phases). The main 
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identified PAHs include naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, 

anthracene, pyrene, and fluoranthene. The predominant PAHs detected in the gas phase were 

naphthalene (2 rings), anthracene and phenanthrene (3 rings). Intermediate 4-ring PAHs were 

distributed between both the gas phase and the particle phase. Fluoranthene and pyrene (4 rings) 

were relatively abundant PAHs in the particle phase. Fluoranthene and pyrene are reported as 

dominant PAH compounds in diesel exhaust particles (Mirante et al., 2013). High 

concentrations of 4-ring PAHs are attributed to enhanced adsorption/condensation of these 

semi-volatile compounds onto pre-existing particles (Wang et al., 2009; Mirante et al., 2013). 

Some PAHs with 5 rings were observed only in the air particle phase, such as chrysene, 

benzo[a]anthracene, perylene, benzo[k]fluoranthene, benzo[b]fluoranthene, benzo[a]pyrene. 

However, these 5-ring PAHs have not been collected efficiently for data analysis. They had 

very low concentrations and presented no significant differences among sites; therefore, they 

are not discussed here.  

 

Table 3.1: Concentrations of individual PAHs (ng/m3) at the four sites during the London 

campaign 2017. G indicates the gas phase and P for the particle phase.  

  
WM RU MR EL 

PAHs Carbon No G P G P G P G P 

Naphthalene C10 0.72 0.05 0.50 0.05 5.26 0.08 3.17 0.00 

Acenaphthylene C12 0.03 0.01 0.02 0.01 4.15 0.01 2.21 0.00 

Acenaphthene C12 0.11 0.01 0.10 0.01 2.97 0.01 2.44 0.01 

Fluorene C13 0.24 0.02 0.18 0.02 4.79 0.03 3.19 0.01 

Phenanthrene C14 1.97 0.04 1.53 0.04 3.11 0.02 2.11 0.01 

Anthracene C14 0.70 0.01 0.59 0.03 0.81 0.02 0.66 0.14 

Pyrene C16 0.83 0.05 0.28 0.06 1.01 0.21 0.73 0.07 

Fluoranthene C16 0.33 0.06 0.21 0.06 0.98 0.11 0.38 0. 01 
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3.7 Conclusion  

Groups of compounds identified and quantified in the gas and particle phase include alkanes 

(n-alkanes and branched alkanes), monocyclic alkanes, bicyclic alkanes, monocyclic aromatics 

and several PAHs. Monocyclic alkanes, bicyclic alkanes and monocyclic aromatics were 

separated from UCM and classified as compound homologues in this study to offer a more 

comprehensive understanding of the components of UCM. For all sampling sites, alkanes were 

the most abundant hydrocarbons followed by monocyclic alkanes and monocyclic aromatics. 

The chemical composition of diesel fuel and lubricating oil reported in the literature (Isaacman 

et al., 2012; Welthagen et al., 2007; Gentner et al., 2012; Alam et al., 2018; Worton et al., 2014; 

Sakurai et al., 2003) can explain the overwhelming presence of alkanes, monocyclic alkanes 

and bicyclic alkanes detected in the urban atmospheric samples in the present study. The 

chemical composition of S/IVOCs was compared between different sampling sites. Chemical 

composition of S/IVOCs collected at the roof sites (WM and RU) and urban background site 

(EL) were similar. At the roadside site MR, alkanes were still dominant but accounted for a 

lesser fraction of the total concentrations due to greater contributions from other compound 

classes. As expected, concentrations of S/IVOCs at MR were the highest of all sites as it is a 

heavily trafficked roadside. 

 

The S/IVOC composition of urban air identified in this study was compared with the S/IVOC 

composition of diesel fuel, lubricating oil and diesel exhaust (gas phase and particle phase 

separately) reported by Alam et al. (2018), who investigated the isomers set by using the same 

techniques as in this study. In the gas phase, the alkane classes (acyclic and cyclic) and 

monocyclic aromatics of ≤C20 were most abundant, similar to the corresponding components 

reported for gas-phase diesel exhaust measured by Alam et al. (2018). In the particle phase, 
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alkane classes (acyclic and cyclic) and monocyclic aromatics around C21-C27 were most 

abundant, consistent with those reported in lubricating oil and the particle-phase diesel exhaust 

measured by Alam et al. (2018). The main fraction of heavier SVOCs (≥C20) emitted from 

gasoline- and diesel-powered engines can be attributed to engine oil (Drozd et al., 2019; Alam 

et al., 2016b), suggesting these compound observed in the urban air may derive from engine 

lubricating oil. The PAH concentrations are reported only for compounds for which collection 

was quantitative. The most abundant PAHs observed in the gas phase were naphthalene (2 

rings), anthracene and phenanthrene (3 rings) while the relatively abundant PAHs in the particle 

phase were fluoranthene and pyrene (4 rings). The similarities found in S/IVOC C12-C36 region 

in urban air and diesel exhaust proved that diesel-powered vehicles could play a crucial role to 

influence the urban air quality in London. 
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Chapter 4 Emission sources and transport of S/IVOCs  

This chapter discusses the diagnostic ratios of n-alkanes (CPI, %WNA and Cmax), correlations 

between traffic indicators (BC, NOx and benzene) and main S/IVOC classes, spatial distribution 

of S/IVOC concentrations at the WM-MR-RU sampling sites, and the effect of wind direction 

on the S/IVOC transport in the street canyon of Marylebone Road. This chapter aims to 

investigate the contribution of traffic to the S/IVOC concentrations identified at different sites 

and the transport of S/IVOCs at the WM-MR-RU sampling sites.  

 

4.1  Introduction 

Previous studies of the organic chemical composition of particles based on traditional GC 

analytical techniques have usually regarded n-alkanes as research targets as they can be 

distinguished from the bulk of unresolved complex mixture (UCM) (Alam et al., 2016b; 

Schauer et al., 1999; 2002). Diagnostic ratios of n-alkanes have been widely used in previous 

studies as the homologue distribution is strongly related to the formation mechanism of organic 

aerosols (Simoneit et al., 2004; Andreou and Rapsomanikis, 2009).  The carbon preference 

index (CPI) and the contribution of wax n-alkanes (%WNA) are critical diagnostic ratios to 

investigate the emission source of n-alkanes and identify the biogenic contribution from the 

vegetation. The leaf wax is expected to contribute less to the overall emissions of n-alkanes 

during this winter-early spring sampling period compared with summer as many local trees are 

deciduous. 

 

The correlation analysis between traffic indicators (black carbon, NOx and benzene) and 

S/IVOCs was carried out in this chapter to investigate the traffic contribution to the S/IVOC 
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concentrations measured in this study. Fossil fuel combustion is an important source for black 

carbon (BC) in the urban area of the northern hemisphere while biomass burning can also 

become the dominant source for BC emission but typically in the tropical area or the southern 

hemisphere (Pakkanen et al., 2000; Wolff and Cachier, 1998).  A number of studies have 

reported the strong correlation between traffic emission and BC or NOx concentrations (Watson 

et al., 1994; Pakkanen et al., 2000; Reche et al., 2011; Charron et al., 2019). BC and NOx were 

regarded as indicators for diesel-powered vehicles in this study as substantial emissions of BC 

and NOx come from the diesel vehicles in London (Harrison and Beddows, 2017). 

Approximately 30% of the gasoline mass and 20% of the diesel fuel mass are aromatics 

(Gentner et al., 2013). It has been reported that the vehicle exhaust is responsible for 70% of 

benzene near a heavily trafficked road (Kerbachi et al., 2006), and the highest emission is 

related to the use of gasoline in non-catalytic cars (Sigsby et al., 1987). Benzene was applied to 

trace the association between the gasoline-powered vehicles and S/IVOC concentrations in this 

study as gasoline-powered motor vehicles can generate significant quantities of benzene 

(Harley et al., 2006; Kirchstetter et al., 1996). 

 

Samples were collected at WM and RU simultaneously from 24 January to 19 February 2017, 

and after that MR sampling was run from 22 March to 18th April 2017. The difference in the 

sampling period makes less comparability between these sites. The concentrations of organic 

compounds are typically higher in winter than in summer, attributed to the differences in 

meteorological parameters as well as the strength of seasonal particulate emissions, such as 

from residential heating. Besides, the stable weather conditions and a shallow boundary layer 

in winter contribute to a low atmospheric dispersion. More combustion activities and more 

inadequate dispersion result in a higher particulate concentration in winter (Gupta et al., 2017). 
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The significant variation in seasonal concentrations of particles has been reported in several 

studies (Fu et al., 2008; Pant et al., 2015; Singh et al., 2011; Yadav et al., 2013). In order to 

have a better understanding of the spatial distribution of S/IVOCs, the initial MR S/IVOC data 

collected during March-April 2017 were scaled by using BC as a dispersion marker to estimate 

the MR S/IVOC concentrations during the WM/RU sampling time (January-February 2017). 

The scaled MR data were used to compare with the WM and RU S/IVOC concentrations to 

understand the horizontal advection of pollutants from the emission source to the background 

atmosphere.  

 

Street orientation and the wind conditions strongly influence the airflow within a street canyon. 

Wind direction is the most crucial factor affecting the flow and mixing processes in the street 

canyon and the consequent S/IVOC concentrations (arising from emissions within the street 

canyon) (Kumar et al., 2008). The MR sampling site is located at the southern kerbside of the 

heavily trafficked Marylebone Road, which is relatively straight and oriented in the west-east 

direction. The height of the buildings on either side of Marylebone Road is around six storeys, 

giving the aspect ratio of the street canyon at around 1:1 (Harrison et al., 2019).  Typically, 

winds can set up a single vortex in a regular street canyon with aspect ratio H/W (~1) 

(H=building height, W=canyon width) when the wind is across the street (wind direction to the 

canyon axis exceeds 30°) with a wind speed above 1.5 m s-1 (DePaul and Sheih, 1985; Kumar 

et al., 2008). Studies reported that weak counter-rotating secondary vortices might be observed 

at the street level in deeper street canyons (aspect ratio H/W~2) and third vortices may also be 

formed in further deeper canyons (aspect ratio H/W~3) (Pavageau et al., 1997; Jeong and 

Andrews, 2002; Vardoulakis et al., 2003; Pirjola et al., 2012). The vortices are less evident 

when the wind direction is more parallel to the street axis. The flow can be a combination of 
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the re-circulating flow and along canyon flows (Kumar et al., 2008; Belcher, 2005). The 

difference in S/IVOC concentrations during the entire campaign, during southerly wind and 

northerly wind were compared to investigate the wind effect on the S/IVOC transport in the 

street canyon of Marylebone Road.  

 

In this study, concentrations of n-alkanes were reported and compared with those reported in 

the literature. This chapter discusses the diagnostic criteria of n-alkanes as well as the 

correlation between traffic indicators and S/IVOC groups to identify the traffic contribution to 

S/IVOC concentrations. Additionally, the spatial distribution of S/IVOC groups at the WM-

MR-RU sampling sites and the effect of wind on S/IVOC concentrations were discussed to 

investigate the horizontal transport of pollutants from traffic (MR) to background atmosphere 

(RU) and the wind transport of the S/IVOCs in the street canyon of Marylebone Road.  

 

4.2  Concentrations and diagnostic ratios of n-alkanes 

The concentrations of grouped alkanes (n+i) ranging from C13 to C31 in the gas phase and C13 

to C36 in the particle phase have been discussed in Chapter 3. Individual n-alkanes have been 

separated and identified by GC×GC-ToF-MS in this chapter (Table 4.1). The homologue 

distribution of n-alkanes correlated well with grouped alkanes (0.5< average R2 <0.8). The 

correlation between n-alkanes and total alkanes (n+i) significantly decreased after C25 in the 

gas phase and after C31 in the particle phase, indicating that the change in the composition of 

high molecular weight alkanes (n+i). The number of possible isomers increases with the 

increase of the number of carbon atom (Goldstein and Galbally, 2007), resulting in a greater 

contribution of branched alkanes to the high molecular weight alkanes (n+i). Total n-alkanes 

occupied on average 33% of the total alkanes (n+i) and the branched alkanes accounted for the 
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rest. Chan et al. (2013) separated and identified linear and branched alkanes ranging from C20 

to C25 emitted from fossil fuel-related sources. The relative ratios of total branched alkanes to 

linear alkanes reported by Chan et al. (2013) vary greatly from ~1 to >10 between urban 

sampling sites, which is in broad agreement with this study.  Table 4.1 shows the carbon 

distribution of n-alkanes in the gas phase and the particle phase at four sampling sites. The total 

concentrations of n-alkanes in the particle phase were lower than the gas phase. The more 

volatile n-alkanes (C13-C18) were the most abundant homologues in the gas phase while the less 

volatile n-alkanes (C20 to C30) were more abundant in the particle phase, consistent with the 

carbon distribution of grouped alkanes (n+i).  Department for Environment, Food & Rural 

Affairs (DEFRA) measured n-alkanes ranging from C2-C8 at the Marylebone Road (MR) and 

Eltham (EL) monitoring stations which are the same sampling sites MR and EL used in this 

study. Figure 4.1 shows the consistency between DEFRA network n-alkanes (C2-C8) and 

GC×GC-MS measured n-alkanes in the gas phase (C13-C30). With the increase of the carbon 

number, the concentrations of n-alkanes in the gas phase had a downward trend as the low-

volatility homologues were partitioning to the particle phase (Figure 4.1).  

 

A summary of the n-alkane concentrations reported in the literature is shown in Table 4.2. The 

magnitude of n-alkane concentrations measured in this study was similar to that for n-alkanes 

reported by Cincinelli et al. (2007), Gupta et al. (2017), Nikolova et al. (2016) and Mandalakis 

et al. (2002) but much lower than those reported by  Bi et al. (2003) and Karanasiou et al. (2007). 

The carbon distribution of n-alkanes in this study (Table 4.1) described a strong similarity to 

that for n-alkanes measured in Delhi, India (Gupta et al., 2017) and Birmingham, UK (Nikolova 

et al., 2016) but differed from the gas-phase n-alkane measured in Prato Italy (Cincinelli et al., 

https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs
https://www.gov.uk/government/organisations/department-for-environment-food-rural-affairs
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2007) and Athens Greece (Mandalakis et al., 2002), probably due to the different fuel use and 

road conditions.
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Table 4.1: The concentrations, CPI, and %WNA of n-alkanes in the gas and particle phase. 

n-alkanes  Gas Phase (ng/m3) Particle Phase (ng/m3) 

Carbon No WM RU MR EL WM RU MR EL 

C13 19.77 13.91 33.94 40.13 0.90 0.79 1.42 1.23 

C14 17.02 10.45 30.31 24.55 1.96 1.59 2.17 2.57 

C15 17.03 10.21 37.98 22.15 0.70 0.90 1.55 0.84 

C16 16.69 10.35 32.28 16.20 1.13 0.75 3.78 1.84 

C17 10.46 6.29 20.72 10.48 0.17 0.31 0.25 0.49 

C18 13.78 7.99 29.58 4.84 0.63 0.98 1.37 0.93 

C19 3.56 1.64 5.50 1.49 0.92 0.95 3.91 2.05 

C20 1.64 0.53 2.42 4.42 0.95 0.97 4.19 1.15 

C21 1.36 0.40 2.51 4.57 5.43 2.32 11.87 5.12 

C22 1.04 0.43 3.78 5.70 6.85 2.43 13.58 5.04 

C23 4.68 2.95 7.48 13.23 5.05 4.16 14.25 4.78 

C24 4.01 2.23 7.34 8.28 3.00 2.42 13.22 2.87 

C25 2.24 1.33 4.87 6.16 2.78 2.58 8.95 3.98 

C26 1.42 0.70 2.68 3.94 2.23 1.83 5.46 3.66 

C27 0.71 0.25 1.37 1.99 1.37 1.26 7.75 2.28 

C28 0.43 0.16 0.43 1.43 1.10 1.14 6.63 2.19 

C29 0.27 0.07 0.18 0.72 2.16 1.58 9.41 1.60 

C30 0.23 0.06 0.19 0.56 0.89 1.06 6.53 2.62 

C31 
    0.65 0.83 7.61 0.80 

C32 
    0.63 0.80 8.65 0.06 

C33 
    0.64 0.90 7.75 0.09 

C34 
    0.23 0.67 0.66 0.02 

C35 
    0.35 0.73 0.00 0.12 

C36 
    0.13 0.45 0.00 0.07 

 

  
 

116.35 69.96 223.57 170.85 40.85 32.41 140.96 46.40 

CPIa  1.07 1.13 1.05 1.44 1.08 1.17 1.13 1.02 

CPI  

(C13-C26) 1.06 1.12 1.04 1.45 0.95 1.10 0.96 1.02 

CPI  

(above C25) 1.55 1.80 1.95 1.50 1.59 1.39 1.48 1.03 

%WNAb 
10.93% 11.18% 13.05% 5.59% 18.06% 15.69% 13.68% 20.91% 

a CPI (C13-C30) for the gas phase and CPI (C13-C36) for the particle phase.  
b %WNA (C13-C30) for the gas phase and CPI (C13-C36) for the particle phase. 
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Figure 4.1: Comparison between DEFRA n-alkanes and GC measured n-alkanes in this study. 

Average concentrations of n-alkanes from DEFRA network (C2-C8) and GC×GC-MS (C13-C31 

in the gas phase and particle phase) at MR from March to April 2017 (top panel) and at EL 

from Feb to March 2017 (bottom panel).
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Table 4.2: A summary of n-alkane concentrations (ng/m3) in the air samples. Gas and particle indicate the gas phase and particle phase. 

Carbon No 

Prato Italy 

(Cincinelli et al., 2007) 

Delhi India 

(Gupta et al., 2017) 

Birmingham UK 

(Nikolova et al., 

2016) 

Athens Greece 

(Mandalakis et al., 

2002) 

Guangzhou, 

China  

(Bi et al., 2003) 

Athens Greece 

(Karanasiou et al., 2007) 

Industry area  

Mar-Nov  

Heavily trafficked site 

Jan-Feb 

Busy traffic road 

(BROS) year 

1999/2000 

Urban background 

July  

Urban area 

April 

Heavy trafficked central 

avenue 

Jun-Jul 

Gas Particle Particle (PM10) Gas Particle Gas Particle Gas and particle Particle 

C13        0.51  

C14   6   0.83  1.44  

C15 3  5   1.83 0.10 2.14  

C16 8 <1 4.8 6.42 0.65 3.89 0.15 8.25  

C17 16 <1 4 9.32 0.85 4.00 0.09 23.73  

C18 23 <1 5 9.36 0.82 5.07 0.10 62.00 87.2±110 

C19 30 <1 5 9.74 1.32 5.20 0.19 149.28 14.8±6.5 

C20 32.5 1 6 8.35 1.93 3.92 0.31 226.10 44.6±56.4 

C21 30.5 1 7.5 6.20 2.63 5.05 0.52 216.23 14.7±6.8 

C22 24.5 2.5 7.8 3.97 3.25 3.86 0.76 168.07 42.2±46.9 

C23 18 4.8 12 2.32 2.73 3.97 1.41 117.97 29.8±21.9 

C24 13 8 17.5 1.59 3.34 2.70 1.50 90.41 57.5±55.3 

C25 7 14 19 1.20 4.46 2.17 2.71 78.03 55.0±46.7 

C26 <1 17.5 12 1.00 2.37 1.44 2.35 54.43 65.6±57.8 

C27 2 22.5 15 1.28 3.61 1.25 5.28 42.97 43.3±36.4 

C28 1.5 14 11 1.03 1.89 1.13 2.19 32.26 34.0±27.5 

C29 1.8 18 9 1.24 4.89 1.21 8.25 38.37 25.1±21.0 

C30 1.5 9 7.5 0.8 2.03 0.98 1.85 25.55 13.6±13.9 

C31 1.5 18 7.8 0.77 3.60 0.85 8.54 44.05 14.2±15.0 

C32 1 6 10 0.42 1.32 0.41 1.42 15.89 8.5±14.9 

C33 <1 6 9.5   0.52 1.23 23.79 10.2±15.8 
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Several molecular diagnostic parameters were used to distinguish the origin of the n-alkane 

fraction of organic compounds in the atmosphere. The carbon preference index (CPI) and the 

contribution of wax n-alkanes (%WNA) are important parameters to distinguish the emission 

sources of n-alkanes. The carbon preference index (CPI) firstly was defined by Bray and Evans 

(1961) to investigate the origin of n-alkanes, n-alkanals and n-alkan-2-ones (Simoneit et al., 

2004; Andreou and Rapsomanikis, 2009). Carbon preference index (CPI) is the ratio of the 

summation of odd carbon number homologues over a range to the summation of even carbon 

number homologues over the same range (Cincinelli et al., 2007; Andreou and Rapsomanikis, 

2009; Simoneit, 1999). CPI ratio provides a suitable molecular marker for tracing the organic 

input of vegetation as plant waxes emit higher molecular weight n-alkanes with odd carbon 

number predominance. Therefore, n-alkanes from vegetation have higher CPI values (Omar et 

al., 2007).  

 

In this study, CPI of n-alkanes was calculated based on the following equation, 

CPI= 
𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒  𝑛−𝑎𝑙𝑘𝑎𝑛𝑒𝑠 𝑤𝑖𝑡ℎ 𝑜𝑑𝑑 𝑐𝑎𝑟𝑏𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛−𝑎𝑙𝑘𝑎𝑛𝑒𝑠 𝑤𝑖𝑡ℎ 𝑒𝑣𝑒𝑛 𝑐𝑎𝑟𝑏𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 
 

      =  
∑(𝐶13−𝐶31)

∑(𝐶12−𝐶30)
                                                                                                   Equation  4.1 

Hydrocarbons emitted from natural sources present CPI of >1 while hydrocarbons emitted from 

anthropogenic sources (i.e. traffic emission) show CPI values close to or lower than 1 (Simoneit, 

1999).  

 

The wax n-alkanes concentration (WNA) is used to estimate the biogenic contribution from the 

vegetation. WNA for each n-alkane was calculated as followed equation (Simoneit, 1999), 
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WNA 𝐶𝑛=𝐶𝑛-0.5(𝐶𝑛−1 +𝐶𝑛+1)                                                      Equation  4.2 

where negative values of WNA Cn were taken as zero. The percentage of total wax n-alkanes 

to total n-alkanes was calculated followed the equation below (Simoneit, 1999), 

 

%WNA= (∑ 𝑊𝐴𝑁 𝐶𝑛 /∑ 𝑁𝐴)× 100 %                                          Equation  4.3 

where higher %WNA values indicate a greater contribution from biogenic sources. ∑ WAN Cn  

is the total concentration of wax n-alkanes and ∑ 𝑁𝐴 is the total concentration of n-alkanes 

(Mandalakis et al., 2002; Cincinelli et al., 2007). 

 

The average CPI values were calculated for both the gas and particle phase in each sampling 

site and can be viewed from Table 4.1. CPI values varied insignificantly at the WM-MR-RU 

sampling sites in central London.  In the gas phase, n-alkanes from C13 to C31 have been 

detected in all sampling sites. Average CPI at WM, RU and MR were close to the unity (1.07, 

1.13 and 1.05 respectively). Low CPI values and relatively low %WNA (10.93% at WM, 11.18% 

at RU and 13.05% at MR) specify vehicle emissions in association with the gas phase n-alkanes, 

and only a minor contribution of n-alkanes originated from epicuticular waxes of terrestrial 

plants. Gas-phase n-alkanes at the urban background site (EL) had a slightly higher odd carbon 

number predominance with a CPI value of 1.44 but still close to unity. The lower %WNA 

(5.59%) at EL shows a lesser contribution of gas-phase n-alkanes originated from plant wax. In 

the particle phase, n-alkanes from C13 to C36 have been detected in four sampling sites. CPI 

values measured for n-alkanes at four sampling sites were close to 1, signifying the major 
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fraction of particle-phase emissions was attributed to fossil fuel combustion. Although traffic 

was still the dominant input for the particle-phase alkanes, %WNA values of the particle-phase 

n-alkanes (18.06% at WM, 15.69% at RU, 13.68% at MR and 20.91% at EL) were higher than 

the corresponding %WNA values of the gas phase, indicating a greater contribution of biogenic 

emission sources to the particle-phase n-alkanes. The CPI values above C25 are higher than the 

CPI (C13-C26), especially at WM, RU and MR, suggesting that plant wax made a more 

significant contribution to the heavier alkanes.  The plant wax-derived n-alkanes are typically 

heavier n-alkanes (above C27) with a strong odd carbon number predominance (Andreou and 

Rapsomanikis, 2009).   

 

The carbon number of the most abundant alkanes (Cmax) can also indicate the input source 

(Mazurek and Simoneit, 1984; Omar et al., 2007). In the gas phase, n-alkanes from C13 to C31 

have been detected with a Cmax at C13, indicating the characteristic of the fossil fuels residues. 

In the particle phase, n-alkanes from C13 to C36 have been detected, and Cmax values in four 

sampling sites varied from C20 to C22. The low molecular weight Cmax fits with the interpretation 

of CPI.  

 

In conclusion, the gas-phase n-alkanes in central London sampling sites (WM-MR-RU) were 

originated mainly from the vehicular exhaust with a minor contribution from plant waxes, 

supported by low molecular weight Cmax, low CPI values, and %WNA. For urban background 

sampling site EL, there was a lesser fraction of wax n-alkanes in the gas phase, but more in the 

particle phase compared the WM-MR-RU sampling sites. On the other hand, although traffic 

was still the dominant input for the particle phase, relatively higher Cmax and %WAN indicate 

that more particle-phase n-alkanes were attributed to plant wax compared with the gas phase. 
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4.3  Correlation between traffic indicators and S/IVOC groups  

Correlation analysis was carried out between S/IVOCs (sum of gas and particle phase) with the 

traffic indicators (BC, NOx and benzene), and the changes of the correlation coefficient R with 

the carbon number are shown as Figure 4.2. BC and NOx were regarded as the traffic indicators 

of diesel-powered vehicles, as a substantial proportion of BC and NOx come from diesel 

vehicles in London (Harrison and Beddows, 2017). As expected, S/IVOC concentrations 

showed the best correlation with NOx and BC at the roadside MR, indicating the majority of 

S/IVOC emissions at MR were attributed to traffic.  The buildings prevent the rapid dilution of 

S/IVOCs emitted from traffic by exchanging with the incoming air in a street canyon. Therefore, 

traffic emissions can be considered as a dominant source for the pollutants in a street canyon 

(Wehner et al., 2002).  Alkane classes (acyclic and cyclic) correlated well with NOx and BC, as 

they were the most abundant observed mass fraction in diesel fuel and lubricating oil (Isaacman 

et al., 2012; Worton et al., 2014; Sakurai et al., 2003; Alam et al., 2018). Acyclic alkanes (n+i), 

cyclic alkanes and monocyclic aromatics ranging C12 to C26 correlated steadily with traffic 

indicators BC or NOx with correlation coefficient R up to 0.7, suggesting that BC or NOx 

explained around 50% of the variance in the S/IVOC concentrations.  The correlation 

coefficients R of alkanes (n+i) had a slight decrease above C26, suggesting the presence of 

additional emission sources for high molecular weight alkanes (n+i) at MR, agreed with the 

CPI results in Table 4.1. Charron et al. (2019) also reported that n-alkanes between C19 and C26 

collected from a near-traffic site had a significant correlation with traffic indicator NOx and 

elemental carbon (EC). The n-alkanes emitted from traffic comprise the C10-C34 homologues, 

but n-alkanes ranging from C18 to C25 are predominant homologues and correspond to the high 

boiling point components of diesel fuel (Alves et al., 2016). At WM and RU, S/IVOCs ranging 

from C10 to C18 also correlated well with BC or NOx but showed a lower extent than MR. The 
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diesel vehicle-related S/IVOC concentrations at MR and RU dropped at around C18 and tended 

to be negligible after C20, probably due to the better measurement precision for the lower 

molecular weight S/IVOC, or possibly due to the traffic source contributing more significantly 

for < C18 compounds. 

 

Diesel vehicles mainly contribute to the emission of unburned diesel fuel (up to C20) and 

unburned lubricating oil (C18  to C36) (Jacobson et al., 2005; Alam et al., 2018) while the 

gasoline vehicles mainly contribute to the emission of lighter and more volatile molecules (up 

to C12) (Gentner et al., 2012). The correlation between S/IVOC concentrations and the emission 

tracer associated with gasoline-powered vehicles (benzene) were also conducted at MR. 

Benzene is a known toxic contaminant in the ambient air that can be attributed to both gasoline-

powered engine (Harley et al., 2006) and diesel-powered engine (Isaacman et al., 2012; Alam 

et al., 2018). While there is a more complex relationship between the gasoline composition and 

benzene, as benzene is enriched relative to other aromatics in the exhaust emissions compared 

to the expectation based on its abundance in unburned gasoline (Harley et al., 2006; Duffy and 

Nelson, 1996). The additional benzene can be formed in the catalytic converter, especially for 

the engine under the rich-fuel conditions (Bruehlmann et al., 2005). Benzene may escape from 

the combustion and oxidative processes in the engine to a greater extent compared with other 

gasoline components (Kirchstetter et al., 1999; Leppard et al., 1992). Benzene was used to trace 

the association between the gasoline vehicles and S/IVOCs measured in ambient air. According 

to the UK emission data, traffic is the dominant source for the traffic tracers used in current 

study (NOx, BC and benzene) with minor contibution from other sources that may not affect 

the roadside air quality significantly, such as waste incineration and chemical industry for 

benzene, agricultural soil and manure managemnet for NOx, and waste combustion for BC 
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(NAEI, 2019). The correlations with benzene for MR are shown in Figure 4.2. Alkane 

homologues (acyclic and cyclic) and aromatics ranging from C12 to C18 correlated particularly 

well with benzene (R=0.7 ±0.14) , but the correlation tended to be weak above C18 

(R=0.18±0.2). It suggests that gasoline-powered vehicles mainly contribute to the emission of 

the low molecular weight compounds, and the much lower correlation for alkanes of > C18
 for 

benzene than for BC or NOx at this site is a clear indication of the predominance of diesel over 

gasoline emissions for this molecular weight range. It generally agreed with the work of Drozd 

et al. (2019), who reported monocyclic aromatics ranging from C10 to C11 accounted for a large 

fraction of the IVOC emissions in gasoline exhaust. The similarities in S/IVOC profiles in the 

ambient air of London measured in current study and diesel exhaust measured by Alam et al. 

(2019b) (average R=0.84) further illustrate the impact of diesel-powered vehicles to the urban 

air quality. Besides traffic exhaust, other emission sources may also contribute to the S/IVOCs 

detected in current study, such as tyre and brake lining wear (Rogge et al., 1993; Pant and 

Harrison, 2013; Kwon and Castaldi, 2012; El Haddad et al., 2009), the use of volatile chemical 

products (VCPs) (McDonald et al, 2018) and asphalt-related road paving and repair (Khare and 

Gentner, 2018).  
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Figure 4.2: Pearson correlation coefficient R between S/IVOCs and traffic indicators at MR, 

WM and RU.  
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4.4  Spatial distribution of S/IVOC concentrations at WM-MR-RU  

WM-MR-RU sampling sites in central London were applied in this study to investigate the 

horizontal transport of S/IVOCs from the traffic (roadside site MR) to the cleaner atmosphere 

of the adjacent park (RU). However, samples were collected during a different period due to a 

limited number of sampling instruments. Samples were collected at WM and RU 

simultaneously from 24 Jan to 19 Feb 2017, and after that MR sampling was run from 22 March 

to 18th April 2017. In order to have a better understanding of the spatial distribution of S/IVOCs, 

scaling of the initial MR S/IVOC concentrations was applied to estimate the S/IVOC 

concentrations if MR had been sampled simultaneously with WM/RU (January-February 2017) 

by taking account of BC as a dispersion marker.  In London, BC arises very largely from vehicle 

traffic (Harrison and Beddows, 2017; Harrison et al., 2019) and the major fraction of BC 

measured at the roadside site MR is expected to come from traffic emissions.  Concentrations 

of acyclic alkanes (n+i), cyclic alkanes (monocyclic and bicyclic) and monocyclic aromatics 

ranging C12 to C28 in the sum of the gas phase and particle phase correlated well steadily with 

BC at MR during the MR campaign period while there was a weaker correlation for alkanes 

(n+i) above C28 (Figure 4.2). S/IVOCs at MR during the WM/RU sampling campaign were 

estimated based on the initial MR S/IVOC concentrations multiplied by the ratio of MR BC 

during the WM/RU sampling period to that during the MR sampling period. Equations were 

developed as follows, 

 

 𝑀𝑅 𝑆/𝐼𝑉𝑂𝐶𝐽𝑎𝑛−𝐹𝑒𝑏

𝑀𝑅 𝑆/𝐼𝑉𝑂𝐶𝑀𝑎𝑟−𝐴𝑝𝑟
=

𝑀𝑅 𝐵𝐶𝐽𝑎𝑛−𝐹𝑒𝑏 

𝑀𝑅 𝐵𝐶𝑀𝑎𝑟−𝐴𝑝𝑟
                                                                             Equation 4.4 
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Thus, 

𝑀𝑅 𝑆/𝐼𝑉𝑂𝐶𝑠𝐽𝑎𝑛−𝐹𝑒𝑏   

= (𝑀𝑅 𝐵𝐶𝐽𝑎𝑛−𝐹𝑒𝑏/ 𝑀𝑅 𝐵𝐶𝑀𝑎𝑟−𝐴𝑝𝑟) * 𝑀𝑅 𝑆/𝐼𝑉𝑂𝐶𝑠𝑀𝑎𝑟−𝐴𝑝𝑟                             Equation  4.5 

where MR S/IVOCsJan−Feb is the estimated S/IVOCs at MR (sum of the gas and particle phase) 

from Jan to Feb 2017 (WM/RU sampling time) while MR BCJan−Feb is the measured BC at MR 

from Jan to Feb 2017 (WM/RU sampling time). MR S/IVOCsMar−Apr is the S/IVOCs measured 

at MR (sum of the gas and particle phase) from March to April 2017 (MR sampling time); 

MR BCMar−Apr is the BC measured at MR from March to April 2017 (MR sampling time).  

 

The concentrations (sum of the gas phase and particle phase) of alkanes, monocyclic alkanes, 

bicyclic alkanes and monocyclic aromatics at WM and RU during January to February 2017 

and estimated concentrations at MR during January to February 2017 are shown in Figure 4.3.  

The carbon number distribution of hydrocarbons was similar in different sites. Expectedly, 

SVOC concentrations were the highest at MR as it is a heavily trafficked site. The 

concentrations of hydrocarbons at WM were higher than RU presumably reflecting a greater 

distance of RU from the source of emissions.  

 

Results in the current study were compared with a recent gas-phase S/IVOC study (Dunmore 

et al., 2015) at North Kensington (NK) in London, which is classified as an urban background 

site by the UK automatic air quality network (Dall'Osto et al., 2011). Dunmore et al. (2015) 

grouped alkanes, alkenes and cycloalkanes as aliphatic compounds, suggesting approximately 

5600 ng/m3 for C13 in January/February. To compare with the NK study (Dunmore et al., 2015), 

this study summed the gas-phase concentrations of the alkane groups and monocyclic alkane 
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groups at MR during January-February, reporting a very much lower concentration for C13 (282 

ng/m3). The degree of traffic pollution, as represented by the BC concentration was however 

higher in the Dunmore et al. (2015) study.   

  

Figure 4.3: Concentrations of S/IVOCs at WM, RU and MR during Jan-Feb 2017. Alkanes 

(n+i), monocyclic alkanes, bicyclic alkanes and monocyclic aromatics (sum of the gas phase 

and particle phase) at WM and RU were measured simultaneously from January to February 

2017, together with MR data adjusted to match the same period (see text). 

 

4.5  The effect of wind direction in the street canyon of MR 

Daily mean wind direction data were used to sort the 24h duration S/IVOC samples into the 

north wind (N), south wind (S) and undefined wind (Duffy and Nelson, 1996) based on the 

predominant direction during each sampling interval (See Section 2.1.5). There were 25 daily 

samples collected at MR, including 8 south wind days, 6 north wind days and 11 mixed-flow 

days. The average concentrations of the four main S/IVOC groups during the north wind and 
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south wind have been calculated and compared. In a street canyon, air exchange between the 

street level and the atmosphere on the rooftop level is limited. The traffic emitted pollutants in 

the street are not effectively diluted due to the buildings at the roadside. Therefore, the aerosols 

in the street canyon remain at the street level and result in a high pollutant concentration, 

especially in winter as a result of a more stable weather condition (Wehner et al., 2002; Gromke 

et al., 2008).  

 

Figure 4.4 shows the main vortex in street canyon of Marylebone Road (6 traffic lanes) during 

south wind and north wind, respectively. The pollutants on the street are pushed from the 

ground level up forwards to the leeward side by the main vortex flow. Small weak vortices may 

be observed at the bottom side corners of the canyon (Vardoulakis et al., 2003).During the south 

wind, the sampler at the southern side of Marylebone Road is exposed to the freshly emitted 

traffic pollutants from the road. Therefore, the concentrations at MR are highest with the south 

wind when the flow is carrying traffic-produced contaminants efficiently to the MR sampler. 

During the north wind, the MR sampler is exposed mainly to the incoming air which from the 

background air from north London, resulting in reduced concentrations of S/IVOCs compared 

to the average concentrations of the entire campaign. The concentrations of alkanes (n+i) during 

different wind directions were calculated (Figure 4.5) to investigate the wind effect on the 

traffic emitted pollutants in the street canyon. The alkane concentrations during the southerly 

wind were highest, followed by average alkane concentrations during the entire campaign and 

those during the northerly wind, implying the effect of the vortex on the S/IVOC transport in 

the street canyon. The hydrocarbon distribution in background north London air was very 

similar to that in the air heavily polluted by vehicle emissions when the wind was in the 

southerly sector.  
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Figure 4.4: A sketch of the wind flows in the street canyon of Marylebone Road (6 traffic lanes) 

during the southerly wind and northerly wind. The orange triangle marker represents the MR 

sampling site, and the red round marker represents the WM sampling site (Harrison et al., 2019). 
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Figure 4.5: The average alkane (n+i) concentrations (sum of the gas phase and particle phase) 

during the entire MR campaign, southerly wind and northerly wind. 

 

4.6  Conclusion 

This chapter reported the concentrations of n-alkanes in the gas phase and particle phase 

sampled at four sampling sites in London. The magnitude of concentrations and the carbon 

distribution of n-alkanes measured in this study were consistent with some of the previous 

studies but differed from the others (Cincinelli et al., 2007; Mandalakis et al., 2002), probably 

as a result of different fuel use and road conditions. The consistency between the concentrations 

of low molecular weight n-alkanes measured by DEFRA with those observed in this study 

(Figure 4.1) gives confidence in the data and illustrates the importance of taking account of 

compounds of higher molecular weight. With the increase of carbon number, n-alkane 

concentrations measured by GC× GC (C12 to C31) in the gas phase followed the consistent 

downward tendency with the DEFRA network n-alkanes (C2-C8) as the n-alkanes were 

partitioning from the gas phase to the particle phase. 
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The diagnostic ratios of n-alkanes (CPI, %WNA, and Cmax) as well as correlation analysis 

between S/IVOC groups and traffic indicator suggested that traffic was the major contributor 

for all four sites with a minor contribution from other sources (i.e., plant wax). Biogenic sources 

made a slightly higher contribution to those heavier compounds (above C25) and to those 

measured in the particle phase. More specifically, measured alkanes (acyclic and cyclic) and 

monocyclic aromatic compounds at MR were mainly attributable to diesel-powered vehicles 

while a major proportion of the low molecular weight compounds were attributable to the 

gasoline-powered vehicles. 

 

Direct comparisons of S/IVOCs from MR with those from WM and RU were not carried out 

due to them being collected in different sampling periods. MR S/IVOC concentrations were 

scaled by taking account of BC as dispersion marker to assume MR S/IVOCs were collected 

simultaneously with WM and RU. As expected, concentrations at MR were the highest of all 

sites as it is a heavily trafficked roadside. The concentration of hydrocarbons at WM was higher 

than RU as the emissions were diluted more at an increased distance from the traffic emission 

source. Wind direction can play a crucial role in affecting the flow and consequent S/IVOC 

concentrations in the street canyon. Winds can typically set up a single vortex in a regular street 

canyon like Marylebone Road when the wind is across the canyon. The alkane concentrations 

at MR were highest when the south wind brought the traffic emitted pollutants to the MR 

sampler, while concentrations were lowest when the north wind brought background air from 

north London.  
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Chapter 5 Estimation of the S/IVOC emission factors at the 

roadside site MR 

This chapter describes the estimation processes and results of emission factors (EFs) of the 

main S/IVOC groups identified at the roadside site MR. Then, a comparison between the 

estimated n-alkane EFs and those estimated in the literature is carried out.  

 

5.1  Introduction 

Road traffic associated emissions are known to make a significant contribution to total particles 

and vapour concentrations in the urban areas. It is important to understand the characteristics 

of S/IVOC emissions from vehicles, especially in megacities like London. Measurements on 

laboratory-based diesel engines (Schauer et al., 1999; Perrone et al., 2014) allow the 

determination of exhaust emissions under controlled test conditions, but these tests often cover 

a limited set of vehicles due to the high costs. These tests cannot fully represent the large 

variation in engine types and driving modes in different environments (Charron et al., 2018), 

and are not able to give an accurate estimation on the effect of dilution on the gas/particle 

partitioning of S/IVOCs (Kim et al., 2016), and do not include non-exhaust emissions (Pant and 

Harrison, 2013). Therefore, estimates deriving from concentration measurements in real-world 

are considered to offer a realistic simulation for the emission factors, which currently comprise 

both tunnel and roadside measurements (Hwa et al., 2002; Kawashima et al., 2006; He et al., 

2008). The emission factors of S/IVOC groups at MR in 2017 were estimated in this chapter to 

investigate the vehicle emissions from Marylebone Road (MR). The estimated emission factors 

of n-alkanes were compared with other published data. 
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5.2  Calculation processes of the S/IVOC emission factors 

NOx emission factor at MR during the MR campaign 2017 was estimated by scaling the NOx 

emission factor at MR in 2002/2003 reported by Jones and Harrison (2006). NOx is usually 

regarded as a traffic indicator in London (Harrison and Beddows, 2017; Harrison et al., 2019), 

especially for the roadside monitoring site MR. The emission factors of S/IVOC groups at MR 

during the MR campaign 2017 were estimated from the ratio of their emissions to NOx 

emissions at MR during the MR campaign 2017. Emissions of pollutants at MR can be 

estimated by the concentrations measured at MR after subtraction of the background 

concentrations. Details of calculation processes are shown in this section. 

 

Light-duty vehicles occupied approximately 91% of all vehicles passing Marylebone Road 

while heavy-duty vehicles accounted for the rest 9%. MR is a congested urban street canyon 

where vehicle speeds vary greatly over short distances (Jones and Harrison, 2006) and the 

traffic flow is over 80,000 vehicles per day. Jones and Harrison (2006) estimated the fleet-

average emission factor of NOx at Marylebone Road in 2002/2003 from fleet composition and 

published emission factors. The NOx emission factors for heavy duty and light duty (veh-1 km-

1), the mean number of vehicles (h-1) and the total number of vehicles (h-1) at Marylebone Road 

in 2002/2003 were listed as followings (Jones and Harrison, 2006),  

 

EF (NOx) = 5.19 g (as NO2) veh-1 km-1 for heavy duty  

EF (NOx) = 0.59 g (as NO2) veh-1 km-1 for light duty 

 

Mean number of vehicles (h-1) = 297 heavy duty 

     2951 light duty 

 

Total number of vehicles (h-1) =3284 
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It leads the composite emission factor of NOx can be calculated as followings,  

 

Composite emission factor = (5.19 × 297 + 0.59 × 2951) ÷ 3248 

    = 1.010 g (NOx as NO2) veh-1 km-1 

 

The emission factor of NOx at MR during the MR campaign 2017 was estimated based on the 

composite emission factor of NOx at MR in 2002/2003 (Jones and Harrison, 2006). Daily mean 

Heathrow wind direction data were applied to sort the entire campaign into days during the 

northerly wind and southerly wind, and the details were shown as Section 4.5. Figure 4.4 shows 

the south wind carries the traffic-emitted pollutants efficiently to the MR sampler while the 

north wind brings the air from the urban background of north London. The differences in the 

pollutant concentrations during southerly wind and northerly wind were used to estimate the 

emissions from MR. Table 5.1 shows the NOx emissions at MR in 2002 and 2003 respectively 

(Jones and Harrison, 2006), and the mean NOx emission value during the period of 2002/2003. 

To estimate the NOx emission at Marylebone Road during the MR Campaign 2017, this study 

regarded the average NOx concentration during southerly wind (326 µg m-3) as the 

concentration measured at Marylebone Road while the NOx concentration during the northerly 

wind (130 µg m-3) as the background level. The emission from MR was estimated as the MR 

concentration after subtraction of the background concentration (Table 5.1). 
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Table 5.1: The NOx concentrations at MR and background, and the NOx emissions from MR 

(the differences between MR and background concentrations). 2002 and 2003 data come from 

Jones and Harrison (2006). 

Concentration (µg m-3) 2002 2003 2002/2003 Mean MR Campaign 2017 

Marylebone Road (NOx) 300 314 307 326 

Background (NOx) 66 74 70 130 

Emission at MR (NOx) 234 240 237 196 

 

 

Based on 2002/2003 data, NOx EF during the MR Campaign 2017 can be calculated as follows, 

EF (NOx) during the MR Campaign 2017 

 = EF (NOx in 2002/2003) x 
Emission from MR (NOx)in 2017

Emission from MR (NOx)in 2002/2003
 

                 = 1.010 x 
196

237
  

                 = 0.84 g (NOx as NO2) veh-1 km-1  

 

The NOx emission factor at Marylebone Road was estimated as 0.84 g veh-1 km-1, based upon 

the mean NOx concentrations during the MR sampling period.  

 

S/IVOC EFs were scaled from the NOx EF at MR during the MR campaign 2017 based on the 

following equations,  

 

S/IVOC MR EF /NOx MR EF = S/IVOC MR emission /NOx MR emission.                         Equation 5.1 

S/IVOC MR EF = NOx MR EF × (S/IVOC MR emission /NOx MR emission)                      Equation 5.2 

where S/IVOC MR EF and NOx MR EF represent the S/IVOC and NOx emission factors at MR 

respectively. S/IVOC MR emission and NOx MR emission represent the S/IVOC and NOx emissions 

per vehicle per kilometre from the MR.  
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An example of the calculation processes of the C13 n-alkane EF (sum of gas and particle phase) 

at MR during the MR Campaign 2017 was shown as below, and Table 5.2 shows the data that 

be involved into the calculation. Figure 5.1 shows the difference in n-alkane concentrations 

during the northerly wind and southerly wind.  

 

EF (C13 n-alkanes in gas and particle) at MR 2017 can be calculated based on NOx at MR 2017: 

EF (C13 n-alkanes in gas and particle) = NOx EF × 
C13 n−alkanes MR increment

NOx MR increment
 

= 0.84 × 
0.011

196
  = 4.7 × 10−5g veh-1 km-1  

= 47 µg veh-1 km-1 at MR in 2017 

 

 

Table 5.2: The emissions of NOx and C13 n-alkane (sum of gas phase and particle phase) from 

MR in 2017. The emission concentrations (traffic increment) from MR can be estimated as MR 

concentrations after subtraction of the background concentration. 

Pollutants MR Campaign 

2017 

Information Concentration 

 (µg m-3) 

NOx Marylebone Road  

 

NOx concentrations during the south 

wind 

326 

Background  

 

NOx concentrations during the north 

wind 

130 

Traffic increment  Difference between the south wind and 

south wind 

196 

 

    

C13  

n-alkane  

 

Marylebone Road  

 

C13 n-alkanes  

concentrations during the south wind 

0.046 

Background 

 

C13 n-alkanes  

concentrations during the north wind 

0.035 

Traffic increment  Difference between the south wind and 

south wind 

0.011 
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Figure 5.1: The average n-alkane concentrations at MR (sum of gas phase and particle phase) 

during the entire MR campaign, southerly and northerly winds. 

 

5.3  Emission factors of the main S/IVOC groups 

The emission factors of S/IVOC groups identified at MR were estimated. 92% of the gas phase 

emissions and 99.5 % of the particle phase emissions were contributed by four main classes of 

compounds, including alkanes, monocyclic alkanes, bicyclic alkanes and monocyclic aromatics 

(Figure 5.2).  Alkane, an abundant S/IVOC class in gasoline, diesel fuel and lubricant oil, was 

identified as a major component in the particle-phase organic compounds from vehicle 

emissions (Rogge et al., 1993a; He et al., 2008; Schauer et al., 1999). Particle-phase alkanes 

(n+i) had the highest total emission factor among all particle-phase compound classes in this 

study, with a total emission factor of alkanes from C13 to C31 in the gas phase estimated as 1306 

µg veh-1 km-1, with 1744 µg veh-1 km-1 from C13 to C36 in the particle phase. The emissions of 

monocyclic alkanes, bicyclic alkanes, monocyclic aromatics and naphthalene were more 

abundant in the gas phase than in the particle phase. Monocyclic alkanes from C12 to C18 were 
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detected in the gas phase emissions with a total emission factor of 988 µg veh-1 km-1 while C12 

to C25 were detected in the particle phase with a total emission factor of 562 µg veh-1 km-1. 

Emission factors of bicyclic alkanes were 511 µg veh-1 km-1 (C13 to C17) in the gas phase and 

446 µg veh-1 km-1 (C13 to C27) in the particle phase. Emission factors of monocyclic aromatics 

were 592 µg veh-1 km-1 (C10 to C19) in the gas phase and 308 µg veh-1 km-1 (C10 to C24) in the 

particle phase. Naphthalene was the most abundant individual compound among the measured 

PAHs. Alkyl-naphthalenes were defined as a compound class in this work, and emission factors 

were estimated based on their total carbon number. The summed emission factors of 

naphthalenes (C11 to C16) were 129 µg veh-1 km-1 in the gas phase and 15 µg veh-1 km-1 in the 

particle phase.  

 

Figure 5.2: Emission factors of alkanes (n+i), monocyclic alkanes, bicyclic alkanes and 

monocyclic aromatics in the gas phase and particle phase at MR. 
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5.4  Comparison of n-alkane EFs with the literature 

A few tunnel and roadside measurements have been reported which present the emission factors 

of individual organic compounds in real-world conditions (Hwa et al., 2002; Kawashima et al., 

2006; He et al., 2008; Staehelin et al., 1998). Very few studies have reported the emission 

factors of the heavier hydrocarbons (above C12), leading to a lack of information for a 

comprehensive comparison. The most frequently reported compounds are n-alkanes, so the n-

alkane EFs estimated in the current study were compared with those reported in earlier studies. 

Table 5.3 shows the n-alkane emission factors reported in this study and three previous studies, 

including the Zhujiang Tunnel study in China (He et al., 2008), the roadside study of Route 467 

in Fujisawa, Japan (Kawashima et al., 2006) and the roadside study of Grenoble Ring Road in 

Grenoble, France (Charron et al., 2019). The background information on these studies can be 

seen in Table 5.4, including sampling date, vehicle speed, traffic volume and the proportion of 

light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs).  The emission factors of n-alkanes 

measured in the gas phase in this study were markedly lower than in the roadside study in Japan 

(Kawashima et al., 2006). The emission factors of the particle-phase n-alkanes ranging from 

C19-C26 showed a good agreement with the tunnel study in China (He et al., 2008) and the 

roadside study in France (Charron et al., 2019), all of which showed a broad peak at around 

C21-C25. Higher particle-phase emissions of long-chain n-alkanes (above C27) were detected in 

this study compared with the Zhujiang Tunnel study in China (He et al., 2008).  Also included 

in Table 5.3 are the emission factors for particle-phase hydrocarbons measured on a chassis 

dynamometer for passenger cars of Euro 3, Euro 4, and Euro 4 with a particle trap (Charron et 

al., 2019).  The on-road emission factors measured both in this work and by previous work in 

Table 5.3 are close to, or exceed the values for Euro 3 vehicles, despite the fact that most 

vehicles would have been built to more recent Euro standards at the time of sampling, and many 
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would be fitted with a diesel particle filter (DPF).  This suggests a major contribution from the 

heavy-duty vehicles and/or many high emission vehicles with malfunctions in their emissions 

control devices or an unrepresentative test cycle in the laboratory work.   

 

Factors which influence the emission factors include the road conditions, vehicle type, vehicle 

speed and driving mode, and the composition of fuel and oil in use.  Vehicle fleet composition 

varies appreciably between countries. There are far fewer light-duty diesel-powered vehicles in 

China and Japan than in the EU. Gasoline-powered engines are typically used in light-duty 

vehicles (LDVs) whilst diesel-powered engines are dominant in heavy-duty vehicles (HDVs) 

because diesel engines have greater fuel efficiency and torque compared to gasoline engines. 

However, the market of the small vehicle has been shifted to diesel-powered vehicles in recent 

year, especially in several European countries including the UK (Ntziachristos et al., 2017; 

EMEP/EEA, 2016). Diesel vehicles represented 40% of the vehicles in the UK in 2017  (Fleet 

News, 2018) while accounted for 72% of vehicles in France in 2011 (Charron et al., 2019). In 

contrast, light-duty gasoline vehicles represent a large percentage of the Chinese vehicle fleet, 

and the share increased rapidly from less than 50% in 2002 to 70% in 2009 (Huo et al., 2012). 

In Japan, the ratio of diesel-powered small trucks to gasoline-powered vehicles was 8.1% 

(Kawashima et al., 2006). Gentner et al. (2012) measured the carbon distribution of straight and 

branched chain alkanes from gasoline- and diesel-powered vehicles, finding a predominant 

contribution of gasoline combustion to the lighter alkanes (up to C12). Diesel emissions are 

mainly comprised of heavier aliphatic hydrocarbons containing primarily unburned fuel (up to 

C20) and unburned lubricating oil (C18 to C36) (Alam et al., 2016b). Therefore, greater emissions 

of light alkanes might be expected in the gas phase in Japan as gasoline-powered vehicles 

dominate the market. The composition of lubricants may explain the difference in the long chain 
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n-alkane (above C27) emissions in this study and the Zhujiang Tunnel study in China (He et al., 

2008). 
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Table 5.3:  Summary of emission factors of n-alkanes (µg veh-1 km-1) in the near-road measurements (IQR:25th and 75th percentiles) and lab tests. 

 

Carbon 

No 

 

Roadside of Marylebone 

Road, London, UK 2017 

 

Zhujiang Tunnel, China 

(He et al., 2008) 

Roadside of Route 467, 

Japan 

(Kawashima et al., 2006) 

Roadside of Grenoble Ring 

Road, France IQR emission 

significantly related to traffic 

(Charron et al., 2019) 

Diesel passenger cars 

(lab tested) median 

concentration 

 (Charron et al., 2019) 

 Gas phase Particle phase 
Particle phase 

(PM2.5 emissions) 
Gas phase Particle phase Particle phase 

      E3 E4 E4 + PF 

C13 43.26 2.50  540     

C14 17.83 1.60  260     

C15 75.66 2.84  380     

C16 76.12 8.40 4.11 250     

C17 70.53 1.10 10.7      

C18 112.63 5.61 6.69      

C19 23.81 20.58 14.9  2.0-8.3 17.4 4.7 0.92 

C20 10.19 20.42 24.9  5.2-18.9 25.4 5.1 2.8 

C21 9.27 65.22 40.5  19.9-62.4 31.5 5.8 2.8 

C22 14.37 60.64 61.6  29.8-81.4 22.1 4.9 2.2 

C23 22.43 35.61 68.7  30.6-70.3 16.8 4.2 1.1 

C24 23.92 47.58 57.9  26.1-52.5 11.1 3.5 0.2 

C25 19.50 36.93 36.4  12.5-34.2 6.1 1.9 n.d. 

C26 8.04 21.19 13.4  9.3-21.9 3.6 1.2 n.d. 

C27 4.21 31.52 7.79      

C28 0.92 33.68 5.62      

C29 0.58 44.66 3.55      

C30 0.43 33.69 1.79      

C31 0.05 54.63 0.17      

C32  79.05 0.062      

C33  60.90       

C34  11.42       

Note: E3 is Euro 3, E4 is Euro 4 and PF is a diesel particle filter.
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Table 5.4: A summary of sampling date, vehicle speed, traffic volume, the proportion of light-

duty vehicles (LDVs) and heavy-duty vehicles (HDVs) for the near-road emission factor 

measurements.  

Study 
City and 

Country 
Date 

Speed 

(km h-1) 

Traffic 

volume 

(vehicle h-1) 

Proportion of LDVs 

(%) and HDVs (%) 

Marylebone Road 

(Current study) 

London  

UK 

Feb-

March 

2017 

- Over 3000 
 91% LDVs 

9% HDVs 

Zhujiang 

Tunnel 

(He et al., 2008) 

China 
Sep 

2014 
40-50 

1812 (542-

2348) 

80.2% LDVs 

19.8% HDVs 

Route 467 

(Kawashima et 

al., 2006) 

Fujisawa 

Japan 
2003 

22 (11-

53) 

1387 (1170-

1530) 

 81.3% LDVs 

12.3% HDVs 

6.5% Motorcycles 

Grenoble Ring 

Road 

(Charron et al., 

2019) 

 

Grenoble 

France 

Sep 

2011 

80 (52-

94) 
2708-3958 

95% LDVs 

5%HDVs 

 

5.5  Conclusion  

The emission factors of NOx and S/IVOC groups at the roadside site MR were estimated based 

on published data (Jones and Harrison, 2006) to investigate the emissions from the heavily 

trafficked Marylebone Road.  The four main class of compounds, including alkanes (n+i), 

monocyclic alkanes, bicyclic alkanes and monocyclic aromatics contributed to 92% of the gas 

phase emission and 99.5 % of the particle phase emission at MR. 

 

Emission factors of n-alkanes in this study were compared with those estimated from three past 

studies: a tunnel study in China (He et al., 2008), a roadside study in Japan (Kawashima et al., 

2006) and a roadside study in France (Charron et al., 2019). This study showed a good 

agreement with the tunnel study in China (He et al., 2008) and the roadside study in France 

(Charron et al., 2019). The gas-phase n-alkanes in the roadside study in Japan (Kawashima et 
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al., 2006) were significantly higher than in this study, probably caused by variations in the 

vehicle type and the composition of fuel/oil in use, as well as the road conditions and vehicle 

speed. 
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Chapter 6 Gas-particle partitioning and potential SOA formation 

This chapter discusses the gas-particle partitioning of individual n-alkanes based on Pankow’s 

gas-particle partitioning theory. Also, this chapter estimates the primary reactivity between OH 

radicals and the main S/IVOC classes identified in this study, and the potential formation of 

secondary organic aerosol (SOA) from these S/IVOC groups.  

 

6.1  Introduction 

Semi-volatile and intermediate volatility organic compounds (S/IVOCs) are compounds that 

can partition between the gas phase and particle phase in the atmosphere. The partitioning of 

S/IVOCs is an important process that affects many concerns, such as the formation of secondary 

organic particles and the role of organic aerosols in climate change (Arp et al., 2008). 

Gas/particle (G/P) partitioning varies with changing atmospheric conditions, and the 

partitioning equilibrium is generally reached resulting from the concentration and composition 

of particulate matter, the vapour pressure of the compound, and the temperature and relative 

humidity of the environment (Yamasaki et al., 1982; Pankow and Bidleman, 1992). G/P 

partitioning also affects a compound’s atmospheric fate, its permanence in the air, its deposition, 

and its transformation and transport (Bidleman et al., 1986; Pankow and Bidleman, 1992; 

Mader and Pankow, 2001; Sangiorgi et al., 2014).  Different chemical groups have variable 

vapour pressures, and may present different G/P partitioning coefficients due to their diverse 

interaction with soot and organic matter (Kaupp and McLachlan, 1999; Arp et al., 2008; He and 

Balasubramanian, 2009; Williams et al., 2010b; Sangiorgi et al., 2014). 
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A great number of studies have been processed over the last two decades to clarify the factors 

governing the gas/particle partitioning. However, fewer papers have focused on other semi-

volatile organic compound classes compared to PAHs; therefore, it is difficult to extend the 

partitioning models to the S/IVOCs other than PAHs due to the lack of knowledge. n-Alkanes 

are always regarded as the research objective in the studies of the G/P partitioning of S/IVOCs 

because they have a similar vapour pressure (10-6 to 10-13 atm) to PAHs but diverse physical-

chemical properties and emission sources (Sangiorgi et al., 2014). A handful of studies 

discussed the partitioning of n-alkanes (Leal-Granadillo et al., 2000; Mandalakis et al., 2002; 

Bi et al., 2003; Cincinelli et al., 2007). This study discussed the partitioning of measured n-

alkanes at four sites based on Pankow’s gas-particle partitioning theory (Pankow and Bidleman, 

1992; Pankow, 1994). 

 

Large quantities of gas-phase S/IVOCs contribute to ozone and other secondary pollutant 

generation following the reaction with OH radicals (mainly during daylight hours).  For the 

majority of the tropospheric organic compounds in the gas phase, reaction with the OH radicals 

is the dominant loss process (Kwok and Atkinson, 1995). The lifetime of these chemicals in the 

troposphere plays a crucial role in the transportation of compounds to remote regions (Bidleman 

et al., 1990). The mechanism and the rate coefficients 𝑘𝑂𝐻  for the reactions between OH 

radicals and alkanes (acyclic and cyclic) as well as aromatics have been discussed and evaluated 

in the literature (Atkinson, 2003; Atkinson, 1986b; 1997; Atkinson and Arey, 2003). The 

primary OH reactivity with alkane homologues and monocyclic aromatics were considered and 

estimated in this study. 
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Recent studies have proposed that low-volatile organic vapour can lead to the significant 

production of secondary organic aerosol (SOA), but this reactant is not included in many model 

studies (Presto et al., 2010; Robinson et al., 2007; Lim and Ziemann, 2005; Lim and Ziemann, 

2009b). The traditional gas chromatography-mass spectrometry (GC-MS) cannot separate the 

vast majority of S/IVOCs adequately and presents them as an unresolved complex mixture 

(UCM). Alkane classes (linear, branched and cyclic) and aromatic compounds account for the 

major fraction of  the unresolved complex mixture (UCM) (Robinson et al., 2007; Isaacman et 

al., 2012; Jathar et al., 2012; Mao et al., 2009; van Deursen et al., 2000) while S/IVOC UCM 

contributes to a substantial fraction of SOA formation (Zhao et al., 2014). The larger 

hydrocarbons (above C12) identified in this research represent a substantial part of what is 

referred to as unspeciated chemicals in other studies, so the contribution of different traffic 

emitted S/IVOC groups to the potential SOA formation can be more accurately estimated by 

using our data.   

 

Many of studies shows that structure and chain length of alkanes affect their SOA yields (Lim 

and Ziemann, 2005; Lim and Ziemann, 2009a; Lim and Ziemann, 2009b; Lim and Ziemann, 

2009c; Lipsky and Robinson, 2006; Presto et al., 2010; Presto et al., 2009; Lambe et al., 2012; 

Tkacik et al., 2012). Chain length leads to the difference in SOA yields through its influence 

on the volatility of formed products (Lim and Ziemann, 2005; Pye and Pouliot, 2012), and the 

structure of alkanes (linear, branched, cyclic or cyclic+branched) affects the yields through the 

competition between isomerisation and decomposition of alkoxy radical (Lim and Ziemann, 

2009b; Atkinson, 2007; Pye and Pouliot, 2012). Isomerisation process can lead to further 

functionalisation and low-volatile products while decomposition would compete with 

isomerisation and decrease the SOA yields for those alkanes with adjacent branch alkoxy 
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radical. Regarding those alkanes with large ring (i.e., cyclooctane, cyclodecane), decomposition 

leads to the generation of open-ring products with an addition carbonyl group, resulting in 

higher SOA yields than linear alkanes with same carbon number (Pye and Pouliot, 2012). The 

reaction of alkanes and OH radicals under the high NOx conditions result in highly oxidised 

products (Lim and Ziemann, 2009b; Russell et al., 2011). Photooxidation of long-chain alkanes 

may present an important contribution to SOA formation due to their relatively long lifetimes 

with OH reaction at typical atmospheric OH concentrations (from several hours to days) (Yee 

et al., 2012). Several recent studies have worked on the oxidation of alkanes in the absence of 

NOx to estimate the SOA formation after longer times (i.e., after 12h) (Yee et al., 2012; Lambe 

et al., 2012; Loza et al., 2014).  

 

Monocyclic aromatics also play an important role in atmospheric chemistry processes, 

acting as precursors of tropospheric ozone (Atkinson and Arey, 2003) and secondary 

organic aerosol (SOA) (Dechapanya et al., 2003a; b). For monocyclic aromatics, the 

mechanisms of SOA formation have not been fully understood (Ng et al., 2007). Few studies 

worked on the molecular composition of SOA from the oxidation of aromatics (Jang and 

Kamens, 2001; Kleindienst et al., 2004). Light aromatics are traditionally regarded as important 

precursors for SOA formation. SOA yields of some light aromatics have been established based 

on the level of nitrogen oxides (NOx), and the target aromatics were mainly m-xylene, toluene, 

and benzene (Song et al., 2005; Presto et al., 2005; Ng et al., 2007; Song et al., 2007). The SOA 

yields were estimated under high NOx conditions and low NOx conditions where peroxyl 

radicals (RO2) react primarily with NO and react primarily with HO2, respectively (Ng et al., 

2007; Loza et al., 2014). Similar to alkane classes, SOA yields of aromatics are sensitive with 
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the presence of NOx, and the observed SOA yields were higher in the absence of NOx in the 

literature (Ng et al., 2007; Song et al., 2005; Henze et al., 2008).  

 

 

6.2  Gas-particle partitioning  

A critical consideration in understanding and modeling the atmospheric transport and removal 

of semi-volatile organic components is the distribution of these substances between the gas (or 

vapour) and particle phases (G/P) (Foreman and Bidleman, 1990). Many studies about the G/P 

partitioning of semi-volatile organics have involved simple physical adsorption mechanism 

(Liang et al., 1997; May et al., 2013). Organic vapour can absorb into organic liquid or onto the 

surface of soot, and the relative contribution of this mechanism depends on the proportion of 

the sorptive material (Roth et al., 2005). Studies have identified that absorption is the dominant 

gas-particle partitioning mechanism in the atmosphere (Roth et al., 2005; Liang et al., 1997).  

 

6.2.1 Pankow’s gas-particle partitioning theory 

Locally released organic compounds need to equilibrate to the particles present and ambient 

temperature. Gas to particle adsorption begins when relatively clean particles enter the 

contaminated air. The distribution of a semi-volatile compound between the gas phase and 

particle phase in the atmosphere is defined by using partition coefficient Kp (Pankow and 

Bidleman, 1992; Pankow, 1994), 

Kp= (F/TSP)/A.                                                                                  Equation 6.1 

where F and A are the chemical concentrations (ng/m3) in the particle phase and the gas phase 

respectively. TSP is the total suspended particle concentration (ug/m3), and TSP was estimated 

based on the concentrations of PM10 divided by 0.8 for the urban traffic. The average mass 
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concentration (ug/m3) of PM10 was calculated based on the hourly data offered by DEFRA 

North Kensington monitoring site (an urban background monitoring site in London). 

 

Partitioning to the particulate matter increases with the increase of Kp (Pankow and Bidleman, 

1992).  For a given sample at a given temperature, Kp tends to be correlated with the sub-cooled 

liquid vapour pressure (VPt, torr) according to the following equation (Pankow, 1994), 

LogKp=mrlog(VPt)+br                                                                                                               Equation 6.2 

when Log Kp is regressed against the vapour pressure (VPt), negative slopes (mr) are generally 

observed, presenting an association of the target compound with aerosol particles decreases 

with the increase of vapour pressure (Yamasaki et al., 1982; Gustafson and Dickhut, 1996; 

Harner and Bidleman, 1998; Lohmann et al., 2000; Fernández et al., 2002; Cincinelli et al., 

2007).  Kp is temperature dependent; therefore VPt used in such regression must pertain to the 

temperature during the sampling. The temperature applied was from Met Office (2006). 

 

The vapour pressure values were calculated by UManSysProp v1.0 (UManSysProp, 2016), 

which is an online tool to estimate the vapour pressure of organic compounds at a given 

temperature by selecting a list of methods. The technique of UManSysProp v1.0 was explained 

by Topping et al. (2016), and methods provided by the tool were reviewed by Barley and 

McFiggans (2010) and O'Meara et al. (2014). This study selected the vapour pressure method 

provided by Compernolle et al. (2011) as it is close to the lab results of the FASTER vapour 

pressure study (Alam et al., 2019a). 
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6.2.2 Variability on slope (mr) and intercept (br) 

Theory predicts slope mr value should be near to -1 under equilibrium conditions for either 

adsorptive or absorptive partitioning (Pankow and Bidleman, 1992; Pankow, 1994). The values 

of log Kp were regressed upon log (VPt) for all n-alkanes (C13 to C29) at a given day in the 

London Campaign 2017 (Table 6.1-6.4).  The slopes (mr) of these regressions ranged from -

0.13 to -0.42 with an average R2 of 0.68±0.16 for WM, ranged from -0.20 to -0.42 with an 

average R2 of 0.77±0.09 for RU, ranged from -0.22 to -0.54 with an average R2 of 0.71± 0.11 

for MR, and ranged from -0.10 to -0.40 with an average R2 of 0.52± 0.15 for EL.  

 

This study reported a good fit to the regression relationship between log kp versus log(VPt) for 

n-alkanes, but slopes were shallower than the theoretical value of -1 according to equilibrium 

conditions. The mr values at MR were relatively closer to the theoretical value of -1 compared 

with other sites. A previous FASTER study (Lyu et al., 2019) reported the calculated log kp 

versus log(VPt) for alkanals (C10-C14), alkan-2-ones(C10-C18) and alkan-3-ones(C10-C16) for 

each day collected at four sites in the London Campaign 2017, and showed the best fit to the 

regression equation was at MR. It is not easy to explain the differences among sites. One 

possible explanation could be that gas-particle partitioning was closer to equilibrium at MR as 

the increased particle surface area at MR enhanced the kinetics of gas-particle exchange (Lyu 

et al., 2019). The difference in ambient temperature (0.4-11.4 ℃ during WM/RU measurements, 

4.1-12.7 ℃ during EL measurements, and 8.2-15.5℃ during MR measurements) might be one 

of the reasons causing the difference in the slope values mr among sites.  

 

The gas-phase n-alkanes were partitioning to the particle phase with the increase of the carbon 

number (Figure 4.1). The fraction of gas-phase n-alkanes decreased gradually from C13 to C22 
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with a small peak at the C23 to C29, probably because diesel-related hydrocarbon emissions are 

overwhelming in the gas phase (Dunmore et al., 2015). The analysis of n-alkane partitioning 

was divided into two groups, including C13 to C22 and C23 to C29 (Table 6.1-6.4). There were 

weaker correlations expressed as R2 values for divided groups rather than the total carbon range 

of C13 to C29, probably due to the lower analytical precision. 

 

There are noticeable differences in reported mr values in the literature. Some are close to the 

theoretical value of -1 while significant deviations have also been reported. Many reasons have 

been discussed to explain the variability of slope mr, and these deviations do not always indicate 

disequilibrium (Terzi and Samara, 2004).  Recently, a few studies worked on the gas-particle 

partitioning of n-alkanes (Mandalakis et al., 2002; Cincinelli et al., 2007; Karanasiou et al., 

2007) and PAHs (Mandalakis et al., 2002; Callén et al., 2008; Fernández et al., 2002; Gaga and 

Ari, 2011), showing significantly shallower mr values ranging around -0.5 (Lyu et al., 2019). 

Slopes shallower than -0.6 are characteristics of absorption into the organic matter, while those 

steeper than -1 are generally interpreted to be attributed to adsorption on particle surfaces 

(Fernández et al., 2002; Callén et al., 2008).  Other reasons associated with the shallow slopes 

have been discussed by Terzi and Samara (2004) and Callén et al. (2008), such as (a) chemical 

reaction in the ambient air (b) presence of nonexchangeable S/IVOCs fractions on particulate 

matter (c) slow gas-to-particle sorption of the heavier compounds with lower volatility (d) 

pollution sources close to the sampling site, so that the produced compounds have no time to 

cool down and pass to the particle phase (e) difference in energy terms (i.e. activity coefficients, 

adsorption sites and enthalpies) that affected by the chemical composition of the particles. 

Regarding the temperature variations during the sampling, there is no clear evidence indicating 

the fluctuations in temperature are responsible for shallower slopes.  Steeper slopes can be 
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observed in the study that the temperature changed higher than 10 ℃, while shallow slopes 

were shown in the study that temperature fluctuations were lower than 6 ℃ (Callén et al., 2008).  

 

There is some compound to compound similarity in intercept  br (Pankow and Bidleman, 1992; 

Pankow, 1994). The values of br varied from day to day, but most of them were in the range of 

-2 to -5 for n-alkanes from C13 to C29 (Table 6.1-6.4). The factors that affect the slope mr also 

affect the intercept br. Values of br mainly depend on the properties associated with the particles. 

The number of adsorption sites and chemical interactions on the particle surface are the main 

factors that affect br values for adsorptive partitioning, while the activity coefficient of the 

absorbing compound in organic components and the fraction of organic components on the 

particle surface affect br values for absorptive partitioning (Pankow and Bidleman, 1992; 

Pankow, 1994; Terzi and Samara, 2004).  
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Table 6.1: Analysis of n-alkane partitioning, all compounds, daily data at WM.  

Date 

Total 

C13 to C29  

Group1 

C13 to C22 

Group 2 

C23 to C29 

Slope mr  Intercept br R2 Slope mr Intercept br R2 Slope mr Intercept br R2 

26/01/2017 -0.33 -4.81 0.84 -0.09 -3.92 0.04 -0.34 -4.84 0.64 

27/01/2017 -0.28 -4.18 0.81 -0.26 -4.10 0.28 -0.40 -5.22 0.72 

28/01/2017 -0.24 -2.67 0.65 -0.34 -3.00 0.46 -0.37 -3.89 0.77 

29/01/2017 -0.33 -3.35 0.77 -0.21 -2.98 0.26 -0.09 -1.21 0.10 

03/02/2017 -0.42 -3.21 0.69 -0.50 -3.50 0.59 -0.12 -1.00 0.21 

04/02/2017 -0.23 -3.18 0.86 -0.14 -2.91 0.24 -0.18 -2.68 0.34 

05/02/2017 -0.35 -3.26 0.75 -0.53 -3.99 0.71 -0.35 -3.50 0.92 

06/02/2017 -0.13 -2.67 0.32 -0.22 -3.03 0.49 0.04 -1.18 0.00 

07/02/2017 -0.29 -4.32 0.75 -0.14 -3.81 0.10 -0.41 -5.41 0.48 

08/02/2017 -0.23 -3.51 0.66 -0.34 -3.96 0.50 -0.06 -1.98 0.10 

09/02/2017 -0.33 -3.72 0.80 -0.40 -4.02 0.60 -0.16 -2.27 0.68 

10/02/2017 -0.26 -4.05 0.64 0.13 -2.67 0.24 -0.33 -4.42 0.64 

11/02/2017 -0.39 -4.74 0.59 -0.45 -4.97 0.40 -0.02 -1.66 0.04 

12/02/2017 -0.23 -4.18 0.70 -0.05 -3.61 0.02 -0.10 -2.95 0.14 

13/02/2017 -0.31 -4.22 0.75 -0.34 -4.39 0.39 -0.13 -2.60 0.30 

14/02/2017 -0.24 -4.45 0.70 0.07 -3.38 0.07 -0.61 -7.69 0.84 

15/02/2017 -0.32 -3.24 0.77 -0.36 -3.39 0.54 -0.31 -3.13 0.42 

16/02/2017 -0.34 -3.65 0.73 -0.34 -3.67 0.41 -0.11 -1.69 0.39 

17/02/2017 -0.14 -3.86 0.30 0.02 -3.27 0.00 -0.52 -7.32 0.65 

18/02/2017 -0.31 -4.30 0.85 -0.06 -3.47 0.03 -0.37 -4.75 0.68 

19/02/2017 -0.20 -2.58 0.37 -0.36 -3.21 0.56 0.17 0.54 0.05 
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Table 6.2: Analysis of n-alkane partitioning, all compounds, daily data at RU.  

Date 

Total 

C13 to C29  

Group1 

C13 to C22 

Group 2 

C23 to C29 

Slope mr Intercept br R2 Slope mr Intercept br R2 Slope mr Intercept br R2 

27/01/2017 -0.27 -2.98 0.70 -0.34 -3.26 0.43 -0.13 -1.69 0.37 

28/01/2017 -0.25 -2.79 0.69 0.09 -1.61 0.10 -0.40 -4.07 0.45 

29/01/2017 -0.20 -1.90 0.51 -0.36 -2.52 0.57 -0.07 -0.89 0.04 

03/02/2017 -0.33 -3.21 0.82 -0.28 -3.04 0.49 -0.31 -2.99 0.48 

04/02/2017 -0.26 -2.58 0.72 -0.50 -3.52 0.90 -0.15 -1.85 0.57 

05/02/2017 -0.31 -3.28 0.65 -0.52 -4.19 0.64 0.03 -0.18 0.02 

06/02/2017 -0.40 -4.24 0.76 -0.17 -3.35 0.15 -0.88 -8.58 0.77 

07/02/2017 -0.36 -4.59 0.80 -0.37 -4.52 0.49 -0.86 -9.17 0.90 

08/02/2017 -0.26 -3.54 0.73 -0.21 -3.39 0.24 -0.22 -3.13 0.21 

09/02/2017 -0.31 -4.36 0.86 -0.16 -3.79 0.13 -0.32 -4.37 0.80 

10/02/2017 -0.40 -4.10 0.91 -0.26 -3.58 0.32 -0.38 -3.87 0.83 

11/02/2017 -0.35 -4.41 0.85 -0.40 -4.60 0.56 -0.31 -4.10 0.34 

12/02/2017 -0.32 -4.45 0.86 -0.18 -3.99 0.15 -0.19 -3.16 0.72 

13/02/2017 -0.35 -4.80 0.79 -0.40 -5.05 0.55 -0.02 -1.80 0.01 

14/02/2017 -0.27 -4.29 0.79 -0.34 -4.45 0.60 -0.50 -6.31 0.77 

15/02/2017 -0.34 -3.87 0.89 -0.30 -3.72 0.40 -0.41 -4.43 0.72 

16/02/2017 -0.30 -3.87 0.78 -0.07 -3.15 0.02 -0.19 -2.88 0.45 

17/02/2017 -0.25 -4.10 0.75 -0.18 -3.81 0.19 -0.51 -6.41 0.71 

18/02/2017 -0.26 -3.81 0.71 -0.05 -3.10 0.01 -0.36 -4.61 0.70 

19/02/2017 -0.42 -3.67 0.83 -0.49 -3.91 0.62 -0.41 -3.65 0.81 
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Table 6.3: Analysis of n-alkane partitioning, all compounds, daily data at MR.  

 

Date 

Total 

C13 to C29  

Group1 

C13 to C22 

Group 2 

C23 to C29 

Slope mr Intercept br R2 Slope mr Intercept br R2 Slope mr Intercept br R2 

22/03/2017 -0.22 -2.62 0.59 -0.25 -2.72 0.33 -0.36 -3.94 0.79 

23/03/2017 -0.38 -4.21 0.67 -0.57 -4.83 0.79 -0.85 -8.63 0.72 

24/03/2017 -0.38 -4.31 0.76 -0.48 -4.69 0.63 -0.38 -4.36 0.37 

25/03/2017 -0.40 -4.21 0.72 -0.53 -4.66 0.63 -0.56 -5.74 0.57 

26/03/2017 -0.32 -3.73 0.67 -0.45 -4.20 0.59 -0.46 -5.09 0.51 

27/03/2017 -0.52 -4.92 0.87 -0.52 -4.86 0.62 -0.70 -6.46 0.89 

28/03/2017 -0.36 -2.94 0.65 -0.55 -3.62 0.57 -0.21 -1.78 0.16 

29/03/2017 -0.50 -3.89 0.78 -0.55 -3.96 0.59 -1.02 -8.40 0.93 

30/03/2017 -0.46 -3.95 0.83 -0.51 -4.08 0.67 -0.70 -5.99 0.73 

31/03/2017 -0.33 -3.19 0.68 -0.52 -3.85 0.68 -0.40 -3.95 0.41 

01/04/2017 -0.37 -4.12 0.77 -0.51 -4.59 0.63 -0.48 -5.16 0.81 

02/04/2017 -0.36 -4.29 0.78 -0.56 -5.03 0.76 -0.28 -3.73 0.43 

03/04/2017 -0.25 -3.71 0.41 -0.41 -4.19 0.46 -0.72 -7.94 0.60 

04/04/2017 -0.35 -3.24 0.50 -0.44 -3.52 0.51 -0.79 -7.05 0.36 

05/04/2017 -0.49 -4.33 0.88 -0.64 -4.87 0.78 -0.42 -3.84 0.71 

07/04/2017 -0.44 -5.15 0.76 -0.60 -5.75 0.64 -0.31 -4.14 0.36 

08/04/2017 -0.51 -4.88 0.78 -0.65 -5.37 0.68 -0.51 -4.95 0.41 

09/04/2017 -0.54 -4.60 0.76 -0.67 -5.07 0.62 -0.42 -3.65 0.27 

10/04/2017 -0.39 -3.86 0.68 -0.70 -4.98 0.73 -0.35 -3.73 0.40 

11/04/2017 -0.47 -4.46 0.75 -0.72 -5.41 0.78 -0.23 -2.55 0.12 

12/04/2017 -0.40 -3.69 0.79 -0.44 -3.81 0.53 -0.56 -5.15 0.81 

13/04/2017 -0.33 -3.67 0.76 -0.44 -4.09 0.73 -0.25 -3.05 0.20 

14/04/2017 -0.46 -4.46 0.68 -0.60 -4.99 0.51 -0.41 -4.18 0.34 

15/04/2017 -0.31 -3.30 0.51 -0.64 -4.53 0.85 -0.26 -3.09 0.09 

16/04/2017 -0.30 -3.02 0.67 -0.44 -3.51 0.60 -0.38 -3.84 0.59 

18/04/2017 -0.30 -3.43 0.68 -0.42 -3.92 0.57    
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Table 6.4: Analysis of n-alkane partitioning, all compounds, daily data at EL.  

Date 

Total 

C13 to C29  

Group1 

C13 to C19 

Group 2 

C20 to C29 

Slope mr Intercept br R2 Slope mr  Intercept br R2 Slope mr  Intercept br R2 

23/02/2017 -0.30 -2.91 0.67 -0.37 -3.03 0.33 -0.45 -4.19 0.70 

24/02/2017 -0.25 -3.07 0.69 -0.52 -3.83 0.65 -0.47 -5.04 0.89 

25/02/2017 -0.10 -1.67 0.40 -0.40 -2.63 0.64 -0.06 -1.38 0.24 

26/02/2017 -0.19 -2.18 0.41 -0.52 -3.29 0.51 -0.04 -1.05 0.02 

27/02/2017 -0.12 -2.23 0.16 -0.32 -3.05 0.33 0.05 -0.77 0.01 

28/02/2017 -0.40 -4.43 0.63 -0.04 -3.04 0.02 -0.92 -8.66 0.79 

01/03/2017 -0.22 -2.80 0.66 -0.36 -3.34 0.51 -0.06 -1.46 0.06 

02/03/2017 -0.28 -2.79 0.71 -0.54 -3.69 0.61 -0.18 -2.07 0.50 

03/03/2017 -0.16 -3.20 0.63 -0.27 -3.54 0.40 -0.23 -3.82 0.38 

04/03/2017 -0.12 -2.52 0.31 -0.41 -3.47 0.48 -0.11 -2.45 0.16 

06/03/2017 -0.17 -3.00 0.55 -0.33 -3.54 0.29 -0.04 -1.94 0.09 

07/03/2017 -0.16 -2.16 0.54 -0.47 -3.20 0.79 -0.07 -1.52 0.12 

08/03/2017 -0.21 -3.09 0.66 -0.43 -3.81 0.45 -0.16 -2.74 0.59 

16/03/2017 -0.19 -3.64 0.41 -0.59 -4.90 0.62 -0.51 -6.50 0.73 

17/03/2017 -0.17 -3.03 0.31 -0.44 -3.75 0.75 -0.69 -7.64 0.52 

18/03/2017 -0.17 -3.19 0.59 -0.39 -3.82 0.60 -0.38 -4.93 0.75 

19/03/2017 -0.18 -3.18 0.51 -0.47 -3.95 0.61 -0.57 -6.43 0.80 
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6.3  Primary OH reactivity  

6.3.1 Estimation of kOH coefficients 

A structure-reactivity approach was developed by Atkinson (1986b) and Kwok and Atkinson 

(1995) to calculate the reaction coefficients 𝑘𝑂𝐻 for the reaction between organic compounds 

and OH radicals in the gas phase. During the reaction, a number of separate OH radical reaction 

processes occur. These processes can be dealt with individually and the rate coefficients can be 

summed. The total OH radical rate coefficient can be calculated based on the following equation 

(Kwok and Atkinson, 1995), 

𝑘𝑡𝑜𝑡𝑎𝑙= k (H atom abstraction from C − H and O − H bonds) 

+k (𝑂H radical addition to > C = C < and − C ≡ C − bonds) 

+ k (𝑂H radical addition to aromatic rings) 

+k (𝑂H radical interaction with − NH2, > NH, > N−, −SH, and − S − groups)    

                                                                                                                                  Equation 6.3 

 

As alkanes only have C–H bonds, the calculation is based upon the estimation of –CH3, –CH2– 

and >CH–. 

k (CH3 −X) =𝑘𝑝𝑟𝑖𝑚F(X)                                                                                        Equation 6.4 

k (𝑋 − CH2 −Y) =𝑘𝑠𝑒𝑐F(X) F(Y)                                                                          Equation 6.5 

k (𝑋 − CH <𝑍
𝑌 )=𝑘𝑡𝑒𝑟𝑡F(X) F(Y) F (Z)                                                                 Equation 6.6 
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𝑘𝑝𝑟𝑖𝑚, 𝑘𝑠𝑒𝑐 𝑎𝑛𝑑 𝑘𝑡𝑒𝑟𝑡 are group rate constants for H-atom abstraction from −CH3, −CH2 − and 

𝑋 − CH <𝑍
𝑌  respectively (Kwok and Atkinson, 1995). 

 

An example of n-butane is given below, 

CH3 − CH2 − CH2 − CH3 

𝑘𝑏𝑢𝑡𝑎𝑛𝑒 = {𝑘𝑝𝑟𝑖𝑚𝐹(−CH2 −) + 𝑘𝑠𝑒𝑐 F (−CH3 ) F (−CH2 −) +  𝑘𝑠𝑒𝑐 F (−CH3 ) F (−CH2 −) 

+ 𝑘𝑝𝑟𝑖𝑚𝐹(−CH2 −)} 

If add one more carbon atom, 𝑘𝑂𝐻 of n-pentane can be given as following, 

CH3 − CH2 − CH2 − CH2 − CH3 

𝑘𝑎𝑑𝑑=𝑘𝑠𝑒𝑐F (−CH2 −) F (−CH2 −) 

𝑘𝑝𝑒𝑛𝑡𝑎𝑛𝑒=𝑘𝑏𝑢𝑡𝑎𝑛𝑒+𝑘𝑎𝑑𝑑 

= {𝑘𝑝𝑟𝑖𝑚𝐹(−CH2 −) + 𝑘𝑠𝑒𝑐F (−CH3) F (−CH2 −) + 𝑘𝑠𝑒𝑐F (−CH2 −)F (−CH2 −) +  𝑘𝑠𝑒𝑐 F 

(−CH3) F (−CH2 −) +𝑘𝑝𝑟𝑖𝑚𝐹(−CH2 −)} 

 

Kwok and Atkinson (1995) suggested the values of 𝐹(−CH2 −) 𝑎𝑛𝑑 𝑘𝑠𝑒𝑐 as below, 

F(−CH2 −)= F(> CH −) = F(> C <) =1.23 at 298K 

𝑘𝑠𝑒𝑐=0.934× 10−12 cm3 molecule-1s-1 at 298K 
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Thus, 

𝑘𝑎𝑑𝑑=𝑘𝑠𝑒𝑐F (−CH2 −) F (−CH2 −) =0.934× 10−12 × 1.23 × 1.23 

= 1.4 × 10−12 cm3 molecule-1s-1 at 298K 

This method allows the 𝑘𝑂𝐻  rate coefficient to be estimated based on the structure-activity 

relationship. The rate coefficients of n-alkanes can be estimated according to 𝑘𝐶𝑛+1=𝑘𝑎𝑑𝑑+𝑘𝐶𝑛, 

where Cn is the n-alkane with the number of n carbon atoms. 

 

Atkinson (2003) recently summarised the rate coefficient data for hydroxyl radical reaction 

with n-alkane from C3 to C13. The rate coefficients 𝑘𝑂𝐻×1012 (cm3 molecule-1s-1) were plotted 

as a function of the number of carbon atoms, the number of hydrogen atoms and the number of 

hydrogen atoms minus 6 (representing the terminal methyl groups) respectively. It suggested 

an excellent fit to a linear relationship between 𝑘𝑂𝐻 and carbon number or hydrogen number of 

n-alkanes. Episuite (EPI, 2017) extended an estimation method used by AOPWIN based upon 

the structure-reactivity methods developed by Atkinson and co-workers (Atkinson, 1986b; 

1987; 1986a; Kwok and Atkinson, 1995; Atkinson, 1991; Atkinson and Carter, 1984; Biermann 

et al., 1985) to provide a comprehensive estimation on the reaction coefficients 𝑘𝑂𝐻 for alkanes 

and aromatics.  

 

To calculate the primary OH reactivity with S/IVOCs, the rate coefficients 𝑘𝑂𝐻 of hydrocarbon 

groups need to be assigned to an individual compound as a surrogate. The rate coefficients 𝑘𝑂𝐻 

of these S/IVOC surrogates were estimated based on their structure-activity by Episuite (EPI, 

2017) and are shown in Table 6.5. Due to the lack of isomer speciation and the corresponding 
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kinetic data for hydrocarbons above C9, this study applied the 𝑘𝑂𝐻 coefficients of straight-chain 

alkanes to estimate the primary OH reactivity of grouped alkanes (n+i) with corresponding 

carbon number. The measured rate coefficients 𝑘𝑂𝐻 of branched alkanes are generally similar 

to or slower than n-alkanes, based on the location and degree of the branching (Dunmore et al., 

2015). Application of the n-alkanes 𝑘𝑂𝐻  to the entire alkane groups suggested a slight 

overestimate of the OH reaction. The 𝑘𝑂𝐻 values of alkyl-cyclohexane and alkyl-benzenes were 

applied to estimate the OH reactivity of cyclic alkanes (monocyclic and bicyclic) and 

monocyclic aromatics respectively.  
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Table 6.5: A summary of rate coefficients 𝑘 ×1011(cm3 molecule-1 s-1) for the reaction of OH 

radicals with the chemical groups identified in this study (EPI, 2017). 

Species  Carbon No kOH×1011 kOH surrogate 

Alkanes C13 1.53 n-Tridecane 

Alkanes C14 1.68 n-Tetradecane 

Alkanes C15 1.82 n-Pentadecane 

Alkanes C16 1.96 n-Hexadecane 

Alkanes C17 2.1 n-Heptadecane 

Alkanes C18 2.24 n-Octadecane 

Alkanes C19 2.38 n-Nonadecane 

Alkanes C20 2.52 n-Eicosane 

Alkanes C21 2.67 n-Heneicosane 

Alkanes C22 2.81 n-Docosane 

Alkanes C23 2.95 n-Tricosane 

Alkanes C24 3.09 n-Tetracosane 

Alkanes C25 3.23 n-Pentacosane 

Alkanes C26 3.37 n-Hexacosane 

Alkanes C27 3.51 n-Heptacosane 

Alkanes C28 3.65 n-Octacosane 

Alkanes C29 3.8 n-Nonacosane 

Alkanes C30 3.94 n-Triacontane 

Alkanes C31 4.08 n-Hentriacontane 

Monocyclic alkanes/Bicyclic alkanes C12 1.76 Cyclohexane, hexyl- 

Monocyclic alkanes/Bicyclic alkanes C13 1.91 Cyclohexane, heptyl- 

Monocyclic alkanes/Bicyclic alkanes C14 2.05 Cyclohexane, octyl- 

Monocyclic alkanes/Bicyclic alkanes C15 2.19 Cyclohexane, nonyl- 

Monocyclic alkanes/Bicyclic alkanes C16 2.33 Cyclohexane, decyl- 

Monocyclic alkanes/Bicyclic alkanes C17 2.47 Cyclohexane, undecyl- 

Monocyclic alkanes C18 2.61 Cyclohexane, dodecyl- 

Monocyclic alkanes C19 2.75 Cyclohexane, tridecyl- 

Monocyclic alkanes C20 2.89 Cyclohexane, tetradecyl- 

Monocyclic alkanes C21 3.04 Cyclohexane, pentadecyl- 

Monocyclic alkanes C22 3.18 Cyclohexane, hexadecyl- 

Monocyclic alkanes C23 3.32 Cyclohexane, heptadecyl- 

Monocyclic alkanes C24 3.46 Cyclohexane, octadecyl- 

Monocyclic alkanes C25 3.6 Cyclohexane, nonadecyl- 

Monocyclic aromatics C10 1.62 Benzene, butyl 

Monocyclic aromatics C11 1.01 Benzene, pentyl 

Monocyclic aromatics C12 1.15 Benzene, hexyl 

Monocyclic aromatics C13 1.3 Benzene, heptyl 

Monocyclic aromatics C14 1.44 Benzene, octyl 

Monocyclic aromatics C15 1.58 Benzene, nonyl 

Monocyclic aromatics C16 1.72 Benzene, decyl 
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Monocyclic aromatics C17 1.86 Benzene, undecyl 

Monocyclic aromatics C18 2 Benzene, dodecyl 

Monocyclic aromatics C19 2.14 Benzene, tridecyl 

 

6.3.2 OH radical reactivity  

The OH radical reactivity with S/IVOCs is the driving force for the formation of O3 and many 

other secondary pollutants. The primary hydrocarbon OH reactivity can be calculated by 

following equations (Dunmore et al., 2015), 

S-1= ([VOC] (ppb)× 10−9 × [𝑀]) × 𝑘𝑂𝐻 (298K)                                                Equation 6.7 

Where [M] = (
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑚𝑏𝑎𝑟) ×10−4

(8.314×(273.15+𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒))
 )  ×6.022× 1023                                Equation 6.8 

 

Figure 6.1 shows the gas-phase concentrations and primary OH reactivity of alkanes (n+i), 

monocyclic alkanes, bicyclic alkanes and monocyclic aromatics at the roadside site MR and 

roof site RU. Alkanes (n+i) were the most abundant class in the gas phase emission (31% at 

MR and 44% at RU) followed by monocyclic alkanes (29% at MR and 24% at RU), monocyclic 

aromatics (23% at MR and 21% at RU) and bicyclic alkanes (16% at MR and 10% at RU). 

Cyclic alkanes reacted faster with OH radicals than alkanes (n+i) and monocyclic aromatics 

with the same carbon number, shown as higher rate coefficients 𝑘𝑂𝐻 in Table 6.5. Monocyclic 

and bicyclic alkanes made the overwhelming contribution to OH reactivity at MR (60%) and 

RU (51%). As expected, OH reactivity of the summed S/IVOC groups at roadside site MR was 

the greatest among the four sampling sites, followed by the urban background site EL and then 

the two roof sites. Whalley et al. (2016)  measured the total OH reactivity at an urban 

background site in central London during a summer campaign.  For the organics and inorganics 

they studied, NOx and the carbonyl class of VOCs made the dominant contribution to the 
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average OH reactivity in the ambient atmosphere (18.1 s-1).  The hydroxyl radical reactivity 

with the organic classes identified in this study only accounted for a minor fraction of the 

magnitude of the total OH reactivity that Whalley et al. (2016) reported.  

 

 

Figure 6.1: The mass concentrations of S/IVOCs and primary hydrocarbon OH reactivity 

grouped by carbon number at MR and RU.  

 

6.4  Potential SOA formation 

SOA is typically generated only from the oxidation of gaseous reactive organic compounds 

above C7 as the vapour pressures of the oxidation products must be sufficiently low to enable 



126 

 

the gas-phase organics to partition to the particle phase (Odum et al., 1997). The potential SOA 

formation contributed by S/IVOC groups were estimated based on the corresponding SOA 

yields (Presto et al., 2010; Ng et al., 2007). The SOA yields applied in this study were measured 

in previous chamber studies. The organic aerosol mass COA at roadside site MR and background 

roof site RU derived from the average organic matter concentrations at MR and North 

Kensington station (NK) respectively. Organic matter (OM) concentrations at MR and NK were 

estimated based on organic carbon (OC) from DEFRA network dataset (https://uk-

air.defra.gov.uk/networks/). The average concentration of organic carbon (OC) at MR during 

the MR sampling period (March-April) was 4700 ng/m3; therefore, organic matter (OM) was 

approximately 6.6 ug/m3 if the typical OM/OC ratio of 1.4 was applied (Grosjean and 

Friedlander, 1975; White and Roberts, 1977; Polidori et al., 2008). Turpin and Lim (2001)  

argued that increased oxidised organics (i.e. formed by the photochemical reactions) can 

enhance the OM/OC ratio and suggested the ratio of 1.6 ± 0.2 for urban environments while 2.1 

± 0.2 for rural areas based on the published data. The OM/OC ratio may vary based on the 

location and season, and a number of studies have reported the OM/OC measurements for 

several locations over the world (Kiss et al., 2002; El-Zanan et al., 2005; Reff et al., 2007; 

Takegawa et al., 2005; Polidori et al., 2008).  The average concentration of organic carbon (OC) 

at NK during the WM/RU sampling period (Jan-Feb) was 5180 ng/m3; therefore, organic matter 

(OM) was around 7.3 ug/m3 if the typical OM/OC ratio of 1.4 was applied. For simplicity, the 

organic aerosol mass COA for MR and RU were estimated as 7 ug m-3. According to the UK 

NOx emission interactive map from the National Atmospheric Emissions Inventory (NAEI) 

(https://naei.beis.gov.uk/emissionsapp/), the area within the London Orbital Motorway M25 

can be regarded as the high NOx emission area while the area outside of the M25 is regarded as 

low NOx emission area. With a distance of 20-30 km between the MR-RU-WM sampling area 

https://uk-air.defra.gov.uk/networks/
https://uk-air.defra.gov.uk/networks/
https://naei.beis.gov.uk/emissionsapp/


127 

 

and M25, and a minimum wind speed of 1.5 m s-1 during the sampling period, there was 

assumed to be 6 h of SOA formation under the high-NOx regime. Hence, the SOA yields under 

high NOx conditions were applied to estimate the SOA formation in the first 6 h and SOA yields 

under low NOx conditions for SOA formation at 12 h and 36 h.   

 

The potential SOA formation generated by the oxidation of gas-phase SOA precursor was 

estimated by the following equation (Chan et al., 2009),  

∆ 𝑀𝑆𝑂𝐴,𝑖 = [HCi]× (1 − 𝑒−𝑘𝑂𝐻,𝑖 [𝑂𝐻]∆𝑡 )× 𝑌𝑖         Equation 6.9 

where [HCi] is the measured concentration of gas-phase SOA precursor i (ng m-3); 𝑘𝑂𝐻,𝑖 is the 

rate coefficient of the reaction of OH radicals with SOA precursor i (cm3 molecule -1 s-1); [𝑂𝐻] 

is the concentration of OH radicals;  ∆t is the OH radical exposure time (s); and 𝑌𝑖 is the SOA 

yield of the SOA precursor i, defined as the mass of SOA formed divided by mass of 

hydrocarbon reacted. 

 

6.4.1 SOA yields under high NOx conditions 

To estimate the reaction between hydrocarbons and OH radicals in the first 6h, this study took 

the SOA yields from previous chamber studies under high NOx conditions with the organic 

aerosol mass COA of 7 ug m-3. The mechanism on the formation of multi-generation product 

from the oxidation of alkanes (linear, branched, and cyclic) in the presence of NOx have been 

discussed in past studies (Lim and Ziemann, 2005; 2009a; 2009c). SOA yields for low 

molecular weight alkanes (C7-C25) with the linear, branched and cyclic structure under high 

NOx conditions were measured by chamber studies (Lim and Ziemann, 2005; Lim and Ziemann, 

2009b; Presto et al., 2010; Tkacik et al., 2012). SOA yields reported in these high NOx studies 
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may not represent the highest possible yields as they were measured after 50-85% of alkanes 

have oxidised (Loza et al., 2014). 

 

Under high NOx conditions, SOA yields increase with the increase of the carbon number for 

the series of n-alkanes and cyclic alkanes due to their decreasing volatility and thus the reaction 

products (Presto et al., 2010; Lim and Ziemann, 2009b; Lim and Ziemann, 2005). Besides, SOA 

yields were found to increase with the presence of the cyclic structure and decrease with the 

presence of branches on the carbon chain (Loza et al., 2014). Past studies developed slightly 

different rules to estimate the SOA yields based on the carbon number and structure of alkanes. 

For instance, Aumont et al. (2012) suggested SOA yields could increase by about 10% for each 

carbon atom added to the carbon chain for C8–C14 alkanes and this increase levels off for heavier 

alkanes. Zhao et al. (2014) assumed the SOA yields for n-alkanes after C17 were same as C17, 

and SOA yields for cyclic alkanes were same as the linear alkanes with the same carbon number. 

Eluri et al. (2018) suggested Cx branched alkanes can be assigned to a CX-2 linear alkane as a 

surrogate while Cx cyclic alkanes can be assigned to a CX+2 linear alkane as a surrogate based 

on the work of Lim and Ziemann (2009b) and Tkacik et al. (2012). 

 

In this study, SOA yields for n-alkanes ranging from C12 to C17 under high NOx conditions were 

taken from Presto et al. (2010), and SOA yields for n-alkanes higher than n-heptadecane were 

estimated using the assumption that the SOA yields of n-alkanes change log-linearly with the 

carbon number. Pye and Pouliot (2012) developed a method to estimate the SOA yields for 

alkanes of varying length and structure for all NOx regimes, and linear n-dodecane was chosen 

as a surrogate (Table 6.6).  
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Table 6.6: Ratio of alkane SOA yields to n-dodecane SOA yield when n-dodecane was regarded 

as 1 (Pye and Pouliot, 2012). 

 Cyclic  Linear Branched 

C12 2.3 1 0.5 

C13 3.7 2.6 1.3 

C14 5.2 2.9 1.5 

C15 6.6 4.4 2.2 

C16 6.6 5 2.5 

C17 6.6 5.6 2.8 

 

Branched and cyclic alkane groups were assigned to linear n-alkanes as surrogates to model the 

potential formation of SOA. For the reaction in the first 6h, 2×106 molecule cm-3 was taken as 

OH concentration (Chan et al., 2009) as it is equivalent to around 0.25 days of daytime 

atmospheric processing (Presto et al., 2010). A summary of the SOA mass yields of speciated 

hydrocarbon classes under high NOx conditions was shown in Table 6.7. 

 

 

 

 

 

 

 

 

 



130 

 

Table 6.7: SOA mass yields of speciated S/IVOCs for high NOx conditions at the OA 

concentration of 7 µg/m³. 

Carbon No n-Alkanes Branched alkanes Cyclic alkanes Monocyclic aromatic 

C10    0.07e 

C11    0.07 e 

C12   0.16d 0.07 e 

C13 0.18a 0.09c 0.26 d 0.07 e 

C14 0.25 a 0.13 c 0.36 d 0.07 e 

C15 0.30 a 0.15 c 0.46 d 0.07 e 

C16 0.33 a 0.17 c 0.55 b 0.07 e 

C17 0.36 a 0.18 c 0.63 b 0.07 e 

C18 0.43b 0.21 c 0.71 b 0.07 e 

C19 0.47 b 0.24 c 0.78 b 0.07 e 

C20 0.51 b 0.26 c 0.85 b  

C21 0.55 b 0.28 c 0.91 b  

C22 0.59 b 0.30 c 0.98 b  

C23 0.63 b 0.31 c 1.04 b  

C24 0.66 b 0.33 c 1.10 b  

C25 0.70 b 0.35 c 1.15 b  

C26 0.73 b 0.36 c   

C27 0.76 b 0.38 c   

C28 0.79 b 0.39 c   

C29 0.82 b 0.41 c   

C30 0.84 b 0.42 c   

C31 0.87 b 0.43 c   

a 
Presto et al. (2010) 

b SOA yields of alkane classes change log-linearly with the carbon number (Presto et al., 2010; Tkacik 

et al., 2012). 

c Branched alkanes were estimated as half of the value for linear alkanes (Pye and Pouliot, 2012). 

d Estimated by using n-alkanes as surrogates (Pye and Pouliot, 2012). 

e Assumed to be the same as toluene (Ng et al., 2007). 

 

 

6.4.2 SOA formation under high NOx conditions  

The predicted SOA formed by the photooxidation of the four main gas-phase chemical classes 

measured at the roadside site MR in 3h is shown as Figure 6.2. Although monocyclic aromatics 

accounted for a substantial fraction (over 20%) of the gas-phase emissions in this study, these 

compounds contributed to only a small fraction (around 5%) of the SOA formed in the first 3h 

of photooxidation due to their relatively low SOA yields and slow oxidation rates. This is 
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consistent with the estimation results of the SOA formation from diesel exhaust suggested by 

Chan et al. (2009), who reported light aromatics contributed to a much smaller fraction of SOA 

formation than their fraction in the total emission. Alkane classes were important contributors 

to SOA formation, and SOA yields of a given carbon number followed the order cyclic> 

linear>branched alkanes (Loza et al., 2014).  Although alkanes (n+i) were the most abundant 

class in the primary gas-phase emission, monocyclic alkanes made the most significant 

contribution to SOA formation (39%) in the first 3h due to their substantial primary emission 

and more significant SOA yields. Bicyclic alkanes contributed to 26% of the SOA formation, 

followed by n-alkanes (20%) and branched alkanes (10%) at 3h at MR.   

 

 

Figure 6.2: The potential SOA formation in the 3h at MR.  
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6.4.3 SOA yields under low NOx conditions 

To estimate the SOA formation from hydrocarbons in ambient air over longer timescales (after 

the first 6h), this study assumed the time at 12h and 36h is sufficiently long, allowing 95-100% 

of the hydrocarbons to react with OH radicals (if ignore the chemical reaction during night-time 

and deposition of gas-phase hydrocarbons) (Chan et al., 2009). After such a long time, 

hydrocarbons in ambient air are supposed to be transported from the emission source to more 

remote regions, where the NOx level is lower (Henze et al., 2008; Chan et al., 2009). Although 

much attention has been paid to the SOA formation from alkane classes under high NOx 

conditions, few studies reported the SOA yields of alkane classes in the absence of NOx. Yee 

et al. (2012) developed the photooxidation mechanism and multiple generations of dodecane 

(C12H26) under low NOx conditions, and a later study of  Yee et al. (2013) extended the 

mechanism to C12 cyclic and branched alkanes. Lambe et al. (2012) measured the SOA yields 

for linear C10 and C15 n-alkanes under OH exposure of up to 2 ×1012 molecules cm-3 s, 

simulating the SOA yields over multiple days of atmospheric oxidation. They reported the 

maximum SOA yields of C10 n-alkanes (0.39) and C15 n-alkanes (0.69) were measured at OH 

exposure of 1.4×108 and 9.7×107
 molecules cm-3 h, and SOA concentrations of 231 and 100 

µgm-3 for C10 and C15 n-alkanes respectively. Loza et al. (2014) reported SOA yields for C12 

linear, cyclic and branched alkanes under both high-and low-NOx conditions. They measured 

SOA yields after 30-36h irradiation for which the reaction with OH radicals has consumed at 

least 95% of the initial alkanes, and the corresponding OH exposure was (6–12) ×107 molecule 

cm-3 h. However, the SOA yield of C12 n-alkane reported by Loza et al. (2014) was less than 

that of C10 n-alkane reported by Lambe et al. (2012) at similar OH exposure although SOA 

yield of C12 n-alkane is expected to lie between those for C10 and C15 n-alkanes.   
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Studies suggest that SOA yields under low NOx conditions increases with the increase of carbon 

number (Lambe et al., 2012) and follow the order: cyclic> linear ~branched alkanes (Loza et 

al., 2014). This study derived the SOA yield of n-dodecane under low NOx conditions at the 

OA concentration of 7 µg/m³ from Loza et al. (2014), and then estimated those of alkanes with 

linear, branched and cyclic structures based on n-dodecane as a surrogate by the method 

developed by Pye and Pouliot (2012). Under low NOx conditions, aromatic compounds are 

expected to produce more SOA due to higher mass yields (Henze et al., 2008; Ng et al., 2007; 

Xu et al., 2015). The SOA yields of monocyclic aromatics under low NOx conditions were 

estimated based on the toluene yield under high NOx conditions (Ng et al., 2007) and the 

branching ratio for toluene between the high- and low- NOx pathway (Henze et al., 2008). The 

estimation of SOA yields in the absence of NOx are shown in Table 6.8. For the reaction at 30-

36h, OH exposures were estimated as (6-12) x 107 molecule cm-3 h (Loza et al., 2014). 
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Table 6.8: SOA mass yields of speciated S/IVOCs for low NOx conditions at the OA 

concentration of 7 µg/m³. 

Carbon No n-alkanes Branched alkanes Cyclic alkanes Monocyclic aromatic 

C10    0.22e 

C11    0.22 e 

C12   0.24 b 0.22 e 

C13 0.28a 0.28d 0.39 b 0.22 e 

C14 0.31b 0.31 d 0.55 b 0.22 e 

C15 0.47 b 0.47 d 0.70 b 0.22 e 

C16 0.53 b 0.53 d 0.83 b 0.22 e 

C17 0.59 b 0.59 d 0.95 c 0.22 e 

C18 0.69 c 0.69 d 1.07 c 0.22 e 

C19 0.77 c 0.77 d 1.18 c 0.22 e 

C20 0.84 c 0.84 d 1.29 c 0.22 e 

C21 0.90 c 0.90 d 1.39 c 0.22 e 

C22 0.97 c 0.97 d 1.48 c 0.22 e 

C23 1.03 c 1.03 d 1.57 c 0.22 e 

C24 1.09 c 1.09 d 1.66 c 0.22 e 

C25 1.15 c 1.15 d 1.75 c  
C26 1.20 c 1.20 d 1.83 c  
C27 1.25 c 1.25 d 1.90 c  
C28 1.30 c 1.30 d   
C29 1.35 c 1.35 d   
C30 1.40 c 1.40 d   
C31 1.44 c 1.44 d     

a Derived from Loza et al. (2014) 

b Derived from n-dodecane and the method developed by Pye and Pouliot (2012). 

c SOA yields of alkane classes change log-linearly with the carbon number. 

d SOA yields of branched were set to be the same as n-alkanes (Loza et al., 2014) 

e Estimation based on the toluene yield under high NOx conditions (Ng et al., 2007) and the ratio 

between high- and low- NOx pathway (Henze et al., 2008). 
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6.4.4 SOA formation under low NOx conditions 

After the first 6h, SOA formation was estimated based on the mass concentrations of 

hydrocarbons and the SOA yields under low NOx conditions. Figure 6.3 shows the SOA 

formation at 12h and the maximum potential SOA formation after 36 h if all particle-associated 

material had entered the vapour phase and been available for oxidation.  The particle associated 

S/IVOCs will progressively evaporate and be oxidised with atmospheric dilution caused by the 

lack of equilibrium between the gas and the particle phase, creating substantial amounts of low-

volatility gas-phase compounds (Robinson et al., 2007). Primary particle associated S/IVOCs 

may potentially contribute a considerable amount of SOA formed from C20-C27 semi-volatile 

hydrocarbons (Figure 6.3).  The SOA formation from the sum of gas phase and particle phase 

S/IVOCs at 36h was estimated to present the maximum potential SOA formation, and the 

realistic SOA formation likely lies between this and the SOA formed by gas phase compounds 

only. Gas-phase cyclic alkanes still made the overwhelming contribution (54%-55%) to the 

SOA formation at 12-36h. Gas-phase monocyclic aromatics made a greater contribution to SOA 

formation (9%-11%) at 12-36h compared with their contribution in the first 3h due to higher 

SOA yields under low NOx conditions (Loza et al., 2014; Henze et al., 2008, Ng et al., 2007). 

At 36h, particle-phase branched alkanes (33%) made the greatest contribution to SOA 

formation, followed by monocyclic alkanes (26%) and bicyclic alkanes (22%), n-alkanes (18%) 

and monocyclic aromatics (3%) (Figure 6.3). Figure 6.4 shows the changes in SOA formation 

from the oxidation of the semi-volatile hydrocarbons with the time at RU. In the first 6h, SOA 

formation from RU gas-phase showed a steady increase with the time under high NOx 

conditions, and then a more significant increase after 6h due to higher SOA yields under low 

NOx conditions.  The total potential SOA formation at 36 hours based upon the RU data 
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amounts (both gas and particle phase) was around 0.4 µg m-3, which is only a small contribution 

to overall SOA measured in background London of around 2.9 µg m-3 (Yin et al., 2015). 

 

Figure 6.3: The potential SOA formation at 12h and 36h at MR.  
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Figure 6.4: Potential SOA generated from the gas phase in the first 3h, 6h, 12h and 36h (first 

y-axis) and generated from the particle phase and total (gas+particle phase) at 36h (secondary 

y-axis).  

 

6.5  Conclusion 

The partitioning of n-alkanes between the gas phase and the particle phase was examined in 

this study, showing Log Kp correlated well with Log(VPt) but with shallower slopes (mr) at 

around -0.5 for the regression. The slopes observed in London are broadly similar to other 

studies of n-alkanes (Mandalakis et al., 2002; Cincinelli et al., 2007; Karanasiou et al., 2007). 

Many reasons have been discussed to explain the deviation of slopes mr from the theoretical 

value of -1.  The reason for the shallow slopes is uncertain, but disequilibrium is a possibility 

due to the proximity of our sites to traffic sources. 

 

The primary OH reactivity and the formation of secondary organic aerosol (SOA) were 

considered and estimated in this chapter.  Alkanes (n+i), cyclic alkanes and aromatics are 
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important classes of S/IVOCs that react with OH radicals, leading to SOA formation. Roadside 

site MR had the fastest OH reactivity followed by the rooftop sites WM and RU, due to their 

lower concentrations. Cyclic alkanes contributed overwhelmingly to the OH reactivity 

estimated in this study due to their relatively high rate coefficients kOH.  The SOA yields under 

high NOx conditions were applied to estimate the SOA formation in the first 6h and SOA yields 

under low NOx conditions for the SOA formation after 6h.  In the first 6h, monocyclic alkanes 

made the greatest contribution to the SOA formation due to their significant SOA yields and 

substantial primary emissions. Monocyclic aromatics contributed to only a small fraction of the 

SOA formation as a result of low SOA yields and slow oxidation rates although they accounted 

for a more substantial percentage of gas-phase emissions. At 36h, primary particle-phase 

S/IVOCs were considered into the SOA formation estimation to evaluate the maximum SOA 

formation. The total estimated SOA formation at RU at 36h (0.4 µg m-3 ) only made a small 

contribution to overall  SOA in background London (2.9 µg m-3 ) measured by Yin et al. (2015). 
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Chapter 7 Overall conclusion 

Traffic emitted particles have gained interest in the last decades as many studies have reported 

the link between particle exposure and cardiovascular health outcomes (Rissler et al., 2012; Fan 

et al., 2006; Masiol et al., 2012). The gasoline fuel-related organic compounds are mainly in 

the carbon range below C12, while diesel fuel emissions are mainly in the range from C8 to C25 

(Gentner et al., 2012). There are many uncertainties on the composition and behaviour of 

S/IVOCs in the carbon number range above C12.  Firstly, conventional gas chromatography-

mass spectrometry (GC-MS) is not able to separate the vast majority of S/IVOC mass and 

presents them as an unresolved complex mixture (UCM). The UCM is often observed in 

samples related with the use of fossil fuel (Nelson et al., 2006; Frysinger et al., 2003; Ventura 

et al., 2008), and accounts for more than 80% of the semi-volatile hydrocarbons emitted from 

diesel and gasoline-powered engines (Schauer et al., 2002; 1999; Chan et al., 2013). Secondly, 

a comprehensive understanding of the S/IVOC chemical composition has not been addressed. 

The carbon range of S/IVOC ≥C12 is mainly from diesel-powered vehicles rather than gasoline-

powered vehicles in the traffic-relative air samples. Very few studies worked on the abundance 

of heavier molecular weight hydrocarbons (≥C12), whilst there is a significant increase in the 

use of diesel vehicles in the UK. Besides, most of the work based on GC techniques only paid 

attention to a limited range of homologous series that can be distinguished from UCM, such as 

n-alkanes and PAHs. Thirdly, semi-volatile organic compounds (SVOCs) and intermediate 

volatility organic compounds (IVOCs) can partition between the gas and particle phase under 

ambient conditions. Many past studies measured S/IVOCs in the gas phase (Kawashima et al., 

2006) or particle phase only (He et al., 2008; Charron et al., 2019; Gupta et al., 2017; 

Karanasiou et al., 2007) due to their study design or the limit of the sampling instruments. 

Fourthly, the semi-volatile components of particles can play an important role in photochemical 
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smog formation and contribute to the formation of secondary organic aerosol (SOA). The 

specific contribution of S/IVOCs species to SOA formation has not been addressed due to the 

lack of detailed composition information for these species. 

 

To answer these questions, this study designed an in-house auto-sampler to collect both the gas 

phase and particle phase of air samples at four sampling sites in central London (UK), including 

the roadside site at the heavily trafficked Marylebone Road (MR), two rooftop sites (WM and 

RU) near MR, and an urban background site Eltham (EL) during different times from January 

to April 2017. A thermal desorption coupled to comprehensive two-dimensional gas 

chromatography time-of-flight mass spectrometry (TD-GC×GC-ToF-MS) combined with the 

mapping and grouping methodology was applied to classify, identify and quantify the S/IVOC 

classes. The aims of this study mainly include (a) provide a comprehensive understanding of 

the chemical composition of the traffic emitted S/IVOCs above C12; (b) further investigate the 

behaviour of S/IVOC species based on the detailed S/IVOC composition. Four key research 

directions built the four discussion chapters (Chapter 3-6) of this thesis. 

 

Chapter 3 mainly reports S/IVOC composition and the average concentrations of the main 

chemical classes. This study identified and quantified S/IVOCs ranging from C10 to C36 in both 

the gas phase and particle phase, and the main S/IVOC classes identified include C13-C36 

alkanes (n+i) (the sum of n-alkanes and branched alkanes), C12-C25 monocyclic alkanes, C13-

C27 bicyclic alkanes and C10-C24 monocyclic aromatics. Abundant acyclic alkanes (linear and 

branched) and cyclic alkanes (monocyclic and bicyclic) were observed in the urban atmospheric 

samples, can be explained by the chemical composition of diesel fuel and lubricating oil 

reported in the literature (Isaacman et al., 2012; Welthagen et al., 2007; Gentner et al., 2012; 
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Alam et al., 2018; Worton et al., 2014; Sakurai et al., 2003).  The S/IVOC composition of urban 

air was compared with the composition of diesel fuel, lubricating oil and diesel exhaust reported 

by Alam et al. (2018), who applied the same analysis techniques as used in this study. S/IVOC 

groups identified in urban air were most abundant at ≤C20 in the gas phase, similar to the 

composition of gas-phase diesel exhaust. S/IVOC groups identified in urban air were most 

abundant at around C21-C27 in the particle phase, consistent with the carbon distribution reported 

for lubricating oil and the particle-phase diesel exhaust. SVOCs above C20 related to gasoline 

powered- and diesel powered-engines can mainly be attributed to engine oil (Drozd et al., 2019; 

Alam et al., 2016b), suggesting the most abundant S/IVOCs observed in the particle phase may 

derive from engine lubricating oil. The high similarities between the composition of urban air 

samples and those of diesel emissions indicated diesel-powered vehicles were the most probable 

potential sources for the S/IVOC groups identified in this study.  

 

Chapter 4 further investigates the emission sources and dilution of S/IVOCs at the sampling 

sites, especially the street canyon of Marylebone Road. The magnitude of n-alkane 

concentrations and their carbon number distribution were compared with previous studies and 

DEFRA network data, giving confidence in the data and showing the importance of taking 

account of these high molecular weight compounds. Molecular diagnostic parameters of n-

alkanes (CPI, %WNA, and Cmax) as well as the correlation analysis of S/IVOCs and traffic 

indicators suggested the traffic emission was the most important source for all four sites with a 

minor contribution from other sources, such as plant wax. More specifically, the majority of the 

S/IVOC concentrations were attributed to diesel-powered vehicles while a fraction of the low 

molecular weight compounds might be attributed to gasoline exhaust, consistent with the 

findings in Chapter 3. The magnitude of S/IVOC concentrations followed the order: 
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MR >WM>RU, as the distance increases from the traffic emissions. The effect of wind 

direction on the dispersion of traffic emitted pollutants in the street canyon MR showed that 

wind could set up a single vortex in a regular street like Marylebone Road during the crosswind 

(north wind and south wind).  

 

Chapter 5 estimates the emission factors (EFs) for n-alkanes and the main S/IVOC groups at 

the roadside site MR. The estimated EFs of n-alkanes were compared with three published 

studies, including a tunnel study in China (He et al., 2008), a roadside study in Japan 

(Kawashima et al., 2006) and a roadside study in France (Charron et al., 2019). It suggested 

that the EF variations in different studies may mainly be explained by the vehicle type and 

composition of the fuel used in the sampling countries, and also other factors, such as road 

conditions and vehicle speed.  

 

Chapter 6 discusses the G/P partitioning of n-alkanes, and estimates the OH reactivity and SOA 

formation from the main S/IVOC groups.  Log Kp correlated well with Log(VPt) but with 

shallower slopes (mr) at around -0.5 for the regression, broadly similar to other studies of n-

alkanes (Mandalakis et al., 2002; Cincinelli et al., 2007; Karanasiou et al., 2007). Many reasons 

have been discussed for the shallow slopes, and disequilibrium could be a possible explanation 

due to the proximity of the sampling sites to traffic sources. Large quantities of gas-phase 

S/IVOCs can contribute to the generation of secondary pollutants following the reaction with 

hydroxyl radicals. The primary OH reactivity and potential SOA concentrations from the main 

S/IVOC groups identified in this study only accounted for a small fraction of the total OH 

reactivity reported by Whalley et al. (2016) and the overall SOA formation reported by Yin et 

al. (2015) for the background London. Cyclic alkanes made a substantial contribution to the 
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OH reactivity and SOA formation due to their relatively high rate coefficients kOH, significant 

SOA yields and substantial primary emissions. Monocyclic aromatics contributed a lesser 

fraction of SOA formation compared with their primary gas-phase emissions due to their low 

SOA yields and slow oxidation rates.  

 

The main advantages/contributions of this study are summarised. First, this study aims at the 

organic compounds with carbon range above C12 as a substantial part of them is referred to as 

unspeciated chemicals in other studies. The more precise and comprehensive chemical 

composition of traffic emitted S/IVOCs can provide comparative and fundamental information 

for future studies (i.e. urban air studies or further modeling work). Second, the mapping 

chromatogram method allows quantification of the isomer set groups and accounts for 

approximately 78% of the total ion current of the chromatogram. As a part of FASTER study, 

previous work in the engine lab identified and quantified the S/IVOC groups of diesel fuel, 

lubricating oil and diesel exhaust by using the same techniques as in this study (Alam et al., 

2018), allowing a comprehensive comparison between the urban air samples with the diesel 

emissions. Third, this study contributes to more accurate estimations of S/IVOC behaviour 

based on detailed chemical composition, such as OH reactivity and SOA formation. 

 

The major limitation of this study design is that the sampling at WM/RU, MR and EL were not 

run simultaneously as there were only two self-designed in-house auto-samplers. Therefore, 

direct comparisons of S/IVOC concentrations from MR with those from WM/RU and EL were 

not carried out. Spatial distribution of S/IVOCs at WM-MR-RU was accessed through scaling 

the MR S/IVOC concentrations by applying BC as a dispersion maker to assume MR S/IVOCs 

were collected simultaneously with WM and RU. Sampling at four sites simultaneously would 
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allow more convenient and accurate analysis, but it is a challenge to achieve due to many limits, 

such as the costs and management of time.  The significant variations in seasonal particle 

concentrations have been discussed in the literature (Fu et al., 2008; Pant et al., 2015; Singh et 

al., 2011; Yadav et al., 2013). The concentrations of organic compounds in winter are typically 

higher than summer due to a number of reasons, such as the more stable weather conditions, a 

shallow boundary layer and extra emissions from heating in winter (Gupta et al., 2017). 

Sampling for one month is not adequate but measuring S/IVOCs for at least a full year would 

be useful to define the seasonal as well as spatial patterns. Also, it might be useful to work on 

the variations in the daily S/IVOC concentrations, such as investigation on the differences in 

compound concentrations between the weekdays and weekends. A number of studies have 

compared the emission of organic compounds during the weekdays and weekends as the traffic 

load might be more massive during weekdays compared with weekends (Gentner et al., 2013; 

Li et al., 2016; Ho et al., 2009; Grover et al., 2008; Zhao et al., 2014).   

 

This study mainly focuses on acyclic alkanes (linear and branched), cyclic alkanes (monocyclic 

and bicyclic) and monocyclic aromatics, as they are the major fraction of the diesel related 

emissions. The main compound groups occupied over 90% of the S/IVOCs identified while the 

other compound groups identified are C11-C16 naphthalenes, C12-C13 tetralins, C13-C15 biphenyls, 

C14-C15 fluorenes and C15-C16 phenanthrenes/anthracenes, contributing 7% of the total S/IVOCs 

identified at MR and 2% at WM, RU and EL.  Future work can be carried out to analyse and 

discuss the behaviour of these compound groups. Besides, current methods have been designed 

to cover as much as ion current on the chromatogram, but 22% of the ion current has not been 

identified. Lyu et al. (2019) further identified alkanals (C10-C14), alkan-2-ones (C10-C18) and 

alkan-3-ones (C10-C16) for the London Campaign 2017. Exploring the chromatogram might be 
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able to identify other oxidised compounds or more individual compounds and isomer sets based 

on the method system built by this study. 

 

The FASTER project ran CPC (condensation particle counter) to provide the total particle 

number count at RU and WM in the London Campaign 2017 (Harrison et al., 2019; Harrison 

et al., 2018). The concentration variations of the particle-associated SVOCs in time can be 

compared with the total particle number. The cluster analysis combined with the analysis of 

inter-group correlations in clusters might be a good method to investigate the patterns of the 

dataset (Schnelle-Kreis et al., 2005). Besides, measuring meteorological data may provide new 

findings or explanation for the S/IVOC results. Detailed meteorological data (i.e., wind speed 

and temperature) may explain the variations in daily S/IVOC concentrations to some extent. 

The current studies about the SOA formation are mainly based on chamber experiments and 

numerical models whereas the field measurements might provide a broader view of the S/IVOC 

behaviour. All the sampling sites selected by this study are at the roadside or in the urban 

background. A future campaign of S/IVOC measurements at a rural site can be carried out to 

look at how S/IVOC concentrations differ from those collected in the urban area and the grow-

in of more oxidised compounds. 
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Appendix A. S/IVOC concentrations 

Table S1. The concentrations of grouped chemicals (ng/m3) at four sampling sites in the London Campaign 2017. 

Name and total carbon number 

WM RU MR EL 

Gas 

phase 

Particle 

phase 

Gas 

phase 

Particle 

phase 

Gas 

phase 

Particle 

phase 

Gas 

phase 

Particle 

phase 

Monocyclic aromatics 

C10 31.75 0.39 22.09 0.36 87.40 1.73 56.11 0.60 

C11 12.64 0.24 8.73 0.20 36.99 0.59 11.02 0.52 

C12 7.72 0.22 6.03 0.33 17.61 0.98 3.26 0.71 

C13 9.35 0.60 6.99 0.66 34.49 1.08 6.17 1.37 

C14 4.78 0.29 4.08 0.23 36.63 0.45 12.85 0.36 

C15 9.18 0.81 6.15 0.90 50.66 1.57 19.16 1.31 

C16 4.02 0.60 2.16 0.51 35.41 0.75 17.00 0.85 

C17 3.64 0.78 2.08 0.85 24.93 4.71 12.57 1.42 

C18 4.09 0.99 2.29 1.05 29.07 4.65 16.04 1.82 

C19 1.81 3.03 0.97 3.90 10.28 13.32 5.71 4.85 

C20  2.31  2.95  5.78  3.18 

C21  6.64  4.17  9.95  7.71 

C22  4.91  2.89  8.95  5.09 

C23  7.43  5.41  9.38  8.91 

C24  12.57  8.49  21.00  13.43 

 

 

Bicyclic alkanes 

 

 

C13 12.12 0.10 8.08 0.09 97.62 0.34 39.67 0.27 

C14 9.14 0.23 5.83 0.23 45.28 1.05 14.54 0.51 

C15 9.66 0.21 5.98 0.20 51.39 1.55 20.31 0.47 

C16 8.65 0.27 5.33 0.22 34.25 2.90 13.58 0.42 

C17 4.90 0.53 2.93 0.52 31.05 0.54 15.09 0.93 
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 Bicyclic alkanes 

C18  0.53  0.51  2.51  1.08 

C19  0.74  0.68  0.76  1.07 

C20  1.12  1.03  2.02  1.68 

C21  3.82  3.57  11.29  7.60 

C22  7.11  3.30  17.18  7.74 

C23  4.80  2.03  14.39  5.95 

C24  12.68  3.35  18.16  7.65 

C25  5.60  2.04  9.60  3.63 

C26  2.69  1.34  7.82  2.76 

C27  2.57  2.54  13.03  3.21 

Biphenyls 

C13 0.30 0.01 0.22 0.01 1.78 0.00 0.94 0.01 

C14 0.07 0.00 0.07 0.00 0.49 0.01 0.22 0.00 

C15 0.01 0.00 0.01 0.00 0.13 0.02 0.00 0.00 

 

 

 

 

 

 

 

 

Alkanes 

 

 

 

 

 

 

 

C13 38.89 2.38 26.52 2.22 97.14 3.35 61.26 3.81 

C14 30.94 5.97 17.56 5.04 93.60 4.48 48.59 8.89 

C15 26.15 4.49 16.42 5.05 75.96 5.24 22.15 6.98 

C16 24.98 5.36 16.33 4.55 63.42 8.57 23.11 9.09 

C17 20.50 2.96 12.93 3.22 66.59 3.64 21.90 6.87 

C18 17.23 6.09 9.98 7.26 36.98 7.71 13.81 10.12 

C19 9.36 3.45 4.49 3.13 8.74 10.25 4.41 7.66 

C20 5.06 11.92 2.04 13.71 4.65 21.77 14.54 20.63 

C21 2.35 13.45 0.74 10.40 4.33 39.55 8.13 21.80 

C22 4.36 23.58 2.43 17.73 4.72 47.12 7.13 42.65 

C23 5.85 17.39 3.69 15.16 9.35 51.75 16.54 26.76 

C24 6.81 26.93 4.69 24.73 9.17 42.73 16.58 39.49 

C25 6.01 16.27 3.75 15.12 6.09 30.32 13.91 26.50 

C26 3.78 14.59 1.94 13.18 4.56 21.70 9.28 33.26 

C27 2.81 10.92 1.32 10.74 3.65 18.09 6.79 16.54 
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               Alkanes 

C28 2.42 5.38 1.38 8.19 2.00 11.07 4.88 19.33 

C29 1.64 6.02 0.88 6.96 1.36 17.73 3.20 9.35 

C30 1.60 11.86 0.70 14.32 1.71 8.16 3.54 24.77 

C31 1.46 5.54 1.18 5.49 1.38 9.52 3.27 9.34 

C32  4.09  4.65  10.82  10.27 

C33  7.43  7.46  9.69  10.73 

C34  1.05  2.24  0.82  2.01 

C35  1.54  2.73  0.00  0.22 

C36  0.00  0.00  0.00  0.00 

Monocyclic alkanes 

C12 26.60 0.80 17.24 0.77 176.44 1.90 97.18 1.57 

C13 23.38 0.53 14.75 0.51 122.96 0.08 65.58 0.79 

C14 15.39 1.85 11.59 1.21 17.84 0.63 6.12 2.98 

C15 6.88 2.45 4.88 2.53 39.17 3.71 19.53 4.64 

C16 10.64 2.09 6.53 1.38 52.51 1.27 25.29 3.28 

C17 11.74 1.17 6.69 1.22 15.24 0.94 6.89 2.22 

C18 10.42 2.83 6.88 2.94 34.04 1.51 16.51 5.79 

C19 0.50 1.01 0.14 0.97 0.64 5.05 0.33 2.97 

C20 0.63 2.82 0.08 2.26 0.34 5.77 0.34 2.73 

C21 1.59 3.04 0.23 0.39 0.90 10.99 0.74 8.10 

C22 0.53 1.04 0.27 1.28 0.96 7.58 0.49 1.29 

C23 0.70 7.41 0.63 4.09 0.67 29.53 0.25 13.17 

C24 0.85 10.56 0.71 7.51 1.07 10.69 0.18 14.19 

C25 0.63 8.70 0.22 6.53 1.44 44.86 0.12 17.49 

Fluorene 
C14 0.24 0.00 0.16 0.00 1.92 0.00 1.32 0.00 

C15 0.09 0.00 0.06 0.00 0.70 0.16 0.30 0.00 

 

Naphthalene 

 

C11 0.70 0.08 0.62 0.11 17.82 1.37 2.33 0.16 

C12 0.43 0.05 0.34 0.05 13.85 0.46 1.56 0.07 

C13 0.55 0.59 0.38 0.41 19.63 2.42 1.54 0.78 
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            Naphthalene C14 0.34 0.24 0.21 0.26 15.24 1.86 1.05 0.33 

C15+16 0.96 0.59 0.16 0.25 36.07 2.37 5.04 0.75 

Phenanthrene/Anthrace

ne 

C15 0.09 0.00 0.07 0.00 0.87 0.00 1.83 0.00 

C16 0.07 0.01 0.04 0.01 0.51 0.00 0.18 0.01 

Tetralin C12 4.24 0.01 2.53 0.01 26.57 0.01 5.85 0.01 

C13 3.30 0.01 1.81 0.02 27.21 0.01 7.03 0.02 
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Table S2. The concentrations of individual chemical compounds (ng/m3) at four sampling sites in the London Campaign 2017. 

Group Name Carbon No 
WM RU MR EL 

Gas Particle Gas Particle Gas Particle Gas Particle 

Alkyl-cyclohexane 

Cyclohexane, hexyl- C12 4.77 0.09 3.01 0.08 10.45 0.13 3.66 0.14 

Cyclohexane, heptyl- C13 5.42 0.25 3.25 0.16 14.21 0.04 4.13 0.35 

Cyclohexane, octyl- C14 2.53 0.32 1.68 0.21 8.10 0.17 2.01 0.39 

Cyclohexane, nonyl- C15 1.95 0.47 1.28 0.39 6.27 0.37 2.14 0.70 

Cyclohexane, decyl- C16 1.85 0.42 0.99 0.36 3.55 0.77 1.87 0.86 

Cyclohexane, undecyl- C17 1.83 0.04 0.89 0.06 1.26 0.25 0.50 0.12 

Cyclohexane, dodecyl- C18 0.94 0.00 0.50 0.02 1.70 0.26 0.49 0.10 

Cyclohexane, tridecyl- C19 0.50 0.00 0.14 0.00 0.64 0.41 0.33 0.00 

Cyclohexane, tetradecyl- C20 0.63 0.02 0.08 0.00 0.34 0.29 0.34 0.00 

Cyclohexane, pentadecyl- C21 1.59 0.07 0.23 0.00 0.90 0.16 0.74 0.00 

Cyclohexane, hexadecyl- C22 0.53 0.02 0.27 0.00 0.96 0.55 0.49 0.00 

Cyclohexane, heptadecyl- C23 0.70 0.06 0.63 0.00 0.67 3.19 0.25 0.01 

Cyclohexane, octadecyl- C24 0.85 1.08 0.71 0.83 1.07 3.15 0.18 1.18 

Cyclohexane, nonadecyl- C25 0.63 1.19 0.22 1.05 1.44 4.68 0.12 1.54 

Alkyl-benzene 

Butylbenzene C10 0.00 0.02 0.03 0.00 16.76 0.00 14.42 0.01 

Hexylbenzene C12 1.23 0.00 0.73 0.01 3.73 0.01 1.67 0.01 

Octylbenzene C14 0.29 0.01 0.24 0.01 1.57 0.03 0.98 0.02 

Decylbenzene C16 0.29 0.02 0.18 0.03 1.99 0.15 0.48 0.03 

Dodecylbenzene C18 0.17 0.59 0.15 0.68 0.60  0.78  

Tetralins 

Tetralin C10 1.00 0.00 0.53 0.00 1.14 0.00 0.37 0.00 

5-Methyltetralin C11 0.51 0.00 0.33 0.00 0.89 0.01 0.29 0.00 

1,4-Dimethyltetralin C12 0.45 0.00 0.16 0.00 0.47 0.00 0.13 0.00 

2,5,8-Trimethyltetralin C13 0.30 0.00 0.19 0.00 0.36 0.00 0.15 0.00 
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2,2,5,7-Tetramethyltetralin C14 0.15 0.00 0.05 0.00 0.17 0.03 0.04 0.10 

Alkyl-naphthalene 

Naphthalene, 1-methyl- C11 1.64 0.01 1.29 0.00 0.00 0.00 0.00 0.01 

Naphthalene, 1-ethyl- C12 0.11 0.01 0.07 0.00 0.00 0.01 0.00 0.00 

Naphthalene, 1-propyl- C13 0.04 0.00 0.03 0.00 0.00 0.03 0.00 0.00 

Naphthalene, 1-hexyl- C16 0.01 0.00 0.00 0.00 0.00 0.03 0.00 0.01 
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Appendix B. CLIC expression 

This section here defines the CLIC expressions for the descriptive criteria for compound class 

identification used in this study. These expressions are presented for illustrative purposes. 

Different rules would be required for different chemical samples and different GC×GC 

conditions. Examples of the CLIC expression used for tetralin, biphenyl, fluorene and 

phenanthrene/anthracene in this study are illustrated as following. 

 

Tetralin-C1 

(Ordinal (131) =1) & (relative (146)>15) & (relative (118)>15 

Criteria: Base peak 131 and with two of peaks from set greater than 15% relative intensity. 

 

Biphenyls-C1 

(Ordinal (168) =1) & (ordinal (167) =2) & (Relative (168)>90) & (Relative (167) <85) & 

(Relative (152) <30 

Criteria: Base peak 168 and the second largest peak 167. Peaks set of 168 is greater than 90% 

relative intensity. Peak 167 is smaller than 85% relative intensity and peak 152 is smaller than 

30% relative intensity. 
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Fluorene-C1 

((ordinal (165) =1) & (ordinal (180) =2) & (Relative (165) >90) & (Relative (180)>50) | 

((ordinal (180) =1) & (ordinal (165) =2) & (Relative (180)>90) & (Relative (165)>85) 

Criteria: (1) Base peak 165 and the second largest peak 180 with peak165 greater than 90% 

relative intensity and peak 180 greater than 50 % relative intensity. (2) Or base peak 180 and 

the second largest peak 165 with peak 180 greater than 90% relative intensity and peak 165 

greater than 85% relative intensity. 

 

Phenanthrene/Anthracene-C1 

(Ordinal (192) =1) & (ordinal (191) =2) & (Relative (192)>90) & (Relative (191)>30 

Criteria: (1) Base peak 192 and the second largest peak 191 with peak 192 greater than 90% 

relative intensity and peak 191 greater than 30 % relative intensity.  
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In the following a list of all publications stemming from this thesis is given: 
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