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Abstract 

Ovarian cancer (OC) diagnosis usually occurs very late, when metastatic spread has already started and 

patient’s survival is very low. One of the many soluble factors that can promote cancer metastasis is 

histamine, a compound involved in a plethora of physiological and pathological processes, including 

cancer. Indeed, activation of histamine receptor H1 (HRH1) by histamine stimulates growth of OC cells 

in vitro and promotes the release of extracellular vesicles (EVs) in different cell lines. EVs are 

heterogeneous small vesicles involved in intracellular communication, which also modulate various 

steps of the metastatic process.  

The main hypothesis of this thesis is that HRH1 mediates several cancerous behaviours associated with 

OC metastatic spread, by regulating EV release. The specific aims were 1) to analyse the correlation of 

histamine receptors gene expression with invasion and migration rates of OC cell lines in vitro and with 

tumour stage of OC clinical samples; 2) to study the involvement of HRH1 in different cellular 

behaviours associated with cancer metastasis; 3) to investigate the involvement of HRH1 in EV release 

and how they affect OC cell invasion in vitro. 

The results show that the level of HRH1 mRNA positively correlates with in vitro migration and invasion 

rate of OC cells lines and higher expression was found in stage IV of OC clinical samples compared to 

stage II/III. Low HRH1 correlates with increased disease free survival, although no correlation was 

found with overall survival. HRH1 expression was modulated in three OC cell lines (SKOV3, OVCAR3 

and OVCAR5), via siRNA transfection, chemical activation (via histamine) or inhibition (via 

chlorpheniramine) and its effect on cellular behaviour was evaluated through different in vitro assays. 

Results showed that HRH1: 1) does not modulate gene expression of EMT-related genes; 2) does not 

influence adhesion of OC cells to endothelial cells; 3) reduces cell invasion through a Matrigel®️ layer 

and 4) reduces their movement from the edge of a simulated ‘wound’. Histamine increases the number 

of EVs released from SKOV3 cells and their ability to degrade a collagen substrate but did not modify 

EV protein contents compared to control EVs. EVs were able to rescue the reduction of invasion caused 

by HRH1 knockdown, while histamine failed to rescue the invasion of cells knocked down for Rab27a 

(a major regulator of EV production), suggesting a potential interplay between HRH1 and Rab27a in 

modulating EV release and cell invasion. 

Overall, these results suggest that HRH1, via modulation of EV biogenesis, can impair OC cells invasion 

and migration in vitro. 
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Chapter 1 Introduction 

1. Introduction 

1.1. Ovarian cancer 

1.1.1. Incidence and mortality 

Ovarian cancer (OC) is the 7th most common type of cancer among women (Bray et al. 2018), and the 

deadliest gynaecological malignancy (Torre et al. 2018). Almost 320,000 new cases of OC are diagnosed 

in the world (Sung et al. 2021) and around 6,000 in the UK, each year (CRUK). Even though OC 

prevalence is one-tenth lower than breast, colorectal, lung and pancreatic cancer, its lethality is much 

higher; indeed, more than 60% of patients will succumb OC, with 207,252 women dying each year in 

the world (Torre et al. 2018) and 4,182 in the UK (Table 1.1) (CRUK).

Table 1.1: Number of cases, deaths, and percentage of survival of breast, colorectal, lung, ovarian and 
prostate cancer registered annually in the UK (data obtained from CRUK, accessed June 2021). 
 

 
 

The high mortality rate associated to OC is a consequence of the asymptomatic growth of the cancer 

and the lack of early biomarkers (Yoneda et al. 2012). Indeed, 75-80% of OC cases present at stages III 

or IV, when the disease has already spread to the peritoneal cavity or upper abdominal organs, with a 

5 years survival rate lower than 29%; only 15-20% of OC cases are diagnosed at localised stage (stage 

I) when the 5 years survival rate is still high (>90%) (Table 1.2) (Cho and Shih 2009; Matulonis et al. 

2016; Reid et al. 2017; Lheureux et al. 2019). 

 

Table 1.2: One- and five-year percentage of survival of OC patients in stage I, II, III and IV (data obtained 
from CRUK, accessed June 2021). 
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Chapter 1 Introduction 

Many risk factors are associated with OC incidence. Firstly, OC is an age-related disease, and it is 

considered a postmenopausal disease. Median age at diagnosis is 50-79 years (Chan et al. 2006); older 

age is associated with more advanced disease and a lower survival rate (Momenimovahed et al. 2019) 

(Table 1.3).  

 

Table 1.3: One- and five-year percentage of survival of OC patients in stage I, II, III and IV classified by 
age at the time of diagnosis (data obtained from UK statistic authority, accessed January 2021). 
 

 

 

Reproductive factors like early menarche, high number of lifetime ovulatory cycles and late 

menopause are at the base of the OC “incessant ovulation” theory and are related with a higher 

incidence of OC (Tung et al., 2003; Kim et al., 2017). The “incessant ovulation” theory proposes that 

the continuous rupture of the ovulating follicle damages the ovarian epithelium and traumatises the 

ovarian surface (Fathalla 1971). This induces invagination of the ovarian epithelium and formation of 

clefts and inclusion cysts that potentially will undergo malignant transformation (Fleming et al. 2006). 

Therefore, factors that induce production of sex hormones such as oestrogen, follicle-stimulating 

hormone and luteinizing hormone and consequent proliferation of the ovarian epithelium during 

ovulation, are thought to be associated with OC incidence (Lukanova and Kaaks 2005). On the contrary, 

any factor that contributes to the reduction of ovulation (pregnancy, use of oral contraception and 

others) has a protective effect against OC (Tung et al. 2003; Momenimovahed et al. 2019). The 

presence of previous benign gynaecological conditions such as endometriosis, ovarian cysts or pelvic 

inflammatory disease, can increase the incidence of particular subtypes of OC (Melin et al. 2006; Kim 

et al. 2014b). For example, endometriosis is thought to be associated with OC as the two disease might 

share risk factors such as genetic susceptibility, and/or pathogenesis rather than a causal association 

(Sayasneh et al. 2011; Lu et al. 2015; Kori et al. 2016). Genetic variations of the breast cancer gene 1 

and 2 (BRCA1 and BRCA2) genes are associated with 50% risk of developing OC by the age of 70 (Easton 

et al. 1995; Walsh et al. 2011) and account for the majority of hereditary cases. Mutations in other 

genes such as BRCA1-interacting protein 1 (BRIP1) and RAD51 can moderately increase the risk of OC 

(Ramus et al. 2015; Song et al. 2015). Finally, other factors such as cigarette smoking, alcohol 
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consumption, diet, low physical activity, and obesity are all associated with increased incidence of OC. 

For example, several studies have shown an association between body mass and OC. Indeed, presence 

of low-grade chronic inflammation and inflammatory cytokines produced by fat cells (normally 

associated with obesity) can deregulate sex hormone levels and increase OC risk (Tworoger and Huang 

2016). All of these factors have been associated with a 5-29% increase of specific OC subtypes (Beral 

et al. 2012; Olsen et al. 2013; Webb and Jordan 2016). 

1.1.2. Classification 

OC is a nonspecific term for a variety of tumours that involve the ovary. Indeed, OC is a heterogeneous 

disease characterised by different morphological, histological and genetic traits (Kroeger Jr and 

Drapkin 2017). Depending on the anatomic structures from which the tumour presumably originates, 

OC can be classified into three major categories: A) sex-cord stromal tumours, B) germ cell tumours 

and C) epithelial ovarian cancer (EOC), (Chen et al. 2003). Each type then contains a number of different 

tumour subtypes depending on the cell morphology and genetic traits. When a tumour combines one 

or more subtypes is defined as “mixed” (Chen et al. 2003). 

A) Sex cord stromal tumours are infrequent and represent around 7% of OC cases. They are of 

mesenchymal or mesonephric origin and are thought to arise from the primitive sex cords cells 

(granulosa and Sertoli cells) or stromal cells of the ovary (Shim et al. 2013; Al Harbi et al. 2021). 

B) Germ cell tumours account for around 20% of all ovarian neoplasms, although only 5% of them are 

malignant and the rest (95%) are benign mature cystic teratomas. They are thought to originate from 

primordial germ cells and mostly appear in adolescence and early adulthood (Zalel et al. 1996; 

Parkinson et al. 2011; Shaaban et al. 2014). 

C) Epithelial ovarian cancers (EOCs) arise from the epithelial layer covering the surface of the ovaries 

(Cho & Shih, 2009; Koulouris & Penson, 2009) and account for around 90% of all malignant OC cases. 

(Chen et al. 2003). Depending on the morphological and histological characteristics of the epithelial 

cells, EOC can be further subdivided into five main categories that are: 1) serous, 2) endometrioid, 3) 

clear cell, 4) mucinous and 5) malignant Brenner EOC (Table 1.4).  

1) Serous carcinomas, accounts for the majority of EOC cases (90%) and is further divided in 

high-grade serous (HGSC) and low-grade serous (LGSC) OC. HGSOC accounts for 70-80% of 

all EOC deaths (Bowtell et al. 2016). Although serous EOCs were thought for a long time to 

originate from cysts on the surface of the epithelium or from alteration of the epithelial layer 

of the ovary, in the past 20 years more evidence has accumulated showing that as many as 

60% of serous EOCs cases might arise from the Fallopian tube (Piek et al. 2001; Kroeger Jr 
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and Drapkin 2017). In fact, it has been postulated that the shed tubal epithelium can implant 

on the ovary and originate inclusion cysts that give rise to serous neoplasm (Piek et al. 2001; 

Li et al. 2011). Indeed many early serous OCs have been identified in the distal end of the 

Fallopian tube, and as the tumour grows it eventually obliterates the ovarian tissue and 

appears to have arisen from the latter (Kurman and Shih 2011). 

2) Endometrioid and 3) clear cell carcinomas originate from endometriotic lesion 

(endometriomas) and are associated with implants of endometriosis elsewhere in the pelvis 

(Veras et al. 2009). 

4) Mucinous and 5) malignant Brenner tumours are the least common types of EOC, 

comprising around 8% of all cases. Their origin is still unclear; and although their epithelium 

closely resembles gastrointestinal mucosa, they are considered to come from transitional 

cells at or close the junction of fallopian tube (Prat 2012). 

EOCs can also be classified according to their morphological and molecular characteristics in type I and 

type II tumours (Shih and Kurman 2004) (Table 1.4).  

Type I tumours are mostly low-grade, generally indolent tumours and appear as a unilateral, large 

cystic neoplasms, usually associated with an elevated survival time (82 months average) compared 

with type II tumours (30 months) (Gershenson et al. 2006). Type I OCs progress in a stepwise manner 

from well-recognised benign precursor lesions to malignant tumours (Singer et al. 2002). They 

normally account for only 10% of OCs deaths. Type I EOCs include endometrioid carcinoma, clear cell 

carcinoma, LGSC and mucinous carcinoma. They are typically genetically stable (less susceptible to 

mutation) and mostly present with driving mutations in Ki-ras2 Kirsten rat sarcoma viral oncogene 

homolog (KRAS), B-Rapidly Accelerated Fibrosarcoma (BRAF), phosphatase and tensin homolog (PTEN) 

and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3KCA) genes (Kuo et al. 

2009a).  

Type II tumours include more aggressive tumours like HGSC, high grade endometrioid and 

undifferentiated carcinomas. They represent ≈75% of all OC cases, are normally high grade, poorly 

differentiated, show a high propensity to metastasise and are normally diagnosed at advanced stage 

leading to poor survival (average 30 months) (Lengyel 2010). This group shows greater morphologic 

and molecular homogeneity, is genetically unstable and is characterised by tumour protein p53 (TP53) 

and cyclin E1 (CCNE1) mutations (Kurman and Shih 2016). 
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Table 1.4: Classification of epithelial ovarian cancer based on the site of origin, histopathological characteristics, their molecular classification, key mutation and 
association with disease progression.  
 

 

Molecular 
classification 

Histopathological 
classification 

Mutations Precursor site of origin Disease progression 

Type I (≈25%) 
(Kurman and Shih 
2011) 

Endometrioid carcinoma (10%) 
BRAF, CTNNB1, PTEN, PIK3CA 
(Sato et al. 2000; Willner et al. 
2007; Wu et al. 2007) Endometriotic tissue 

Normally low grade, 
present at low stage, 
non invasive, 
normally associated with better 
prognosis than Type II tumours. 
Average survival time: 82 months 
(Gershenson et al. 2006) 

Clear cell carcinoma (10%) 
ARID1A, PIK3CA (Kuo et al. 2009b; 
Jones et al. 2011) 

Mucinous carcinoma (5%)  
KRAS (Mucinous and Tumors 
1994) 

Cell situated at or near 
the junction of the ovary 
with the fallopian tube 

Malignant Brenner tumour 
(3%)* 

PI3K/AKT (Kurman and Shih 2011) 

Serous 
(70%) 

Low grade 
serous 
carcinoma (30%) 

BRAF, ERBB2, KRAS, PIK3CA 
(Afify et al. 1999; Singer et al. 
2003; Willner et al. 2007) Fallopian tube pre 

malignant lesion 
  

Type II (≈75%) 
(Kurman and Shih 
2011) 

High grade 
serous 
carcinoma (70%) 

BRAC1, BRAC2 (Senturk et al. 
2010), TP53 (Ahmed et al. 2010) 

High-grade, malignant tumours, 
normally with a tendency to 

invade 
usually diagnosed at late stage of 
the disease (III-IV), 
associated with poor survival 
(average 30 months) (Lengyel 
2010) 

High grade endometrioid (<2%)  Endometriotic tissue 

Mixed Mulleran tumours 
(carcinosarcoma, 
undifferentiated) (<1%) 

Not identified 
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1.1.3. Treatment  

Although it is recognised that OC comprises several distinct subtypes, a one-size fits approach has been 

used in the management of OC for a long time. The identification of specific molecular markers 

associated with different OC subtypes has resulted in a better understanding of this disease allowing 

a shift of OC management from a one-size fits approach to a more tailored approach (Lee et al. 2019; 

Lheureux et al. 2019). When OC is low grade and confined to one ovary (generally Type I OC, stage I/II), 

treatment consists of removal of the affected ovary or debulking surgery (removal of as much 

cancerous tissue as possible from the ovaries and the peritoneal cavity) that may or may not be 

followed by chemotherapy. In the case of advanced stage cancers (stage III/IV), complete removal of 

cancerous tissue is almost impossible; therefore, patients are firstly treated with chemotherapy 

(neoadjuvant-chemotherapy) and undergo surgery only if they successfully respond to treatment 

(reduction of the tumour size) (Cortez et al. 2018). 

The first drug to be approved for OC treatment, and still the most commonly used one, is cisplatin. By 

binding to the N-7 atoms of purines, cisplatin forms DNA adducts that distort the DNA conformation 

inhibiting replication and transcription (Peng et al. 2010). This induces a DNA damage response and 

consequently activates multiple signalling pathways that induce cell-cycle arrest and apoptosis 

(Wiltshaw et al. 1979; Galluzzi et al. 2012). However, the high rate of cisplatin resistance in OC is a 

major obstacle to treatment and clinical management of the disease (Ozols 1991; Giaccone 2000; 

Cannistra 2004; Köberle et al. 2010). Indeed, OC cells can activate several different mechanisms to 

acquire resistance to cisplatin. For example, cancer cells can reduce drug uptake and reduce 

accumulation of cisplatin internally (Loh et al. 1992; Mellish et al. 1993); they can present impaired 

DNA repair mechanisms that either do not recognise cisplatin DNA adducts or become tolerant 

towards unrepaired DNA lesions, ultimately generating impaired apoptotic signals (Galluzzi et al. 

2012). In addition, defects in signalling pathways associated with apoptosis following DNA damage can 

confer post-target resistance in cells (Vousden and Lane 2007). The specific molecular mechanisms 

underpinning cisplatin resistance will not be further discussed as they lie beyond the scope of this 

thesis, but further information can be found in the extensive review of Galluzzi et al (2012).  

Due to the high rate of cisplatin resistance other platinum-derived drugs (oxaliplatin and carboplatin) 

were introduced into the clinical management of OC with the aim to reduce the cytotoxic effects of 

cisplatin and overcome resistance. Unfortunately, as the active molecule in these compounds is still 

cisplatin, tumours resistant to cisplatin have been shown to also be resistant to the other platinum 

drugs (Kidani et al. 1978; Harrap 1985).  
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Nowadays, other therapeutics have been introduced in OC treatment, including taxane-based drugs 

(paclitaxel) (Mcguire et al. 1996), poly ADP (Adenosine diphosphate) ribose polymerase (PARP) 

inhibitors and monoclonal antibodies (bevacizumab, an anti-vascular endothelial growth factor 

(VEGF)-A) (Jayson et al. 2014; Matulonis et al. 2016; Lheureux et al. 2019). Even though most patients 

show a high response to first line treatment, almost 45% ultimately relapse, gaining a chemo-resistant 

phenotype. For these patients, palliative care is the only viable management option. The combination 

of cisplatin resistance together with the appearance of the disease at more advanced stages are the 

causes the high mortality rate associated to OC. 

 

1.2. Metastasis 

Metastasis is the result of a multistage process that leads to the development of a secondary tumour 

in a part of the body distant from the primary one (Brooks et al. 2010; Valastyan and Weinberg 2011; 

Lambert et al. 2017; Fares et al. 2020). Metastasis is the primary cause of cancer mortality, in fact 

almost 90% of cancer deaths are related to a metastatic stage of the disease (Reid et al. 2017). The 

metastatic spread can take place through different routes: cancer cells can reach blood or lymphatic 

vessels, enter them and disseminate through them to distant organs or lymph nodes; these processes 

are known as hematogenous or lymphatic dissemination, respectively (Alitalo and Detmar 2012). 

Alternatively, cancer cells remain confined to the region where they originate and disseminate by 

“direct extension” to the neighbouring organs (Kaiser 1989; Thomakos et al. 2019). The latter is the 

favoured mechanisms of metastatic dissemination of OC, together with lymphatic dissemination 

(Thomakos et al. 2019). In order to disseminate via one or the other routes, cancer cells often undergo 

epithelial to mesenchymal transition (EMT), a process that is driven by a phenotypic “plasticity” of 

tumour cells and enables them to acquire an invasive phenotype, resist to genotoxic stress and 

apoptosis and to disseminate (further discussed in section 1.2.1) (Lengyel 2010; Chaffer et al. 2016; 

Gupta et al. 2019). 

1.2.1. Epithelial to mesenchymal transition and tumour plasticity 

EMT is a reversible process during which, epithelial cells, usually immotile and tightly bound to each 

other and to the extracellular matrix (ECM) (Fouad and Aanei 2017) (Figure 1.1 A), undergo molecular 

and biochemical alterations resulting in acquisition of a mesenchymal phenotype. This phenotype 

allows cells to disaggregate from the tumour mass and to move to surrounding organs (Kalluri and 

Neilson 2003). One of the first changes during EMT consists of epithelial cells losing their apical-basal 

polarity due to the loss of tight junctions, adherens junctions and desmosomes (Figure 1.1 B). This is 

the result of the loss of cellular adhesion molecules, including cadherins and integrins, and to the 
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reorganization of the cytoskeleton following downregulation of cytokeratins (Ribatti et al. 2020). 

Cadherins are adhesive molecules that maintain intracellular adhesion by interacting with the 

cytoskeleton via the cytosolic proteins catenins (α,β,γ) (Cavallaro and Christofori 2004). Integrins are 

a family of glycoproteins that form heterodimeric receptors with ECM molecules enabling cell-ECM 

interactions (Hood and Cheresh 2002). Down-regulation of cadherins, (in particular E-cadherin), 

integrins, (in particular α6β4 integrin), claudins and epithelial cell adhesion molecule (EpCAM) 

diminishes intracellular adhesiveness and allows cells to detach from the primary tumour (Hay 1995). 

Many mechanisms have been identified as responsible for controlling loss of adhesive molecules, 

including inactivating mutations, transcriptional control, non-coding RNAs and others, extensively 

reviewed by Craene and Berx (2013). 

The best characterised regulatory network during EMT involves a series of transcription factors. 

Initially, the snail family transcriptional repressor 1 (SNAI1) was identified to directly bind to the CDH1 

promoters (which encodes E-cadherin) and repress its transcription (Batlle et al. 2000; Cano et al. 

2000). Since then many other transcription factors including SNAI2 (Hajra et al. 2002), zinc finger E-

box-binding homeobox 1 and 2 (ZEB1, ZEB2) (Comijn et al. 2001; Vandewalle et al. 2005), E47 (Pérez-

Moreno et al. 2001), twist-related protein 1 and 2 (TWIST1 and TWIST2) (Yang et al. 2004; Mani et al. 

2007) were identified for their ability of not only repress E-cadherin transcription (directly or indirectly) 

but also to regulate expression of other junctional proteins like claudins and desmosomes, facilitating 

the initiation of the “dedifferentiation programme” (De Craene et al. 2005; Moreno-Bueno et al. 2006) 

(Figure 1.1 B).  

Simultaneously with the loss of adhesive molecules, cells undergoing EMT upregulate other proteins 

such as vimentin, fibronectin, neural cadherin (N-cadherin), β1 and β3 integrins and matrix 

metalloproteinases (MMPs). The overexpression of these molecules results in cells acquiring a 

mesenchymal phenotype, showing elongated morphology with front end-to-back end polarity and 

forming only transient contacts with their neighbouring cells (Dongre and Weinberg 2019) (Figure 1.1 

C). At this point cancer cells have all the required characteristics to degrade the underlying ECM and 

invade the adjacent stroma (Dongre and Weinberg 2019).  

What is interesting about the EMT is that it is a reversible process and cancer cells exhibiting a 

mesenchymal phenotype can revert back to an epithelial phenotype by undergoing mesenchymal to 

epithelial transition (MET). Therefore, EMT does not operate as a binary switch that shunts cells from 

fully epithelial to fully mesenchymal extremes, but cancer cells may actually be in a spectrum of states 

between epithelial and mesenchymal phenotypes, and distinct and definable markers of one or the 

other may not be identifiable (Yang et al. 2020). 
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Figure 1.1: Schematic representation of EMT/MET progression. 
A) Epithelial cells show apical-basal polarity through tight junctions, adherens junctions and are tethered to the basement membrane by hemidesmosomes. These cells express 
classical epithelial markers (listed in the red box) that enable them to be tightly bound to each other maintaining cell polarity. B) Initiation of EMT results in a transition of polarised 
epithelial cells toward mesenchymal cells through activation of several transcription factors described in the orange box. C) The progressive loss of epithelial features is accompanied 
by acquisition of mesenchymal features; cell display front end-to-back end polarity, extensively reorganise their cytoskeleton and express a distinct set of molecules (listed in the 
yellow box) that maintain their mesenchymal state and promote their invasion and migration to surrounding tissues. Mesenchymal cells can revert back to epithelial cells by 
undergoing the MET process. 
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1.2.2. Haematogenous and lymphatic dissemination 

Neoplastic cells must successfully complete a cascade of events in order to leave the primary tumour 

and establish a secondary tumour site (Brooks et al. 2010). The metastatic cascade originates in the 

primary tumour where the shortage of oxygen and nutrients stimulates the formation of new blood 

vessels. Tumour cells release “angiogenic activators” like VEGF, basic fibroblast growth factor (bFGF), 

angiogenin, transforming growth factor (TGF)-α, TGF-β, tumour necrosis factor (TNF)-α and activate 

surrounding endothelial cells (Nishida et al. 2006). Thus, the endothelial cells migrate and proliferate 

inducing the formation of new blood vessels, a process known as angiogenesis (Figure 1.2 A). The newly 

formed vessels are irregular, show an uneven diameter and abnormal branching pattern, and often 

reveal an incomplete basement membrane and lack of intact endothelial junctions, that enhance their 

permeability (Dvorak et al. 1988; Steinberg et al. 1990; Vermeulen et al. 1995; Hewitt et al. 1997). The 

unusual leakiness of the blood vessels will help them not only to provide the tumour with nutrients 

but will also serve as a way to escape the primary tumour (Bergers and Benjamin 2003). 

In order to become motile, cancer cells undergo EMT (described in section 1.2.1), gain a more 

mesenchymal phenotype, dissociate from the epithelial cell sheets and advance in the malignant 

transformation (Thiery et al. 2009) (Figure 1.2 B). Cells begin to invade the surrounding tissues (Figure 

1.2 C). During invasion, cells detach from the main tumour, adhere to the ECM and degrade it through 

release of extracellular matrix proteases (Sahai 2005). The ECM-cell and cell-cell interactions enables 

the transmission of information between cells and the surrounding environment, altering their ability 

to proliferate, migrate and survive in both physiological and pathological conditions (Fares et al. 2020). 

Numerous proteolytic enzymes are release by either tumour cells or by the tumour microenvironment, 

including the urokinase-type plasminogen activator (uPA) (Mahmood et al. 2018), MMPs (Cathcart et 

al. 2015; Gonzalez-Avila et al. 2019), and cathepsins (Tan et al. 2013). Degradation of ECM allows 

cancer cells to bypass physical barriers like the basement membrane to access more distant locations 

(Sahai 2005). This process is a fundamental step of the metastatic cascade and is a trigger for further 

cancer progression and metastasis (Krakhmal et al. 2015).  

Through dynamic cytoskeletal changes, localised proteolysis and cell-matrix interactions, cancer cells 

migrate towards blood vessels (Figure 1.2 C), adhere to endothelial cells, which retract allowing the 

tumour cells to bass between them and intravasate (Figure 1.2 D) (Brooks et al. 2010). Once in the 

blood vessel, cancer cells need to survive physical challenges, such as shear forces generated by the 

blood flow and immune response attack (Molloy and van ’t Veer 2008). Cancer cells interact with the 

endothelium, platelets and leukocytes and disseminate via the haematogenous circulation (Figure 1.2 

E). The interaction between cancer cell and endothelium partially resembles the leukocyte-endothelial 

interaction; although, the mechanism of tumour cell adhesion differs from leukocyte recruitment to 
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inflammatory sites, both process share the same molecules to form contact with the endothelium 

(Witz 2008; Desgrosellier and Cheresh 2010; Läubli and Borsig 2010). Initially, weak interactions are 

formed between cancer cells and selectins expressed on endothelial cells, allowing the cancer cell to 

roll on the endothelium (Bendas and Borsig 2012). While early tethering and rolling of cancer cells on 

the endothelium is a reversible process, upregulation of integrins and members of the Ig superfamily 

stabilise the interaction and allows cancer cells to migrate outside the blood vessel and extravasate to 

the target organ (Smith 2000) (Figure 1.2 F). Here cancer cells exit the blood vessel, colonise the tissue 

(Reymond et al. 2013) and undergo MET, acquiring the epithelial phenotype back (Yao et al. 2011). 

Cancer cells remain dormant for some time before starting proliferating again, generating a secondary 

tumour (Chambers et al. 2002). 

Cancer cell can also infiltrate into lymphatic vessels and, through a mechanism similar to the one just 

described, can colonise close and distant lymph nodes and reach circulation, contributing to metastatic 

dissemination (Brown et al. 2018; Farnsworth et al. 2018; Pereira et al. 2018). Indeed, it has been 

proposed that OC cells favour lymphatic disseminate to hematogenous metastasis. By accumulating 

into the peritoneal lymphatic vessels, cancer cells can block them impeding lymphatic clearance of the 

peritoneum, with consequent ascites formation and further OC dissemination (Feki et al. 2009). Lymph 

node metastasis is seen in more than 60% of OC cases, particularly in pelvic and para-aortic lymph 

nodes (Goff et al. 2004; Ferrandina et al. 2007; Nakao et al. 2009; Jayson et al. 2014). For this reason, 

since 1985, the International Federation of Gynaecology and Obstetrics (FIGO) included lymph node 

metastasis for identification of stage III or IV OC (Thomakos et al. 2019). 
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Figure 1.2: Schematic representation of the metastatic cascade. 
Formation of new blood vessels occurs in the primary tumour (A) due to a hypoxic environment. Cancer cells 
undergo EMT and detach from the primary tumour (B), invade the surrounding membrane and move towards the 
blood vessel (C). Once cells reached the blood vessel, they intravasate into it (D) and move into the circulation (E). 
When reached the target organ, cells adhere to the vessel, extravasate (F) and penetrate in the new organ 
generating a secondary tumour.

1.2.3. Ovarian cancer metastasis 

As described previously, OC metastasis does not follow the classical hematogenous dissemination 

pathway, instead it directly extends to the peritoneal cavity, where the lack of an anatomic barrier 

makes OC dissemination a passive process (Motohara et al. 2019). The “soil” for OC metastasis is either 

the omentum, a fatty layer covering the abdomen and pelvis, or the peritoneum, a serous membrane 

consisting of a single layer of mesothelial cells supported by a thin layer of ECM. These two layers cover 

most of the ovaries proximal organs such as the uterus and Fallopian tubes, bladder, rectum, stomach 

and the small bowel (Yeung et al. 2015; Motohara et al. 2019) (Figure 1.3). OC dissemination 

demonstrates the “seed and soil” hypothesis proposed by Paget (1889), as demonstrated by Tarin and 

colleagues (1984) in their study. The authors studied the clinical effect of a peritoneovenus shunt in 

cancer dissemination in 29 patients living with ascites caused by inoperable cancers. The patients were 

subjected to the peritoneovenous shunt, that drained the excess of ascitic fluid from the peritoneum 
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to the systemic circulation, via the jugular vein. Despite patients experienced a massive infusion of 

malignant cells for up to 27 months, they either did not develop aggressive metastases in the lung or 

the metastases were of no clinical importance (Tarin et al. 1984). 

 

 

Figure 1.3: Schematic representation of OC spread. 
At early stage, the tumour (dark blue mass in the figure) is localised to the ovary. Once the capsule is disrupted, 
the tumour spreads to the surrounding organs. Ovarian cancer directly extends to the uterus and Fallopian tubes 
and colonise them. Some OC cells are exfoliated from the ovarian surface and are transported by the ascitic fluid 
to the peritoneal cavity were OC cells implant to the omentum, and to the mesothelial layer covering the stomach, 
intestine, liver and other peritoneal organs. Tumour cells can also spread through the lymphatics vessels that drain 
the ovaries to the pelvic and paraaortic lymph nodes. 

Before OC cells detach from the primary tumour, they often undergo EMT (described in section 1.2.1) 

that allows them to acquire an invasive phenotype, resist stress and apoptosis, and to disseminate 

(Lengyel 2010). During EMT, OC cells lose E-cadherin expression due to both its transcription regulation 

and also to the abundance of growth factors like TGF-β, epidermal growth factor (EGF), and hepatocyte 

growth factor (HGF) (Thiery et al. 2009). These soluble molecules, normally present in the follicular 

fluid during ovulation (Dean et al. 2017), regulate the function of transcription factors like SNAI1/2 

through activation of non-canonical PI3K/Protein kinase B (also known as AKT) and mitogen activated 

protein kinase kinase (MEK)/extracellular signal-regulated kinases (ERK) pathways, favouring EMT 
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(Grotegut et al. 2006; Peinado et al. 2007). E-cadherin levels are lower in detached OCs or metastatic 

sites than in the primary tumour (Veatch et al. 1994). Cells start to express N- and P-cadherins and α2β1 

and α3β1 integrins that cluster with the collagen of the ECM and activate MMP-1 and -9 that further 

cleave α-integrin and E-cadherin, facilitating cell detachment from the epithelial layer, a process 

referred to as “exfoliation” (Al-Alem and Jr 2015). The exfoliation process is promoted by the 

mechanical forces produced by the rubbing of internal organs on the epithelial layer during respiration.  

OC cells detach as single cells or more often as spheroids (clusters of cells) and then passively 

disseminate in the peritoneal cavity through the physiological movement of the peritoneal fluid. The 

increased leakiness of the vasculature induced by release of VEGF and the obstruction of lymphatic 

vessels by cancer cells impedes the full absorption of the peritoneal fluid, promoting ascites formation 

in the peritoneal cavity (Order et al. 1972). Ascites represents a reservoir of ECM components, 

chemokines, cytokines and proteins that support OC cells survival and growth and facilitates their 

spread to distant sites of the abdomen. Detached cancer cells usually “float” in the ascites as spheroids 

and need to survive anoikis (induction of apoptosis caused by detachment from the ECM) and the 

immune system surveillance in order to disseminate. Interestingly, cancer cells in these spheroids show 

high levels of E-cadherin and EpCAM and reduced expression of N-cadherin, MMPs and other 

mesenchymal markers (Latifi et al. 2012; Wintzell et al. 2012). In this context, expression of cadherins 

might be necessary to avoid detachment-induced apoptosis and also help cells to resist chemotherapy 

(Bates et al. 2000; Frankel et al. 2001) 

Cells attach preferably to the mesothelium, by expressing several integrins (particularly α5β1-integrin 

that favours the binding to fibronectin) (Wagner et al. 2011), CD44 (surface receptor for hyaluronic 

acid) (Strobel et al. 1997) and cancer antigen 125 (CA125) (Rump et al. 2004). Upregulation of MMP-2 

enables degradation of fibronectin and vitronectin into smaller fragments, and expression of α5β1 and 

αvβ3 integrins allows cell adhesion to them. Once attached to the mesothelium, OC cells starts to adapt 

to the new microenvironment and recruit tumour stroma cells, generating a favourable 

microenvironment that will benefit the formation of a secondary tumour (Lengyel 2010; Mitra 2016; 

Weidle et al. 2016). 

An interesting discovery by Pradeep and colleagues shed light on the ability of OCs to spread via 

hematogenous dissemination. By using a parabiosis mouse model, where two mice are surgically 

united to share the blood circulation, the authors demonstrated that SKOV3 ovarian cancer cells are 

able to spread from the host-mouse (directly injected with SKOV3 cells) to the guest-mouse, by first 

colonizing the omentum and subsequently reaching the peritoneum and abdominal organs (Pradeed 

et al. 2014). The process of metastasis in ovarian cancer is incompletely understood and requires 
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further investigation, and in particular the role of soluble cell signalling factors has been under-

explored. 

1.3. Extracellular vesicles 

1.3.1. Definition and classification 

Extracellular vesicles (EVs), are a heterogeneous group of small cell-derived vesicles involved in cell-

to-cell signalling, ranging from 30 nm to 5 μm in diameter, surrounded by a lipid bilayer. The EV 

secretion pathway was described for the first time in 1980’s by two different groups studying 

transferrin receptor (TfR) recycling during reticulocyte maturation (Harding and Stahl 1983; Pan and 

Johnstone 1983). Though once considered exclusively a way to dispose of cellular waste, EVs are now 

considered a novel mechanism of cellular communication. EVs can be classified in three major 

categories: microvesicles, apoptotic bodies and exosomes (Figure 1.4) (van der Pol et al. 2012; Akers 

et al. 2013). EVs are produced by all cell types and can be found in biofluids such as blood, urine, saliva 

and even tears (El Andaloussi et al. 2013; Colombo et al. 2014; Doyle and Wang 2019). 

 

Microvesicles are release in the extracellular space by outward budding and scission of the plasma 

membrane (PM). Their release is the result of a finely regulated and dynamic mechanism involving 

phospholipid redistribution and cytoskeletal protein contraction. They are heterogeneous in diameter, 

with a size ranging between 200 nm and 1 μm, and they carry a range of biological molecules including 

proteins, RNAs and lipids, sharing some similarity with the exosomal cargo, described below (e.g. 

endosomal sorting complex required for transport (ESCRT) associated proteins and tetraspanins) 

(Muralidharan-chari et al. 2010; Tricarico et al. 2017). 

 

Apoptotic bodies are large vesicles, with size between 100 nm and 5 µm, released by the blebbing of 

the PM of cells undergoing apoptosis. Dissociated cytoplasmic, nuclear and organelle fragments are 

trapped in the forming bleb and are expelled in the extracellular environment. Therefore, apoptotic 

bodies are characterised by a cytoplasmic component and express tetraspanin surface markers also 

found in microvesicles and exosomes (Kakarla et al. 2020). 

 

Exosomes are small vesicles, surrounded by a lipid-bilayer, with a diameter between 40 and 150 nm. 

Exosomes are derived from the endosomal pathway, involved in the internalization of extracellular 

ligands, their recycling to the PM or their degradation (Gould and Lippincott-Schwartz 2009; El 

Andaloussi et al. 2013). During maturation into late endosomes, the limiting membrane of the 

multivesicular body (MVB) undergoes an inward budding, generating intraluminal vesicles (ILVs). 

Generally, the main fate of MVBs is to fuse with the lysosome and degrade the unwanted biological 
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material (Mullock et al. 1998); however, years of research highlight a new mechanism by which MVBs 

can fuse with the PM and release their ILVs into the extracellular milieu. From the moment of release, 

ILVs are referred to as exosomes (Johnstone et al. 1987). During ILV formation several proteins, lipids, 

cytosolic component, RNAs and DNAs are actively sorted into them and can be transferred to recipient 

cells or be released in the extracellular space, facilitating cellular communication (Colombo et al. 2013; 

Kowal et al. 2014). 

Overlap in the size, density and markers between EV subtypes means that these characteristics are not 

enough to discriminate them. In addition, these overlapping features impede the isolation of 

homogeneous subpopulations of EVs, as most of the extraction methods are based on size (size 

exclusion chromatography, ultracentrifugation), density (ultracentrifugation) and affinity to surface 

biomarkers (immunoaffinity extraction). This project will focus mostly on the functional role of small 

(50-200 nm) EVs that will be defined as “EVs” throughout this thesis. 

 

 

Figure 1.4: Schematic representation of exosome formation. 
PM invaginates incorporating cell surface-associated proteins (e.g. receptors, membrane proteins, glycoproteins) 
forming the early endosome (EE)). Active mechanisms sort RNAs, cytosolic proteins and other biological 
components into the EE, and intraluminal vesicles (ILVs) began to form. EE matures and forms multivesicular 
bodies (MVBs); MVBs escape the canonical pathway of fusion with the lysosome and moves to the PM, fuse with 
it and release the ILVs to the extracellular environment: exosomes are released.
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1.3.2. Biogenesis 

Exosome biogenesis is the result of the release of the ILVs contained in the MVBs into the extracellular 

space. MVB biogenesis is driven by at least two different mechanisms: an ESCRT-dependent 

mechanism and an ESCRT–independent mechanism (Akers et al. 2013). The latter can be triggered by 

proteins such as tetraspanins (Perez-Hernandez et al. 2013), lipid structures such as ceramide 

(Trajkovic 2008) or sphingomyelin metabolites (Kajimoto et al. 2013) and other molecules.  

The ESCRT machinery is composed by four main protein complexes named ESCRT-0, -I, -II and -III that 

cooperate with accessory proteins like vacuolar protein associated sorting 4 (VPS4) and Apoptosis-

linked gene 2–interacting protein X (ALIX) to generate MVBs (Babst et al. 2002; Henne et al. 2013). 

ESCRT-0 is responsible for recognition of ubiquitinylated cargo, ESCRT I and II are directly involved in 

membrane budding, while ESCRT III is responsible for membrane scission (Hurley 2008; Wollert et al. 

2009; Hanson and Cashikar 2012). ESCRT-0, through hepatocyte growth factor-regulated tyrosine 

kinase substrate (HRS), recognises mono-ubiquitylated proteins in the endosomal membrane and 

sequesters them; then it recruits ESCRT-I complex through TSG101 (tumour susceptibility gene 101 

protein). ESCRT I and II interact generating a supercomplex that induces membrane budding. The 

supercomplex localises mostly at the neck of the bud and stabilises it. The ESCRT-I complex, either via 

ESCRT-II or by interaction with ALIX, recruits the ESCRT-III that catalyses the scission of the membrane 

neck (Hurley and Hansin 2010). In order to disassemble the ESCRT machinery, the Adenosine 

triphosphate(ATP)ase Vps4 is recruited to the membrane. This protein through hydrolysis of ATP 

provides the energy necessary for membrane budding and scission. Indeed, it has been shown in vitro 

that absence of Vps4 activity induces accumulations of ESCRT machinery to the membrane and blocks 

cargo processing (Babst et al. 1998).  

Several ESCRT-independent mechanisms involved in exosome biogenesis have been identified. When 

MVBs are formed they need to move towards the PM in order to fuse with it. Their movement towards 

the PM depends on interaction with actin and microtubules of the cytoskeleton and is regulated by a 

variety of proteins, of which the Rab Guanosine-5'-triphosphate(GTP)ase family are key components 

(Hutagalung and Novick 2011). The Rab GTPase are proteins belonging to the Ras GTPases protein 

family. By switching between GTP- (active) and guanosine diphosphate (GDP)-bound (inactive) states, 

they regulate various steps of membrane trafficking and associate with membrane transport and 

fusion in the endocytic pathway (Zerial and Mcbride 2001; Wandinger-Ness and Zerial 2014).  

Indeed, the Rab27a and Rab27b proteins have been identified as key regulators of different tasks in 

the EV release pathway (Ostrowski et al. 2010). Transient transfection of both Rab27a and Rab27b in 

HeLa (cervical cancer) cells were linked with a reduction in the number of secreted EVs, although their 
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silencing did not affect their protein content, suggesting that both Rab27a and Rab27b are involved in 

EV release but do not control cargo sorting (Ostrowski et al. 2010). Specifically, Rab27a silencing in 

HeLa cells produced bigger MVBs, without altering their localization and reduced their docking to the 

PM. Therefore, it was suggested that Rab27a is required for docking of MVB at the PM and that in its 

absence vesicles fuse with each other instead of with the PM, leading to formation of enlarged 

compartments. In contrast, Rab27b knockdown induced production of smaller, clustered, MVBs mostly 

localised at the cell periphery, suggesting its involvement in mediating MVB transfer from microtubules 

to actin-rich cortex (Ostrowski et al. 2010). The role of Rab27a in EV secretion was further confirmed 

in other research, further highlighting its involvement in EV release (Blanc and Vidal 2018). 

Lipids can also mediate EV biogenesis. In fact, lipids are essential players in vesicular transport and 

collaborate closely with several proteins to control processes like membrane deformation, fission and 

fusion (Brügger and Bankaitis 2012; McMahon and Boucrot 2015). Lipidomic analyses of EV content 

have identified high amounts of cholesterol, sphingolipids and ceramides, and low amounts of 

phosphatidylcholine. Several studies have shown the involvement of lipids in EV biogenesis. Neutral 

sphingomyelinases (nSMase) are a family of enzymes that hydrolase sphingomyelin (the most 

abundant lipid in the PM) into phosphorylcholine and ceramide; the latter provides structural rigidity 

to the PM as well as to the EV membrane (Shamseddine et al. 2015). GW4869, a cell-permeable 

compound, acts as a potent and specific non-competitive inhibitor of nSMase. Trajkovic and colleagues 

demonstrated that inhibition of nSMase with GW4869 blocks EV release by decreasing the formation 

of ceramide. It has been stipulated the cone-shaped structure of ceramide forms a spontaneous 

negative curvature of the membrane by creating large lipid raft domains that are important for EV 

biogenesis (Trajkovic et al. 2008). Particularly, GW4869 administration to MCF7 (breast cancer) cells 

inhibits exosome release, yet inversely increases MV biogenesis (Menck et al. 2017). This is a clear 

indication that ceramide serves a unique function in the biogenesis of different EV subpopulations 

(Kosaka et al. 2013). 

1.3.3. Cargo and functions 

EVs serve as “messengers” between their cell of origin and both neighbouring and distant cells, playing 

an important role in cell-to-cell communication. EVs carry a variety of biological products like proteins, 

lipids and nucleic acids (DNA and RNAs) (Villarroya-Beltri et al. 2015) that are taken up by recipient 

cells and can modify their behaviour. 

Lipids 

The EV membrane consists of a lipid bilayer with a composition very similar to that of the cell of origin 

(Llorente et al. 2013). Indeed, different lipids, including sphingomyelin, cholesterol, ceramide and 
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phosphatidylserine are enriched in EVs and provide them with rigidity and support (Llorente et al. 

2013). In contrast, phosphatidylcholine and diacylglycerol are decreased in the EV membrane 

compared to the membrane of parental cells (Laulagnier et al. 2004). The enrichment of sphingomyelin 

at the expense of phosphatidylcholine suggests an active phospholipid sorting during EV biogenesis 

from the MVB limiting membrane. Moreover, the presence of sphingomyelin and unsaturated lipids 

confers a higher rigidity to the membrane of EVs (Laulagnier et al. 2004). Another major difference 

between EVs and parental cell PM composition is that phosphatidylserine is redistributed between the 

two membrane leaflets in the EV membrane, while it is retained on the inner leaflet of the PM (Record 

2013; Record et al. 2014). This has been postulated to facilitate EV uptake from recipient cells (Fitzner 

et al. 2011). 

RNAs 

The presence of functional RNAs inside EVs and their ability to be transferred to recipient cells was 

first shown in two different publications (Ratajczak et al. 2006; Valadi et al. 2007). Since then, 

thousands of publications have demonstrated the presence of messenger RNA (mRNA), microRNA 

(miRNA), long non-coding RNA and ribosomal RNA (rRNA) inside EVs (Kim et al., 2017; Yáñez-Mó et al., 

2015). RNA transferred through EVs can modulate several cellular functions like promotion or 

suppression of cell survival and proliferation (Bruno et al. 2012), modulation of immune response 

(Fabbri et al. 2012), increase metastatic burden in mice (Yokoi et al. 2017) or transfer of chemotherapy 

resistance (Au Yeung et al. 2016). 

DNAs 

Double stranded DNA, single stranded DNA and mitochondrial DNA have been identified as part of the 

EV cargo (Cai et al. 2016). The DNA is taken up by target cells where it localises to the cytoplasm or to 

the nuclei (Waldenström et al. 2012). The function of EV DNA has not been widely explored, but it has 

been postulated that it could serve as a cancer biomarker (Thakur et al. 2014). 

Proteins 

Extensive research has focused on the protein content of EVs. EVs are normally highly enriched in 

cytoskeletal, cytosolic, heat shock and PM proteins, and proteins associated with EV biogenesis and 

vesicle trafficking machinery (Yáñez-Mó et al. 2015). ESCRT-associated proteins such as ALIX, TSG101, 

tetraspanins such as CD9, CD63 and CD81 (Escola et al. 1998) are very abundant in EV samples and are 

often used as “markers” for their characterization. Moreover, proteins involved in signal transduction 

such as EGF receptor (EGFR), major histocompatibility complex (MHC) I and II and other 

transmembrane proteins can be found in EVs, while endoplasmic reticulum, mitochondrial, nuclear 
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and lysosomal markers (such as calnexin, cytochrome C, histones, GM130) are normally absent in EVs 

and can be used as negative markers during vesicles characterization (Théry et al. 2001; Doyle and 

Wang 2019). 

1.3.4. Roles of EVs in cancer and metastasis  

Tumour-derived EVs can induce recipient cells to acquire a tumour-promoting phenotype and are 

involved in cancer formation, development and progression (Becker et al. 2016; Xu et al. 2018). 

Additionally, EVs can also affect the tumour microenvironment, inducing angiogenesis, tumour cell 

invasion and migration, initiate resistance to cell death, evade immune response, reprogram cellular 

energy metabolism and drug resistance (Peinado et al. 2013; Fang et al. 2018; Fontana et al. 2021). 

Angiogenesis 

The hypoxic status of a tumour in combination with a lack of nutrients induces endothelial cells (ECs) 

to form new blood vessels, process described in section 1.2.2. EVs can positively or negatively 

modulate angiogenesis (Todorova et al. 2017). Tumour derived-EVs can induce angiogenesis by 

transfer of pro-angiogenic factors including TGF-β1 (Webber et al., 2015), EGFR (Al-Nedawi et al. 2009), 

miRNA-210 (King et al. 2012; Kosaka et al. 2013) or miRNA-23a (Hu et al., 2017), or by directly 

stimulating EC proliferation, migration and maturation (Nazarenko et al. 2010). Moreover, EVs can 

carry a mutant form of VEGF that can activate VEGF receptor, enhancing angiogenesis and inhibiting 

the therapeutic effect of bevacizumab by binding to it (Feng et al. 2017). 

EMT 

It has been shown that EVs can play a role in EMT (described in section 1.2.1) by either transport of 

mesenchymal proteins to recipient cells, or by inducing EMT in recipient cells through release of 

oncogenic signalling (Greening et al. 2015). Tauro and colleagues have shown that EVs released from 

cancer cells are highly enriched in metastatic markers (vimentin, MMP-1, MMP-19 and MMP-14) and 

present low abundance of proteins involved in cell-cell/cell-matrix contact (e.g. E-cadherin, EpCAM) 

(Tauro et al. 2013). Several studies reported that EVs released from metastatic cell lines can induce 

mesenchymal features in endothelial cancer cells through delivery of EGFR (Garnier et al. 2012), 

miRNA-105 (Zhou et al. 2014), or miRNA-200 (Le et al. 2014). Interestingly, EVs derived from more 

mesenchymal-like cells are able to activate endothelial cells and promote vascular niche formation to 

a greater extent than EVs released from more epithelial-like cells (Pasquier et al. 2014). In addition, 

functional experiments have shown that treatment of non-metastatic/normal cells with EVs derived 

from tumour cells undergoing EMT can induce the EMT phenotype in recipient cells (Galindo-

Hernandez et al. 2014). 
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Invasion and migration 

EVs mediate intercommunication between cancer cells and the surrounding tumour 

microenvironment mediating their invasion and migration (described in section 1.2.2). Tumour-

derived EVs can alter the tumour microenvironment and stimulate it to support tumour growth and 

dissemination (Cho et al. 2011; Webber et al. 2015; Wei et al. 2017). For example, CD44 was found in 

OC cells-secreted exosomes that were transferred and internalised by human peritoneal mesothelial 

cells (HPMC). CD44 led to an increase of MMP-9 secretion and down regulation of E-cadherin by HPMC, 

favouring OC progression (Nakamura et al., 2017). miRNA-21 is shuttled into EVs produced by cancer 

associated fibroblast (CAF) cells and transferred to OC cell lines. When taken up, miRNA-21 inhibits 

apoptosis and confers chemoresistance to OCs cells by repressing the translation of the apoptosis 

protease-activating factor-1 (Au Yeung et al. 2016). In contrast, non-tumour cells can produce EVs that 

reduce tumour cell migration and invasion (Chen et al., 2017; Luga et al., 2012). In a xenograft mouse 

model, miRNA-7 has been identified in macrophage-derived EVs. These EVs are taken up by OC cells, 

decreases the activation of EGFR/AKT/ERK1/2 pathway and inhibits OC metastasis (Hu et al. 2017). EVs 

have been demonstrated to carry several enzymes that break down the ECM, such as members of the 

MMP family (Clancy et al., 2015; Hoshino et al., 2013; Runz et al., 2007; Yokoi et al., 2017), a disintegrin 

and metalloproteinase (ADAM) (Shimoda et al. 2014) and extracellular matrix metalloproteinase 

inducer (EMMPRIN) (Menck et al. 2015; Colangelo and Azzam 2020). Graves and colleagues identified 

MMP-2, MMP-9 and uPA in ascites-derived EVs from women affected by OC. Treatment of OC cells 

with these EVs induced their invasion (Graves et al. 2004). 

Several studies have shown that EVs are able to control direction and speed of migrating cells in vivo 

(Sung et al. 2015), stabilise the leading edge protrusion (Sung et al. 2011) and that migrating cells leave 

an EV trail that might serve as chemotactic signal for other migrating cells (Sung et al. 2020). 

Intravasation, circulation and extravasation 

In order to migrate to other organs, cancer cells need to enter the blood vessels, circulate in the blood 

stream and exit at the target site (section 1.2.2). EVs can impair tight junctions, altering the endothelial 

structure, allowing cancer cells to enter the circulation (Zhou et al. 2014).  

Once in circulation, cancer cells need to survive mechanical damage and immunological signalling. 

Tumour-derived EVs can modulate the immune system in numerous ways, contributing to cancer cell 

survival (Whiteside 2016). For example, EVs can directly release factors causing apoptosis of T cells 

(Kim et al., 2005) or, through TGF-β signalling, can stimulate differentiation of myeloid cells thus 

suppressing the T cell response (Valenti et al., 2006).  
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Once they reach the target organ, cancer cells need to adhere to the endothelium and enter the tissue. 

Platelets can support adhesion of cancer cells to the endothelium by inducing E-, L- or P- selectin 

expression (Natoni et al. 2016). Platelet-derived EVs contain P-selectin and aid extravasation (Heijnen 

et al. 2014). 

Secondary tumour formation 

Prior to the formation of hematogenous metastasis, cancer cells can prime target organs by forming 

“pre-metastatic niches”, favourable microenvironments that support their survival and outgrowth. 

Numerous cells, chemokines, cytokines and other soluble factors are needed for pre-metastatic niche 

formation (Peinado et al. 2017). EVs actively contribute to this process by increasing vascular leakiness 

(Zhou et al. 2014), stimulating resident stromal cells (Hoshino et al. 2015) and modulating the immune 

response (Costa-Silva et al. 2015).  

Hoshino and colleagues (2015) showed that EVs from breast (MDA-MB-231 and MDA-MB-468) and 

pancreatic (BxPC-3 and HPAF-II) cancer cell lines could ‘colonise’ specific metastatic sites and could 

‘direct’ circulating tumour cells to the secondary site. This suggests that organotropic tumour EVs 

prime pre- metastatic niches to facilitate metastasis. Moreover, the authors show that EV 

organostropism was related to expression of specific integrins, such as ITG-β4 (Hoshino et al. 2015). 

The role of EVs in organotropic metastasis was further confirmed by Costa-Silva et al (2015); the 

authors demonstrated that EVs derived from pancreatic cancer cells are able to “educate” the liver of 

wild-type mice for metastatic colonization. EVs are taken up by Kupffer cells (stellate liver 

macrophages) where they induce TGF-β release. TGF-β stimulates production of fibronectin from 

hepatic stellate cell and recruits bone marrow-derived macrophages and neutrophilis, ‘priming’ the 

site for further liver metastasis (Costa-Silva et al. 2015). 

Although the role of EVs in different aspects of cancer has been extensively studied, several questions 

remain concerning the mechanisms of EV release from cancer cells and how this may influence EV 

content and function. 

 

1.4. Histamine 

1.4.1. Histamine biogenesis and functions 

Histamine (2-[4-imidazolyl]-ethylamine) is an endogenous biogenic amine that lately has been 

proposed to be involved in cancer progression and EV biogenesis. Histamine was first identified in the 

human body in 1927 (Best et al. 1927). It is synthesised from the amino acid L-histidine through 



 

23 | P a g e  
 

Chapter 1 Introduction 

oxidative decarboxylation by the L-histidine decarboxylase enzyme (HDC) (Schayer 1952) and it is 

rapidly metabolised by the histamine N-methyltransferase (HMT) or diamine oxidase (DAO) (Maslinski 

and Fogel 1991) (Figure 1.5). 

 

Figure 1.5: Schematic representation of histamine biogenesis and metabolism. 
Histidine decarboxylase (HDC) removes a carboxylic group from the amino acid L-histidine inducing synthesis of 
histamine. Histamine is degraded by two different enzymes: 1) histamine N-methyltransferase (HMT) is a cytosolic 
enzyme and inactivates histamine by methylating the imidazole ring. 2) Diamine oxidase (DAO) is located 
extracellularly and inactivates histamine by removing its amino group. 

 
Histamine is produced by many cell types that can be classified in two categories: 1) de novo producers, 

such as enterochromaffin-like cells (endocrine cell found in the digestive tract, responsible for the 

production of gastric acid) and neurones, that produce and directly release histamine without storing 

it and 2) storing cells like mast cells, platelets and basophils, where histamine is produced and then 

stored in secretory granules and released upon certain stimuli. There are several factors that induce 

histamine release, including allergens crosslinking with the receptor FcεRI, neuropeptides, cytokines, 

chemokines, complement factors, lipoprotein, hyperosmolarity, hypoxia, superoxidases, physical 

factors like extreme temperature, certain foods, and alcohol (Jutel et al. 2009). By activation of its four 

receptors, histamine regulates a plethora of physiological processes including vasodilation and 

vasoconstriction, increase/reduction of vascular permeability, smooth muscle contraction/relaxation 

(in particular in the bronchi and intestine), and increased mucosal and gastric secretion (Patel and 

Mohiuddin 2020). Histamine has also been shown to play various roles in neurotransmission, immune 

modulation (by increasing immune cell chemotaxis towards sites of inflammation), modulation of 

allergic reactions, haematopoiesis, and regulation of cell differentiation, proliferation and 

regeneration, in both health and in pathological conditions (Ichikawa et al. 2012). Indeed, recent 

studies on histamine receptors have demonstrated that the histamine pathways extend well beyond 

its established role (Medina et al. 2011) 
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1.4.2. Histamine receptors 

Histamine receptors are a family of G protein-coupled receptors (GPCRs) named histamine receptor 1 

(HRH1), histamine receptor 2 (HRH2), histamine receptor 3 (HRH3) and histamine receptor 4 (HRH4). 

Histamine receptors share the GPCR common structures: they contain seven transmembrane 

segments, an extracellular amino terminus domain and an intracellular carboxyl terminus domain. 

While the extracellular domain forms a ligand-binding pocket, the cytoplasmic region interacts with 

the soluble signal (G protein) and with an “effector component” that leads to the biological response 

(Kobilka 2007). Histamine receptors are widely distributed, they are activated by different stimuli, bind 

to different Gα protein subunits (Gαs, Gαi/o, Gαq/11, and Gα12/13) and exert a variety of effects (Figure 

1.6). 
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Figure 1.6: Schematic representation of the effect exerted by histamine through the activation of its 
four receptors. 
Histamine is implicated in several pathophysiological effects in the body. Via activation of HRH1, histamine induces 
vasodilatation and increases endothelial permeability, stimulates nociceptive nerves in the skin, activates the 
immune system and mediates inflammation, induces contraction of smooth muscle cells in the bronchi and urinary 
tract and induces mucus deposition in the airways. HRH2 mediates vasodilatation, induces relaxation of muscle 
cells in the respiratory tract and in the bladder and stimulates gastric acid secretion. HRH3 is mostly located in the 
brain and serves autoreceptor and heteroreceptor functions, it decreases release of histamine, acetylcholine and 
serotonin, modulates nociception and food intake. HRH4 activates the immune system, controls cytokine 
production and regulates chemotaxis in mast cells and eosinophils.

 

Histamine receptor 1 (HRH1) 

HRH1 is encoded by a gene located on chromosome 3p25 (Fukui et al. 1994). The encoded receptor is 

a 487 amino acids long Gαq/11 coupled protein, characterised by a large III intracellular loop and a short 

C-terminal domain. HRH1 is mostly expressed on the surface of blood vessels and sensory nerves, but 

it has also been identified in the gastrointestinal tract, hepatocytes, chondrocytes, monocytes, 

neutrophils, dendritic cells, T and B lymphocytes (Shahid et al. 2010). When phosphorylated, HRH1 

activates its downstream effector phospholipase C (PLC), which breaks down phosphatidylinositol 4,5-

biphosphate into inositol 1,4,5-triphosphate and 1,2-diacylglycerol (Gutowski et al. 1991); the two 

products induce an increment of intracellular Ca2+ level that results in smooth muscle contraction, 

blood vessel dilatation and rise in vascular permeability. HRH1 is responsible for regulating the allergic 

response and inflammation (Shahid et al. 2010; Monczor and Fernandez 2016). However, an increasing 

amount of evidence suggests that HRH1 can be activated regardless of its binding with a ligand. Its 

constitutive activation can control gene expression by interaction of the Gβγ subunits with the nuclear 
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factor-κB (Bakker et al. 2001). In addition, HRH1 can also signal outside its canonical pathway, and 

activates several factors such as adenylyl cyclase (AC) with consequent accumulation of 3',5'-cyclic 

adenosine monophosphate (cAMP) and activation of the mitogen activated protein kinases (MAPKs) 

(Robinson and Dickenson 2001; Buschauer et al. 2015), signal transducer and activator of transcription 

(STAT) 1 (Sakhalkar et al. 2005), STAT4 (Liu et al. 2006), production of nitric oxide (Leurs et al. 1991) 

and arachidonic acid release from phospholipids (Murayama et al. 1990). Several studies have 

highlighted the involvement of HRH1 in pathological processes like cancer cell growth, proliferation 

and survival (Rivera et al. 2000; Medina and Rivera 2010). 

 

Histamine receptor 2 (HRH2) 

HRH2 is encoded by an intron-less gene located on chromosome 5q35 and was first discovered in 1972 

by Sir James Black (Black et al. 1972). Like HRH1, HRH2 is expressed by a variety of cells including gastric 

mucosal, parietal, smooth muscle, heart, endothelial, epithelial, neuronal and immune cells. HRH2 is 

coupled with a Gαs and therefore when activated it binds to the downstream effector adenylyl cyclase 

(AC), generating cAMP that activates several effectors including protein kinase A (PKA) (Traiffort et al. 

1992). HRH2 stimulation induces gastric secretion (Black and Shankley 1985) and heart contraction 

(Hescheler et al. 1987). In several processes, HRH2 activation antagonises HRH1 effects; for example, 

in the respiratory system, HRH1 induces smooth muscle cell contraction and consequent 

bronchoconstriction, whereas HRH2 activation leads to dilation of smooth muscle cells and 

bronchodilation (Nathan et al. 1981). Interestingly, some of the effects exerted through HRH2 are a 

consequence of the activation of alternative pathways, such as the activation of tyrosine kinase 

receptors such as ERK1/2 or PI3K (Luo et al. 2013; Alonso et al. 2016).  

 

Histamine receptor 3 (HRH3) 

The HRH3 gene is located on chromosome 20q13 and, in contrast to HRH1 and HRH2, many of its splice 

variants have been identified (Drutel et al. 2001). HRH3 is mostly expressed in different areas of the 

brain and in nociceptive fibres, and it mediates several neurological functions like memory and feeding 

processes and the sleep-wake cycle (Pillot et al. 2002). An interesting function of HRH3 is its ability to 

inhibit the release of several neurotransmitters including dopamine, GABA, acetylcholine, 

noradrenaline, glutamate and histamine itself (Nieto-alamilla and Márquez-gómez 2016). HRH3 is 

coupled with a Gαi/o protein and negatively regulates the activity of AC and its downstream pathway 

(Clark and Hill 1996; Lovenberg et al. 1999). Its activation can also result in the stimulation of non-
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canonical pathways, such as MAPK, PI3K and phospholipase A2, and it can also impair the function of 

ion channels. 

 

Histamine receptor 4 (HRH4) 

HRH4 is encoded by a gene located on chromosome 18q11 and it is mostly expressed in the bone 

marrow, spleen, thymus, liver, intestinal cells and peripheral cells like neutrophils, eosinophil, mast 

cells and T cells (Nakamura et al. 2000; Zhu et al. 2001). HRH4 is functionally coupled to a Gi/o protein, 

that inhibits AC and its downstream signalling pathway; in addition HRH4 activation can stimulate 

MAPK and PLC (Oda et al. 2000). HRH4 seems to cause chemotaxis of mast cells and eosinophils, 

control of cytokine secretion, and activation of immune cells (Gantner et al. 2002; Hofstra et al. 2003; 

Ling et al. 2004). 

1.4.3. HRH1 and cancer 

The involvement of histamine in cancer progression and metastasis has been studied since the 1960s 

(eg Kahlson and Rosengren 1968), but its role still remains controversial. Immunohistochemistry has 

shown that histamine content increases in some human cancer tissues like ovarian, endometrial and 

cervical carcinoma when compared with adjacent healthy tissue (Chanda and Ganguly 1995; Predescu 

et al. 2019). In particular, bioinformatic analysis discovered HRH1 expression in several cancer tissues 

including brain, bladder, colorectal, breast, lung, head and neck, skin and ovarian cancers, and its 

association with prognosis was different in different cancer types (Wang et al. 2014). For instance, high 

levels of expression of HRH1 were correlated with poor prognosis in lung cancer, soft tissue cancer, 

brain cancer, colorectal cancer and B-cell lymphoma, while low levels of HRH1 expression were related 

with poor survival in multiple myeloma, bladder, ovarian and eye cancers. It is important to note that 

the relationship between HRH1 expression and prognosis varied between different cancer types, and 

even between different cases of the same cancer type; indeed, out of six breast cancer samples, low 

expression of HRH1 was associated with poor survival in three cases, while high levels of HRH1 were 

related to poor survival in the other three cases. The authors proposed that HRH1 does not function 

only as a tumour suppressor or oncogene, but its function is multidimensional (Wang et al. 2014).  

The molecular function of HRH1 in OC has mostly been studied using cell lines. Histamine activation of 

HRH1 stimulates Ca2+accumulation that triggered OVCAR3 (an OC cell line) proliferation; this response 

is abrogated by administration of pyrilamine, an HRH1 antagonist (Popper and Batra 1994). Similar 

findings were also confirmed in SKOV3 cells (another OC cell line), where HRH1 activation upon 

histamine treatment stimulates their proliferation (Batra and Fadeel 1994).  
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Moreover, the involvement of HRH1 in cell growth and in cell behaviours associated with different 

steps of the metastatic cascade has been demonstrated. Administration of histamine or HRH1 specific 

agonist decreases PANC-1 (pancreatic cancer cell line) cell adhesion to plastic, augmentes their motility 

in a wound healing assay and increases the gelatinolytic activity of MMP-2 in a zymography assay 

(Cricco et al. 2006). These effects led the authors to propose that histamine may play a crucial role in 

tumoral progression towards metastasis in pancreatic carcinoma cells (Cricco et al. 2006). In breast 

cancer cell lines, HRH1 pharmacological inhibition leads to the suppression of cell proliferation, 

through sub-G0 accumulation, and promotion of cell motility and apoptosis via activation of ERK 

signalling pathway (Fernández-Nogueira et al. 2018). Similarly, Stoyanov and colleagues (2012), 

through cell proliferation and BrdU uptake analysis, demonstrated that histamine administration to 

lung cancer (A549) cells induces their proliferation and increases DNA synthesis; indeed, co-incubation 

of A549 cells with both histamine, pyrilamine (HRH1 antagonist) and cimetidine (HRH2 antagonist) 

significantly decreases cell proliferation, further supporting the involvement of histamine in cell 

growth. The authors also demonstrated that this effect was due to activation of ERK signalling 

(Stoyanov et al. 2012). Genotoxic effects and inhibition of cell migration and invasion attributed to 

HRH1 pharmacological inhibition have also been shown in melanoma and bladder cancer cell lines 

(Jangi et al. 2006; Ma et al. 2020). Histamine signalling is therefore associated with proliferation and 

different aspects of metastatic cell behaviour, including cell migration, adhesion and expression of 

proteolytic enzymes, but its precise role in OC progression remains to be clearly defined.  

 

1.4.4. HRH1 and EVs 

Very little is known regarding the involvement of histamine in EV biogenesis and release. Verweij and 

colleagues (2018), used Total Internal Reflection Fluorescence (TIRF) microscopy to show that constant 

administration of histamine to HeLa (cervical cancer cell line) and HUVEC (primary endothelial cells) 

cells immediately increases the number of CD63 positive MVB fusing with the PM. By monitoring 

intracellular Ca2+ level through TIRF microscopy, they observed a 10 second delay between EV release 

and calcium entry in the cell, suggesting that histamine- induced EV release is a calcium independent 

event that does not require Ca2+ influx. Phospho-proteomic analysis revealed that the rise in the 

release of EVs is due to the activation of a protein network starting with HRH1 and ending with 

activation of synaptosomal-associated protein 23 (SNAP23), a N-ethylmale-imide-sensitive factor-

attachment protein receptors (SNARE) protein involved in membrane fusion events (Verweij et al. 

2018). This was the first publication linking HRH1 activation with EV release. The same year, another 

paper showed that the use of the antihistamine ketotifen, a HRH1 selective antagonist, reduced EV 

biogenesis in cervix and breast cancer cells (Khan et al. 2018). Although initial evidence shows an active 



 

29 | P a g e  
 

Chapter 1 Introduction 

involvement of HRH1 in EV release, further work is needed to decipher the role of histamine and HRH1 

in EV release and the molecular mechanisms involved. 

 

1.5. Aims and objectives 

EVs are mediators of intercellular communication and have been reported to play key roles in all stages 

of the metastatic cascade. Recent findings highlight an involvement of histamine in EV production. This 

discovery, together with the emerging role of histamine in cancer development and progression points 

to the possibility that histamine, by modulating EV release, can regulate cancer progression and 

dissemination. In this project, it was hypothesised that histamine, via activation of HRH1, could induce 

EV release and modify metastasis-related properties of OC cell lines. 

The aims of this project were to 1) investigate the expression of HRH1 in different models of OC and 

its role in different steps of the metastatic cascade and 2) to study if HRH1 could regulate EV release 

and how this affects OC invasion in vitro. The specific objectives were: 

• To investigate HRH1 expression in OC cell lines and in clinical samples of OC and validate HRH1 

expression in in three different OC cell lines 

• To study whether HRH1 inhibition or activation can modify metastasis-associated cellular 

behaviours of OC cells in vitro 

• To understand how HRH1 affects EV biogenesis and content, with particular focus on the role 

of EVs in modulating cell invasion and matrix degradation in vitro 
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2. Materials and methods 

2.1. Cell culture 

2.1.1. Cell lines 

All the different cell lines used in this project are listed in Table 2.1. Three different OC cell lines were 

used: SKOV3, OVCAR3 and OVCAR5 and were purchased from the National Cancer Institute, Frederick 

Cancer Division of Cancer Treatment and Diagnosis Tumour/Cell Line Repository (Bethesda, USA). 

These cell lines were chosen to have a selection of cells characterised by a different invasion potential 

in vitro (Hallas-potts et al. 2019). SKOV3 are one of the most invasive OC cell line available and they 

are highly tumorigenic in vivo (Elias et al. 2015). OVCAR3 are described as a poorly invasive and 

migrating cell line in vitro and in vivo (Lokman et al. 2012). Previously unpublished data from our lab 

show that OVCAR5 are more invasive than OVCAR3 cells but less than SKOV3. HME (immortalised 

epithelial breast cells) were obtained from ATCC (American Type Culture Collection) and were used as 

calibrator to normalise for HRH1 expression analysis. HUVEC cells were used to study the adhesive 

behaviour of OC cells and were purchased from Lonza.
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Table 2.1: Cell name, place of origin and growth conditions for all cells used in this project. 
Percentages of concentration are given as v/v. Roswell park memorial institute medium (RPMI); endothelial cell 
growth basal media (EBM), Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12); foetal bovine 
serum (FBS); human fibroblast-derived growth factor- β (hFGF-β); vascular endothelial growth factor (VEGF); 
recombinant analogue of insulin growth factor (R3-IGF-1); epidermal growth factor (EGF). 
 

 

 

2.1.2. Cell revival from frozen stock 

A 25cm2 (OVCAR3, HUVEC) or a 75cm2 (SKOV3, OVCAR5, HME) cell culture flask was filled with 3 ml or 

10 ml of pre-warmed complete media, respectively, and placed into a 37°C cell culture incubator with 

5% CO2 v/v atmosphere in order to equilibrate the medium. All cell lines were thawed from liquid 

nitrogen in a 37°C warm water bath until ice was completely melted. Once fully thawed, the cell 

suspension was transferred to a 15 ml Falcon tube containing 10 ml of pre-warmed complete media 

and spun down at 300 x rcf for 5 minutes. The supernatant was discarded, cells were re-suspended in 

5 ml of complete media and then transferred to the pre-equilibrated cell culture flask, that was then 

placed back in a cell culture incubator. 

2.1.3. Cell sub-culturing 

Cell confluence was assessed every day by using a Nixon TMS inverted microscope. Media was 

removed and replaced with fresh pre-warmed complete media every two days when cultures were 
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less than 75% confluent. When cultures were more than 75% confluent, they were passaged to 

maintain cell growth. Media was removed and cells washed with phosphate-buffered saline (PBS) 

(GIBCOTM). Tryspin/ethylenediamine tetra acetic acid (EDTA) (GibcoTM) 0.5% w/v in PBS was added in 

sufficient amount to cover the entire surface of the flask (e.g., 1 ml for 25cm2 flask, 3 ml for 75cm2 

flask, 5 ml 175 cm2 flask). Flasks were placed back in the incubator until cells were fully detached 

(usually 5 minutes). Once cells were fully detached, pre-warmed complete media was added to the 

flask to inactivate the trypsin. The minimum amount of media added was at least 2X the amount of 

trypsin/EDTA used. Cell suspension was transferred to a 50 ml Falcon tube and spun down at 300 x rcf 

for 5 minutes. Media was then discarded, and the cell pellet re-suspended in 10 ml of media. One ml 

of the re-suspended cells was added to a new 75cm2 flask and the remaining 9 ml were discarded; flask 

was returned to the cell culture incubator. 

2.1.4. Freezing and stock 

Cell stocks were made to ensure availability of cells at early passage for subsequent experiments. Cells 

were detached and spun down following the method described previously (section 2.1.3); once spun 

down, 1,000,000 cells were re-suspended in 1 ml freezing media (50% complete medium + 40% foetal 

bovine serum (FBS) + 10% dimethyl sulfoxide (DMSO) (Corning TM)) and placed in cryogenic vials 

(Thermo Fisher Scientific). The vials were placed in a Mr FrostyTM freezing container (NalgeneTM) and 

placed at -80°C. The use of a Mr Frosty freezing container allows temperature to decrease gradually 

(one degree per minute). After one day, vials were transferred to liquid nitrogen for long-term storage. 

2.1.5. Cell count 

Cell were brought into suspension following the protocol previously described in section 2.1.3. Once 

spun down, the cell pellet was re-suspended in 1 ml of pre-warmed media. Ten μl of cell suspension 

was mixed with 10 μl of trypan blue (BioRad), and then the mix was placed into cell counting slides 

(BioRad) in duplicate and counted using a TC10™/TC20™ Cell Counter (BioRad). 

2.2. Mycoplasma contamination testing  

Mycoplasmas are small bacteria not visible when imaging cells with light microscopy. Mycoplasmas 

can modify cell characteristics upon infection (e.g. cell growth, metabolism and morphology) (Drexler 

and Uphoff 2002). Therefore, it is important to regularly test cell lines and adopt good laboratory 

practice. In order to test cell lines for mycoplasma contamination, DNA was isolated from cultured 

cells. Briefly, cells were cultured for 2 - 3 days in a 25 cm2 flask (no medium change) until approximately 

60-80% confluent. The cells were detached from the flask using cell scrapers. Approximately 4 ml of 

cell suspension were transferred in centrifuge tubes and spun at 10,000 x rcf for 15 minutes to pellet 
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the cells and any floating microorganisms, including mycoplasma. The supernatant was discarded, and 

the pellet was re-suspended in 200 μl PBS. The DNA was extracted using a PureLink® Genomic DNA Kit 

(Invitrogen™), following the manufacturers’ instructions. The DNA was eluted in 50 μl PureLink™ 

genomic elution buffer. DNA concentration and purity were quantified using the NanoDrop™ One 

Microvolume UV-Vis spectrophotometer (Thermo Fisher Scientific). All DNA samples were diluted to 

50 ng/μl and the e-Myco™ mycoplasma polymerase chain reaction (PCR) detection kit (iNtRON) was 

used following the manufacturer’s instructions. PCR products with positive and negative controls were 

run on a 2% agarose gel with SafeView nucleic acid stain (nbs biologicals) and examined for 

mycoplasma presence (Figure 2.1). 

 

Figure 2.1: Mycoplasma testing of SKOV3, OVCAR and OVCAR5. 
PCR product analysis of the mycoplasma test in the three ovarian cancer cell lines. From left to right: SKOV3, 
OVCAR3, OVCAR5, 100 bp DNA ladder, positive control, negative control. The 160 pb band indicates the 
amplification of TNFα and it is used as internal control. The 260 bp band in the positive control indicates 
mycoplasma contamination. The 570 bp band serves as a sample control and is the amplification product of a 
human/ mammalian-specific gene. The absence of the 260 bp bands in experimental samples indicates the 
absence of mycoplasma infection.
 

2.3. Short tandem repeat profiling 

Short tandem repeat (STR) profiling is the analysis of short tandem repetitive sequences in the human 

genome; these sequences are highly variable among individuals and can be used for identification 

purposes. As it has been reported that cell lines can be cross-contaminated with other cell lines 

(Drexler et al. 1999), it is important to frequently authenticate them. SKOV3, OVCAR3 and OVCAR5 

were cultured for 2 - 3 days in a 25 cm2 flask (no medium change) until approximately 60-80% confluent 

and then DNA was isolated as described in section 2.2. A sample of the same DNA that was used for 

mycoplasma testing (section 2.2) was sent to the University of Liverpool, Institute of Translational 

Medicine, for STR profiling. The GenePrint® 10 System (Promega) was used, following the 

manufacturers’ protocol. A PCR reaction was run on 5 ng of DNA to amplify 9 genetic loci (D5S818, 
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D13S317, D7S820, D16S539, VWA, TH01, AM, TPOX, CSF1PO). The products and the allelic ladder were 

then mixed with a size standard and fragment analysis was performed using the 3130 Genetic Analyser 

(Applied Biosystems). The results obtained from the genetic analyser were compared against the ATCC 

STR profile information of each cell line (Table 2.2) 

Table 2.2: Authentication of SKOV3, OVCAR3 and OVCAR5. 
 

2.4. Transfection 

In this project HRH1 and Rab27a were knocked down by using transient transfection with siRNA. 

Briefly, SKOV3, OVCAR3 and OVCAR5 were plated in 6 well plates (Table 2.3) and grown until they 

reached 70% confluency. Cells were next transfected by using DharmaFECT 3 (Thermo Fisher 

Scientific), following manufacturers’ protocol. The following siRNA were used for transfection: 50 nM 

of MISSION® siRNA universal negative controls (Sigma®, construct without homology for any known 

sequence, 5 μM stock), 50 nM of a siRNA silencer specific for HRH1 (Thermo Fisher Scientific, 5 μM 

stock), 50 nM of Rab27a siRNA (siGENOME, SMARTPool, 5 μM stock). Equal volumes of siRNA control 

(tube A) and siRNA targeting a specific gene (tube B) mixes and double the volume of DharmaFECT 

(tube C) mix (Table 2.4) were prepared. Mixes were equilibrated at room temperature (RT) for 5 

minutes. Tube C content was divided in 2 equal volumes and added to tube A and tube B, mixed to 

ensure the formation of a homogeneous solution and let stand for 20 minutes at RT. One point six ml 

of fresh serum free media (SFM) was added to each well, and then 400 μl of mix A or mix B were added 

to the well. Cells were then placed back in a cell culture incubator for 24 h, and then used for 

downstream application. 

For TIRF microscopy (see section 2.18), SKOV3 were transfected by using a tetraspanin (TSPAN)-based 

optical reporters with a pH sensitive green fluorescent protein (GFP) (pHluorin) reporter. In this specific 

case a CD81-pHluorin was used for transfection and was kindly provided by Professor Aled Clayton, 

Cardiff University. Briefly, SKOV3 were plated in an 8 well glass bottom μ-slide (Thistle Scientific) and 

cultured until they reached 60% confluency. Cells were then transfected with 500 ng of CD81-pHluorin 
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DNA by using the FuGENE HD transfection reagent (Promega). A ratio of 3:1 FuGENE to DNA was used 

for transfection following manufacturer’s instruction. 

Table 2.3: Number of cell/well used for experiment. 
 

 

Table 2.4: Quantities used to make transfection mixes A, B and C. 
 

2.5. Gene expression 

2.5.1. RNA extraction 

For RNA extraction the Direct-zol RNA MiniPrep Kit (ZymoResearch) was used following the 

manufacturers’ instructions. Briefly, cells were lysed in TRIzol and either processed or stored at -80°C 

up to one week. An equal volume of 96% ethanol was added to the mix. The mix was moved to a Zymo-

spin IIC column and spun at 14,500 x rcf for 1 minute. The column was washed with 400 μl of RNA wash 

buffer. A first DNAse treatment was done by adding 5 μl of DNase I and 75 μl of DNA digestion buffer 

on the top of the membrane and incubating for 15 minutes at RT. The column was washed two times 

with 400 μl of Direct-zol RNA prewash liquid and then with 700 μl of RNA wash buffer followed by a 

dry-spin at 14,500 x rcf for 1 minute. RNA was eluted in 30 μl nuclease-free water. Concentration and 

purity of RNA were measured using the NanoDrop™ One Microvolume UV-Vis Spectrophotometer 

(Thermo Fisher Scientific). 
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2.5.2. DNAse I treatment  

Before performing a RT-qPCR it is good practice to perform a DNAse I treatment to eliminate all the 

genomic DNA (gDNA) that can be carried over in the RNA preparation. DNase I is an endonuclease able 

to digest single stranded and double-stranded DNA into mono and oligonucleotides. Although most of 

the primers used to amplify the complementary DNA (cDNA) were designed only to bind at the exon-

exon junction, this was not achieved for HRH1 primers making it difficult to discern between gDNA and 

cDNA. For this reason, two DNase I treatments were performed on all RNA samples. The first treatment 

was made during RNA extraction (section 2.5.1). The second treatment was done using the AMPD1-

1KT DNase I kit (Sigma-Aldrich®) with modification to the manufacturers’ instructions. Samples were 

prepared in 8-well strip as described in the optimization section of Table 2.5. The mix was incubated 

for 30 minutes at RT (instead than 10 minutes as suggested by the manufacturer); 1 μl of Stop solution 

was added and DNase I was inactivated by placing samples at 70°C for 10 minutes. High temperature 

is also able to denature RNA hairpins so that it can be directly reverse transcribed. Samples were then 

placed on ice for 2 minutes before proceeding with the reverse transcription protocol (section 2.5.3). 

 

2.5.3. Reverse transcription (RT) 

Reverse transcription (RT) is a technique used to generate cDNA starting from a single stranded RNA. 

This technique allows to analyse RNA through PCR techniques. In this project a 2 steps RT-qPCR was 

used. The High Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) was used following 

the manufacturer’s instructions (Table 2.6). Ten μl of the mix were added to each RNA tube and the 

thermal profile was performed (Table 2.6). When the reaction ended, 60 μl of nuclease-free water 

were added to each sample before processing them. 

 

Table 2.5: Components and quantities used to prepare DNAs I mix. 
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2.5.4. Real time PCR 

Real time PCR or quantitative PCR (qPCR) is a technique that allows the amplification of a targeted DNA 

molecule to be monitored in real time, enabling quantitative comparisons to be made between 

samples. In this project two different methods were used to quantify gene expression: 1) a DNA-

binding dye, SYBR Green, was used to detect amplified DNA of HRH1, Rab27a and β-Actin (ACTB) while 

2) TaqMan assay was used to identify EMT markers and ACTB. ACTB was used as house-keeping gene 

in both experiments. Before selecting this gene, four different house keeping genes including ACTB, 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), Pumilio RNA Binding Family Member 1 (PUM)1 

and Glucuronidase β (GUSβ) were tested as suggested by (Li et al. 2009). Genes stability was analysed 

through geNorm and ACTB was selected for further experiments. 

2.5.4.1. SYBR Green 

SYBR Green binds to the double strand DNA that is generated during the PCR, increasing the 

fluorescence yield of the dye. The more DNA that is produced during the PCR, the more fluorescence 

is detected at each cycle. This fluorescence is captured with a detector. iTaq Universal SYBR Green 

Supermix (2X) was purchased from BioRad. Primers for HRH1 and ACTB were designed using OLIGO 7 

software (Molecular Biology Insights) and purchased from Sigma-Aldrich® (Table 2.7). Primers for 

Rab27a were obtained from the following publications (Dong et al. 2012; Nanbo et al. 2018) and 

purchased from Sigma-Aldrich® (Table 2.7). For each gene of interest, a master mix containing specific 

primers and the required reagents was prepared (Table 2.8, left); the mix was produced for the 

required number of reactions with a 10% extra for pipetting errors. Seventeen μl of the mix were added 

to each well of a 96-well plate and then 3 μl of the cDNA template were added to each well. The 

reaction was run in triplicate for each gene of interest. The plate was then placed in CFX96 Touch™ 

thermal-cycler (Bio-Rad) and the thermal profile (Table 2.8) was performed. 

Table 2.6: Reverse transcription components, quantity, and thermal profiler. 
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Table 2.7: Primers used for expression analysis through qPCR. 
 

 

Table 2.8: Components and quantities used for SYBR green qPCR mix. (left). Thermal profiler used in 
qPCR (right). 
 

 

2.5.4.2. TaqMan 

TaqMan assay (or 5’ nuclease assay) uses a set of primers, a probe and a polymerase with exonuclease 

activity. The probe contains two types of fluorophores: when the probe is intact, the quencher is close 

to the reporter fluorophore, thus reducing its fluorescence (Figure 2.2 A). While the reaction happens 

(Figure 2.2 B), the polymerase amplifies the product and degrades the TaqMan probe; this separates 

the quencher from the reporter allows activation of the reporter and increase in the fluorescent signal 

(Figure 2.2 C, D). The more denaturing-annealing cycles are repeated, the more chance there are for 

the TaqMan probe to bind and therefore the more emitted light is detected. The convenience of the 

TaqMan assay is that different fluorescent dyes with different emission spectra can be attached to the 

probes thus allowing multiplex PCR (multiple genes are measured at the same time in the same well). 
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In this way experimental samples can be co-amplified with an internal control, reducing pipetting 

errors (Arya et al. 2005).

 

Figure 2.2: TaqMan probe-based real-time PCR. 
A) Primers and probes anneal to the complementary target sequence. The probe contains a fluorophore (yellow 
circle on the left) and a fluorescence quencher (blue circle on the right). B) Polymerization takes place during the 
extensions step of every PCR cycle. C) As the DNA polymerase copies the template it excises the fluorophore from 
the probe, thus displacing it form the quencher with consequent release of fluorescence. D) Fluorescence 
accumulates in the reaction mix at every PCR cycle and is detected in real time.

Primers for ACTB and ACTB probes were designed using OLIGO 7 software (Molecular Biology Insights) 

and purchased from Sigma-Aldrich® (Table 2.7). Detection assays for E-cadherin (CDH) and vimentin 
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were purchased from Thermo Fischer Scientific. Ssoadvanced™ Universal Probes Supermix was 

purchased from BioRad. 

The ACTB assay was assembled by mixing 15 μl of forward primer with 15 μl of reverse primer and 5 

μl of ACTB probs; the mix was topped up to 100 μl final volume by adding 65 μl RNase-free water. The 

ACTB assay was then mixed with either the CDH1 or vimentin assay and with the required reagents 

following table 2.9 and master mixes for each assay was obtained. The mix was produced for the 

required number of reactions with a 10% extra for pipetting errors. Fifteen μl of reaction were added 

to each well of a 96-well plate and then 3 μl of the cDNA template were added to each well. The 

reaction was run in duplicates for each gene of interest. The plate was then placed in CFX96 Touch™ 

thermal-cycler (Bio-Rad) and the thermal profile (Table 2.9, right) was performed.  

Table 2.9: Components and quantities used for TaqMan mix (left). Thermal profiler used in qPCR analysis 
(right). 
 

 

2.5.5. qPCR data analysis 

qPCR data were analysed using the ΔΔCq method. This method enables calculation of how much the 

gene of interest varies compared to a reference gene, after a treatment, assuming reaction efficiency 

to be the same across both samples. With this method, quantification cycle (Cq) of the gene of interest 

(GOI) is adjusted against the Cq of a reference gene (normaliser) measured in the same samples. This 

calculation is done on both the test sample and on the calibrator sample. The ΔΔCq (Δ represents the 

difference) value is incorporated to determine the fold difference in expression. In this project, the 

genes of interest were HRH1, Rab27a, CDH1 and vimentin; the gene used to normalise was β-Actin and 

the calibrator was the RNA extracted from HME; the same RNA was used across all qPCR experiments 

to allow comparison. 

ΔCq calibrator = Cq GOIcalibrator – Cq normalisercalibrator 

ΔCq sample = Cq GOIsample – Cq normalisersample  
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ΔΔCq = ΔCq sample – ΔCq calibrator 

Fold change = 2–ΔΔCq  

2.6. Chemical treatments 

Histamine  

Histamine (Sigma-Aldrich®) was prepared fresh before every experiment. Histamine was diluted in 

media at 5 mM concentration, and then added to cells at 100 μM concentration for times ranging 

between 4 h and 48 h. 

Chlorpheniramine 

Chlorpheniramine (Sigma-Aldrich®) was prepared fresh before every experiment. It was diluted in 

media at 10 mM concentration, and then added to cell at 250 μM concentration for times ranging 

between 4 h and 48 h. 

GW4869 

GW4869 (Sigma-Aldrich®) was dissolved in DMSO to generate a stock with a concentration of 2 mg/ml. 

Each time before performing the experiment, the stock was diluted in media at 10 μM concentrations 

and added to cells for 48 h. 

2.7. Gene expression correlation analysis 

A gene expression dataset of six OC cells lines of the NCI-60 cell line panel was obtained from the Cell 

Miner database (Cell Miner GSE32474), generated by Reinhold et al. (2012). Invasion rates through a 

Matrigel® layer and migration rates in a wound healing assay for six OC cell lines (IGROV-1, OVCAR3, 

OVCAR4, OVCAR5, OVCAR8 and SKOV3) were obtained from the thesis of Dr Laura Mulchay (2016). 

Pearson correlation analysis was used to evaluate a potential correlation between histamine receptors 

mRNA expression and invasion and migration rates of the six OC cell lines. Coefficients of 

determination (R squared) and p-values were obtained from Pearson correlation and used to estimate 

correlation significance.  

A microarray dataset containing gene expression levels of 403 OC clinical samples was obtained from 

the TCGA database (The Cancer Genome Atlas Research Network 2011). The dataset comprised clinical 

information of 21 patients in stage II, 319 stage III patients and 61 stage IV patients. Gene expression 

values, tumour stage, overall survival and progression free survival information were used for the 

analysis. Patients were grouped by stage, median expression of the histamine receptors was calculated 

and used to calculate fold changes of expression between tumour stages. Two tailed t-test was used 

to calculate significance across samples. Patients were then divided in two groups based on the 

expression of HRH1 mRNA: low expressing patients (patients in which HRH1 mRNA levels were lower 
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than the median values of HRH1 expression) and high expressing patients (patients in which HRH1 

mRNA levels were higher than the median value of HRH1 expression). Kaplan-Meier curves were 

generated for patient’s overall survival and progression free survival, without considering patient’s 

stage, by using GraphPad Prism version 8. Hazard ratio (HR), 95% confidence intervals, and log-rank p 

values were determined and presented on the main plots. Different online tools were used to retrieve 

information regarding HRH1 gene expression in OC samples (UALCAN). Additional Kaplan-Meier overall 

survival and progression free survival curves for OC patients were obtained from “The Kaplan-Meier 

plotter” database (http://kmplot.com/analysis/) (Györffy et al. 2010). The Kaplan-Meier plotter 

generates survival analysis using data from Gene Expression Omnibus (GEO-

www.ncbi.nlm.nih.gov/geo/) database and The Cancer Genome Atlas (Affymetrix HG-U133A, HG-

U133A 2.0, and HG-U133 Plus 2.0 microarrays, http://cancergenome.nih.gov). This database includes 

gene expression data and survival information from a total of 1287 OC patients (Gyorffy et al. 2012). 

So far, a number of genes have been identified and validated by using this online tool in ovarian cancer 

(Ortega et al. 2014; Gayarre et al. 2016), lung cancer (Dötsch et al. 2015; You et al. 2015a) and breast 

cancer (Tilghman et al. 2013; Hong et al. 2015). The Kaplan-Meier plotter database was accessed in 

May 2021; patients in stage II, III and IV were automatically split by the software into two groups 

(expressing high or low level of HRH1) according to various quantile expressions of the proposed 

biomarker.  

2.8. Immunofluorescence 

In a cell culture hood, coverslips were first sterilised by dipping them in 70% and 100% ethanol and 

then they were air dried in 12-well plates. Coverslips were coated with 0.1 mg/ml poly-d-lysine (Sigma 

Aldrich®) for 1 h at RT to assist homogenous monolayer formation and prevent cell detachment. After 

1 h, the coverslips were washed three times with PBS. Cells were plated following table 2.10. Culture 

media was added to wells and cells were allowed to grow for one day in a cell culture incubator. 

Growth media was then removed from the wells and cells were gently washed with pre-warmed PBS 

twice. Cells were fixed using 4% paraformaldehyde (PFA) in PBS for 30 minutes at 4°C and then they 

were gently washed with cold PBS three times to ensure full removal of the fixing agent. They were 

then permeabilised using 0.1% Triton X-100 (Sigma Aldrich®) in PBS for 10 minutes at RT. To ensure 

complete removal of the permeabilising agent, cells were washed three times with PBS. Cells were 

incubated in 1% bovine serum albumin (BSA) (blocking agent) in PBS for 1 h at RT on a rocking platform 

to prevent non-specific labelling. A dilution of 1:50 mouse monoclonal anti HRH1 primary antibody 

(Santa Cruz Biotechnology, catalogue number sc-374621) in blocking agent was prepared and cells 

were incubated at 4°C on a rocking platform overnight. Cells were washed three times for 5 minutes 

with PBS on the rocking platform. A dilution of 1:1000 of goat anti-Mouse IgG H&L (heavy & light 

http://kmplot.com/analysis/
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chains) (Alexa Fluor® 594) (Thermo Fisher Scientific, catalogue number A-11005) secondary antibody 

cocktail in the same blocking agent was prepared in dark to avoid photobleaching. Cells were labelled 

with secondary antibody for 30 minutes at RT in the dark on the rocking platform. To ensure full 

removal of the secondary antibody, cells were washed thoroughly with PBS three times for 5 minutes 

each in the dark. Coverslips were then mounted on glass slides using Prolong Gold Antifade 4',6-

diamidin-2-fenilindolo (DAPI) mounting media (Thermo Fisher Scientific). Slides were stored in the dark 

at 4°C until imaged.

Table 2.10: Number of cell/well used in the experiment. 
 

Cells were imaged using a Zeiss Axio Imager 72 upright microscope fitted with an ORCA-Flash 4.0 Digital 

CMOS camera (Hamamatsu). HRH1 and DAPI were visualised by using a 590 and 405 nm laser, 

respectively. The images were then analysed using the open-source software Fiji (Schindelin et al. 

2012) and parameters such as area, integrated density and mean grey value were measured. Corrected 

total cell fluorescence (CTCF) was calculated for each cell lines on excel. The CTCF is a method that 

allows to calculate the fluorescence of a signal in relation to the area of the analysed object. CTCF was 

calculated as follows: 

CTCF = integrated density – (area of selected cell × mean fluorescence of background) 

Integrated density = area x mean fluorescence 

The ratio between CTCF of OC cells and HME CTCF was calculated for each independent experiment. 

The average of the three independent experiments were combined for statistical analysis. 

2.9. Western Blot 

A western blot was used to visualise HRH1 and GAPDH proteins. SKOV3, OVCAR3 and OVCAR5 were 

seeded in 10 mm Petri dishes at a concentration of 1 x 10^6 and allowed to grow for one day. Growth 

media was then removed, and cells were washed with cold PBS on ice. 100 μl of 1X 

radioimmunoprecipitation assay buffer (RIPA) (Sigma-Aldrich) in PBS supplemented with Halt™ 

protease inhibitor cocktail (Thermo Fisher Scientific) (1:100 dilution) were added to each plate and 
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cells were scraped. Cells were collected by pipetting and moved to an Eppendorf® tube and they were 

allowed to lyse for 30 minutes at 4°C on a tube rotator. Cells were then centrifuged at 14,000 x rcf for 

15 minutes at 4°C. Protein concentration was measured by using a PierceTM BCA protein assay kit 

(Thermo Fisher Scientific). Twenty μg of proteins were used for cells analysis; protein samples were 

combined with 4X LDS NuPage loading buffer (Invitrogen) and 5X Dithiothreitol (DTT, stock solution 

1M). Samples were brought to a final volume of 20 μl by adding 1X RIPA buffer. Samples were heated 

at 95°C for 5 minutes and spun down to ensure full collection of the sample, which was either 

processed immediately (as described below) or stored at -20°C overnight. 

Protein samples were loaded onto precast NuPAGETM 4 to 12%, Bis-Tris, 1.0 mm, Mini Protein Gels, 12 

well (Thermo Fisher Scientific) and run at 125 V for 100 minutes using NuPAGETM running buffer 

(Thermo Fisher Scientific) according to the manufacturer’s instructions. Proteins were then transferred 

to a nitrocellulose membrane by wet transfer for 2 h at 150 V in a cold room at the temperature of 

4ºC using NuPAGETM transfer buffer (Thermo Fisher Scientific) (20X stock solution was diluted in water 

and 15% methanol was added to the final solution). Nonspecific binding sites were blocked with a 

blocking solution made of 5% w/v skimmed milk powder in PBST (PBS/ 0.10% Tween (Sigma Aldrich®)) 

for 1 h at RT. Membranes were cut to size if needed and incubated with a polyclonal rabbit anti HRH1 

(Proteintech®, catalogue number 13413-1-AP) primary antibody diluted in blocking solution overnight 

at 4°C. The day after, membranes were washed in PBST three times for 5 minutes on a shaking rack 

and then incubated 1 h at RT with a solution of HRP-conjugated polyclonal goat anti rabbit IgG 

secondary antibody (Abcam, catalogue number ab6721) diluted in blocking buffer. Membranes were 

washed in PBST three times for 5 minutes, incubated with 1 mL of clarity western enhanced 

chemiluminescence (ECL) (BioRad) substrate for 1 minute and visualised using a ChemiDoc imaging 

system (BioRad). Membranes were thoroughly washed with PBST for 2 h on a rocking platform to fully 

remove ECL and they were incubated 1 h at RT with a monoclonal mouse anti GAPDH primary antibody 

(Abcam, catalogue number ab8245) in blocking solution. Membranes were then washed three times 

in PBS and incubated for 1 h at RT with a polyclonal goat anti mouse IgG secondary antibody (BioRad, 

catalogue number 1706516). Membranes were washed again and processed as just described. A full 

list of the antibodies used can be found in table 2.11. 
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Table 2.11: Antibodies used for HRH1 quantification by WB. 
 

 

2.10. IC50 determination 

Half-maximal inhibitory concentration (IC50) indicates how much of a pharmacologic agent is required 

to inhibit a given biological activity by half for a given cell line (Aykul and Martinez-Hackert 2016). To 

calculate the IC50 of histamine (HRH1 agonist) and chlorpheniramine (HRH1 antagonist) the 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used. MTT is a yellow 

compound that turns to its non-soluble purple derivate, formazan, when reduced by cells. The higher 

the metabolic activity of cells the more purple precipitate will be produced. A solubilization solution is 

added to the formazan creating a purple-coloured solution, the absorbance of which is read at 570 nm 

with a spectrophotometer. 

Ten thousand SKOV3 or 15,000 OVCAR3 or OVCAR5 cells per well were seeded into 48-well plates and 

when 70% confluent, increasing concentrations of chlorpheniramine (Sigma-Aldrich®) (ranging from 

10 nM to 1 mM) or histamine (Sigma-Aldrich®) (ranging from 10 nM to 1 mM) were added to them. 

After 48 hours, cells were washed with PBS and the MTT assay was performed. MTT (Sigma-Aldrich®) 

was dissolved in complete media with a concentration of 2 mg/ml and 200 μl were added to each well 

and incubated for 3 h into a cell culture incubator. After this time, the MTT was removed and 200 μl 

of solubilisation solvent (4 mM HCl, 0.1% IGEPAL® (Sigma-Aldrich) in isopropanol) were added to each 

well and absorbance was measured straight away at 570 nm using a SpectraMax i3x plate reader 

(Molecular Devices). 

MTT absorbance of blank wells (wells containing only media but not cells) was subtracted from the 

absorbance of experimental wells in order to remove the background. The ratio of experimental well 

and control well was calculated, and the percentage of viable cells extrapolated. Cell viability data was 

analysed by using an in-built Nonlinear Regression model with variable slope (four parameters) 

through GraphPad Prism 8t, hat produced inhibitory dose-response curves and IC50 values. 
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2.11. Cell proliferation 

To assess the effect of histamine and chlorpheniramine on cell proliferation rates, 100,000 SKOV3, 

OVCAR3 and OVCAR5 were plated in 6 well plates and grown for one day. Two ml of media (control), 

100 μM histamine or 250 μM chlorpheniramine were added to corresponding well and plates were 

placed back into a humidified cell culture incubator. Cell number was measured at time points 0, 6, 24 

and 48 h by manual counting using a hemocytometer; viable cells were differentiated from dead cells 

by using a 1:1 dilution of cells and trypan blue (BioRad) (described in section 2.1.5). The number of 

viable cells were normalised to their control, and the mean of three biological replicates were used for 

further statistical analysis. 

2.12. Static adhesion assay 

A static adhesion assay (Wilhelmsen et al. 2013) was used to assess the ability of OC cells upon 

activation or inhibition of HRH1 to adhere to an endothelial cell monolayer (Figure 2.3). 

 

Figure 2.3: Adhesion assay schematic representation. 
HUVEC cells were plated onto sterile coverslips in 24 well plates and grown until 100% confluent. TNFα was added 
to them, and cells were incubated for 24 h. Meanwhile, cancer cells were seeded in t25 cm2 flasks and allow to 
grow. Cells were treated with siRNAs, or histamine or antihistamine, and 24 h later they were stained with CFSE. 
Next, cells were scraped, counted, and introduced onto the activated HUVEC cells. Non adherent cells were 
removed, and the coverslip was fixed and mounted. Area of adherent cells was calculated. 

2.12.1. Endothelial cell preparation 

Thirteen mm coverslips (thickness #1, Marinefeld) were sterilised by dipping in 70% ethanol and 100% 

ethanol. Coverslips were coated with 0.2% w/v bovine gelatine (Sigma-Aldrich®) in PBS, pH 7.4, in 24-

well plates. One hundred thousand HUVEC cells were plated on top of the gelatine of each coverslip 

and cultured to 100% confluency. On the day prior to the experiment, cells were “activated” by 
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treatment with 10 ng/ml of tumour necrosis factor (TNF)-α (Sigma-Aldrich®️, stock of 10 μg/ml in PBS) 

for 24 h in a cell culture incubator.  

2.12.2. Cancer cell preparation 

The adhesion assay was performed on either cells transfected with siRNAs or with cells treated with 

histamine and chlorpheniramine. 

For the transfection experiments, OC cells were cultured in 6-well plates up to 70% confluency. Cells 

were then transiently transfected with siRNA control, siRNA specific for HRH1, or with media 

containing only transfection reagent (non-transfected cells), as previously described in section 2.4. 

After 24 h, cells were washed with PBS and stained with 10 μM carboxyfluorescein succinimidyl ester 

(CFSE) in PBS (Sigma-Aldrich®) for 10 minutes in a cell culture incubator. Cell were next thoroughly 

washed with PBS to remove excess dye, detached from wells using a cell scraper, centrifuged at 300 x 

rcf for 5 minutes to form a cell pellet, and resuspended in SFM. For cells treated with histamine and 

antihistamine, OC cells were cultured in three t25 cm2 culture flasks up to 70% confluency. Cells were 

then treated with control media, 100 μM histamine, or 250 μM chlorpheniramine for 24 h and treated 

as described above.  

2.12.3. Static adhesion assay 

One hundred thousand CFSE-stained OC cells were introduced onto the HUVEC monolayer in SFM (400 

μl per well) and allowed to interact for 15 or 30 minutes in a cell culture incubator. Non-adherent cells 

were gently eluted with PBS. Coverslips where fixed with 4% PFA (pH 6.9, Sigma-Aldrich®) for 15 

minutes at RT, mounted with ProLong™ Diamond Antifade (Thermo Fisher Scientific) mounting 

medium and imaged using a Zeiss Axio Imager Z2 upright microscope with an ORCA-Flash 4.0 digital 

CMSO camera. To visualise stained cells a 488 nm laser was used; each coverslip was fully imaged using 

the tile settings and the Plan-Apochromat 10x/0.45 lens (Zeiss) (10X eyepiece). 

2.12.4. Image analysis 

Tiles were opened in Fiji and 20 random images were selected for further analysis. The area occupied 

by stained cells was measured with the “Analyse Particle” plug in; a macro was written to speed up the 

analysis, particles size value was kept constant across the different independent replicates while 

threshold values were the same across technical replicates but not across biological replicates, due to 

staining intensity variability. 

For transfected cells, the ratio between “non-transfected cells” and siRNA control cells or siRNA HRH1 

cells was calculated for each independent experiments; mean values were then combined and used 

for statistical analysis. 
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For histamine and chlorpheniramine treated cells, each technical replicate was normalised against 

control cells (treated with SFM) and their average was used for statistical analysis. 

2.13. Wound healing assay 

A wound healing assay (Liang et al. 2007) was used to analyse the motility rate of OC cells after 

pharmacological or chemical inhibition of HRH1.  

2.13.1. Cell preparation, wound healing assay and gap closure imaging 

Prior to starting the experiment, the bottom part of a 12-well plate was marked with two parallel lines 

and one line perpendicular to the future ‘wound line’ to allow imagining of exactly the same ‘wounded’ 

area over time (Figure 2.4). One x 105 SKOV3 and 1.5 x 105 OVCAR3 or OVCAR5 cells were then seeded 

into 12 well plates. Cells were then either treated with siRNAs or pharmacologically. For the 

transfection experiment, a siRNA control, siRNA HRH1 or media containing only transfection reagent 

were added to the cells once they reached 70% confluency (see section 2.4 for further details). On the 

following day, the cell monolayer was ‘wounded’ (Figure 2.4 A). For cells to be treated 

pharmacologically, they were cultured until 90% confluence, serum starved for one day and then a 

‘wound’ was made, and control media, 100 μM histamine or 250 μM chlorpheniramine were added 

(Figure 2.4 B). In all cases, the ‘wound’ was made using a p200 pipette tip. Cells were then washed 

twice with PBS to ensure full removal of floating cells and either SFM alone or SFM supplemented with 

the appropriate pharmacological treatment was added (1 ml per well). Cells were placed in a cell 

culture incubator and were imaged at different time points (0, 4, 8, 12, 24 h) using a Pimovert 

microscope with an LD5xPh1 objective (Zeiss). For transfected cells, transfection efficiency was 

checked by RT-qPCR as described in method section 2.5.4. 
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Figure 2.4: Schematic representation of the wound healing assay. 
Cells were plated in a 12 well plate and then treated either via route A or B. A) Cells were grown to confluency, 
they were ‘wounded’ and fresh media containing different pharmacological treatments was added to each well of 
the plate. B) Cell were grown up to 70% confluency, then they were transfected, and the ‘wound’ performed on 
the following day. In both cases, ‘wound’ closure was imaged at intervals for up to 24 h, and ‘wound’ opening 
percentage was calculated. 
 

2.13.2. Image analysis  

‘Wound’ opening percentage was analysed using the Fiji plug in “MRI Wound Healing Tool”. This plug-

in measures the cell-free area for each image. The parameters were adjusted for each image, 

maximizing the accuracy of the analysis. The final ‘wound’ size at time points 4, 8 ,12, 24 h was 

subtracted to the ‘wound’ size at time 0 h to obtain the migration area. The four technical replicates 

were averaged; for transfected cells, the average was used to calculate the ratio of transfected cells to 

the ‘non-transfected cells’. The average of three biological replicates were combined and used for 

statistical analysis.  

2.14. Matrigel® invasion assay 

To analyse the capacity of cells to invade, a Matrigel® invasion assay was used. This assay is based on 

the transwell invasion assay (Boyden 1962) with the addition of a layer of ECM, in this case Matrigel® 

(Figure 2.5) (Hall and Brooks 2014). Matrigel® is a gelatinous mixture of proteins obtained from the 

Engelbreth-Holm-Swarm mouse sarcoma. It contains a mixture of collagen, laminin and heparan 

sulphate proteoglycans together with growth factors (TGF-β and EGF) and other proteins. These 

components provide adhesive peptide sequences, prevent differentiation, and promote proliferation 

of many cell types. 

 

Figure 2.5: Schematic representation of Matrigel® invasion assay. 
Cell were plated on a transwell insert on top of a Matrigel® layer and incubated for 48 h (top left); invading cells 
moved through the Matrigel® layer and attached to the bottom part of the porous membrane (bottom left). Inserts 
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were removed from the well and non-invading cells, located at the top of the membrane, were removed by using 
a cotton-swab (bottom right). Membranes were cut from the inserts, cell were stained and imaged (top right). 

BioCoat™ Matrigel®️ (Corning®) plates were thawed for 1 h at RT. To rehydrate the matrix, 500 μl and 

700 μl of pre-warmed SFM were added to the inserts and the wells, respectively, and the plates were 

placed in a cell culture incubator for 2 h. After this time, SFM was removed; 650 μl of pre warmed 

complete media was added to each experimental well of the plate. Empty wells were filled with 650 μl 

of PBS to avoid experimental wells drying out.  

2.14.1. Cell preparation 

SKOV3, OVCAR3 and OVCAR5 were cultured under standard conditions. The day before the 

experiment, media was replaced with SFM and cells were serum starved for 24 h. Different 

experimental conditions were used, and cells were treated in different ways, as described below. 

2.14.1.1. Standard Matrigel® assay 

SKOV3 and OVCAR3 were plated following quantities listed in table 2.12 in 250 μl of SFM, and were 

allowed to invade for 48 h.  

2.14.1.2. Matrigel® assay on transfected cells 

One x 105 SKOV3, 1.5 x 105 OVCAR3 and OVCAR5 were plated in a 6 well plate and after 24 h cells were 

transfected either with siRNA control or with a siRNA specific for HRH1 as described in section 2.4. 

Twenty-four h after transfection, cells were detached and plated on top of the Matrigel® inserts 

(following quantities in table 2.12) in 250 μl of SFM and were allowed to invade for 24 and 48 h. 

2.14.1.3. Matrigel ® assay on SKOV3 treated with chemical compounds 

SKOV3 were seeded in a 75 cm2 flask and 24 hours later cells were detached and plated onto the 

Matrigel® inserts following table 2.12; 250 μl of either control media, 100 μM histamine or 250 μM 

chlorpheniramine were added to each insert and cells were allowed to invade for 48 h. All treatments 

were done in pre-warmed SFM. For the GW4869 treatment, 250 μl of control media (supplemented 

with DMSO), 100 μM histamine ,10 μM GW4869 (Sigma-Aldrich, dissolved in DMSO) or a combination 

of both compounds were added to the respective wells and cells were allowed to invade for 48 h. 

2.14.1.4. Matrigel® assay on SKOV3 treated with siRNAs and EVs 

On day 1 of the experiment (Figure 2.6), 1 x 106 SKOV3 were seeded in two t175 cm2 cell culture flasks 

and allowed to grow for one day. Media was then replaced with SFM and incubated for 48 h. EVs were 

then extracted following the method described in section 2.15. On day 2 of the experiment, 1 x 105 

SKOV3 were seeded in a 6 well plate, and the following day (day 3) cells were transfected with siRNAs 

as described in section 2.4. On day 4, 1.5 x 104 SKOV3 siRNA control or SKOV3 knocked down for HRH1 

were plated onto each insert, then either PBS or EVs were added, and cells were allowed to invade for 

48 h. The total number of EVs released by SKOV3 cells was assessed by NTA (as described in section 
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2.16.1). The total number of released EVs was divided by the number of SKOV3 used for extraction 

obtaining the number of “EVs per cell”. The same amount of EVs was added to recipient cells. 

 

Figure 2.6: Experimental layout for the Matrigel® assay on SKOV3. 
On day 1, SKOV3 cells were seeded for EV extraction, and on day 2 media was changed to FBS-depleted media and 
conditioned for 48 h. On day 2, SKOV3 were seeded in a six well plate and 24 h later were transfected with siRNAs 
(day 3). On day 4, EVs were extracted, siRNAs treated cells were counted and plated on the Matrigel® membranes 
and either PBS or EVs were added to them. Cells were allowed to invade for 48 h and on day 6 Matrigel® 
membranes were processed. 
 

2.14.1.5. SKOV3 KD for Rab27a 

As described in section 2.4, 1.5 x 104 SKOV3 were plated in a six well plate and allowed to grow for one 

day. The next day cells were transfected with siRNA control or siRNA for Rab27a (as described in 

section 2.4) and were allowed to grow for 24 h. The following day, cells were plated onto the Matrigel® 

inserts, and either control media or 100 μM histamine were added to them. Cells were allowed to 

invade for 48 h and then membranes were processed for image analysis, as described below in section 

2.14.2. 

Table 2.12: Number of cells plated per well in the Matrigel® assay in relation with the time they were 
allowed to invade. 
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2.14.2. Cell fixation and staining 

Inserts were washed once in pre-warmed SFM and again with PBS. Invaded cells were fixed with 4% 

PFA (Sigma-Aldrich®), pH 6.9 for 15 minutes at RT, washed twice with PBS for 5 minutes and then 

permeabilised with 0.1% Triton X-100 (Sigma-Aldrich®) for 15 minutes at RT. Cells were stained either 

with 1% crystal violet (Sigma-Aldrich®) in water for 10 minutes at RT, or with 10 μM CFSE (Sigma-

Aldrich®) for 10 minutes at RT. Non invading cells were removed by wiping the top of the membranes 

with a cotton swab. Membranes were cut using a scalpel (Swann-MortonTM) and mounted on a glass 

slide. Crystal violet-stained cells were mounted using ProLong™ Diamond antifade mounting media 

(Thermo Fisher Scientific), while CFSE stained cells were mounted using ProLong™ Gold Antifade 

Mountant with DAPI (Thermo Fisher Scientific). 

2.14.3. Cell imaging and image analysis 

Invaded cells were imaged using a Zeiss Axio Imager 72 upright microscope fitted with an ORCA-Flash 

4.0 Digital CMOS camera (Hamamatsu). At least ten images were taken for each membrane by using 

either the Plan-Apochromat 10x/0.45 or the 20x/0.8 objectives (Zeiss) (10X eyepiece) depending on 

the staining used. For imaging crystal violet-stained cells transmitted light was used, while DAPI+CFSE 

stained cells were visualise by using a 405 nm laser and 488 nm laser, respectively. Invaded cells were 

counted by using the cell counter plugin in Fiji. The percentage of cell that had invaded through the 

membrane was calculated for each condition, and the ratio of the treatment groups on the control 

cells was calculated for each independent experiment. Mean values of independent experiments were 

combined for statistical analysis. 

2.15. EV extraction 

Cell were plated in either five t175 cm2 (for collagen degradation assay) or fifteen t175 cm2 (for western 

blot and proteomic assays) cell culture flasks and cultured until they reached 60% confluence. At this 

point, media was removed and replaced with SFM supplemented with appropriate treatments and cell 

were placed back in the incubator. After 4 or 48 h (depending on the downstream application), 

conditioned media was collected and processed for EV extraction. Media was centrifuged at 300 x rcf 

for 5 minutes (Megafuge 16 benchtop Centrifuge, Thermo/Hereaus) to remove dead cells, and then at 

16,500 x rcf for 20 minutes at 4°C (Avanti JXN-26, High Speed Centrifuge, JA14.50 Tapered Rotor, 

Beckman Coulter) to remove debris and large EVs. Conditioned media was then concentrated to 500 

μl by using Vivaspin 20 (100 kDa, Ge Healthcare) concentrator column at 3,000 x rcf (Megafuge 16 

benchtop Centrifuge, Thermo/Hereaus). Samples were then processed through size exclusion 

chromatography (SEC). Before processing the sample, SEC columns were prepared. Econo-Pac® 

chromatography columns (14 cm, BioRad) were filled with 14 mL of Sepharose agarose gel filtration 

media (GE Healthcare, particle size 45 μm-165 μm) and topped up with PBS. Columns were allowed to 
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settle for 2 h at RT. After this time, a column bed support was placed on top of the Sepharose to avoid 

the latter being disturbed during washing. Columns were washed three times with 10 mL of PBS. During 

the last wash, 1 mL of PBS was left on top of the column bed support to avoid drying out, and samples 

were processed. The sample was pipetted onto the column and columns were topped up with 10 mL 

of PBS; flow-through was immediately collected in 500 μl fractions (fraction 1 to 15). Fraction 7-10 

were identified as “EV containing fractions” (see section 5.3.1) and were used for further experiments. 

Samples were either used the same day, stored at 4°C for up to three days, or at -80°C for long-term 

storage. 

2.16. EV characterization 

EV characterization requires a variety of techniques to visualise their morphology, surface markers and 

size. In this project, nanoparticle tracking analysis (NTA) was used to quantify EV concentration and 

size, transmission electron microscopy (TEM) to visualise their morphology, and western blot and 

MACSPlex were employed to study their protein markers. 

2.16.1. Nanoparticle Tracking Analysis 

NTA is a technique used to study particle size and distribution. NTA can visualise and analyse particles 

ranging between 10 nm to 1 μm in solution, based on their Brownian motion (random motion of 

particles suspended in a fluid). A laser light scattering microscope illuminates particles; the light 

scattered by each particle is captured using a camera; the motion is then analysed through a software 

and is related to particle size and concentration. In this project, EV size and concentration was 

calculated using the ZetaView PMX 110 instrument (Particle Metrix, GmbH), supplied with the analysis 

software. Briefly, the machine was calibrated with 100 nm polystyrene beads (Applied Microspheres) 

at a concentration of 1:25,000. SEC fractions were diluted 1:100 or 1:1,000 (depending on the original 

concentration of particles in the sample) in 1 mL final volume of PBS and run through the machine. 

Data was acquired at RT, with the following settings: sensitivity 80, frame rate 30 frames per second 

(fps), shutter speed 100, brightness minimum 25, minimum pixel size 5 and maximum size pixel 1,000. 

Half-second videos were recorded, analysed at 11 positions, and size and concertation of EVs was 

automatically calculated by the ZetaView software version 8.04.12. 

2.16.2. Transmission Electron Microscopy 

To analyse EV morphology, TEM was used in this project. Carbon 300 mesh copper grids (TAAB, C267) 

were glow discharged for 20 second at 15 mA; 10 μl of EV samples were pipetted onto them and 

incubated for 2 minutes at RT. Excess liquid was removed by dabbing grids with filter paper. Grids were 

then allocated on top of a 20 μl drop of 2% uranyl acetate (Agar Scientific) for 10 seconds, left to air 
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dry and stored in a dust proof box at RT. Grids were imaged by Dr Flavia Moreira-Leite at 100 kV by 

using a Jeol JEM-1400 Flash transmission electron microscope with Gatan OneView 16 Megapixel 

camera. 

2.16.3. Western Blot 

In order to confirm the enrichment of EV markers, a western blot was performed on EVs extracted 

from SKOV3 cells. Briefly, SKOV3 cells were plated in forty-five t175 cm2 cell culture flasks and on the 

following day the media was replaced as following: fifteen flasks were treated with SFM, fifteen flasks 

with 100 μM histamine in SFM and fifteen flasks with 250 μM chlorpheniramine in SFM. Non-

conditioned media (media added to fifteen empty flasks) was used as control. Media was conditioned 

for 48 h and EVs extracted as described previously in section 2.15. Both cells and EVs were processed 

as described in section 2.9.; 10 μg of proteins was used for both cell and EV analysis. Protein samples 

were prepared by adding 4X LDS NuPage loading dye (Invitrogen) to the protein mix. Samples were 

brough to a final volume of 40 μl with 1X RIPA buffer and then were heated at 95°C for 5 minutes. Gels 

were run as described in section 2.9. A list with full details of the antibodies used for EVs 

characterization is reported in table 2.13.

Table 2.13: Specification of the antibodies used for EV characterization. 
 

 

2.16.4. MACSPlex 

The MACSPlex assay is a qualitative assay able to visualise up to 37 potential EV surface antigens using 

a cytofluorimeter. The assay comprises a cocktail of 39 beads fluorescently labelled: 37 are coated with 

antibodies for EV surface antigens and 2 are coated with internal isotype negative controls. Each bead 

can be identified based on their respective fluorescent intensity. Briefly, before processing conditioned 

media for EV extraction, 150 μl of conditioned media was obtained from SKOV3 treated with SFM, 100 
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μM histamine or 250 μm chlorpheniramine. Non-conditioned media was used as a control. Media 

samples were incubated with 15 μl of antibody-coated MACSPlex exosomes capture beads (Miltenyi 

Biotec) overnight on a tube rotator in the dark. The next day, 500 μl of MACSPlex buffer (Miltenyi 

Biotec) was added to each tube and they were spun down at 3,000 x rcf for 5 minutes. Supernatant 

was discarded and 135 μl of solution (buffer + EVs) was left in the tube to avoid accidental removal of 

the beads. To ensure full removal of unbound material, 500 μl MACSPlex buffer was added to the 

samples and incubated for 15 min in the dark on a tube rotator. Samples were centrifuged again at 

3,000 x rcf for 5 minutes; supernatant was discarded leaving 135 μl of sample. A cocktail of 

allophycocyanin (APC)-labelled detection antibodies against CD9, CD63 and CD81 (Miltenyi Biotec) was 

added to the bead-captured EVs; the addition of the detection reagents enables the formation of 

sandwich complexes between the capture beads, the EVs and the detection reagent allowing EV 

visualization. Samples were incubated for 1 h on a tube rotator disk in the dark to ensure complete 

binding of detection reagent to biological material. Samples were washed twice with 500 μl of 

MACSPlex buffer as previously described. Samples were finally re-suspended in MACSPlex buffer and 

analysed by using a Cytoflex S flow cytometer instrument (Beckman Coulter). APC mean fluorescent 

intensity of beads incubated with non-conditioned media was subtracted from all samples. Percentage 

of antigen expression was calculated in relation to CD9 expression for each experiment. 

2.17. Collagen degradation assay 

To study the ability of EVs to break down the ECM, a collagen assay was used. EVs were extracted from 

cells treated either with control media or with 100 μM histamine or with 250 μM chlorpheniramine 

for 48 h following the protocol in section 2.15; all treatments were made in SFM. To be able to 

distinguish potential effects related to soluble media factors, fresh media was added to an empty flask, 

incubated for 48 h and used as a control.  

2.17.1. Calculation of EV number  

The number of “EVs per surface” was calculated. This method allows to calculate how many EVs are 

produced in a specific surface and plate an equivalent amount in the recipient surface. In this case, five 

t175 cm2 cell culture flasks were used to extract the EV samples. The surface area of one t175 cm2 flask 

is 175 cm2 thus the surface area of five t175 is 875 cm2. The collagenase experiment was performed in 

a 96-well plate; the surface area of one well of a 96-wells plate is 0.32 cm2. The dilution factor to use 

for preparing the EV samples was calculated as the surface area of the 5 t175 cm2 flasks divided by the 

surface area of one well of a 96-well plate. EV samples were prepared using the dilution factor and a 

final concentration of 100x “EVs per surface” was used for the assay. Samples were brought to a final 

volume of 100 μl by adding the working reagent (WR) solution. 
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2.17.2. Collagen and sample preparation 

The DQTM collagen, type I from bovine skin, fluorescein isothiocyanate (FITC) conjugated (D12060, 

Thermo Fisher Scientific) was used for this assay. DQ collagen is a solution of intact collagen quenched 

to a fluorescent dye (FITC) so that the fluorescence is almost non-existent. When the collagen 

molecules are hydrolysed by appropriate enzymes, the FITC dye detaches from it, releasing the 

fluorescence; fluorescence can be read at a specific wavelength using a spectrophotometer. 1 mg/ml 

DQTM collagen stock was diluted to a 25 μg/ml solution with 1X WR, pH 7.6 (sodium chloride 1.5 M, 

Trish HCl 0.5 M, Calcium chloride 50 mM). A 96 well plate was used for the assay; 80 μl of WR, 20 μl of 

DQTM collagen and 100 μl of EV samples were added to each well. 1, 0.05, 0.01, 0.005, 0.0001 and 

0.00005 U/mL of collagenase (Sigma Aldrich®) were used as positive controls. Collagen degradation 

was measured at time 0, 2, 6, 12, 18 and 24 h and by reading the FITC absorbance at 530 nm using a 

spectrophotometer. Four different wells were use as technical replicates for each condition. The 

absorbance of blank wells (containing only WR) was subtracted from the absorbance of experimental 

wells to remove the background signal. The mean value was calculated for each independent 

experiment, and they were combined for statistical analysis. 

2.18. TIRF microscopy 

Total internal reflection fluorescence (TIRF) microscopy is a technique that uses an evanescent wave 

to only excite fluorophore molecules that are in a small area immediately adjacent to the glass surface 

used. This technique has recently become the method of choice to detect single molecules and to 

investigate biological process at the interface or on the surface of a cell, as it only detects surface-

bound fluorophores (and not the non-bound molecules presented in the media), selectively reducing 

the background fluorescence, improving the signal-to-noise ration and overall, the quality of the image 

acquired (Tonzani 2009; Mattheyses et al. 2010). 

2.18.1. Cell preparation and image acquisition 

In this project, TIRF microscopy was used to image multivesicular body-plasma membrane (MVB-PM) 

fusion events enabling the visualization of EV release. Initially, SKOV3 were transiently transfected with 

a CD81-pHluorin reporters (as described in section 2.4). The CD81-pHluorin reporter consists of a 

TSPAN (CD81) based optical reporter cloned with a pH sensitive GFP (pHluorin) molecule; normally, 

the pHluorin is located to the outer membrane of ILVs and because it is exposed to an acidic pH (5.5) 

it does not emit fluorescence. Upon fusion of MVBs with the PM, ILVs are released in the extracellular 

space and the sudden change of pH from acidic to neutral pH (7.4) activates the pHluorin, generating 

fluorescent flashes. Thus, each flash observed represent an MVB-PM fusion event. Twenty four h post 

transfection, cells were washed in Tyrode’s solution, pH 5.5 (2 mM CaCl2, 2.5 mM KCl, 119 mM NaCl, 2 
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mM MgCl2, 30 mM glucose, 25 mM 2-(N-morpholino) ethanesulfonic acid) to remove the presence of 

unwanted structures (such as exocytosed exosomes or focal adhesions) from the coverslip. Cells were 

than imaged in Tyrode’s solution, pH 7.4 (2 mM CaCl2, 2.5 mM KCl, 119 mM NaCl, 2 mM MgCl2, 30 mM 

glucose, 25 mM HEPES) in a 37°C humidified imaging chamber. Images were kindly acquired by Dr 

Stefan Balint, Kennedy Institute of Rheumatology, Oxford University. For histamine imaging, the 

Tyrode’s solution was supplemented with 100 μM histamine and cells were imaged immediately after 

media addition, for a time frame of 0-5 minutes. Twelve cells were imaged in total (the same number 

of cells was imaged for the control). For chlorpheniramine treated cells, Tyrode’s solution was 

supplemented with either 10 or 250 μM chlorpheniramine and cells were imaged in time-interval of 5 

minutes for 35 minutes. Two cells were imaged for each time point for both treatments (a total of cells 

14 per condition). Only cells expressing moderate levels of CD81-pHluorin were chosen for imaging, 

with field of view containing only one cell per acquisition. An Olympus IX83 inverted microscope, fitted 

with a Photometrics Evolve 512 Delta camera was used for acquiring images with a UAPON OTIRF 

150x/1.45 objective. Images were acquired at 0.40 frames per second (fps). 

2.18.2. Image analysis 

All images were analysed through Fiji by using the AMvBE macro, developed by Bebelman et al. (2020). 

The images were opened through the AMvBE macro and the following parameters were used for 

analysis: 

- Time window per event correction (in no. of frames): 4 

- Condition for fluorescence decrease after exocytosis (minimum no. of frames): 2 

- Condition for fluorescence increase before exocytosis (minimum no. of frame). 2 

- Minimum event size to be considered (in micrometres): 0.3 

- If the decay condition is not fulfilled, the threshold value (N) for exocytosis event rescue such 

that mean + N*STD: 3 

- Manual threshold for vesicle movement (unit in no. of vesicle diameter, which represents the 

amount of vesicle diameters the vesicle is allowed to move): 2 

All the sudden increases in fluorescence intensity that could potentially represent a fusion event were 

manually selected; and then each selected event was analysed by the software. Events that fulfilled all 

the selected parameters were reported as positive fusion events and were identified by a green circle 

on the corresponding image frame. Events that did not fulfil one or more parameters were indicated 

by the software as yellow or red circles and were not included in the analysis. Information regarding 

the number of CD81 MVB-PM fusion events, their fluorescence level and their size were collected for 

all events and used for statistical analysis. 
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2.19. Liquid chromatography-mass spectrometry for proteomics 

Liquid chromatography-mass spectrometry (LC-MS) is a technique that allows identification of 

molecules in a sample; proteins are first separated by size by using liquid chromatography and then 

the content is quantified via mass spectrometry. During mass spectrometry analysis, molecules are 

ionised (converted to gas-phase ions) and positive and negative charged ions are generated; the newly 

generated ions are sorted and separated according to their mass-to-charge (m/z) ratios. The m/z ratios 

and their relative abundance are sent to a data system that generates a mass spectrum. In this case, 

label-free quantification (LFQ) was used; this method is less accurate than stable isotope-based 

labelling (SILAC) however is less time consuming and less costly (Asara et al. 2008; Cox et al. 2014). 

One of the methods used for LFQ proteomics is MaxLFQ; with this method, LC-MS is used together 

with a peptide sequence database that allows the identification of the proteins found within the 

sample. Proteins are first digested into peptide fragments that are then separated and quantified using 

LC-MS (Cox et al. 2014). The fingerprints of these fragments are then used to identify their parent 

proteins using the MaxQuant software (Tyanova et al. 2016). 

2.19.1. Sample preparation 

SKOV3 were plated in thirty t175 cm2 cell culture flasks and cultured for two days. On day three, media 

was removed, and cells were washed twice with sterile PBS (Gibco™). Fifteen t175 cm2 cell culture 

flasks were treated with SFM and 100 μM histamine was added to the other fifteen t175 cm2 cell 

culture flasks. Cells were incubated for 4 h and then EVs were extracted as previously explained in 

section 2.15. EV samples were concentrated to a final volume of 20 μl by centrifuging them at 3,000 x 

rcf in a 5 kDa Vivaspin (GE Healthcare), as described in section 2.15. Samples were stored at -80 °C (for 

up to one month) prior to downstream application. Four different biological replicates were collected, 

and samples were sent to the Discovery Proteomics Facility at the Target Discovery Institute (TDI), 

Oxford University, for further analysis. Protein extraction and LC-MS was undertaken by Dr Svenja 

Hester, following their protein extraction method. 

All samples were analysed using a shotgun deep read sequencing by liquid chromatography coupled 

with mass spectrometry analysis using an Orbitrap Fusion Lumos Tribrid (Thermo Fisher Scientific) 

tandem mass spectrometer. The raw data generated were processed by the facility using the 

MaxQuant software. 

2.19.2. Data analysis 

LFQ intensity were used for data processing through the Perseus (MaxQuant) software. Data were 

filtered and potential contaminants were eliminated from the protein list. LFQ values were 

transformed to Log2 values, and all samples were grouped together based on the treatment (n=4 for 
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both control and histamine). Additionally, data were filtered and only protein expressed in at least 

three replicates of at least one condition were further analysed. Missing data were imputed by using 

the software function “Replace missing values from normal distribution”; with this function the 

software itself looks at the distribution of data, assuming they are normally distributed, and it 

calculates centre and width of the distribution. The software will then shrink the distribution by a factor 

of “0.3” and shift it down by a factor of “1.8 standard deviation” and it will simulate random values to 

fill up the missing values. In this way, the missing values will fall on the right side of the distribution, as 

this is where protein with low abundance are expressed. Data were then processed for statistical 

analysis. A t-test analysis was used to compare the protein content of control and histamine- induced 

EVs. P-values were calculated either applying a Benjamini-Hoechberg false discovery rate (FDR) 

correction of 0.01 or 0.05 or by just running a t-test without further corrections. Venn diagrams and 

upset plots were generated by using the online tool https://intervene.shinyapps.io/intervene/. 

Volcano plots were generated through Perseus. Go terms analysis were carried out by using the online 

database DAVID (Huang et al. 2009b; Huang et al. 2009a) 

2.20. Statistics and reproducibility 

For statistical analysis, GraphPad Prism version 8 statistical software was used, unless otherwise 

specified. Throughout the thesis, the statistic test used for analysis is specified for each figure, as 

appropriate. Sample sizes for each experiment were chosen without using any statistical methods but 

were planned with adequate power based on previous studies. No samples or data points were 

arbitrarily excluded, except for the Matrigel® invasion assay in section 5.3.5. For this experiment, one 

value for the siRNA HRH1 + PBS and siRNA HRH1 + EVs conditions was excluded for statistical analysis, 

as it was identified as an outlier by using the Grubbs test. 

 

https://intervene.shinyapps.io/intervene/
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3 Histamine receptors in ovarian cancer models 

3.1 Introduction 

Wide attention has been paid to histamine and histamine receptors and their ability to regulate cell 

growth and proliferation in the past years. Several studies have focused on understanding how 

histamine is functional in cancer development, growth and metastatic behaviour (Cianchi et al. 2008; 

Medina and Rivera 2010). Indeed, histamine can regulate various biological processes associated with 

tumour growth including cell proliferation, migration, differentiation, and apoptosis, and it exerts 

different responses based on its local concentration and the type of receptor subtype activated 

(Faustino-Rocha et al., 2017). Histamine and the enzymes necessary for its biogenesis and degradation 

have been identified in a variety of cancers. Several studies have found histamine concentration to be 

higher in the plasma of women with breast cancer compared with healthy individuals (Chanda and 

Ganguly 1987; Sieja et al. 2005; von Mach-Szczypiński et al. 2009); moreover, histamine concentration 

has been shown to be higher in breast, colorectal and skin cancer tissues compared with both healthy 

surrounding tissues of the same patients and with healthy tissues obtained from healthy individuals 

(Chanda and Ganguly 1995; Sieja et al. 2005; von Mach-Szczypiński et al. 2009).  

Deregulation of all four histamine receptors has been identified in several human cancers as reviewed 

by Medina et al. (2011). Preliminary bioinformatic studies using gene expression values of human 

pancreatic ductal adenocarcinoma (PDAC) tissues (obtained from the TCGA database) showed a 32 

fold increase of HRH1 mRNA in PDAC compared to normal pancreatic tissues and this increase was 

seen in 100% of the PDAC samples (Rodriguez et al. 2018). In vivo analysis of PDAC tumours isolated 

from KPC mice (model of PDAC) confirmed this bioinformatic data, with PDAC tissue showing high 

HRH1 expression compared to normal mouse pancreatic tissue (Salmerón et al. 2020). Similarly, a 

recent meta-analysis from Wang and colleagues (2014) investigating prognostic values of human HRH1 

in different cancers demonstrated that while high level of expression of HRH1 is associated with poor 

survival in patients with cancers of the breast, lung, soft tissue, brain, colorectum, and in B-cell 

lymphoma, low level of HRH1 expression is related to poor survival of people affected from myeloma, 

bladder or ovarian cancers (Wang et al. 2014). These findings show how clinical studies analysing the 

association between HRH1 and cancer prognosis produced different results in different cancer types 

and highlight the need for further research. 

The beneficial use of antihistamine in combination with first line therapies for cancer patients has been 

reported by several clinical studies. For example, Fritz et al. (2020) showed that amongst 61,000 

women diagnosed with breast cancer, loratadine or desloratadine (both inverse agonist of HRH1) users 

showed improved survival relative to nonusers (Fritz et al. 2020). Similarly, a cohort study on the effect 
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of cationic amphiphilic antihistamines on patients diagnosed with non-localised cancers (e.g cancer at 

the breast, digestive organs, respiratory system and thoracic organs, male or female genital organs, 

lymphatic and hematopoietic tissue, urinary tract and more) showed that loratadine, astemizole and 

ebastine (selective HRH1 antagonists) were associated with reduced mortality, particularly in patients 

simultaneously undergoing chemotherapy (Ellegaard et al. 2016). A retrospective study by Verdoodt 

and colleagues (2019) on EOC patients did not show a correlation of antihistamine users with overall 

survival; however, antihistamine use shows an inverse association with serous ovarian cancer risk in 

pre-menopausal women, and an inverse association independently of menopausal status with 

mucinous ovarian cancer risk (Verdoodt et al. 2019). 

Even though there is evidence implicating a role for histamine and its receptors in cancer progression 

and outcome, their role in ovarian cancer pathogenesis and progression has not been entirely 

elucidated, and further investigation is needed to establish the mechanisms by which they affect 

ovarian cancer cells. 

A previous correlation analysis between gene expression and invasion, migration, motility, and cell 

proliferation rates of six ovarian cancer cell lines belonging to the NCI60 cells panel were carried out 

in our laboratory by a former master research student, Mohammad A. Miah. Genes showing a 

significant correlation were run through an Ingenuity Pathway Analysis (IPA) to determine which 

cellular pathways these genes were involved in. This analysis identified 112 genes, including HRH1, 

that were associated with OC migration and invasion. This preliminary work identified a potential role 

for HRH1, but further investigation is needed to explore the expression of HRH1 with respect to ovarian 

cancer progression.  

3.2 Aim and objectives 

The aim of the work described in this chapter was to confirm and further analyse the correlation 

between histamine receptor’s expression and OC invasion, migration and metastatic potential. The 

specific objectives were: 

• To investigate a potential relationship between histamine’s receptors expression in OC cells 

lines and their invasive and migratory rates 

• To study the expression of histamine’s receptors in a microarray dataset of OC specimens, and 

investigate if there was a correlation with patient’s overall survival or progression free survival 

• To explore HRH1 mRNA and protein levels in a panel of OC cell lines 

• To determine the invasion rate of two of the cell lines used in this project, SKOV3 and OVCAR3, 

through a Matrigel ® layer 
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3.3  Results 

3.3.1. HRH1 positively correlates with the invasion and migration rates of OC 

cells, while no correlation is found for the other histamine receptors. 

In order to investigate the correlation of histamine receptors expression with OC cell behaviour, 

existing publicly available datasets were first made use of. In the 1980s, the NCI60 panel of 60 cell lines, 

covering a wide variety of cancer types, was created as a tool to screen compounds for their anticancer 

activity. Of these 60 cell lines, six of them (IGROV1, OVCAR3, OVCAR4, OVCAR5, OVCAR8 and SKOV3) 

are representative of OC and were used in this project. The Cell Miner database produced by Reinhold 

et al. (2012), is an online tool which integrates gene transcripts, microRNAs and chemical compound 

activity data across different platforms using the NCI60 database.  

From the Cell Miner database, RNA microarray data were obtained from a microarray dataset (RNA 

Affy HG-U133 Plus 2.0, GSE32474) and histamine receptors expression level in the six different OC cell 

lines plotted in a heatmap (Figure 3.1 A). Heatmaps are a tool to visually represent gene expression 

data. Among the four different histamine receptors, HRH1 appeared to be expressed differently in the 

six OC cell lines, with SKOV3 bearing its highest expression and IGROV1 its lowest expression (Figure 

3.1 A). HRH2 and HRH3 were expressed at very similar levels by the six cell lines, while HRH4 expression 

was lower than the detection limit of the assay and was therefore not further analysed. To evaluate if 

the expression levels of HRH1, HRH2 and HRH3 were related to the in vitro invasion and migration 

behaviour of the six OC cell lines belonging to the NCI60 panel, data previously generated by Mulcahy 

(2016) (former PhD student in the lab) were used. By using a Matrigel® invasion assay and a transwell 

migration assay, Mulcahy assessed the in vitro invasion and migration ability of IGROV1, OVCAR3, 

OVCAR4, OVCAR5, OVCAR8 and SKOV3, respectively (Mulcahy 2016) (Figure 3.1 B). As these data were 

normally distributed, Pearson correlation analysis was chosen to evaluate the presence of a potential 

linear relationship between gene expression levels and in vitro characteristics. From correlation 

analysis, HRH1 expression showed a Pearson’s correlation coefficient (R) of 0.811 (p=0.05) with 

invasion rates of the cell lines (Figure 3.1 C) and a Pearson’s R of 0.0816 (p=0.048) when correlated 

with the migration rate of OC cells through a transwell membrane (Figure 3.1 D). HRH2 and HRH3 

expression levels showed no correlation with either migration or invasion behaviour of the six cell lines 

(Figure 3.1 E). Taken together, these results reveal that six OC cell lines, IGROV1, OVCAR3, OVCAR4, 

OVCAR5, OVCAR8 and SKOV3, express three of the four histamine receptors. In particular, HRH1 

expression has a linear positive correlation with OC cells invasion and migration in vitro, meaning that 

cells expressing a higher HRH1 level migrate and invade faster than cells expressing a low level of HRH1. 
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Figure 3.1: Histamine receptors expression in six OC cell lines and their correlation with invasion and 
migration in vitro.  
A) Heat-map showing mRNA expression level of the four histamine receptors in the six OC cell lines belonging to 
the NCI-60 panel. Data were obtained from the Cell Miner (GSE32474) dataset. The individual rectangles in the 
heatmap are coloured with a range of colours proportionated to gene expression values (green for lower 
expression, yellow for medium expression, red for higher expression). Each rectangle contains the expression 
levels of a specific histamine receptor (columns) in a specific cell line (row). B) In vitro cell invasion (through a 
Matrigel® layer) and migration (through a transwell) rates of IGROV1, OVCAR3, OVCAR4, OVCAR5, OVCAR8 and 
SKOV3 were obtained from Mulcahy (2016). Pearson correlation analysis showing HRH1 expression in relation to 
C) OC invasion and D) OC migration in vitro. E) Pearson correlation coefficient (R) and p-value of HRH1, HRH2 and 
HRH3 gene expression and in vitro invasion and migration rates of six OC cell lines. 
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3.3.2. HRH1 is expressed in OC clinical samples and its expression correlates with 

OC stage 

In order to explore whether HRH1 expression correlates with OC stage, a dataset containing mRNA 

expression data from 403 clinical samples of HGSOC was obtained from the TCGA database (The Cancer 

Genome Atlas Research Network 2011). Patients’ age ranged between 30- to 90-years, and among 

these 21 patients presented the disease at stage II, 319 at stage III and 61 at stage IV (Figure 3.2 A). 

Stage information were missing from ten patients, and these were therefore excluded from the 

analysis (Figure 3.2 A). The remaining 393 patients were grouped by stage (II, III, IV) and the mRNA 

expression of HRH1, HRH2, HRH3 and HRH4 was reported using a heatmap (Figure 3.2 B). As seen in 

figure 3.2 B, among the four histamine receptors, HRH1 mRNA was expressed in clinical samples from 

patients in all stages, with late-stage OC samples (III and IV) showing a higher degree of expression 

compared to stage II samples (Figure 3.2 B). No difference in HRH2 expression levels was found 

between samples from patients at different cancer stages, while HRH3 and HRH4 detection levels were 

as low as the technique detection limits. Moreover, median expression values for each histamine 

receptor were calculated for each patient stage group, and fold change of expression were calculated 

between stage IV and III, or stage IV and II (Figure 3.2 C). Clinical samples obtained from patients in 

stage IV expressed significantly higher level of HRH1 mRNA compared to stage II patients (p=0.003) 

and showed a trend to be increased when compared to patients in stage III, although this did not reach 

statistical significance (p=0.054) (Figure 3.2 C). On the other hand, even though HRH2 mRNA was 

detectable across different stages (Figure 3.2 B), its expression was very low and no association with 

disease progression was found (stage II v IV p=0.56, stage III v IV p=0.72) (Figure 3.2 C). HRH3 and HRH4 

mRNA levels were very low and were therefore not further analysed (Fig 3.2 B, C). 

As HRH1 mRNA was highly expressed in late-stage patients, its correlation with patient’s overall 

survival and progression free survival was explored by using Kaplan-Meier curves. Kaplan-Meier curve 

is a visual representation used to estimate the survival of two groups of patients in a specific time 

frame, and to show what the probability of an event (for example, survival) is at a certain time interval 

(Rich et al. 2010; Barakat et al. 2019). The time intervals are not defined by a fixed length of time but 

depend on the occurrence of an event. The events of interest are death of a patient or when a patient 

is censored (either did not experience the death event or its follow-up was lost). The data are collected 

from the day the patients entered a study until the day they died or their follow-up was lost (Tolley et 

al. 2016). Kaplan-Meier plotter can be utilised for the analysis of individual genes or groups of genes 

(Rich et al. 2010). In this project, overall survival and progression free survival data were used for 

survival analysis. Overall survival of a cancer patients is the length of time from the date of the 

diagnosis or the start of the treatment to the date the patient is still alive. Progression free survival is 
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the length of time during and after the treatment of cancer, during which the patient lives with the 

disease without it growing or spreading around the body. Overall survival of 389 OC patients and 

progression free survival of 315 OC patients was related with HRH1 mRNA level of expression. Without 

considering the disease stage, patients were grouped into two categories depending on the level of 

expression of HRH1: high expressing patients (patients in which HRH1 expression was higher than the 

median value) and low expressing patients (patients in which HRH1 expression was lower than the 

median value). Kaplan-Meier overall survival curve showed no correlation between HRH1 and overall 

survival in OCs patients (p= 0.98), with both groups showing the same probability of death (hazard 

ratio (HR) =0.9947) (Figure 3.2 D), and a very similar median survival time (41.31 months for low 

expressing patients compared to 44.36 of high expressing patients). Similar results were obtained with 

patients’ progression free survival (p=0.90, HR=0.98) (Figure 3.2 E), with low expressing patients 

showing a similar median progression free survival time (16.07 months) than high expressing patients 

(17.48 months). Kaplan-Meier plots obtained from an online database (Gyorffy et al. 2012) showed 

similar results for overall survival of patients, where patients with high HRH1 (median survival time 

46.1 months) presented the same probability of death (HR=0.9, p=0.19) as patients with low HRH1 

(median survival time 41.9 months) (Figure 3.2 F). However, the progression free survival curve showed 

patients presenting low level of HRH1 (median survival time 18.1 months) to have significantly better 

survival then patient presenting high HRH1 (median survival time 16 months) (HR=1.18, p=0.024), the 

opposite result to the TCGA data (Figure 3.2 G). Taken together, these findings show that HRH1 and 

HRH2 mRNA are expressed in ovarian biopsies obtained from OC patients, and in particular, HRH1 is 

significantly higher in patients with stage IV of the disease. Moreover, HRH1 expression does not 

correlate with patients’ overall survival while its correlation with progression free survival is 

controversial and depends on the dataset analysed.  
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Figure 3.2: mRNA expression of histamine receptors in clinical samples of OC and their correlation with 
overall and progression free survival. 
Microarray data of 403 OC clinical samples were obtained from the TCGA database A) Age and stage information of 
the patients included in the analysis. B) Heat-map showing mRNA expression of HRH1, HRH2, HRH3 and HRH4 in OC 
clinical samples ranked by stage (from top to bottom: stage II to IV). The colours range is proportionated to gene 
expression values (green for expression values between 0 and 8, black for expression values between 8 and 15, red 
for expression values between 15 to 25). C) The mRNA expression median value of the four different histamine 
receptors was calculated for each stage of the disease. Fold change of expression between stage IV and II or stage IV 
and III was calculated and P-values reported through a t-test. Kaplan-Meier curves were calculated between high 
expression patients (red) and low expression patients (black) for D) overall survival and E) progression free survival. 
Additional Kaplan-Meier plots were obtained from the online database “The Kaplan-Meier plotter” 
(http://kmplot.com/analysis/) and show percent of survival for F) patients’ overall survival and G) patients’ 
progression free survival. The numbers at the bottom of each Kaplan-Meier graph indicates the numbers of patients 
at low (black) and high (red) risk still alive at each of the time points reported on the graph. 

 

http://kmplot.com/analysis/
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3.3.3. HRH1 is expressed in SKOV3, OVCAR3 and OVCAR5 at both RNA and protein 

level 

The findings so far have shown that of the four histamine receptors, HRH1 has the highest expression in 

both ovarian cancer cell lines and ovarian cancer clinical samples, and that its expression seems to be 

related with invasion and migration in vitro. To evaluate HRH1 expression in the three OC cell lines used 

in this project, an RT-qPCR analysis was carried out on SKOV3, OVCAR3 and OVCAR5. As show in figure 3.3 

A, HRH1 mRNA expression, reported as fold change compared to β-Actin (and normalized to HRH1 

expression in HME (immortalised epithelial breast) cells), was measured in all the cell lines, and SKOV3 

showed its highest expression, with more than a two-fold increase compared to OVCAR3 (p=0.026; SKOV3 

mean=2.35 ± SD=1.06; OVCAR3 mean=0.89 ± SD=0.80) (Figure 3.3 A). These data are in agreement with 

what was previously shown in the microarray analysis (section 3.2.1). HRH1 was also quantified at the 

protein level in the three cell lines by using both western blot and immunofluorescence analysis (Figure 

3.3 B, D, respectively). Western blot analysis, reported as fold change against GAPDH, displayed the 

presence of HRH1 (band around 56 KDa) and GAPDH (band at 37 KDa), confirming the presence of HRH1 

in the three cell lines (Figure 3.3 B, C). SKOV3, OVCAR3 and OVCAR5 were also immunolabelled with α-

HRH1 antibody (Figure 3.3 D) and total HRH1 immunopositivity was calculated as corrected total cell 

fluorescence (CTCF) through the imaging software Fiji (Figure 3.3 E). CTCF, normalised to CTCF of HME 

(immortalised epithelial breast cells, used as control to normalise RNA and protein data) cells, showed 

that HRH1 was present in all three OC cell lines and although no statistically significant differences were 

found among them (p=0.43), a small trend towards an increase in SKOV3 cells was seen. Overall, the data 

presented here show that HRH1 is expressed by three different ovarian cancer cell lines, and while mRNA 

levels seem to be higher in SKOV3, the three cell lines seem to present the same level of the protein. 
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Figure 3.3: HRH1 expression was evaluated in SKOV3, OVCAR3 and OVCAR5 at both mRNA and protein level 
HRH1 expression was assessed in SKOV3, OVCAR3 and OVCAR5 with different techniques. A) RT-qPCR analysis showing the relative quantity of HRH1 (normalised on relative levels 
of HRH1 in HME cells) in the three different cell lines. The mean values of 5 independent experiments were combined for statistical analysis. B) Representative western blot showing 
HRH1 (56 KDa) and GAPDH (37 KDa, endogenous control) protein levels in SKOV3, OVCAR3 and OVCAR5. C) HRH1 fold change relative to GAPDH was measured by western blot 
analysis in the three OC cell lines. The mean values of five independent experiments were combined for statistical analysis. D) Representative immunofluorescence images of HRH1 
(red) and DAPI (blue) in the three OC cell lines; scale bar 50 μm. E) Cell total corrected fluorescence (CTCF) was used to quantify HRH1 protein level by immunofluorescence. Data 
were normalized to HRH1 expression in HME cells. The mean values of three independent experiments were combined for statistical analysis. One-way ANOVA, followed by Tukey 
post-hoc test was used to quantify statistical differences. Bars show 1X SD; * P<0.05.
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3.3.4. SKOV3 cells invade more than OVCAR3 through a Matrigel® layer 

So far, the results obtained have shown that HRH1 is expressed by SKOV3, OVCAR3 and OVCAR5 and 

that its mRNA expression correlates with their invasion and migration in vitro. As the invasion data 

used for the correlation analysis were generated by Mulcahy (2016), in vitro invasion rates of SKOV3 

and OVCAR3 (the most and least invasive cell lines according to Mulcahy (2016) data, respectively) 

were explored through a Matrigel® invasion assay. Cells were plated on top of the Matrigel® layer, 

allowed to invade for 48 h and then stained with crystal violet, imaged and counted (see section 2.14 

for further details) (Figure 3.4 A). The percentage of invading SKOV3 (mean=10.22 ± SD=4.44) was 3.5-

fold higher than OVCAR3 (p=0.035; mean=2.87 ± SD=2.66), confirming that SKOV3 have a higher 

invasion potential than OVCAR3 (Figure 3.4 B). 

 

Figure 3.4: SKOV3 cells invade more than OVCAR3 through a Matrigel® layer. 
A) Representative images of a Matrigel® invasion assay on SKOV3 and OVCAR3. Cells were stained with crystal 
violet. B) Percentage of invading cells through a Matrigel® layer. T-test followed with Welch’s correction was used 
to quantify any statistical differences. Bars showing 1X SD; * P<0.05.
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3.4 Discussion 

The aim of the work described in this chapter was to test if there was an association between histamine 

receptors expression and the behaviour of OC cells in assays modelling aspects of metastatic behaviour 

in vitro and in clinical samples. To test the former, a Pearson correlation analysis was carried out 

between gene expression data of six OC cell lines (IGROV1, OVCAR3, OVCAR4, OVCAR5, OVCAR8, 

SKOV3) obtained from the Cell Miner database (Reinhold et al. 2012) and their in vitro migration and 

invasion rates previously estimated by Mulcahy (2016). Amongst the four histamine receptors, HRH1 

gene expression levels were different across the six OC cell lines and there was a positive correlation 

between HRH1 gene expression and the migration and invasion rates of the cell lines in vitro. SKOV3 

showed the highest HRH1 expression and the highest invasion and migration rates in vitro. Both HRH2 

and HRH3 had a very low expression level in the cell lines and no correlation was found with their 

invasion or migration; HRH4 levels were too low to be detectable. Similarly, mRNA expression analysis 

of the histamine receptors in a subset of OC clinical samples showed that HRH1 was the only receptor 

expressed in OC samples in stage II, III and IV. Moreover, HRH1 highest expression was found in 

specimens obtained from patients in late stages of the diseases (stage IV), showing a fold-change 

increase of HRH1 mRNA of 1.3 and 1.2 when compared with samples obtained from patients in stage 

II or III, respectively. These finding suggest that HRH1 might be involved in, or associated with, disease 

progression. HRH2 displayed a low expression in OC clinical samples and in the in vitro data, and its 

expression was not correlated with disease stage; HRH3 and HRH4 mRNA were expressed at low levels 

in OC clinical samples. These findings together indicate the presence of HRH1 in both clinical samples 

of OC and in OC cell lines, and are consistent with its potential involvement in cancer progression and 

metastasis. Only six OC cell lines were used for correlation analysis, and such a small number of data 

points is not ideal for generating reliable results. Although the six OC cell lines considered in the 

presented analysis are the only OC cells contained in the NCI60 panel, other dataset available online, 

like the one generated by Schaner et al. (2003), include a larger dataset of OC cell lines and could have 

been integrated into the analysis to further implement the results. Therefore, the presented 

correlation analyses are consistent with the possibility that HRH1 plays a role in OC invasion and 

migration, but further experiments are necessary to confirm this. 

Similarly, only one dataset comprising gene expression information of 403 HGSOC clinical samples was 

used to investigate the clinical correlation between histamine receptors gene expression and disease 

progression. More than half of the patients were classified at stage III (n=319) of the disease while the 

number of patients presenting early stage of OC (stage II) or late stage (Stage IV) was very small (n=21, 

n=61, respectively). A multitude of datasets, containing different cohorts of patients (FireHouse 

Legacy, PanCancer atlas http://www.cbioportal.org/), are available online and could have been 



 

77 | P a g e  
 

Chapter 3 Histamine receptors in ovarian cancer models 

integrated into the analysis, although such an extensive bioinformatic analysis lies beyond the scope 

of this thesis. However, a brief exploration of these datasets gives further insight into the potential 

involvement of HRH1 in OC. For example, the online tool UALCAN, generated by Chandrashekar and 

colleagues (Chandrashekar et al. 2017) includes the analysis of 302 ovarian serous cystadenocarcinoma 

clinical samples and confirmed the overexpression of HRH1 in patients presenting with stage IV disease 

(median of HRH1 expression= 6.406) compared with stage II (HRH1 median of expression= 6.05) and 

III (HRH1 median of expression= 4.804), further supporting the case for a role of HRH1 in OC 

progression.  

Survival analysis showed no correlation between HRH1 gene expression and patients’ overall survival. 

Actually, although not significant, it was curious to observe that patients expressing high level of HRH1 

had a slightly higher median survival time (≈ 44 months) than patients with low levels of HRH1 (≈ 41 

months). This data was further confirmed by using the online tool “The Kaplan-Meier plotter”, a 

database which included overall survival data of a much larger patient cohort (1,281). These findings 

pinpoint to the possibility that the higher expression of HRH1 in clinical samples of stage IV OC may to 

an extent be beneficial for patients and might lead to a small increase of survival. Correlation of HRH1 

gene expression and TCGA patients’ progression free survival data showed no differences in time to 

relapse. Surprisingly, by using “The Kaplan-Meier plotter” database, the same analysis showed that 

patients with low level of HRH1 had longer survival time (2 months more) than patients with high level 

of HRH1. The discrepancy between these results might be related to the dataset itself and to the 

parameters chosen for the analysis. First of all, “The Kaplan-Meier plotter” uses a much larger database 

of patients (1,281 OC) compared to the 315 obtained from TCGA and therefore might provide a more 

representative analysis. Second, the TCGA dataset contains information of patients affected by HGSOC 

while “The Kaplan-Meier plotter” includes patients affected by serous (both HGS and LGS) and 

endometrioid OC. The presence of different OC subtypes might therefore explain the differences 

between the results here presented. Moreover, for both databases, a follow-up time of more than 100 

months was used for overall and progression free survival analysis. By month 50, more than three 

quarters of patients were dead or censored, and the remaining survival time was calculated on a very 

small number of patients that was not anymore representative of the overall population. This might 

have led to generation of misleading results that should be interpreted with caution. Indeed, Kaplan-

Meier analyses are most accurate at the time point when most patients are still present in the study 

(Rich et al. 2010). Overall, while HRH1 does not seem to be a good prognostic marker for patients’ 

survival, it seems to play a potential role in disease progression and further studies are needed to 

elucidate this mechanism. 



 

78 | P a g e  
 

Chapter 3 Histamine receptors in ovarian cancer models 

Few studies are available regarding the expression of HRH1 and its role in ovarian cancer patients, but 

both its mRNA and protein have been already identified in a variety of cancer patients’ samples 

including liver, colorectal, ovarian, endometrial, breast, urothelial cancers and melanoma, (The protein 

atlas, access in May 2021). Moreover, the role of HRH1 in cancer progression and its association with 

a poorer prognosis and overall survival has been already demonstrated in pancreatic, colorectal and 

breast cancer studies, as already described in sections 1.4.3 and 3.1 (Fernández-Nogueira et al. 2016; 

Fernández-Nogueira et al. 2018; Rodriguez et al. 2018; Salmeron et al. 2020; Zhao et al. 2020) and the 

idea of repurposing antihistaminic drugs as promising novel therapeutics for cancer treatment has 

gained a lot of attention (Medina and Rivera 2010; Faustino-Rocha et al. 2017).  

The expression of HRH1 was further analysed in SKOV3, OVCAR3 and OVCAR5 both at the mRNA and 

protein level. All the cell lines express HRH1 mRNA, with SKOV3 exhibiting the highest expression, 

which is in agreement with what was shown by the NCI60 microarray. Similar to the mRNA expression 

analysis, the three OC cell lines investigated expressed HRH1 at the protein level. Although the western 

blot analysis revealed similar levels of HRH1 across samples, the technique did not seem to be sensitive 

enough for quantify HRH1 protein levels. The HRH1 western blot band appeared as a strong band at 

the correct molecular weight (56 KDa), but additional bands with molecular weights ranging between 

10 to 60 KDa were detected each time, potentially indicating a low specificity of the antibody. 

Unfortunately, even though two different antibodies were tested and the protocol was implemented 

to ensure the highest possible resolution, the same additional bands were observed across different 

replicates. Perhaps, the use of alternative antibodies would have produced more specific and clean 

results, although it is widely recognise in literature that western blot are high variable technique, and 

several parameters can influence their reproducibility such as protein sample handling, gel 

composition, blocking buffers and others (Ghosh et al. 2014; Gilda et al. 2015). If available, a blocking 

peptide would have been used to run pre-adsorption tests and validate antibody specificity. During 

the ‘pre-absorption test’, the antibody is pre-incubated with an excess of blocking peptide (the 

immunogen used to generate the antibody). If the antibody binds specifically to the immunizing 

peptide, the pre-adsorption steps will decrease the intensity of the protein staining; if the antibody 

binds to other proteins, the intensity of the signal will be unvaried (Pillai-Kastoori et al. 2020). This 

method has several limitations: for example, binding of the blocking peptide with the antibody might 

reduce off-target binding to other antigens presenting the same epitope, producing a ‘false specificity’ 

(Pillai-Kastoori et al. 2020). 

To complement the western blot data, HRH1 protein level was evaluated by immunolabelling analysis; 

CTCF quantification of HRH1 labelling confirmed the presence of the protein in SKOV3, OVCAR3 and 

OVCAR5 cells and indicated a similar level of immunopositivity across the samples. Curiously, while RT-



 

79 | P a g e  
 

Chapter 3 Histamine receptors in ovarian cancer models 

qPCR analysis show SKOV3 to bear higher level of HRH1 compared to the other two cell lines, protein 

levels appeared to be similar in the three cell lines. These differences could be attributed to the low 

specificity of the antibodies used for western blot and immunolabelling analyses. Nevertheless, several 

mechanisms like post-translational modification, ribosome occupancy, protein half-life and 

degradation, and technical noise could explain the poor correlation between mRNA and protein 

expression (Greenbaum et al. 2003; Abreua et al. 2009; Maier et al. 2009). In addition, preliminary 

investigation of the in vitro invasive potential of OC cells shows that SKOV3 invaded significantly more 

than OVCAR3 through a Matrigel® layer, confirming what previously identified by Mulcahy (2016). This 

evidence together with the finding that SKOV3 bears higher level of HRH1 mRNA could suggest a 

potential implication of HRH1 in OC invasiveness in vitro. 

3.5  Key findings 

• HRH1 is expressed in three OC cell lines, and it is correlated with OC invasion and migration in 

vitro 

• HRH1 is expressed at higher levels in clinical samples of stage IV OC than stages II or III 

• SKOV3, OVCAR3 and OVCAR5 express HRH1 at both RNA and protein level, with SKOV3 

showing the highest mRNA expression 

• SKOV3 invasion rate through a Matrigel® layer is higher than OVCAR3, and this could be 

possibly related with SKOV3 bearing the highest expression of HRH1 mRNA





 

 
 

 
 

Chapter 4 

The role of HRH1 in metastatic 

mechanisms 

 





 

83 | P a g e  
 

Chapter 4 The role of HRH1 in metastatic mechanisms 

4. The role of HRH1 in metastatic mechanisms 

4.1. Background 

Metastasis is the result of a multi-stage process that leads to the development of a secondary tumour 

in a part of the body distant from the primary one (Fares et al. 2020). Histamine and its four receptors 

have been implicated in different steps of tumour growth and progression, highlighting the dual role 

that this amine plays in cancer biology (Kahlson and Rosengren 1968). For example, histamine 

decreases tumour proliferation through HRH1 activation and promotes tumour growth by exerting an 

immune-inhibitory effect through the stimulation of HRH2 on T lymphocytes (Burtin et al. 1982). Early 

in vitro and in vivo studies on the role of HRH1 antagonists in cancer were inconclusive, with some 

studies showing no effects on tumour growth (Kurokawa et al. 1995), some displaying decreased mice 

survival and tumour growth promotion (Burtin et al. 1982; Brandes et al. 1994) and others revealing 

anti-tumour effects (Urdiales et al. 1992; Gómez-Fabre et al. 1997). Since then, several studies have 

been published supporting the idea that HRH1 might play a role in cancer progression. A recent paper 

by Fernández-Nogueira and colleagues (2018) show that selective chemical inhibition of HRH1 reduces 

the migration of MDA-MD-231 and BT-549 (breast cancer) cell lines in a wound-healing model, 

potentially by decreasing the expression of the mesenchymal marker vimentin. In addition, HRH1 

inhibition induces accumulation of cells in sub-G0 phase, with consequent suppression of cell 

proliferation, and triggers activation of the mitochondrial pathway via ERK activation (Fernández-

Nogueira et al. 2018). Similarly, by using both wound-healing and transwell migration assays, Zhao et 

al. (2020) demonstrate that SNU368 and HLE (hepatocellular carcinoma) cell lines migrate more slowly 

than control cells when HRH1 is knocked down, while their migratory ability increases when HRH1 is 

overexpressed. Similar results were obtained in a Matrigel® invasion assay. Furthermore, the authors 

validate the in vitro findings by injecting into the lateral tail vein of nude mice SNU368 cells with HRH1 

knocked down, or HLE cells with HRH1 overexpressed. By assessing the number of metastatic nodules 

in the lung, Zhao and colleague demonstrated that HRH1 knockdown drastically decreases the 

metastatic potential of SNU368 cells while HRH1 overexpression in HLE cells significantly increases the 

incidence of lung metastasis (Zhao et al. 2020). Thus, although there is some evidence for the 

involvement of HRH1 in different aspects of the metastatic cascade, little is known about its role in 

metastatic spread of OC. 
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4.1.1. Methods to study the different steps of the metastatic process 

in vitro 

Three ovarian cancer cell lines with different aggressiveness profiles (section 2.1.1) were used as a 

model to study the involvement of HRH1 in aspects of ovarian cancer metastasis. These cells were 

employed in different assays to test individual steps of the metastatic cascade in vitro.  

Epithelial to mesenchymal transition 

EMT is a reversible transformation during which cells lose their epithelial phenotype and acquire a 

mesenchymal one (Hay 1995) (see section 1.2.1 for further details). During this process, epithelial cells 

lose epithelial features, such as their polarity, and reduce cell adhesion structures by downregulating 

adhesive molecules, including E-cadherin (CDH1), claudins, cytokeratin and others. Classical epithelial 

molecules are replaced by mesenchymal markers such as vimentin, catenins, N-cadherin allowing cells 

to collectively acquire mesenchymal features and increase their motility and invasive ability (Kalluri 

and Weinberg 2010). In this project, EMT was investigated by quantification of CDH1 and vimentin 

through RT-qPCR analysis (Yang et al. 2020), as described in section 2.5.5. 

Cellular adhesion to endothelial cells 

After invasion into surrounding tissue, cancer cells reach lymphatic or blood vessels, enter them 

(intravasation) and are transported to distant organs, where they can exit the vessels (extravasation) 

and colonise new sites (further details can be found in section 1.2). In order to intravasate and later 

extravasate from blood vessels, cancer cells need to adhere to them and survive several stresses they 

will face during their transit in the bloodstream (see section 1.2 for further details) (Gupta and 

Massagué 2006). 

In this project, a static adhesion assay was employed to investigate the ability of OC cells to adhere to 

endothelial cell monolayers, under different conditions (for details regarding the protocol see section 

2.12). Endothelial cells were grown until confluency and activated with a pro-inflammatory cytokine. 

Cancer cells were labelled with a fluorescent dye and introduced onto the endothelial cell monolayer 

then allowed to interact for a short time. Non adherent cells were eluted, and adherent cells were 

quantified. 

Cellular invasion 

Cell invasion is a ‘hallmark’ of cancer (Krakhmal et al. 2015); during cancer invasion, cells detach from 

the main tumour, adhere to the ECM, degrade it and bypass physical barriers like the basement 

membrane (BM) to access other sites (for further details see section 1.2) (Sahai 2005). The BM, a 
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specialised extracellular matrix (ECM), is a network of macromolecules that encloses cells in a specific 

tissue or organ. 

A Matrigel® invasion assay was used to test the involvement of HRH1 in OC cells invasion, as described 

in section 2.14. The system employed in this assay is made of two compartments divided by a porous 

membrane permeable to cells (Hall and Brooks 2014); the size of each pore is smaller than the diameter 

of a cell, ensuring that passage of any cell through it is due to active cell-migration processes. This 

assay is based on the transwell invasion assay method (Boyden 1962) with the addition of a layer of 

extracellular matrix-like substance (Matrigel®) on top of the transwell. Cells are plated on top of the 

Matrigel® in serum-free media and placed into a well containing media supplemented with a 

chemoattractant (FBS in this project). Cells able to migrate and invade, will hydrolyse the Matrigel® 

layer, move through the membrane’s pores and attach to the underside of the membrane. Non 

invading cells remain on the upper side of the membrane. Invading cells are stained and quantified. 

Cell motility 

Cell migration describes the movement of cells on a surface. Cell migration is a process that occurs 

during normal physiological process like embryogenesis (Keller 2006) and wound healing (Friedl and 

Wolf 2009) and pathological process including cancer metastasis (Clark and Vignjevic 2015). Cancer 

cells are particularly able to adapt to the surrounding environment, assuming disparate morphology 

and migration characteristics that allow them to stay motile (for more information see section 1.2) 

(Friedl et al. 2012). Cells can migrate both as individual single cells (through amoeboid-like migration 

or fibroblast-like migration) or as an organised group of cells (Krakhmal et al. 2015). A variety of in vitro 

techniques are available to study cell motility, including the transwell chamber migration assay, cell 

exclusion zone assay, wound healing assay and others (Decaestecker et al. 2007; Paul et al. 2017).  

In this project, a wound healing assay was used to study the motility of OC cells treated with different 

compounds (section 2.13). Cells are plated and grown to confluency and the monolayer is ‘wounded’ 

by scratching with a pipette tip. ‘Wound’ closure is imaged over time and cell migration is assessed by 

measuring the reduction in the size of the ‘wound’ area at different time point. 

4.2. Aim and objectives 

Histamine can influence cancer cells proliferation and alter their invasion, migration and adhesion, via 

activation of its receptors but its role has not yet been studied in ovarian cancer. The aim of the work 

described in this chapter was to investigate the role of HRH1 in the different steps of the metastatic 

cascade of ovarian cancer cells in vitro. The specific objectives were: 

1. To study if HRH1 could modify the expression of EMT-key genes such as CDH1 and vimentin 
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2. To explore if HRH1 is involved in the adhesion of different OC cell lines to a monolayer of 

endothelial cells 

3. To test if HRH1 pharmacological activation (through histamine treatment) or inactivation (via 

chlorpheniramine treatment) or its knockdown (siRNA HRH1) is involved in the invasion 

process of OC cell lines 

4. To investigate the involvement of HRH1 in the motility of OC cell line 

 

4.3. Results 

4.3.1. HRH1 knockdown does not alter the expression of the EMT markers CDH1 

and Vimentin 

To study if HRH1 could influence EMT of OC cells, SKOV3 OVCAR3 and OVCAR5 cells were treated with 

siRNAs to knockdown HRH1. As HRH1 transfection did not work for OVCAR5 cells, they were not used 

for further analysis and only SKOV3 and OVCAR3 were further analysed. Forty-eight h post 

transfection, mRNA expression of HRH1, CDH1, a marker of epithelial phenotype, and vimentin, a 

marker of mesenchymal phenotype, were quantified by RT-qPCR. mRNA expression levels were 

normalised to the “non-transfected” cells group (cells that were treated only with transfection reagent 

and did not receive any siRNA). HRH1 knockdown was confirmed in both SKOV3 and OVCAR3, with 

HRH1 mRNA level decreasing by 60% in SKOV3 (p=0.03; siRNA control mean=0.83 ± SD=0.13; siRNA 

HRH1 mean=0.37 ± SD=0.14) (Figure 4.1 A) and 50% in OVCAR3 (p=0.029; siRNA control mean=1.07 ± 

SD=0.21; siRNA HRH1 mean=0.45 ± SD=0.22) (Figure 4.1 B) compared to control cells. CDH1 and 

vimentin were quantified by RT-qPCR and no difference in their expression was found upon HRH1 

knockdown in neither SKOV3 (p>0.99, p=0.68, respectively) nor OVCAR3 cells (p>0.99; p=0.2, 

respectively) (Figure 4.1 A, B). These results suggest that reduction of expression of HRH1 mRNA does 

not trigger differences in the expression of EMT- key related genes in OC cells and that this transition 

is independent from HRH1 expression. 
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Figure 4.1: The effect of HRH1 knockdown on EMT markers. 
SKOV3 and OVCAR3 cells were treated with siRNA control or specific for HRH1 for 48 h. The expression level of 
HRH1, CDH1 and vimentin were measured by RT-qPCR in A) SKOV3 and B) OVCAR3. β-Actin was used as 
endogenous control. Expression levels were normalised to ‘non-transfected’ cells control group. The mean values 
of four independent experiments were combined for statistical analysis. Mann-Whitney test was used to quantify 
differences between control cells and transfected cells for each gene of interest. Bars show, 1X SD. *P<0.05.
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4.3.2. HRH1 knockdown does not alter the adhesion ability of OC cells to a 

monolayer of endothelial cells 

To investigate the role of HRH1 in OC adhesion to an endothelial cell monolyer, a static adhesion assay 

was carried out using SKOV3, OVCAR3 and OVCAR5. In brief, OC cell lines were transfected with control 

or HRH1 siRNAs. Knockdown efficiency was measured by RT-qPCR 24 h after transfection. mRNA level 

of HRH1 decreased by 50% in SKOV3 HRH1 knockdown (p=0.006, siRNA control mean=1.15 ± SD=0.13; 

siRNA HRH1 mean=0.57 ± SD=0.14) (Figure 4.2 A) while no differences were seen in OVCAR3 and 

OVCAR5 (p=0.072, p=0.37, respectively) (Figure 4.2 B,C). Cells were stained with CFSE and then 

introduced onto a confluent HUVEC monolayer and allowed to interact for 15 or 30 minutes (Figure 

4.2 D,E,F). No differences in adhesion were found when SKOV3 (15 min p=0.26; 30 min p=0.41), 

OVCAR3 (15 min p=0.63; 30 min p=0.28) and OVCAR5 (15 min p=0.47; 30 min p=0.92) were treated 

with HRH1 siRNAs at both 15 and 30 minutes post-adhesion (Figure 4.2 G, H, I). These data suggest 

that when level of expression of HRH1 is lowered, the ability of OC cells to adhere to HUVECs is 

unaffected. 
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Figure 4.2: Effect of HRH1 knockdown on the adhesion ability of OC cell lines. 
RT-qPCR was used to confirm HRH1 knockdown in A) SKOV3, B) OVCAR3 and C) OVCAR5 cell lines. β-Actin was used as endogenous control. Expression levels were normalised to 
‘non-transfected’ cells control group. Representative images of a static adhesion assay on D) SKOV3, E) OVCAR3 and F) OVCAR5 cells. Cells were stained with CFSE (green) and 
plated onto a monolayer of HUVEC cells (brightfield) for 15 or 30 minutes. Scale bar 200 μm The area occupied by adherent cells was mesured at both 15 and 30 minutes for G) 
SKOV3, H) OVCAR3 and I) OVCAR5 and was normalized to the area occupied by ‘non transfected’ cells control group. The mean of three biological replicates, each one containing 
three technical replicates, were used for the analysis. T-test followed by Welch’s correction was used for statistical analysis. Bars show, 1X SD. **P<0.01.
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4.3.3. Histamine or antihistamine treatment does not alter the adhesion ability 

of OC cells to a HUVEC monolayer 

To further explore if HRH1 was involved in OC cells adhesion to an endothelial cell monolayers, a static 

adhesion assay was carried out using SKOV3, OVCAR3 and OVCAR5 treated with control media, 

histamine or chlorpheniramine. Prior to undertaking the experiment, an MTT assay was used to 

generate IC50 curves and identify a sub-lethal dose of both compounds to treat the cell with. A 

concentration of 250 μM chlorpheniramine was used for subsequent experiments (Appendix 1, Figure 

7.1). As histamine treatment did not affect cell viability at all the concentrations tested (Appendix 1, 

Figure 7.2), a concentration of 100 μM was used, as previously described in other studies (Verweij et 

al. 2018). Briefly, SKOV3, OVCAR3 and OVCAR5 were treated with control media, 100 μM histamine or 

250 μM chlorpheniramine for 24 h. CFSE-stained cells were introduced onto the HUVEC monolayer 

and allowed to interact for 15 or 30 minutes; adherent cells were then fixed, imaged, and counted 

(Figure 4.3 A). The ability of SKOV3 (15 min p=0.84; 30 min p=0.51), OVCAR3 (15 min p=0.30; 30 min 

p=0.19) and OVCAR5 (15 min p=0.059; 30 min p=0.24) to adhere to HUVECs was not affected by either 

histamine treatment or antihistamine treatment (Figures 4.3 B, C, D). These findings suggest that 

histamine and chlorpheniramine do not affect the adhesion of OC cell lines to a monolayer of HUVEC 

cells. 
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Figure 4.3: The effect of histamine and chlorpheniramine treatment on OC cells adhesion. 
A) Representative images of CFSE (green) stained SKOV3 adhering to a HUVEC monolayer (brightfield) under different pharmacological treatments (control, histamine and 
chlorpheniramine) after 15- or 30-minutes incubation. Scale bar 200 μm. The area occupied by adherent cells was calculated for B) SKOV3 C) OVCAR3 and D) OVCAR5. Data 
were normalized to the control cells. The mean of at least four independent experiments, each one containing at least three technical replicates, were used for the analysis. 
Statistical differences were calculated for each time point by using a Kruskal-Wallis test, followed by a Dunn multiple comparison test. Bars show, 1X SD. 
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4.3.4. Transient knockdown of HRH1 decreases the invasion of OC cells 

From the data presented thus far, it appears that HRH1 is not implicated in the adhesion or EMT of OC 

cells. Thus, another aspect of the metastatic cascade was investigated. A Matrigel® invasion assay was 

performed using SKOV3, OVCAR3 and OVCAR5 cells in which HRH1 was knocked down. Briefly, cells 

were transfected with siRNA control or siRNA specific for HRH1 for 24 h and knockdown was measured 

by RT-qPCR. HRH1 was successfully knocked down in SKOV3 (p=0.0335; siRNA control mean=1.00 ± 

SD=0.012; siRNA HRH1 mean=0.69 ± SD=0.10) (Figure 4.4 A) and OVCAR3 (p=0.009; siRNA control 

mean=1.00 ± SD=0.012; siRNA HRH1 mean=0.68 ± SD=0.061) (Figure 4.4 B) while there was no effect 

on HRH1 expression in OVCAR5 (p=0.20) (Figure 4.4 C). Transfected cells were then plated onto a 

Matrigel® insert and allowed to invade for 24 h or 48 h. Invaded cells were stained, imaged and counted 

to estimate the percentage of invasion (Figure 4.4 D, E, F). HRH1 knockdown significantly reduced the 

invasion of SKOV3; there was a 40% reduction in invading cells at 24 h (p=0.007; siRNA control mean=1 

± SD=0.334; siRNA HRH1 mean=0.57 ± SD=0.21) and a 60% reduction after 48 h (p=0.002; siRNA control 

mean=1 ± SD=0.49; siRNA HRH1 mean=0.39 ± SD=0.14) (Figure 4.4 G). Knockdown of HRH1 led to a 

reduction of OVCAR3 invasion that was not statistically significant at 24 h (p=0.06) but reached 

significance at 48 h (p=0.049; siRNA control mean=1.0 ± SD=0.49; siRNA HRH1 mean=0.48 ± SD=0.39) 

(Figure 4.4 H). OVCAR5 cells treated with HRH1 siRNA were more invasive than OVCAR5 control cells 

after 24 h (p=0.7), while there was a reduction in the average of invading cells of 50% after 48 h, 

although this did not reach significance (p=0.18) (Figure 4.4 I). Taken together, these data indicate that 

HRH1 affects the invasive capacity of SKOV3 and OVCAR3 cell lines, and when its expression is reduced, 

cells become less invasive. 
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Figure 4.4: Quantification of the invasion ability of SKOV3, OVCAR3 and OVCAR5 through the Matrigel® 
invasion assay. 
HRH1 knockdown efficiency in A) SKOV3, B) OVCAR3 and C) OVCAR5. β-Actin was used as endogenous control. 
Expression levels were normalised to control cells. Representative images of Matrigel® membranes analysed to 
assess cells (purple) invasion for D) SKOV3, E) OVCAR3 and F) OVCAR5. Scale bar 100 μm. Percentage of invasion 
was calculated at both 24 h and 48 h for G) SKOV3, H) OVCAR3 and I) OVCAR5. Invasion levels were normalized to 
control cells. Mann-Whitney test was used for statistical analysis. Three independent experiments were used for 
analysis of SKOV3 and OVCAR3. For OVCAR5 analysis, one experiment was used to assess 24 h invasion while two 
biological replicates were used to assess 48 h invasion. Bars show, 1X SD. *P<0.05, **P<0.01, ***P<0.001.
 

4.3.5. Histamine treatment increases invasion of SKOV3 cell line 

In order to confirm the involvement of HRH1 in the invasion of OC cells, a Matrigel® assay was repeated 

on SKOV3 cells treated with control medium, 100 μM histamine or 250 μM chlorpheniramine. These 

additional Matrigel® assays were performed only on SKOV3 cells, as they were demonstrated to be the 

most invasive cell lines amongst those used in this project (section 3.2.4). In brief, cells were plated 

onto the Matrigel® and control media, histamine or chlorpheniramine were added. Cells were allowed 

to invade for 48 h and the experiment proceeded as described in section 2.14.1.3 (Figure 4.5 A). 

Histamine addition showed an 80% increase in the number of invading SKOV3 compared to control 

cells (p=0.022; control mean=1 ± SD=0.29; histamine mean=1.82 1 ± SD=0.55) (Figure 4.5 B), as well as 

more than 3-fold increase in the number of invading cells when compared to chlorpheniramine treated 

cells (p<0.0001; chlorpheniramine mean=0.66 1 ± SD=0.16) (Figure 4.5 B). Chlorpheniramine addition 
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decreased the number of invading SKOV3 by 30% when compared with the control group, although it 

did not reach significance (p=0.077) (Figure 4.5 B). These results confirm previous findings, that when 

HRH1 is activated via histamine, it increases the ability of cells to invade through a Matrigel® layer, 

although its pharmacological inhibition did not modify SKOV3 invasion rate.

 

 

Figure 4.5: Matrigel® assay was used on SKOV3 treated with control media, histamine or 
chlorpheniramine to assess their invasion. 
A) Representative images of Matrigel® membranes used for quantifying SKOV3 invasion. Cells were stained with 
DAPI (blue) and CFSE (green). Scale bare 200 μm. B) Percentage of invasion was calculated for SKOV3 control, 
treated with histamine or chlorpheniramine. Two independent experiments were combined, each one with four 
technical replicates. Kruskal-Wallis test followed by Dunn’s correction was used for statistical analysis. Bars show 
1X SD; *P<0.05, ****P<0.0001.

 

4.3.6. HRH1 KD does not affect the migration rate of ovarian cancer cells 

The findings so far provide no evidence for HRH1 being involved in regulation of EMT nor in the 

adhesion of OC cells to endothelial cell monolayers but show that it can alter the invasive ability of OC 
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cells through a Matrigel® layer. This could be achieved through modification of cell motility, cell-cell 

interactions or ECM breakdown. To test if HRH1 could affect the motility of OC cells, a wound healing 

assay was performed using SKOV3, OVACR3 and OVCAR5 cells transfected with siRNA control or siRNA 

for HRH1 (Figure 4.6 A). HRH1 knockdown was quantified by RT-qPCR, confirming a successful 

reduction of HRH1 expression by 50% in SKOV3 (p=0.006; siRNA control mean=1.15 ± SD=0.13; siRNA 

HRH1 mean=0.57 ± SD=0.14) (Figure 4.6 B). Knockdown efficiency did not reach significance in OVCAR3 

(p=0.075) (Figure 4.6 C; siRNA control mean=1.03 ± SD=0.058; siRNA HRH1 mean=0.63 ± SD=0.22). In 

OVCAR5 cells, HRH1 was successfully knocked down, with mRNA expression decreasing by 20% 

(p=0.019; siRNA control mean=1.037 ± SD=0.064; siRNA HRH1 mean=0.76 ± SD=0.094) (Figure 4.6 D). 

Twenty-four hours after the transfection, the cell monolayer was ‘wounded’, and gap closure 

monitored at 0, 4, 8, 12 and 24 h. No differences in the percentage of open ‘wound’ were observed 

after knocking down HRH1 in SKOV3 (p=0.080) (Figure 4.6 E), OVCAR3 (p=0.59) (Figure 4.6 F) and 

OVCAR5 (p=0.94) (Figure 4.6 G), with control cells showing the same rate of motility as transfected 

cells. Taken together, these data suggest that HRH1 silencing does not affect cell motility. 
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Figure 4.6: Testing HRH1 involvement in the motility of OC cells. 
A) Representative images of a wound healing assay on SKOV3 cells control or knocked down for HRH1. The 
‘wounded area’ is highlighted in yellow. Scale bar 20 μm. Quantification of HRH1 knockdown by RT-qPCR on B) 
SKOV3, C) OVCAR3 and D) OVCAR5. β-Actin was used as endogenous control. Expression levels were normalised 
to ‘non-transfected’ cells control group. The ‘wound’ closure was monitored and quantified over time. The 
percentage of open ‘wound’ was calculated for E) SKOV3, F) OVCAR3 and G) OVCAR5. Data were normalised to 
‘non-transfected’ cells control group. The means of three independent experiments, each one containing four 
technical replicates, were combined for analysis. Data were normalised to the ‘non transfected’ cells control 
group. A t-test followed by a Welch’s correction was used to identify statistical differences in the mRNA expression 
of HRH1 between different siRNA treatments groups. Two-way ANOVA, followed by Tukey’s post-hoc test, was 
applied to identify statistical differences in the wound healing assay. Bars show, 1X SD. *P<0.05, **P<0.01.
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4.3.7. Administration of chlorpheniramine reduces migration in SKOV3 and 

OVCAR5 

As previously demonstrated in section 4.3.6, HRH1 knockdown does not alter the motility of OC cells. 

To verify these results, a wound healing assay was performed on SKOV3, OVCAR3 and OVCAR5 treated 

with media control, 100 μM histamine or 250 μM chlorpheniramine (Figure 4.7 A). The effects on both 

compounds on cell proliferation was previously tested, resulting in neither histamine nor 

chlorpheniramine influencing the proliferation rate of SKOV3, OVCAR3 and OVCAR5 (Appendix 1, 

Figure 7.3). At 8 h post ‘wounding’, chlorpheniramine-treated SKOV3 cells had closed the ‘wound’ 

significantly less than histamine-treated cells (p=0.022; histamine mean= 55.14 ± SD=2.81; 

chlorpheniramine mean=67.15 ± SD=11.65), with chlorpheniramine treated cells closing only 35% of 

the ‘wounded’ area compared with the 50% covered by histamine-treated cells (Figure 4.7 B). Neither 

treatment affected the motility of OVCAR3 during the 24 h period (p=0.80) (Figure 4.7 C). 

Chlorpheniramine-treated OVCAR5 cells closed the ‘wound’ slower than either control cells (p=0.014; 

control mean=44.26 ± SD=7.38; chlorpheniramine mean=55.16 ± SD=0.51) or histamine treated cells 

(p=0.009; histamine mean=43.56 ± SD=8.63) (Figure 4.7 D) at 24 h post ‘wound’. These results show 

that chlorpheniramine can modify the motility of OC cells, but that its effect is variable depending on 

cell type. Whilst chlorpheniramine administration decreases the ‘wound’ closure speed of SKOV3 and 

OVCAR5 at late time points, it does not modulate motility of OVCAR3.
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Figure 4.7: Effect of histamine and chlorpheniramine on OC cells motility. 
A) Representative pictures of a wound healing assay on SKOV3 cells treated with media control, 100 μM histamine 
or 250 μM chlorpheniramine. The ‘wound’ area (highlighted in yellow) was monitored over time and quantified. 
Scale bar 200 μm. The percentage of ‘wound’ opening was calculated for B) SKOV3 C) OVCAR3 and D) OVCAR5. 
Data were normalised to control cells. Three biological replicates, each one containing 4 technical replicates, were 
used for the analysis. Two-way ANOVA followed by Tukey’s post hoc was used for statistical analysis. Bars show, 

1X SD. *P<0.05, **P<0.01.
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4.4. Discussion 

The aim of the work described in this chapter was to assess whether HRH1 is involved in different steps 

of the metastatic cascade of OC using a range of in vitro assays. The results presented in chapter 3 

revealed an inverse correlation between HRH1 and ovarian cancer aggressiveness, with OC samples 

obtained from patients with stage IV of the disease presenting a higher amount of HRH1 mRNA when 

compared with ovarian cancer samples obtained from patients in stage II or III. Histamine and its 

involvement in cancer growth and metastasis have been previously studied, but its role still remains 

controversial (Faustino-Rocha et al. 2017). In this project three different OC cell lines, SKOV3, OVCAR3 

and OVCAR5 were used and HRH1 expression was modulated in two ways: a) by transient transfection 

of HRH1 and b) by administration of histamine or chlorpheniramine. Different in vitro assays were then 

used to investigate characteristics involved in individual steps of the metastatic cascade.  

EMT 

EMT is a key process in cancer metastasis, as it allows cancer cells to change their morphology and 

behaviour and acquire a more aggressive phenotype, giving them the ability to detach from the 

primary tumour and travel to distant sites of the body. In order to study if HRH1 could regulate the 

EMT process, SKOV3 and OVCAR3 were treated with HRH1 siRNA and mRNA expression levels of CDH1 

and vimentin were quantified by RT-qPCR. Although HRH1 was successfully knocked down in both cell 

lines, no differences in CDH1 or vimentin expression were identified, indicating that HRH1 knockdown 

does not change the expression of EMT-related genes. There are some data in the literature on the 

role of HRH1 in OC EMT, and most of the studies exploring the role of histamine in the EMT process 

have shown that all four histamine receptors can regulate this process. For example, a study published 

by Kennedy and colleagues (2018) demonstrated that, upon chemical inhibition of HRH1 and HRH2, 

CDH1 levels were upregulated in cholangiocarcinoma tumours from mice while vimentin levels were 

dramatically reduced (Kennedy et al. 2018). This might be due to the different type of cancer 

investigated in the two studies, as Kennedy and colleagues (2018) used a model of cholangiocarcinoma 

and studied this process in vivo. Moreover, it cannot be discarded that more cell types may act 

synergistically to induce EMT or that EMT might not definitely be necessary for metastasis (Fischer et 

al. 2015). 

The data obtained in this project show that HRH1 does not modify the expression of two key- EMT 

genes in two OC cell lines. To further study this, the same experiment could be repeated upon chemical 

activation or inhibition of HRH1 and the expression of other key EMT markers (e.g., β-catenin, SNAI1, 

SNAI2, ZO1, ZEB, N-cadherin) should be evaluated to have a more comprehensive view. It is well 

established that during the EMT not all the markers change, therefore by testing only CDH1 and 
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vimentin, it cannot be discounted that other marker of EMT are affected. In addition other cellular 

characteristics such as cell morphology or polarity could have been integrated in the study (Pantazi et 

al. 2020). Moreover, another endogenous control should be used for RT-qPCR instead of β-actin. As 

one of the major components of the cytoskeleton, β-actin changes during the EMT process, hence 

other housekeeping genes, such as the 18S ribosomal RNA, might have been a more appropriate 

control in this context, as it is widely expressed in the cell but not regulated by EMT. Although this 

study revealed no evidence that direct histamine treatment induced changes in expression of key EMT-

related markers in OC cell lines, histamine administration to the surrounding environment (e.g., 

stromal fibroblast, ECM) could indirectly modify OC behaviour and induce changes in EMT regulators. 

As shown by Porretti et al (2014), addition of conditioned media obtained from histamine-treated 

fibroblast (10 μM) to MDA-MB-231 (breast cancer) cell lines induced upregulation of α-SMA level, a 

shift of β-catenin localization (from membrane to cytoplasm) and increased of Slug mRNA. These 

changes reverted when MDA-MB-231 were treated with conditioned media from fibroblasts treated 

with 20 μM of histamine (Porretti et al. 2014). These results also indicate how different doses of 

histamine can trigger different cellular behaviour; hence, different concentrations of histamine could 

be analysed to further clarify HRH1 involvement in the EMT process. 

Cell adhesion 

A static adhesion assay was employed to study whether HRH1 was involved in the adhesion of OC cells 

to an endothelial cell monolayer. When cells were treated with siRNAs no differences in their adhesive 

behaviour were observed. Similar results were observed when adding histamine or chlorpheniramine 

to the three cell lines. Even though the data presented here suggests that HRH1 does not play a role 

in OC adhesion to endothelial cell monolayers, it is important to highlight that the static adhesion assay 

produced very variable data, with a high discrepancy across biological replicates, making the data 

somewhat inconclusive. More replicates should be repeated to be able to draw conclusion from it. 

Several studies focusing on the adhesion of different cancer cells to plastic surfaces have shown 

different results from what presented in this thesis. For instance, Genre and colleagues (2009) highlight 

a dual role of histamine in the modulation of cell adhesion in a normal epithelial breast cell (HBL-100) 

and invasive breast cancer cell (MDA-MB 231) lines. The authors observed that histamine 

administration increased the adhesion of HBL-100 cells and reduced the adhesion of MDA-MB 213 cells 

to plastic, possibly due to a reduction of E-Cadherin expression (Genre et al. 2009). It is important to 

consider that the mechanisms involved in cell adhesion to plastic are completely different from 

mechanisms involved in cell–cell adhesion or cell-ECM adhesion. In the former process, plastic surfaces 

are chemically treated and negatively charged molecules are formed; these negative reactive ions 
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stimulate cell adhesion by either direct binding to positively charged adhesive molecule on the cell 

surface or by absorbing serum proteins contained within the media, potentially mediating cell 

adhesion (Martin and Rubin 1974; Lerman et al. 2018). Cell-cell and cell-ECM adhesion involves more 

complex mechanisms where several adhesive proteins of one cell need to adhere and form stable 

bonds with receptors expressed by other cells or by ECM components. These differences could explain 

why the results obtained in this project are in contrast with previous literature data. 

Conversely, histamine is known to directly act on the endothelial barrier and induce modification of 

adhesive molecule expressed by endothelial cells (Shimamura et al. 2004); therefore, this could 

potentially be a way by which histamine could influence cancer adhesion to the endothelium. In fact, 

the administration of cimetidine, an HRH2 antagonist, to HUVECs has been reported to decrease E-

selectin (an adhesion molecule) expression and consequently reduced HT-29 (colorectal cancer) cells 

adhesion to them (Kobayashi et al. 2000). These findings might lead to the hypothesis that although 

HRH1 appears not to be directly involved in OC cells adhesion to the endothelium, its activation or 

inhibition in endothelial cells could lead to subsequent regulation of adhesion molecule expression, 

thus indirectly altering OC adhesion. Therefore, an adhesion assay in which HUVEC cells are treated 

either with HRH1 siRNAs or with chemical activator or inhibitors of HRH1 could further elucidate HRH1 

role in the adhesion process. 

Another factor that could explain why the results presented in this project differ from some reports in 

the literature is that OC cells normally spread predominantly into the peritoneal cavity rather than 

through the hematogenous route (Motohara et al. 2019). By expressing several adhesive molecules 

such as β-integrin, CD44 and CA125, OC preferably attach to the mesothelium of peritoneal organs and 

passively move towards proximal site of the abdominal tract. Therefore, an adhesion assay using 

peritoneal mesothelial cells could better mimic the adhesion process of OC cells. 

Cell invasion 

Cells in which HRH1 was knocked down showed a significant decrease in invasion through Matrigel® in 

an invasion assay system. This change in the behaviour was observed in SKOV3 cells after 24 h, and in 

both SKOV3 and OVCAR3 after 48 h. OVCAR5 treated with siRNA for HRH1 showed a 50% reduction in 

the average number of invading cells after 48 h incubation, although this decrease was not statistically 

significant. This could be explained by the high variability of the data points within each group. While 

the Matrigel® experiment was repeated three times for SKOV3 and OVCAR3, only two replicates were 

used for OVCAR5 and moreover, the cells did not show a significant knockdown of HRH1 when treated 

with siRNA, a factor that could also explain the different cell behaviour. Therefore, at least one more 

replicate should be repeated before drawing conclusion regarding HRH1 role in OVCAR5 invasion. 
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These data might also be explained by considering that the three cell lines used in this project have a 

different origin: OVCAR3 cells are of HGSC origin, SKOV3 is derived from a non-serous carcinoma 

(Domcke et al. 2013; Beaufort et al. 2014; Haley et al. 2016), while there is still controversy regarding 

the derivation of OVCAR5 (they have always been thought to be derived from HGSC, but recent 

literature findings highlight the possibility that OVCAR5 may be derived from the gastrointestinal tract 

(Blayney et al. 2016)). Hence the different histopathological origin of the cells could possibly explain 

why OVCAR5 does not show the same trend as the other two cell lines. Another possible explanation 

is that as SKOV3 express a higher level of HRH1 mRNA (section 3.2.3), knocking it down may have a 

greater biological effect on cell behaviour than in the other cell lines. Taken together, these findings 

are the first to indicate that HRH1 could play a role in the invasive behaviour of OC cells. 

These findings are supported by a recent study investigating the role of HRH1 in hepatocellular 

carcinoma (HCC) (Zhao et al 2020). By employing the same systems used in this project (Matrigel® and 

wound healing assays), Zhao and colleagues found that HRH1 knockdown was able to reduce both 

invasion and migration of HCC in vitro; similarly, injection in the lateral tail vain of HCC cells knocked 

down for HRH1 in nude mice show a decreased metastatic behaviour in vivo, with a reduction in the 

number of lung metastatic lesions when compared with mice injected with control HCC cells (Zhao et 

al. 2020). 

In the work presented in this thesis, the potential involvement of histamine signalling in OC cell 

invasion was further validated by a Matrigel® assay employing SKOV3 cells treated with chemical 

activators or inhibitors of HRH1. Histamine treatment led to an increase of SKOV3 invasion compared 

to control cells and chlorpheniramine treated cells. As the invasion assay was performed only twice, 

more replicates should be done to validate the data. Additionally, increasing the number of replicates 

might clarify whether chlorpheniramine addition reduces OC invasion, as the data obtained in this 

experiment indicates that upon chlorpheniramine administration, SKOV3 decreases their invasion by 

30% but this change did not reach statistical significance. Indeed, this finding is in contrast with the 

study of Kim et al. (2014) regarding the effect of ketotifen (a selective HRH1 antagonist) on MDA-MB-

231 and HT-1080 (breast cancer and fibrosarcoma cell lines, respectively) cells. Ketotifen 

administration caused a dose-dependent suppression of invasion through a Matrigel® layer and 

migration from the edge of the wound of both cell lines, and also reduced the expression of MMP9 in 

MDA-MB-231 (Kim et al. 2014). Different cell lines and different drugs were used in the two studies, 

fact that might explain the controversy of the data obtained. This is an important parameter to 

consider when comparing different studies, as different drugs might exert different actions on distinct 

cell lines. 
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These results further confirm the involvement of the histamine signalling in the invasion process, 

although this might not only be due to HRH1 activation, but it could be the result of a more complex 

process involving the other histamine receptors. More invasion assays employing a specific HRH1 

activator, and a panel of antagonists could be used to further verify HRH1 involvement in the invasion 

of OC cells. 

Cell migration 

To test HRH1 involvement in cell motility, a wound healing assay was performed on a) cells treated 

with siRNAs and b) cells treated with histamine and anti-HRH1. While transient transfection of HRH1 

did not modify the motility rate of SKOV3, OVCAR3 and OVCAR5 cells, histamine and chlorpheniramine 

administration resulted in different behaviours depending on the cell line. Chlorpheniramine 

treatment significantly decreased SKOV3 motility when compared with histamine treated cells at 8 h 

post- “wound”. OVCAR5 receiving chlorpheniramine showed slower rates of motility 24 h post- 

“wound”, when compared with histamine-treated and control cells. OVCAR3 motility was not affected 

by histamine or anti-HRH1 treatment, suggesting a distinct role of these compounds on OVCAR3 

migration. 

Various publications claim diverse roles of histamine and its antagonist in cancer cell motility. For 

instance, by using a wound healing assay, Rudolph and colleagues (2008) revealed that a combination 

of histamine and pyrilamine, an HRH1 antagonist, significantly inhibits motility rate of SW756 

(endometrial cancer) cells while combination of histamine with HRH3 or HRH4 antagonists increased 

it (Rudolph et al. 2008). Moreover, addition of 100 μM histamine to three different melanoma cell lines 

(HT144, A375, B16F10) significantly increases their motility through a transwell membrane (Blaya et 

al. 2010). On the contrary, Fernández-Nogueira and colleagues (2018) study found that HRH1 inhibition 

can increase breast cancer (MDA-MB-231 and BT-549) cells motility in vitro (Fernández-Nogueira et al. 

2018).  

The different behaviour of the three cell lines used in this project could reflect intrinsic differences 

between the cell lines used in the experiments or their different sensitivity to histamine and 

chlorpheniramine. In addition, the reduction in motility due to administration of chlorpheniramine to 

SKOV3 and OVCAR5 could be also linked to off-target effects inducing activation of pathways 

independent from HRH1 inhibition. This could explain why differences in motility are observed when 

using pharmacological treatments but not in the knockdown experiment. Although the wound healing 

assay is widely accepted for the study of cell motility, it does not consider the motility of individual 

cells, the effect of chemoattractant presented in the media or distinguish between cell division or 

motility. Even though cells were serum starved 24 h prior the experiment (to suppress cell division), it 
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cannot be excluded that cell proliferation might have occurred abrogating potential motility difference 

due to HRH1 knockdown. Hence, the wound healing assay should be repeated and drugs able to inhibit 

cell division like Mitomycin C should be incorporated in the media as a control for cell proliferation 

(Varankar and Bapat 2018). In addition, the wound healing assay can often produce very variable 

results: confluence at the time of the “wound”, maintaining a healthy cell status, the width of the 

“wound” are all factors that are difficult to control and that can vary across independent samples, 

influencing cell behaviour. Therefore, a transwell migration assay or single cells tracking analysis could 

have been implemented in the work to improve result power, meanwhile obtaining additional 

information regarding cell behaviour in the presence of a chemoattractant and information on single 

cell locomotion.  

Additionally, 2D migration assays are not fully representative of the migratory ability of cells in the 

body and often cells cultured in a 3D environment exhibit completely different types of behaviour in 

terms of gene expression, locomotion, proliferation and shape (Friedl et al. 1998). Therefore, three-

dimensional migration assays using collagen or another component of the extracellular matrix, a 

spheroid migration assay or co-culture models (including cells belonging to the tumour 

microenvironment) could better mimic the tumour solid microenvironment. 

Technical issues and future directions 

Overall, transfection efficiency has been inconsistent across the different experiments presented in 

this project. Prior to performing the experiments, siRNA length of transfection was optimized for the 

three cell lines used in the project. Knockdown efficiency was measured at 24, 48 and 72h post-

transfection, confirming a significant reduction of HRH1 level of expression in most of the cell lines at 

each time point (Appendix 1, Figure 7.4). Despite the optimization failure in knocking down HRH1 was 

observed in several experiments (adhesion assay, wound healing assay). The inability of consistently 

knocking down HRH1 led sometimes to difficulties in interpretation of the data. Indeed, HRH1 

knockdown failed for OVCAR3 and OVCAR5 used for the adhesion assay (section 4.3.2) and in OVCAR3 

used for the wound healing assay (section 4.3.6). In both assays it was concluded that HRH1 was not 

involved nor in the adhesion nor in the migration of OC cell lines. Even though this might be the case, 

there is a possibility that HRH1 plays a role in the adhesion and migration of OC cell lines, but this was 

not visible due to insufficient reduction of HRH1 level of expression. Several factors can impact siRNA 

transfection efficiency such as cell viability, seeding density, quality of the siRNAs and RNA 

contamination. Ideally, generating cell line stably expressing lower level of HRH1 or using different 

siRNA targeting different region of HRH1 would have ensure a higher reproducibility across 

experiments and helped drawing more conclusive results.  
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To date, there are no data available regarding the level of native HRH1 activity in the OC cell lines used 

in this project. This measure should have been tested in the current project in order to evaluate 

whether the doses of histamine or chlorpheniramine used to treat OC cell lines were effective in 

inducing or reducing the receptor’s activity. This could have been done by measuring the level of 

soluble messengers downstream the HRH1 pathway (e.g. Ca2+ levels) or by using FRET imaging (as 

further discussed in section 6.4).  

To further explore HRH1 role in OC metastatic cascade, other aspects of this process could be 

evaluated. For example, OC cells adhesion to different component of the ECM (like collagen, laminin, 

fibronectin, vitronectin or gelatine) could be tested. A range of different techniques could be employed 

to study such processes. For example, coverslips could be coated with one or more ECM components 

and cell adhesion to them assessed (Varol 2020). Alternatively, a ECM protein microarray could be 

used, as in the study by Kuschel et al. (2006). Moreover, another aspect to investigate would be to 

determine if HRH1 can regulate the degradation of ECM components. A zymography assay, where cells 

are plated on coverslips coated with ECM-fluorescent labelled components would be useful to visualise 

ECM breakdown and assess histamine signalling in matrix degradation (Yamaguchi et al. 2009; Díaz 

2013).  

4.5. Key findings 

• Knockdown of HRH1 does not influence the expression of CDH1 and vimentin, two genes 

related to the EMT process 

• HRH1 knockdown, or the administration of its activator or inhibitors does not alter the ability 

of SKOV3, OVCA3 and OVCAR5 to adhere to an endothelial cell monolayer, suggesting that 

HRH1 is not involved in the adhesion process of OC cells in this context 

• Invasion by SKOV3 and OVCAR3 through a Matrigel® layer decreases upon HRH1 knockdown; 

similarly, the addition of histamine to SKOV3 cells increases their invasive potential, suggesting 

HRH1 involvement in the invasion of OC cells 

• The motility of OC cells in a wound healing assay is not impaired by HRH1 knockdown, while 

chlorpheniramine treatment slows down the motility of SKOV3 and OVCAR5, suggesting either 

complex underlying biology, or limitations in the methods employed 
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5. HRH1 in EV biogenesis and their role in OC cell invasion in 

vitro 

5.1. Background 

Local and distant intracellular communication is a key factor for cancer progression. Not only can cells 

communicate with each other through local signalling, they can also send “messages” to future 

metastasis sites generating favourable ‘premetastatic niches’ (Peinado et al. 2013; Wortzel et al. 2019). 

Extracellular vesicles (EVs) have been extensively studied in the past decade and have been proposed 

by numerous researchers to play a fundamental role in tumour dissemination (Li et al. 2018). EVs can 

influence several cell behaviours like migration (McCready et al. 2010), invasion (Castellana et al. 

2009), EMT (Chen et al. 2018), adhesion (Skog et al. 2008) and vascular permeability (Di Modica et al. 

2017). Moreover, EVs bear an essential role in driving ECM degradation through both releasing of their 

cargo of MMPs (Shan et al. 2018), or by stimulating the expression of MMPs in recipient cells 

(Purushothaman et al. 2016).  

Histamine has been studied for its involvement in cancer invasion and progression, as extensively 

reviewed by Massari and colleagues (2020). Indeed, results from chapter 4, highlight a potential role 

of histamine and its receptor HRH1 in OC invasion and migration in vitro. However, very little is known 

regarding the involvement of histamine in EV biology. A recent publication from Verweij and colleagues 

(2018) demonstrated that histamine stimulation can increase EV biogenesis in a panel of cells lines 

(HeLa and SiHa (cervical carcinoma), primary human umbilical vein endothelial (HUVEC) and 

mesenchymal stem cells (MSC)) (Verweij et al. 2018). For the purpose of the experiments, the authors 

generated HeLa cells stably transfected with a CD63 pHluorin construct. The CD63-pHluorin reporter 

consists of a tetraspanin (TSPAN) (CD63) based optical reporter cloned with a pH sensitive GFP 

(pHluorin) molecule, with the pHluorin normally located in the outer membrane of ILVs where it does 

not emit fluorescence due to the acidic pH (5.5). Upon fusion of MVBs with the PM, ILVs are released 

in the extracellular space and the sudden change of pH from acidic to neutral (pH 7.4) activates the 

pHluorin, generating fluorescent flashes (Figure 5.1). By employing TIRF microscopy, the authors 

observed that stimulation of CD63 positive Hela cells with histamine immediately induced an increase 

in the number of multivesicular bodies (MVBs) fusing with the plasma membrane (PM). Similar results 

were also obtained when treating SiHa, HUVEC and MSC cells with histamine (Verweij et al. 2018).
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Figure 5.1: Schematic representation of the working mechanisms of the CD63-pHluroin reporter. 
CD63-pHluorin is sorted on the membrane of intraluminal vesicles (ILVs) inside the MVB and it is 
quenched (therefore inactive) when facing the acidic compartment of the MVB (pH 5.5). When the MVB 
fuses with the plasma membrane, ILVs are released in the extracellular space characterised by a neutral 
pH (7.4). The sudden neutralisation of the pH activates the pHluorin reporter that emits fluorescence, 
resulting in a sudden increase of fluorescence intensity.
 
As most G protein coupled receptors (GPCRs) use calcium as a second messenger (Dickenson and Hill 

1993), the authors investigated whether histamine- induced MVB-PM fusion events were linked to an 

increase of intracellular calcium. With the same experimental method, Verweij and colleagues ruled 

out the involvement of calcium signalling in the histamine- induced MVB-PM fusion event, as the use 

of both an intracellular or extracellular calcium chelator (BAPTA-AM and EGTA-AM, respectively) did 

not reduce the number of histamine- induced MVB-PM fusion events (Verweij et al. 2018). 

Interestingly, phosphoproteomic analysis showed that the rise in EV release was due to the activation 

of a protein network starting with HRH1 and ending with activation of synaptosomal-associated 

protein 23 (SNAP23), a member of the SNARE protein family involved in membrane fusion processes. 

Subsequent molecular analysis revealed that HRH1 mediates phosphorylation (and therefore 

activation) of SNAP23 through calcium-independent protein kinase Cα activation. This is the first 

publication linking histamine, and particularly HRH1, with EV biogenesis. The same year, another paper 

was published by Khan et al. (2018), showing that the use of 10 μM ketotifen (a selective antagonist of 

HRH1) reduces EV release in cervical (HeLa) and breast (MCF7 and BT549) cancer cell lines. Collectively, 

although only a small amount of literature is available, these publications indicate that histamine could 

positively modulate EV biogenesis in several cell lines through HRH1 activation, and that the inhibition 

of the latter reduces EV release. It also raises the possibility that the effect of histamine on invasion 
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that was observed in OC cells (presented in section 4.3.4 and 4.3.5) is mediated through the action of 

EVs. 

5.2. Aim and Objectives 

As histamine can increase EV production in different cell types (cervical cancer, endothelial and 

mesenchymal cell lines), the aim of the investigations described in this chapter is to test if histamine 

could increase EV production in OC cell lines through HRH1 activation and investigate their potential 

involvement in OC cell invasion in vitro. The specific objectives were: 

• To determine whether treatment of SKOV3 with histamine and chlorpheniramine may 

influence EV characteristics like size, morphology, and expression of protein markers 

• To investigate the effects of histamine and chlorpheniramine on EV release in SKOV3 cells 

• To test whether EVs extracted from intact SKOV3 could rescue the loss of invasion of SKOV3 

cells knocked down for HRH1 

• To analyse if histamine and several inhibitors of EV biogenesis can modify the invasive ability 

of SKOV3 cells 

• To explore if EVs released by SKOV3 cells following histamine stimulation can contribute to 

invasive ability of OC cells by degrading components of the ECM  

• To study whether histamine treatment could modify the protein content of EVs
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5.3. Results  

5.3.1. Characterisation of EVs obtained from SKOV3 under different 

treatments  

The EVs used in this project were extracted by size exclusion chromatography (SEC) (described in 

section 2.15), so the first step was to identify the “EV-containing fractions” and validate collection 

conditions. EVs were extracted from 48 h serum-free conditioned media (SFM) obtained from SKOV3 

cells treated with control media, 100 μM histamine or 250 μM chlorpheniramine and fractions 1 to 15 

(500 μl each) were collected individually. Because long incubation with SFM might reduce cell 

proliferation and induce cell death, SKOV3 were counted and stained for Annexin V and their 

proliferation and apoptosis were quantified, respectively. Indeed, experiments performed by a current 

member of the lab showed that even though incubation with SFM slightly decreased cell proliferation, 

it did not alter SKOV3 viability, showing suitability of SFM for EV extraction (Appendix 2, Figure 7.5). 

Protein concentration and particle concentration were measured for each single fraction by BCA assay 

and NTA, respectively. As reported in figure 5.2 A, B, C, no particles were detected in fractions 1-6, 

with particles starting to appear at fraction 7 independently of the treatment type (filled bars). The 

three samples showed a peak in particle number at fraction 9, followed by a steady decrease. Protein 

concentration was below 1 μg/μl up to fraction 10 (indicated by dots on the graphs) followed by a 

sharp increase in later fractions. The combination of particle size and protein quantification identified 

SEC fractions 7-10 as those containing the highest amount of EVs and the least contaminating proteins. 

Therefore, these fractions were combined for all the following experiments involving EVs.
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Figure 5.2: Particle number and protein concentration of EVs extracted from conditioned SFM, with 
SKOV3 that were untreated or treated with histamine or chlorpheniramine.  
Fractions 1 to 15 were analysed for particles number and protein concentration by NTA and BCA assay. EVs were 
derived from A) control SFM, B) 100 μM histamine or C) 250 μM chlorpheniramine. Filled bars represent number 
of EVs per ml solution (x 10^10) while the dots graphs indicate protein concentration (μg/μl) for the corresponding 
fraction. One biological replicate.
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Absolute purification of EVs from cell culture (or other sources) is an unrealistic goal, therefore it is 

necessary to verify the origin and the characteristics of any extracted EVs prior to their use. Several 

techniques should be used, to analyse EV morphology (TEM), their size (NTA and TEM) and their 

enrichment in specific biomarkers (western blot, flow cytometry and others) (Théry et al. 2018). At the 

same time, in order to ensure a high purity of the preparation, the absence of organelle markers (such as 

mitochondria, endoplasmic reticulum and Golgi) should be validated (Théry et al. 2018).  

Therefore, to further characterise the EV, their size, morphology, and protein enrichment were 

investigated. EV size was first measured through NTA analysis (described in section 2.16.1). EVs extracted 

from control, histamine or chlorpheniramine treated cells after 48 h conditioning showed a size 

distribution between 50 to 200 nm, as expected (Figure 5.3 A). Curiously, chlorpheniramine treatment 

seemed to increase the number of particles with size between 75-150 nm, although this increase was not 

significant (p=0.63). EV morphology was then assessed through TEM (described in section 2.16.2); EVs 

derived from cells treated with control media, histamine and chlorpheniramine showed the typical cup 

shaped EV structure surrounded by a lipid bilayer (Figure 5.3 B), with a size ranging between 50 to 200 

nm. Enrichment in the classical EV markers (ALIX, HSP70, CD63, TSG101, β-Actin, CD81) and the absence 

of cellular contaminants (Golgi apparatus (GM130) and mitochondria (cytochrome C)) was investigated 

through western blot (described in section 2.16.3). Western blot analysis (Figure 5.3 C) showed that all 

three EV samples were enriched in CD63 (smear from 65-40 kDa), TSG101 (43 kDa) and CD81 (25 kDa) but 

did not show the presence of ALIX (96 kDa), HSP70 (70 kDa) and β-Actin (42 kDa), although these proteins 

were expressed in the corresponding cells. The absence of GM130 (a Golgi apparatus marker) and 

cytochrome C (a mitochondrial marker) in the EV samples confirmed the lack of cellular contamination in 

the EV preparations. Interestingly, the level of CD81, CD63 and Tsg101 appeared to be higher in EVs 

derived from chlorpheniramine-treated cells compared to both EVs derived from control and histamine-

treated cells (Figure 5.3 C), suggesting that chlorpheniramine treatment either increases the enrichment 

of these biomarkers in the EVs, or increases the number of EVs. The absence of bands in the non-

conditioned media sample (NCM) indicates that the samples extracted by SEC were enriched in EVs and 

did not contain free proteins derived from other sources. 

EV surface antigens were further analysed by flow-cytometry with the MACSplex assay (described in 

section 2.16.4). In this qualitative assay, EV samples were mixed with beads coated with monoclonal 

antibodies directed against 37 potential EV surface antigens and were analysed through flow cytometry. 

MACSplex assay results (Figure 5.3 D, reported as mean fluorescence intensity values normalised to CD9) 

confirmed that the three EV samples were enriched in the classical EV markers CD81, CD9 and CD63. 

Additionally, all the samples showed strong labelling for CD29 (integrin β1), SSEA-1 (Stage-specific 
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embryonic antigen 1) and moderate labelling for CD133.1 (prominin-1) and ROR1 (tyrosine-protein kinase 

transmembrane receptor). A weak signal was also observed for CD24, CD86, and CD142 (platelet tissue 

factor). A full list of the 37 EV surface antigens used in the experiment can be found in Appendix 2, Figure 

7.6. Taken together, the data show that EVs extracted from control, histamine and chlorpheniramine 

treated cells present the typical EV size and morphology and were immunopositive for the classical EV 

biomarkers, CD63, TSG101 and CD81. 
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Figure 5.3: Characterization of size, morphology and protein markers of EVs derived from SKOV3 treated 
with control SFM, 100 μM histamine and 250 μM chlorpheniramine. 
A) NTA results showing particle-size distribution for EVs extracted after 48 h conditioning from SKOV3 control (red) 
or treated with 100 μM histamine (yellow) or 250 μM chlorpheniramine (blue). Eight biological replicates. B) 
Representative TEM images of EVs obtained from non-conditioned media, histamine or chlorpheniramine treated 
cells, or control (untreated) cells. EVs are indicated with red arrows in both lower magnification images (left side, 
scale bar 500 nm) and high magnification images (right side, scale bar 200 nm). One biological replicate. C) 
Representative western blot images of cell (left side) and EV (right side) samples probed for six EV biomarkers: 
ALIX (96 kDa), HSP70 (70 kDa), CD63 (40-65 kDa), TSG101 (43 kDa), β-Actin (42 kDa), CD81 (25 kDa) and markers 
for the Golgi apparatus and the mitochondria: GM1303 (112 kDa), cytochrome C (13 kDa). D) MACSplex data 
showing mean fluorescence intensity of 10 different EV surface antigens on EVs extracted from cells treated with 
control media (red bars), 100 μM histamine (yellow bars) or 250 μM chlorpheniramine (blue bars). Data are 
reported as mean fluorescence intensity normalised to CD9. Three biological replicates were used for both 
western blot and MACSplex analysis. Bars show, 1X SD.
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5.3.2. Histamine or antihistamine treatment do not modify EV concentration 

It is known from the literature that histamine, through activation of HRH1, is an inducer of EV 

biogenesis in a plethora of cell lines (Verweij et al. 2018), while HRH1 inhibition can reduce EV release 

(Khan et al. 2018). To investigate if this mechanism was retained in OC cell lines, EVs were extracted 

from control, histamine- or chlorpheniramine-treated SKOV3 cells after 48 h conditioning, their 

concentration per cell measured through NTA (Figure 5.4 A) and the number of EVs/cell calculated for 

each condition and normalised to control. Curiously, chlorpheniramine-treated cells produced 60% 

more EVs than control cells and twice as many EVs/cell than histamine-receiving cells, although this 

increase was not significant (p=0.13; control set as 1; mean histamine=0.85 ± SD=0.54; 

chlorpheniramine mean=1.69 ± SD=1.01) (Figure 5.4 A). As these results were in contrast to that 

previously reported in the literature (Khan et al. 2018; Verweij et al. 2018), the same experiment was 

repeated but this time with EVs extracted after 4 h conditioning. Normally, EVs are constantly released 

and taken up by cells and this “release/uptake balance” is quantified when measuring EV concentration 

through NTA. If a compound affects EV release in a short time point, its effect may to an extent be 

covered by the “release/uptake balance”, especially if conditioning the media for a long time (48 h). 

Therefore, a shorter time points was used for the following experiments. As illustrated in Figure 5.4 B, 

control, histamine- or chlorpheniramine-treated SKOV3 produced a similar number of EVs/cell and 

these EV populations had a similar size, with most of the particles falling in the size range between 75 

and 200 nm (Figure 5.4 C). In summary, histamine or chlorpheniramine treatment of SKOV3 does not 

appear to modify the total output of EVs, nor their size.
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Figure 5.4: Size and concentration of EVs extracted from control, histamine or chlorpheniramine treated 
cells. 
A) The mean number of EVs produced by one cell was measured for control, histamine and chlorpheniramine-
derived EVs after 48 h conditioning. Data were normalised to control. B) NTA results showing particle-size 
distribution for EVs extracted after 4 h from cells treated with control media (red), 100 μM histamine (yellow) or 
250 μM chlorpheniramine (blue). C) The mean number of EVs produced by one cell was measured for EVs derived 
from control, histamine and chlorpheniramine-treated cells after 4 h conditioning. Data were normalised to 
control. Seven biological replicates were used for quantification of 48 h conditioned EVs while four biological 
replicates were used for 4 h conditioning EVs. Error bar, 1X SD.
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5.3.3. Histamine increases the rate of MVB-PM fusion events 

The experiments reported in section 5.3.2 did not yield the expected increase in EV release following 

treatment with histamine. This could be due to biological or technical reasons as will be discussed later 

in section 5.4. Therefore, a second method was employed to test whether histamine induces EV 

release in a model of OC. SKOV3 were transiently transfected with a plasmid containing a CD81 

pHluorin reporter (see section 2.4 for protocol details), treated with control media or media 

supplemented with 100 μM histamine and 5 minutes-long videos were immediately recorded with a 

TIRF microscope (described in section 2.18). Twelve cells were imaged in total for each condition. 

Analysis of the videos showed that both control and histamine treated cells had MVB-PM fusion events 

(Figure 5.5 A, green circles). Histamine-treated cells exhibited twice as many fusion events compared 

to control cells (p=0.02, control mean=3.17 ± SD=2.95; histamine mean=6.67± SD=4.92) (Figure 5.5 B). 

The analysis also revealed no differences in the features of the fusion events, such as brightness and 

size. Violin plots in figure 5.5 C indicate that MVB-PM fusions events had a similar brightness, with 

distribution of fluorescence being comparable across samples (p=0.97, control median=8328, 

histamine median=9201,) (Figure 5.5 C). Fluorescence of the MVB-PM fusion events of both control 

and histamine treated cells also exhibited a similar size, ranging between 0.3 to 0.9 μm, with most 

events falling in the range between 0.4 and 0.6 μm (Figure 5.5 D). Taken together, these results show 

that histamine significantly increases MVB-PM fusion events in SKOV3 cells in the 5 minutes frame 

following treatment administration.
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Figure 5.5: Quantification and analysis of MVB-PM fusion events in SKOV3 cells treated with control 
media or 100 μM histamine. 
A) Representative images of total projected MVB-PM fusion events on a control cells (left side) and histamine 
treated cell (right side). Positive events that were further analysed are circled in green; yellow and red circles 
indicate events that did not satisfy one or more parameters used in the analysis, respectively (for further 
information see section 2.18). Scale bar 10 μm. B) Quantity of CD81 MVB-PM fusion events per cell in cells treated 
with control media or 100 μM histamine (n=12). C) Brightness (mean fluorescence) and D) Size (μm) of single MVB-
PM fusion events (control n=37, histamine n=78) in control or histamine-treated cells. Statistical differences were 
calculated with the Mann-Whitney test. Bars show, 1X SD. * P<0.05.
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5.3.4. High dose of chlorpheniramine reduces MVB-PM fusion events  

To investigate if HRH1 chemical inhibition could impair MVB fusion to the PM, SKOV3 were treated 

with two different concentrations of chlorpheniramine: 10 μM (low dose) or 250 μM (high dose) and 

imaged by TIRF microscopy at 5 minutes intervals over a 35-minute time frame (as described in section 

2.18). Two cells were imaged for each time point. Figure 5.6 A shows that, even though the number of 

samples was too small (n=2) to assess statistical significance, cells treated with 250 μM 

chlorpheniramine exhibited half the MVB-PM fusion events compared to cells receiving 10 μM 

chlorpheniramine; this effect was retained throughout the time-interval considered, with an exception 

at the 15-20 minutes time point where both concentrations showed similar fusion rates (Figure 5.6 A). 

To better understand whether different concentrations of chlorpheniramine could differently regulate 

MVB-PM fusion rates, the time variable was excluded from the analysis. Hence, all cells receiving the 

same treatment were combined and the total number of events per cell considered for further 

analysis. SKOV3 treated with 10 μM chlorpheniramine exhibited the same number of MVB-PM fusion 

events as control cells (p=0.85), while cells treated with a high dose of the drug showed significantly 

less MVB-PM fusion events than both control cells (p=0.04, control mean=3.17 ± SD=2.95, 250 μM 

mean=1.21 ± SD=1.58) and cells receiving low doses of the drug (p=0.02, 10 μM mean=3.29 ± SD=2.67) 

(Figure 5.6 B). Treatment with 10 μM chlorpheniramine increased the brightness of MVB-PM fusion 

events compared to control cells (p=0.02, control mean=11,553 ± SD=8,698, 10 μM mean=18,570 ± 

SD=13,425) (Figure 5.6 C) while administration of high doses of chlorpheniramine did not impair the 

brightness of fusion events compared to control cells (p=0.05). Finally, neither low doses nor high 

doses of chlorpheniramine modified the size of MVB-PM fusion events, with both treatments retaining 

events with a size between 0.3 to 1 μm, similarly to control samples (p>0.99. p=0.2, respectively). As a 

body of evidence, treatment with 250 μM chlorpheniramine reduced the number of fusion events 

compared to both control cells and cells receiving low dose of chlorpheniramine; low doses of the drug 

significantly increased the fluorescence of the fusion events but did not modify their size. Taken 

together these data suggest that HRH1 inhibition impairs EV biogenesis only when using high 

concentration of chlorpheniramine.
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Figure 5.6: Quantification and analysis of MVB-PM fusion events of cells treated with low or high doses 
of chlorpheniramine. 
A) Quantity of CD81 MVB-PM fusion events per cell over time in cells receiving 10 or 250 μM chlorpheniramine. 
Cells were imaged for 5 minutes in a time frame of 35 minutes post treatment. Two cells were imaged for each 
time point for each condition. B) CD81 MVB-PM fusion events per cell were quantified in cell treated with control 
media (n=12), 10 or 250 μM chlorpheniramine (n=14 for both). C) Brightness (mean fluorescence) and D) size (μm) 
were calculated for single fusion event (Control n= 37, 10 μM chlorpheniramine n=42; 250 μM chlorpheniramine 
n=20). Statistical differences were calculated with the Kruskal-Wallis test, followed by a Dunn’s multiple 
comparison test. Bars show, 1X SD. * P<0.05, **** P<0.0001.

 

5.3.5. EVs extracted from SKOV3 cells rescue the HRH1 knockdown-induced loss 

of invasion 

EVs have been extensively studied for their role in cancer progression and several papers have shown 

their involvement in cell invasion and migration (Becker et al. 2016; Dai et al. 2020; Xavier et al. 2020). 

The data reported in section 4.3.4 indicates that HRH1 knockdown reduces SKOV3 invasion through a 

Matrigel® layer. In addition, data reported in section 5.3.3 and 5.3.4 highlighted a potential 

involvement of HRH1 in regulating EV biogenesis. This pointed towards the idea that HRH1 knockdown 

could reduce the invasion of OC cell lines by reducing the number of released EVs. To test this 
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hypothesis, and check if EVs could restore the invasiveness of SKOV3 knocked down for HRH1, a rescue 

experiment was performed. EVs were extracted from non-treated SKOV3 cells and either EVs or PBS 

were added to SKOV3 cells receiving HRH1 or control siRNAs, following which invasion through a 

Matrigel® layer was measured (Figure 5.7 A). RT-qPCR analysis revealed that knocked down cells 

expressed half the amount of HRH1 than cells receiving control siRNA, confirming successful 

knockdown of HRH1 (p=0.02, control mean=1.008 ± SD=0.18, HRH1 mean=0.45 ± SD=1.04) (Figure 5.7 

B). Image analysis of Matrigel® membranes confirmed data reported previously in chapter 4, that is 

that SKOV3 cells in which HRH1 was knocked down (siRNA HRH1 + PBS) (siRNA HRH1 + PBS mean= 0.57 

± SD=0.25) invaded 40 % less than cells receiving siRNA control + PBS (siRNA control + PBS mean= 1.0 

± SD=0.29) (p=0.023) (Figure 5.7 C). Interestingly, addition of EVs to the HRH1 knockdown SKOV3 

(siRNA HRH1 + EVs) rescued their phenotype, resulting in these cells invading as much as the SKOV3 

receiving siRNA control + PBS (p=0.90, siRNA control + PBS mean=1.0 ± SD=0.29, siRNA HRH1 + EVs 

mean= 1.05 ± SD=0.34). Indeed, the HRH1 knockdown SKOV3 receiving EVs invaded twice as much as 

HRH1 knockdown SKOV3 receiving PBS (p=0.017, siRNA HRH1 + EVs mean=1.056 ± SD=0.34) (Figure 

5.7 C). These data demonstrate that while HRH1 knockdown decreases the invasion of SKOV3, addition 

of EVs, extracted from non-treated SKOV3, leads to a significant rescue of invasion, consistent with a 

mechanism whereby reduced invasion in HRH1 knocked down cells is caused by reduced EV release.
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Figure 5.7: Matrigel® invasion assay on SKOV3 control or knocked down for HRH1 with or without 
addition of exogenous EVs. 
A) Representative images of SKOV3 invading through a Matrigel® layer under different conditions. Cells were 
stained with DAPI (blue) and CFSE (green). Scale bar 100 μm. B) RT-qPCR analysis was used to evaluate transfection 
efficiency. HRH1 mRNA level are reported as fold change on β-actin (used as endogenous control). C) Percentage 
of invasion was calculated for SKOV3 under different conditions. Data were normalised to control cells. Two 
biological replicates, each one containing three technical replicates (n=6 in total) were used for statistical analysis. 
Statistical differences between two groups were identified by using the Mann-Whitney test while Kruskal-Wallis 
test, followed by a Dunn’s post-hoc test was used for comparing three or more groups. Bars show, 1X SD. * P<0.05, 
** P<0.01.

 

5.3.6. GW4869 does not alter SKOV3 invasion through a Matrigel® layer 

The data presented thus far are consistent with the hypothesis that HRH1 can regulate EV biogenesis, 

and this can influence SKOV3 invasiveness in vitro. It has been reported that inhibition of different 

molecules involved in EV biogenesis (including neutral sphingomyelinase and Rab27a) and subsequent 

decrease of EV production, can lead to reduction of cancer growth and spread in vitro and in vivo 

(Fabbri et al. 2012; Peinado et al. 2013; Guo et al. 2019). Here it was investigated whether inhibition 
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of EV biogenesis through administration of GW4869, a neutral sphingomyelinases inhibitor, could 

affect SKOV3 invasion, and if histamine administration could rescue the effect. 

Firstly, SKOV3 were treated with one of the following treatments: 1) DMSO (control), 2) 100 μM 

histamine, 3) 10 μM GW4869 or 4) 100 μM histamine and 10 μM GW4869 and their invasion through 

a Matrigel® layer was measured (Figure 5.8 A). Prior the experiment, GW4869 IC50 in SKOV3 was 

measured through and MTT assay and the concentration of 10 μM was chosen for subsequent 

experiments (Appendix 2, figure 7.7). Image analysis revealed that SKOV3 treated with histamine 

(mean =2.52 ± SD=1.21) show a 40% increase in the average number of invading cells compared to 

control cells (mean =1.76 ± SD=0.3,), although this was not significant due to high variability of data 

(p=0.46) (Figure 5.8 B). At the same time, neither administration of GW4869 nor the combination of 

both drugs modified the invasion of SKOV3 cells (Figure 5.8 B). Interestingly, NTA quantification of EV 

concentration per cells revealed that, while histamine-treated SKOV3 produced as many EVs as control 

cells (p=0.84), treatment with GW4869 induced a 2-fold increase in the number of EVs per cell 

compared with both SKOV3 control (control set as 1, GW4869 mean= 2.79 ± SD=1.6) (p=0.03) and cells 

receiving 100 μM histamine (mean= 1.09 ± SD=0.56) (p=0.04) (Figure 5.8 C). Collectively, the results 

presented here suggest that GW4869 does not alter SKOV3 invasion, and this could be linked to the 

finding that this treatment does not reduce EV biogenesis in SKOV3 cells.
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Figure 5.8: Matrigel® invasion assay on SKOV3 control or treated with 100 μM histamine, 10 μM 
GW4869 or a combination of both drugs. 
A) Representative images of a Matrigel® invasion assay on SKOV3 under different conditions. Cells were stained 
with DAPI (blue) and CFSE (green). Scale bar 100 μm. B) Percentage of invasion of SKOV3 treated with DMSO, 100 
μM histamine, 10 μM GW4869 or with a combination of the two compounds. One biological replicate with three 
technical replicates. C) Quantification of EV number per cells in SKOV3 treated with control media, 100 μM 
histamine or 10 μM GW4869. Data were normalised on control. Four biological replicates were combined for 
statistical analysis. Statistical differences were calculated with a Kruskal-Wallis test followed by Dunn’s post-hoc 

test. Bars show, 1X SD. * P<0.0.5. 
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5.3.7. Rab27a knockdown impairs SKOV3 invasion and histamine administration 

does not rescue it 

Another well-established mechanism associated with EV biogenesis involves the protein Rab27a 

(Ostrowski et al. 2010) (see section 1.3.2). Therefore, the effect of Rab27a knockdown on SKOV3 

invasion, with or without addition of histamine, was investigated. Rab27a transfection conditions were 

optimised (Appendix 2, Figure 7.8), then SKOV3 cells were transfected with either siRNA control or 

siRNA for Rab27a and allowed to invade through a Matrigel® layer for 48 h, with or without addition 

of 100 μM histamine (Figure 5.9 A). Cells transfected for Rab27a showed a decrease of its mRNA of 

more than 80% compared to cell control (p=0.002; siRNA control mean=1.33 ± SD=0.16; siRNA Rab27 

mean=0.19 ± SD=0.077), as reported through RT-qPCR analysis, thus indicating a successful Rab27a 

knockdown (Figure 5.9 B). Analysis of the Matrigel® membranes revealed that the average number of 

invading histamine-treated SKOV3 cells was 40% higher that control cells, although this increase was 

not significant (p=0.37; siRNA control mean=1 ± SD=0.16; siRNA control + histamine mean=1.40 ± 

SD=0.39) (Figure 5.9 C). Silencing of Rab27a lowered the average number of invading cells by 40% 

compared to control cells (siRNA Rab27a mean=0.58 ± SD=0.26) (although this was not significant) 

(p=0.10) (Figure 5.9 C), and significantly decreased it compared to histamine-treated cells (p=0.012; 

siRNA control + histamine mean=1.40 ± SD=0.39). Histamine addition to Rab27a knocked down cells 

failed to rescue their invasion, further decreasing the number of invading cells (p=0.55). Interestingly, 

SKOV3 knocked down for Rab27a receiving histamine invaded 60% less than control cells (p=0.026; 

siRNA Rab27a + histamine mean=0.40 ± SD=0.11) and less than cells receiving histamine alone 

(p=0.0018) (Figure 5.9 C). Overall, these data suggest that the histamine- induced increase in SKOV3 

cell invasion is mediated via Rab27a-mediated EV release. 
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Figure 5.9: Invasion assay on SKOV3 transfected for Rab27a with or without histamine addition. 
A) Representative images of a Matrigel® invasion assay on SKOV3 under different conditions. Cells were stained 
with DAPI (blue) and CFSE (green). Scale bar 200 μm. B). RT-qPCR analysis showing level of Rab27a mRNA in SKOV3 
treated with siRNA control or siRNA for Rab27a. Data are expressed as fold change on β-actin (endogenous 
control). Data were normalised on cell receiving only transfection reagent. Two biological replicates, each one 
containing three technical replicates were used for the analysis (n=6) C) Percentage of invasion of SKOV3 treated 
with either siRNA control or siRNA for Rab27a with or without addition of 100 μM histamine. Data were normalised 
to control. Two biological replicates, containing two technical replicates each were combined for statistical analysis 
(n=4). Statistical differences were identified with a Mann-Whitney test when comparing two groups. Kruskal-Wallis 
test followed by Dunn’s post-hoc test was used to compare three or more conditions. Bars show, 1X SD. *P<0.0.5, 
** P<0.01, ***P<0.001.
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5.3.8. EVs derived from histamine treated SKOV3 show enhanced proteolytic 

activity than control or chlorpheniramine-induced EVs  

Thus far, the finding that EVs can rescue the reduction of invasion of SKOV3 following HRH1 knockdown 

(section 5.3.5) indicates that EVs could play a functional role during cell invasion. Cell invasion is a 

complex process where cells need to adhere to a surface, degrade the ECM and migrate through it. 

Hence, EVs could act at several points of this process by either influencing cell migration, modifying 

their proteolytic activity or behaving as a “facilitator” of invasion, by priming the metastatic sites 

(Hoshino et al. 2015; Sung et al. 2015). As histamine and chlorpheniramine administration to SKOV3 

modify EV release (section 5.3.3 and 5.3.4), it was investigated if both treatments could also modify EV 

functions. Therefore, EVs were extracted from SKOV3 treated with either SFM, or SFM supplemented 

with 100 μM histamine or 250 μM chlorpheniramine and their ability to degrade collagen was tested 

through a collagen degradation assay (see section 2.17 for further details). FITC-quenched collagen 

was plated in a 96-well plate together with the different EV samples; collagen degradation induced 

release of the FITC molecule with subsequent release of fluorescence, which was detected using a 

spectrophotometer at time point 0, 2, 6, 12, 18 and 24 h. Figure 5.10 A shows the efficacy of the assay, 

as several collagenase dilutions degraded collagen over time in a dose-dependent manner. Overall, 

equal number of EVs derived from control cells, histamine or chlorpheniramine treated cells degraded 

collagen to some extent, but no differences were identified between treatments among different time 

points (p=0.066) (Figure 5.10 B). However, when data from the different time points were combined 

to consider the overall effect, EVs derived from histamine-treated cells (mean=4.51 ± SD=2.56) 

appeared to have an enhanced proteolytic activity and degraded the collagen substrate significantly 

more than control EVs (p=0.016, mean=2.02 ± SD=0.97) or EVs extracted from chlorpheniramine 

treated cells (p=0.0026, mean=1.39 ± SD=0.42). In sum, all the EV samples used in this experiment can 

degrade collagen, with EVs- induced by HRH1 chemical activation (via histamine) showing a greater 

ability to degrade collagen compared to EVs extracted from control or chlorpheniramine treated cells.
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Figure 5.10: Collagen degradation assay on EVs derived from cell treated with control media, 100 μM 
histamine or 250 μM chlorpheniramine. 
A) Fluorescence intensity of six different dilutions of collagenase were used as positive control. One biological 
replicate containing four technical replicates. B) Fluorescence intensity of collagen degradation following 
treatment with EVs derived from cells treated with SFM, or with SFM supplemented with 100 μm histamine or 
250 μM chlorpheniramine. One hundred time “EVs per surface” were added to each well for each condition, as 
described in section 2.17.1. To calculate the dilution factor, the surface area of 5 t175 cm2 flasks (number of flasks 
used to extract EVs) was divided by the surface area of one well of a 96-well plate (recipient well). The dilution 
factor was then multiplied by 100 to obtain the final concentration of EVs to add to each experimental well. Data 
were normalised to time 0 h for each treatment. The average of three biological replicates, each one containing 
four technical replicates, were combined for statistical analysis. Statistical differences were calculated with a one-
way ANOVA followed by a Tukey’s post hoc. Bars show, 1X SD. * P<0.05, ** P<0.01.  
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5.3.9. Identification of the protein content of EVs control and EVs derived from 

histamine treated SKOV3 

The data reported above (section 5.3.3) indicates that administration of 100 μM histamine to SKOV3 

cells increases the number of MVB-PM fusion events and overall improves EV ability to degrade 

collagen (section 5.3.8). In order to understand if histamine treatment modified the EV protein 

content, EVs were extracted from SKOV3 control cells or cells treated with 100 μM histamine after 4 h 

conditioning, and their protein content was analysed through mass-spectrometry. The total number 

of proteins identified in control and histamine treated EVs is illustrated in figure 5.11 A, and the total 

number of proteins identified in each of the four biological replicates for each treatment group is 

shown in figure 5.11 B, C. In total, 888 proteins were identified, of which 546 were shared between 

control EVs and EVs derived from histamine treated cells, 82 were unique to control EVs, and 260 were 

found only in histamine induced-EVs (Figure 5.11 A). For control cell derived EVs, although most of the 

proteins were shared between the four biological replicates, some proteins were present in only one 

of the replicates, with 81 out of the 628 total proteins being expressed only in replicate 1, 51 in 

replicate 2 and 35 in replicate 3 (Figure 5.11 B). A similar situation was found for EVs derived from 

histamine treated cells, with replicate 1 expressing 108 of the 806 total proteins, replicate 3 expressing 

74, replicates 2 expressing 45 and replicate 4 33 (Figure 5.11 C). Due to the low overlap of protein 

expression across biological samples, only proteins contained in at least three replicates of at least one 

condition were used for further analysis. 
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.  

Figure 5.11: Protein content of EVs extracted from SKOV3 treated either with control media or with 100 μM histamine. 
A) Venn diagram showing the total number of proteins identified in control and histamine- induced EVs. UpSet plots of proteins identified in B) control and C) histamine- induced 
EVs show the distribution of proteins across biological replicates. 
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The Venn diagram in figure 5.12 A shows the proteins found in at least three replicates of at least one 

treatment group. Overall, 461 proteins were identified, with 321 being shared between the two 

samples, 21 expressed only in control EVs and 119 only present in EVs derived from histamine treated 

cells (Figure 5.12 A). For non-overlapping proteins, a read was only counted if it was identified in three 

or more replicates of one treatment and in less than three replicates for the other treatment group. 

UpSet plots show the protein distribution across biological replicates of the same treatment group 

(Figure 5.12 B, C). Interestingly, when comparing the content of the SKOV3 EVs with the 100 most 

abundant proteins identified in EV (list obtained from ExoCarta, accessed May 2021), 81% of top EV 

marker proteins were present in EVs derived from histamine treated cells and 79% in control EVs 

(Appendix 2, Figure 7.9). In further support of this, gene ontology (GO) analysis on the total protein 

content of both EV samples showed that the most enriched term for cellular components was 

“extracellular exosomes”, for both control EVs and histamine- induced EVs (Figure 5.12 D), suggesting 

that the proteins analysed through mass-spectrometry are truly derived from EVs and not from other 

sources.  
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Figure 5.12: Protein content of EVs extracted from SKOV3 treated either with control media or with 100 
μM histamine. 
A) Venn diagram showing proteins identified in at least three biological replicates of control and histamine- 
induced EVs. UpSet plots of proteins identified in B) control and C) histamine EVs show the distribution of proteins 
across biological replicates. D) GO-term analysis showing the 10 most enriched cellular component in control EVs 
and EVs derived from histamine treated cells. Cellular components are sorted for p-value after Benjamini-
Hochberg correction.

 

5.3.10. Deregulated protein identification and GO term analysis 

EV cargo can change due to the conditions within their parent cells, such as stress and disease, and 

this can influence their function (Melo et al. 2015). To assess what changes were occurring to the 

proteome of EVs derived from histamine-treated cells, the Log2 of the mean fold change (Log2 LFQ 

intensity histamine – Log2 LFQ intensity control) of each protein following histamine treatment, and p-
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value of this change, was calculated. Log2 fold change of each protein was plotted against – Log10 of 

the p-value obtained from the t-test and a volcano plot was generated, initially, a permutation-based 

false discovery rate (FDR) (Bonferroni correction) approach was used; but when applying an FDR value 

of 0.01 or 0.05 to the analysis, no differences were found in the content of histamine – induced EVs, 

meaning than none of the proteins identified in EVs derived from histamine treated cells had a fold 

change higher than 2 and a significant p-value (Figure 5.13 A, B). Therefore, the analysis was repeated, 

and p-values were calculated without applying FDR correction. The volcano plot in figure 5.13 C shows 

all the identified proteins (black dots): proteins in orange had a 2-fold change either up (right side) or 

down (left side), proteins in red had a p-value lower than 0.05 and proteins in green had both (Figure 

5.13 C). Of all the proteins, 11 were upregulated (2-fold increase or more) in histamine treated EVs 

while 4 were downregulated (more than 2-fold decrease). Out of these, 6 of the upregulated proteins 

had a significant p-value and are listed in figure 5.13 D, while none of the downregulated proteins had 

a significant p-value. A full list of all the proteins with a significant p-value can be find in Appendix 2, 

Figure 7.10 A, together with the 10 most up and down-regulated proteins (Appendix 2, Figure 7.10 B, 

C). 
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Figure 5.13: Fold change of proteins identified in EVs from control and histamine treated SKOV3. 
The Log2 of the mean fold change of each protein was plotted against -Log10 of the p value obtained from the t 
test. Initially p-values were corrected for the Bonferroni FDR and volcano plots were calculated when applying A) 
a 0.01 FDR and B) a 0.05 FDR. C) P-values were calculated without applying Bonferroni FDR correction and a 
volcano plot was generated. Proteins with a fold change <= 2 or >= 2 are coloured orange, proteins with a p-value 
of < 0.05 are coloured in red and proteins that have both are coloured in green. D) List of proteins showing more 
than 2-fold increase and a p-value lower than 0.5.
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In order to understand whether the combination of the six upregulated proteins was linked to 

enrichment of a particular biological pathway or molecular function in EVs derived from histamine 

treated cells, gene ontology (GO) analysis was carried out through DAVID and enriched GO terms for 

cellular compartment, biological process and molecular function were found. The most enriched term 

for cellular component was “extracellular exosome” as further confirmation of the origin of the 

samples used for mass-spectrometry (Figure 5.14 A). Only one term was reported for both biological 

process (“viral entry into host cell”) and molecular function (“protein binding”) (Figure 5.14 A) making 

it difficult to conclude which pathways were enriched in histamine- induced EVs. Thus, the GO term 

analysis was repeated but this time all proteins that were increased or decreased by 1.5 -fold or more 

were included. Overall, the name list of the upregulated proteins returned 15 terms for cellular 

component, 18 for biological process and 7 for molecular function (Figure 5.14 B). The downregulated 

proteins returned 6 terms for cellular component, 16 for biological process and 6 for molecular 

function (Figure 5.14 C). As expected, the most enriched cellular component term for both up and 

down regulated protein was again “extracellular exosomes”. Following Benjamini-Hoechberg 

correction, none of the biological process terms was significant for upregulated proteins. Similarly, the 

only significant molecular function term was “protein binding”. Interestingly, although not statistically 

significant, other molecular function terms that resulted from the analysis were “endopeptidase 

activity”, “serin-type endopeptidase inhibitor activity”, “integrin binding” and “laminin binding”, all 

pathways related with cancer dissemination and metastasis (Givant-Horwitz et al. 2005; Ramovs et al. 

2017; Su et al. 2020) (Figure 5.14 B). On the other hand, the most significant biological process terms 

of downregulated proteins were “keratinocyte differentiation” “complement activation classical 

pathway”, “innate immune response” and “negative regulation of endopeptidase activity”. Again, 

although non-significant, “negative regulation of peptidase activity” and “negative regulation of 

proteolysis” appeared as deregulated pathways in the biological process list (Figure 5.14 B). As was 

found for upregulated proteins, zero terms were significant among the molecular functions. Even if 

there was not a conclusive difference in the proteome of constitutive and histamine- induced EVs, that 

could explain the effect of the latter on invasion, though some insights have been generated that 

should be explored in future work.  
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Figure 5.14: GO term analysis of deregulated cellular protein following histamine treatment. 
All the EVs proteins that were A) upregulated by 2 fold or greater – B) up or C) down-regulated by 1.5-fold or 
greater following histamine treatment were analysed using the DAVID tool and the GO terms from cellular 
component, biological function and molecular function were recorded. P-value represents EASE score. Fold 
enrichment is the number of genes annotated with that term divided by the number of genes expected by the 
software to be annotated with that term. 
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5.4. Discussion 

The aim of this chapter was to investigate the role of histamine and chlorpheniramine in EV biogenesis 

and understand whether EVs played a functional role in SKOV3 invasion in vitro. The results presented 

in chapter 4 (section 4.3.4 and 4.3.5) suggested that HRH1 could somehow modulate OC cells invasion 

in vitro. Considering that previous studies have linked HRH1 activation with EV biogenesis and its 

inhibition with a reduction of released EVs (Khan et al. 2018; Verweij et al. 2018), here it was 

contemplated the idea that HRH1 could modulate OC invasion by regulating EV biogenesis. Therefore, 

EVs were extracted from control cells or cells receiving histamine or chlorpheniramine and their size, 

morphology and enrichment in protein biomarker was investigated. After that, the effect of histamine 

and chlorpheniramine on EV biogenesis was investigated through NTA and TIRF microscopy. Finally, 

the involvement of EVs in SKOV3 invasion was tested under different conditions and the protein 

content of control EVs or histamine- induced EVs was analysed to identify any potential difference. 

EV extraction and characterization 

Several techniques are today available for EV isolation such as ultracentrifugation, density gradient 

centrifugation, SEC and precipitation using different chemicals (immunoaffinity, polyethylene glycol 

and others); each one of these techniques is based on different physical or molecular processes and 

has different advantages and disadvantages (Witwer et al. 2013; Carnino et al. 2019). In this project, 

SEC was employed to extract EV and the purity of the extraction and different EV features were 

investigated. The EVs/protein ratio demonstrates that SEC is able to separate the majority of the EVs 

in the media from the free protein also found in the media. NTA analysis revealed the presence of a 

mix population of EVs in the samples, as particles size ranged between 50 to 200 nm. This might 

indicate that SEC enables the extraction of not only small EVs (like exosomes, with size ranging 

between 40 to 100 nm) but also of larger EVs (like microvesicles, with size ranging between 100 to 

1000 nm). Indeed, TEM imaging confirmed the presence of small and large EVs with the typical cup 

shaped structure surrounded by a lipid bilayer. Particularly, histamine- induced EVs exhibit bigger 

structures with a size over 200 nm. If possible, it would be interesting to repeat the TEM by using 

immunolabelling with either CD63 or CD81 to further characterise the EV population.  

In EV research, western blot analysis is normally used to confirm the presence of EVs in the sample; 

this is achieved by confirming the presence of proteins that are thought to be commonly contained in 

all EVs, regardless their origin (Yoshioka et al. 2013). In the present study, western blot analysis showed 

enrichment of typical EV biomarkers such as TSG101, CD81 and CD63 and the absence of markers 

indicative of cellular contamination (GM103 and cytochrome C), confirming the origin of the samples. 

However, the EVs were immunonegative for Alix, HSP70 and β-actin, proteins that belong to the panel 
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normally used to identify EVs. This could be explained by the finding that not all EV subpopulations 

retain all classical EV markers (Yoshioka et al. 2013; Kowal et al. 2016) or that the antigenic epitope 

targeted by the antibodies was either not expressed on the EVs or not accessible, resulting in absence 

of the band (Belov et al. 2016). Chlorpheniramine-induced EVs showed more intense bands for CD63, 

CD81 and TSG101, suggesting that either chlorpheniramine treatment enriches the loading of these 

proteins into EVs or perhaps it increases the biogenesis of a specific subpopulation of EV (Kowal et al. 

2016). Alternatively, the higher concentration of these proteins in EVs might be caused by a pipetting 

error during sample preparation due to low concentration of EV protein. Increasing the number of 

starting flasks and consequently increase the EVs yield could solve this issue. The same EV samples 

used for western blot analysis were also characterised via flow cytometry through a MACSPlex assay. 

This led to the identification of CD9, CD63 and CD81 on all samples together with a variety of additional 

proteins including the integrin CD29, glycolipid SSEA-1, glycoprotein CD133.1 and the transmembrane 

receptor ROR1. 

Collectively, EV samples were successfully characterised and analysis provided assurance that the SEC 

extraction produced a relatively pure population of EV with the typical features that are reported in 

the literature (Cheng et al. 2017). 

Histamine and chlorpheniramine involvement in EV biogenesis 

Very few studies focus on the involvement of agonists or antagonists of HRH1 in EV biogenesis. Only 

two groups previously demonstrated that histamine administration to different cell subtypes induces 

MVB-PM fusion through the activation of a protein network that involves HRH1 (Verweij et al. 2018) 

and that inhibition of HRH1 via administration of ketotifen (an HRH1 antagonist) reduces EV release in 

a dose dependent manner (Khan et al. 2018). In the work described in this thesis, the effect of 

histamine and chlorpheniramine to induce/reduce EV release was tested in two ways: 1) SKOV3 cells 

were treated with the compounds and EV concentration was measured via NTA, 2) the number, 

brightness and size of MVB-PM fusion events in SKOV3 expressing a CD81-pHluorin reporter was 

quantified via TIRF microscopy. EV quantification through NTA revealed that cells treated with 

chlorpheniramine for 48 h released twice the amount of EVs compared to both histamine and control 

cells, although this did not reach statistical significance due to the high spread of the data points. This 

effect was abrogated when cells were treated with the same drugs for a shorter time (4 h). These 

findings suggest that chlorpheniramine-mediated EV release might be a consequence of the length of 

time of the treatment applied to the cells.  

It has been previously demonstrated that HRH1 antagonists induce cell death through apoptosis (Jangi 

et al. 2008; Blaya et al. 2010; Fernández-Nogueira et al. 2018; Matsumoto et al. 2021). It is also well 
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established that dying cells release apoptotic bodies, or apoptotic microvesicles: particles with size 

ranging between 50 to 5000 nm formed by separation of the plasma membrane from the cytoskeleton 

(Doyle and Wang 2019; Kakarla et al. 2020). In the current project, MTT analysis demonstrated the 

ability of chlorpheniramine to kill OC cells. Although a concentration lower than the sub-lethal dose 

was used throughout the project, it is not possible to exclude the possibility that the concentration 

chosen might initiate cell death and therefore induce release of apoptotic bodies. This could explain 

why longer exposure with chlorpheniramine resulted in SKOV3 cells releasing double the amount of 

EVs, and why this effect was lost when reducing time of exposure. This effect could be further studied 

by quantifying annexin V immunolabelling on both chlorpheniramine treated cells and EVs via flow 

cytometry or by immunolabelling key components of the apoptotic pathway such as caspase 3 or 

caspase 9 (Théry et al. 2001). Notably, EV concentration was measured through NTA, a good technique 

for roughly estimate the mean of EV size and concentration. However, it is not very accurate and 

reliable when it comes to actually comparing EV concentration across different treatments (Filipe et 

al. 2010; Bachurski et al. 2019).  

To further elucidate the role of histamine and anti-HRH1 in EV release, TIRF microscopy was used and 

live video of SKOV3 treated with control media, 100 μM histamine or two different doses of 

chlorpheniramine (250 μM or 10 μM) were recorded to quantify the fusion rate of MVB with the PM. 

Multiple localised increases in fluorescence were identified in SKOV3 cells under all conditions, 

suggesting fusion of CD81-pHluorin positive vesicles with the PM. Moreover, the average size of the 

MVB-PM events analysed was between 0.4-0.7 μm for all conditions, as previously reported by Verweij 

and colleagues (Verweij et al. 2018), whom confirmed by electron microscopy that 75% of the CD63-

pHluorin event had a size ranging between 0.4-0.6 μm. All the events with no decrease of fluorescence, 

with an irregular decrease of fluorescence, or with lateral movement of the fluorescence signal after 

fusion were not included in the analysis as this suggested that there is none or incomplete fusion of 

the MVB with the PM (Bebelman et al. 2020). Histamine addition to SKOV3 cells significantly increased 

the number of MVB-PM fusion events, demonstrating that histamine induced EV release in an OC cell 

line. Histamine- induced MVB-PM fusion events retained the same brightness and size as MVB-PM 

fusion events in control cells, suggesting that histamine treatment does not largely modify their 

features. Previous unpublished work done in the laboratory revealed that histamine induces MVB-PM 

fusion events immediately after its addition to SKOV3 and that the effect lasts for about 20 minutes, 

by which time MVB-PM fusion rate falls back to normal level. This could potentially explain the 

discrepancy between data obtained from NTA and TIRF microscopy analysis. As histamine effects on 

MVB-PM fusion rate seems “immediate”, conditioning the media for longer time (4 h and 48 h) might 

abrogate the differences observed by TIRF microscopy. Indeed, the amount of EVs in conditioned 
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media is the net overall equilibrium between how many EVs the cell release and how many EVs those 

same cells internalise. If histamine effect lasts for only 20 minutes, it might be that all the EVs produced 

are quickly internalised by cells leading to no differences in EVs number after 4 or 48 h media 

conditioning. 

As histamine appears to induce EV release through activation of HRH1 (section 5.3.3), inhibition of 

HRH1 was achieved via treatment of SKOV3 cells with 10 or 250 μM chlorpheniramine and the effect 

on CD81 positive MVB-PM fusion events was analysed. Cells were imaged every 5 minutes in a time 

frame of 35 minutes. Overall, no differences were found between the number of fusion events across 

time points, although a visible trend suggests that SKOV3 cells receiving the higher dose of 

chlorpheniramine release a smaller number of EVs. To provide a partial analysis of how these two 

treatments could affect MVB-PM fusion, the data from different time points were combined. The 

combination of all fusion events of SKOV3 cells treated with the higher or lower doses of 

chlorpheniramine showed that administration of 250 μM chlorpheniramine to SKOV3 cells significantly 

decreases the number of MVB-PM fusion events compared to cells receiving the lower dose of the 

drug and to control cells. This is in line with what previously reported by Khan et al (2018). Higher doses 

of the drug might completely inhibit HRH1 activity, therefore impairing EV release while lower 

concentration of drug might not be enough to fully inhibit HRH1 activity resulting in no differences in 

EV release. It is important to state that HRH1 activation or inhibition upon histamine and 

chlorpheniramine treatment has not been investigated and this should be integrated in the project to 

fully validate the efficacy of the treatments. Moreover, administration of 10 μM chlorpheniramine also 

increased the overall brightness of the fusion events, while it did not modify their size. It is possible 

that inhibition of HRH1 can alter the composition of MVBs, resulting in a increase of the fluorescent 

signal. As previously mentioned, there is also a possibility that chlorpheniramine might induce cell 

death in SKOV3 and therefore increase the number of apoptotic bodies released. If that is the case, 

the TIRF settings used in this project would have not been able to pick up this event as cells were only 

exposed to chlorpheniramine for 35 minutes.  

EVs involvement in invasion 

EVs have been extensively implicated in cancer cell invasion and migration. Through delivery of their 

RNAs, miRNAs, proteins and DNAs content they can change recipient cells fate and behaviour. Results 

reported in chapter 4 indicate that HRH1 knockdown reduces OC cell invasion while histamine 

treatment increases it; in addition, histamine treatment induces EV release in SKOV3 cells while 

antihistamine administration reduces it (section 5.3.3 and 5.3.4). Thus, it was hypothesised that the 

reduced invasive capacity due to HRH1 knockdown was a consequence of a decrease of EV release. 
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Hence, intact EVs were used to investigate whether their addition to cells with low expression of HRH1 

could rescue this phenotype. Indeed, SKOV3 cells knocked down for HRH1 showed a reduced 

invasiveness that was restored by the addition of intact EVs extracted from the same cell line. This is a 

first indication that HRH1, potentially by regulating EV release rate, can modulate invasion of OC cell 

lines through a matrix layer. Previous studies have shown that EV can increase the number of 

metastatic foci in vivo and that addition of autologous EV is sufficient to increase invasiveness of 

recipient cell in vitro (Luga et al. 2012; Beckler et al. 2013; O’Brien et al. 2013). Also, multiple studies 

have shown that EVs can support cancer progression by conferring metastatic characteristics to less 

invasive cell (Lima et al. 2013; Zhou et al. 2014; Zomer et al. 2015; Schillaci et al. 2017). 

To further evaluate whether HRH1 stimulation of EV release, via histamine administration, could 

influence SKOV3 cell invasion, EV release was inhibited by either treatment of SKOV3 cells with 

GW4869 (an inhibitor of neutral sphingomyelinase) or via knockdown of Rabb27a, and then histamine 

was added to the same cells and their invasion through a Matrigel® assay was tested. 48 h treatment 

with 10 μM GW4869 did not suppress EV release but on the contrary, it significantly increased the 

number of secreted EVs per cell. This effect led to SKOV3 cells that had received GW4869 to invade as 

much as control cells; histamine addition did not further increase their invasion. Few reports have 

previously shown that GW4869 either did not modified EV release (Phuyal et al. 2014) or it increased 

their release (Cashikar and Hanson 2019). It was hypothesised that this was due or to different time of 

exposure and concentration of the drug used or to the fact that nSMase was not involved in EV 

biogenesis (Phuyal et al. 2014; Cashikar and Hanson 2019). In the project presented here, cells were 

incubated with the drug for 48 h, a much longer time if compared with the 16 h previously reported 

(Trajkovic 2008; Menck et al. 2017). One possibility is that GW4869 did inhibit EV biogenesis but that 

during the long incubation time the cells activated compensatory mechanisms to restore EV 

biogenesis. On the other hand, SKOV3 may not relay on the nSMase pathway to produce EVs as much 

as other cell types, explaining the results presented in this thesis. Nonetheless, neutral 

sphingomyelinases are present in different cellular compartments where they are linked to small 

vesicles generation and to microvesicles (MVs) shedding. In fact, whilst GW4869 has been shown to 

decrease release of small vesicles, it increased the secretion of microvesicles from the plasma 

membrane (Menck et al. 2017). This could explain the increased number of EVs observed in this 

project. Moreover, this experiment was only repeated once and therefore the data should be carefully 

considered before drawing any conclusion. 

As the GW4869 experiment was inconclusive, further invasion assays were carried out on cells knocked 

down for Rab27a, with or without addition of histamine. Histamine failed to significantly increase 

SKOV3 cell invasion, although it increased the mean number of invading cells by 40%. Moreover, 
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SKOV3 cells knocked down for Rab27a also showed a reduction of 40% in the number of invading cells, 

although this was not significant. The combination of both treatments significantly decreased the 

invasiveness of SKOV3, with histamine failing to rescue this phenotype. Rab27a has been previously 

shown to control EV biogenesis; specifically, its knockdown decreases EV production and consequently 

reduces cancer growth and metastatic niche formation. Indeed, Rab27a knockdown reduces invasion 

of melanoma (WM164, WM983C and 1205Lu) and bladder cancer (T24, FL3) cell lines in vitro 

(Ostenfeld et al. 2014; Guo et al. 2019) and increases lung metastasis of tumours derived from human 

melanoma cells (SK-Mel-28) and murine melanoma cells (B16-F10) in vivo (Peinado et al. 2013). Rab27a 

has been shown to act on munc13-4 to regulate release of secretory granules in platelets (Shirakawa 

et al. 2004; Neeft et al. 2005). At the same time, muc13-4 has been hypothesised to interact through 

its C terminus with SNAP23 (Elstak et al. 2011), a protein previously reported to mediate EV release 

upon HRH1 activation (Verweij et al. 2018). Moreover, the implication of muc13-4 in EV release has 

been previously suggested (Ostrowski et al. 2010), and a recent report has identified muc13-4 to be 

involved in a calcium dependent-stimulated EV pathway (Messenger et al. 2018). These results are 

consistent with the hypothesis that the effects of histamine on invasion are mediated through EV 

biogenesis involving the function of Rab27a. This could be a possible explanation to why histamine 

addition to cells where Rab27a was knocked down did not rescue their invasiveness. Further 

experiments should be performed to test this hypothesis and better elucidate the role of histamine in 

OC cell lines invasion. 

EVs and collagen degradation 

As histamine and chlorpheniramine act on EV biogenesis, it was investigated whether they could also 

affect the function of EV. For this reason, EVs extracted from control, histamine or chlorpheniramine 

treated cells were tested for their ability to degrade collagen through a time-point collagen 

degradation assay. The data obtained showed that all EV samples degraded collagen at a similar rate. 

However, when combining the data, histamine- induced EVs expressed a higher collagen degradation 

rate compared to the other two treatments. Early attempt of the experiment showed that low 

concentration of EVs (1X or 10X “EVs per surface”, see section 2.17.1 for details) did not produce any 

fluorescence, due to high absorbance values of the background sample (PBS). To be able to visualise 

an effect, a high concentration of EVs (100X “EVs per surface” see section 2.17.1 for details) was used 

for the experiment. By employing this normalization method, EVs are normalized by volume but their 

number will differ across conditions and biological experiments. Therefore, the increased proteolytic 

activity exhibited by histamine- induced EVs might be related to the experimental conditions used 

rather than to a biological effect. A different normalization method that could have been used for this 

assay is to calculate the number of EVs produced by one cell and add an equivalent number of EVs to 
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the recipient well. This normalization method would have allowed to keep constant the number of EVs 

across different conditions and to obtain more robust results. However, the lack of appropriate 

technologies for studying EV behaviour in vivo makes difficult to understand what a “physiological” 

concentration of EV is and how to translate this to in vitro settings. Nevertheless, this is a first indication 

that histamine might induce changes in the EV cargo allowing them to better degrade collagen and 

therefore acting as “priming factors” for metastatic dissemination. HRH1 has been reported to regulate 

production of several components of the metalloproteinase family, including MMP2, MMP3, MMP8, 

MMP9 and MMP13, in a variety of cell types such as chondrocytes, astrocytes and keratinocytes 

(Tetlow and Woolley 2002; Tetlow and Woolley 2004; Patel et al. 2016). HRH1 exerts a stimulatory 

effect on MMP9 production and promotes collagen IV degradation in the basement membrane 

(Gschwandtner et al. 2008). Similarly, EVs have been demonstrated to carry on both their surface and 

their lumen a variety of proteolytic enzymes that facilitate matrix remodelling and cell movement. For 

example, EVs have been reported to mediate the secretion of the matrix degrading proteinase MT1-

MMP to invadopodia and increase matrix degradation and cell invasion (Hoshino et al. 2013; Clancy et 

al. 2015). Moreover, MT1-MMP in EVs derived from tumour cells (melanoma, pancreatic, human 

fibrosarcoma) are involved in activation of MMP2 and degradation of both collagen type I and gelatine 

(Hakulinen et al. 2008; Han et al. 2015). Interestingly, EVs extracted from ascitic fluid of OC patients 

have also been shown to contain gelatinolytically active MMP2 and MMP9 (Wei et al. 2017). In future, 

it would be interesting to validate the content of EVs derived from histamine or chlorpheniramine 

treated cells and study whether they differ in their composition of MMPs or other proteolytic enzymes. 

For example, an in-gel zymography assay could be useful to identify the presence of MMPs and to 

verify if they are expressed in their active or pro-active form (Leber and Balkwill 1997; Snoek-van 

Beurden et al. 2005; Vandooren et al. 2013; Inanc et al. 2017).  

Proteomic analysis of EV cargo 

A total of 888 proteins were identified in control EVs and EVs derived from histamine treated cells; of 

these, 461 were identified in at least three samples of one treatment group only. This means that half 

of the proteins identified in the EVs were only seen in one or two of the samples tested of one or both 

treatment groups, suggesting that these proteins may not commonly be found in EVs and their 

presence might be related to technical issues due to the extraction procedure. 

Only six proteins were significantly enriched (p-value < 0.05, two-fold increase) in histamine – induced 

EVs, while no proteins were significantly downregulated; to note, none of these proteins was 

significantly enriched in EVs samples after applying FDR correction. This could suggest that histamine 

administration does not induce substantial differences in the EV protein cargo and perhaps the effects 
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seen so far are a result of the RNA or lipid cargo or of a combination of the three. The six upregulated 

proteins were: CPNE8, CD70, TPP2, COPB2, ILF2 and APP. Consultation with Exocarta and Vesiclepedia 

databases (accessed May 2021) and research of current literature reveal that all the six proteins have 

been previously identified in EVs from various sources. Moreover, extensive literature review did not 

reveal any relationship between the six up-regulated genes in regard of both EVs function, cancer 

metastasis or histamine signalling pathways nor any relationship between the different genes among 

them. 

CPNE8 (Copine-8) is a calcium-dependent phospholipid-binding protein (Tomsig and Creutz 2002). Its 

gene expression has been identified as a characteristic signature for ovarian clear cell carcinoma and 

its downregulation can repress SKOV3 cell growth (Nagasawa et al. 2019). Moreover, in breast cancer 

cells lines (MCFDCIS, HCC1313), CPNE8 has been found to cooperate with SNAI2 and AX1 to promote 

cell motility (Dang et al. 2016). CPNE8 has been found to be enriched in small EVs of the metastatic 

breast cancer cell line MDA-MB-231 (Risha et al. 2021). 

CD70 is a cytokine belonging to the tumour necrosis factor (TNF) ligand family and it is generally 

expressed in highly activated lymphocytes (Denoeud and Moser 2011). While CD70 expression is 

normally very limited in non-lymphoid organs, its presence has been found in several tumours such as 

renal, pancreatic, colon, brain and ovarian cancers (Adam et al. 2006; Ryan et al. 2010). Particularly, 

CD70 expression in OC cell lines and OC clinical samples has been associated with increase resistance 

to cisplatin (Aggarwal et al. 2009; Liu et al. 2013). CD70 has been identified as a tumour-specific marker 

on EVs derived from clear cell renal cell carcinoma cell line (786-O, Caki1, Caki2, and RCC53) and in 

clear cell renal cell carcinoma human tissue (Himbert et al. 2020). 

TPP2 (tripeptidyl peptidase II) is an enzyme acting in the ubiquitin-proteasome pathway and shows 

both endopeptidase and exopeptidase activity (Tomkinson 2019). TPP2 expression has been found to 

correlate with tumour size in human oral squamous cell carcinoma and to regulate cellular 

proliferation in oral squamous cell carcinoma cell lines (Ca9-22, HSC-2, HSC-3, HSC-4 and HO1N1) 

(Usukura et al. 2013). TPP2 has been reported to be upregulated in EVs derived from serum of patients 

with chronic obstructive pulmonary disease (Koba et al. 2021). 

COPB2 (Coatomer subunit beta) belongs to the Golgi apparatus coatomer complex, a protein complex 

involved in the coating of non clathrin-coated vesicles, and it is essential for Golgi apparatus budding 

and vesicular trafficking (Waters et al. 1991; Orci et al. 1993). COPB2 upregulation has been identified 

in OC tissue and in different subtypes of breast cancer tissues (Claerhout et al. 2012) and it has been 

associated with promotion of cell proliferation and tumorigenesis in breast, lung, gastric and colorectal 

cancers cell lines (Pu et al. 2018; An et al. 2019; Bhandari et al. 2019; Wang et al. 2020). COPB2 has 
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been identified in the proteome of EVs derived from OC cell lines (IGROV, OVCAR3, OVCAR5, SKOV3) 

(Liang et al. 2013; Sinha et al. 2014; Hurwitz et al. 2016). 

ILF2 (interleukin enhancer-binding factor 2) is a transcription factor required for T-cell expression of 

the interleukin 2 gene (Kiesler et al. 2010). By forming a complex with ILF3, it binds to mRNA and 

redistributes it from the nucleus to the cytoplasm, thereby regulating gene expression (Reichman et 

al. 2002). ILF2 has been extensively studied in tumours and it has been found to be overexpressed in 

glioma, non-small cell lung cancer, oesophageal and liver cancers (Huang et al. 2014; Ni et al. 2015a; 

Ni et al. 2015b; Cheng et al. 2016). Moreover, its protein levels in pancreatic ductal adenocarcinoma 

clinical samples has been associated with poor survival (Wan et al. 2015).As for COPB2, ILF2 has been 

previously identified in the proteome of EVs derived from OC cell lines (Liang et al. 2013; Sinha et al. 

2014; Hurwitz et al. 2016). 

APP (amyloid beta precursor protein) is a membrane protein principally expressed in the synapse of 

neurons, and it is normally involved in synapse formation, neural plasticity, and iron export. Its 

proteolysis generates the amyloid beta plaques found in the brain of Alzheimer’s patients (Müller and 

Zheng 2012). In the OC cell line OVCAR3, APP was found to be the target of miRNA 20a; through its 

downregulation, APP promoted proliferation and invasion of these cell lines (Fan et al. 2010). Similarly, 

APP was found to promote cell proliferation and motility in an invasive breast cancer cell line (MDA-

MB-231) (Lim et al. 2014; Tsang et al. 2018). Proteomic profiling of EVs extracted from OC cell lines 

have shown the presence of APP (Liang et al. 2013; Sinha et al. 2014; Hurwitz et al. 2016). 

GO term analysis did not highlight any known associations of these six proteins with cancer progression 

or metastasis. The only biological process identified through DAVID analysis was “viral entry into host 

cell” and only the molecular function “protein binding” was obtained; none of these terms was 

significant after Benjamini correction. As described above, each of the six upregulated proteins is 

involved in very diverse molecular pathways and although all of them have been involved in different 

aspects of cancer progression (motility, cell growth, cisplatin resistance) GO terms analysis did not 

report any association with cell invasion, migration or ECM degradation pathways. Therefore, a less 

stringent analysis was performed, and all the proteins that showed a 1.5-fold increase or decrease in 

histamine- induced EVs were subjected to GO terms analysis.  

The most enriched cellular component term for both up and down regulated proteins was 

“extracellular exosomes”, further confirming the origin of the samples. Very few terms were 

significantly enriched for biological process or molecular function for both up and down regulated 

proteins. Upregulated proteins were enriched for the molecular function “protein binding” while none 

of the biological process terms were significantly different. Downregulated proteins were enriched for 
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the biological process “keratinocyte differentiation”, “complement activation, classical pathway”, 

“innate immune response” and “negative regulation of endopeptidase activity” while zero terms of 

the molecular function were significant. The term “negative regulation of endopeptidase activity” 

refers to any process that decreases the frequency, rate or extent of endopeptidase activity, the 

endohydrolysis of peptide bonds within proteins. Several endopeptidases like asparaginyl 

endopeptidase or prolyl endopeptidase have been shown to favour cancer metastasis and 

dissemination in gastric and breast cancer in vivo (Cui et al. 2016; Qi et al. 2018) and to be expressed 

in the serum of patients with advanced colorectal cancers (Larrinaga et al. 2014). This indicates that 

histamine treatment might decrease the loading into EVs of negative regulators of endopeptidases, 

therefore potentially enhancing their proteolytic activity. Indeed, although not significantly enriched, 

other terms that appeared in the biological process of downregulated proteins were “negative 

regulation of peptidase activity” and “negative regulation of proteolysis”, further supporting the 

theory that histamine treatment increases the proteolytic activity of EVs.  

Further experiments will be needed to validate this assumption. In this project, EVs were extracted 

after only 4 h incubation with histamine; the short time used might be not enough to capture changes 

in the EV content. Extending the length of the treatment might have led to different results. On the 

other hand, TIRF microscopy data indicated that histamine has an instant effect on EV biogenesis; 

ongoing work in the lab indicates that EV biogenesis is boosted during the 10 minutes following 

addition of histamine to SKOV3 cells, and that this effect declines after this time. Considering this, 4 h 

incubation time may be long enough to capture potential changes in the EV cargo; once secreted, some 

of the EVs might degrade, some will be taken up by nearby cells and the effect of histamine treatment 

might be lost. If available, an infusion pump would have been used to ensure a steady infusion of 

histamine throughout the incubation time that might have helped to enrich the histamine- induced EV 

population. 

5.5. Key findings 

• EVs extracted by SEC from control, histamine or chlorpheniramine treated SKOV3 cells 

retained the classical EV size and morphology, had low protein contamination (compare to 

non-conditioned media) and expressed some of the classical EVs markers such as CD81, CD63 

and TSG101 

• NTA analysis showed no difference in the concentration of EVs derived from control, histamine 

or chlorpheniramine treated SKOV3 cells 
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• Histamine treatment increased the number of CD81 positive MVB-PM fusion events in SKOV3 

cells, quantified via TIRF microscopy. High doses of chlorpheniramine decreased CD81 positive 

MVB-PM fusion events in SKOV3 cells 

• EVs extracted from intact SKOV3 cells rescue the loss of invasion of SKOV3 cells knocked down 

for HRH1 

• GW4869 increased the number of EVs produced per SKOV3 cell. Histamine, GW4869, or a 

combination of both compounds did not modify SKOV3 cell invasiveness 

• Transient transfection with Rab27a did not impair SKOV3 invasion through a Matrigel® layer, 

but addition of histamine to the same cells significantly reduced it 

• Histamine – induced EVs degraded collagen more than control and chlorpheniramine-induced 

EVs 

• A proteomic screen of EV content revealed that EVs derived from histamine treated cells might 

contain a lower number of proteins involved in negative regulation of endopeptidases 
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6. General discussion 

Despite research over the last decade has led to improved understanding of molecular events 

underlying cancer dissemination, and to the availability of improved surgical techniques and novel 

therapeutic strategies, OC survival has barely improved (Oikonomopoulou et al. 2008). This is mostly 

related to the fact that OC is diagnosed when metastatic spread has already occurred. Metastasis is 

the culmination of neoplastic progression. Even though, many molecular mechanisms underlying the 

metastatic process are today known, our understanding of this process is not yet complete (Eccles and 

Welch 2007). Indeed, more effort should be done to clarify the contributions of several soluble factors 

or genetic mutation to the “seed cells” and to the tumour microenvironment (Eccles and Welch 2007). 

A better understanding of the different cellular and molecular participants involved in tumour 

progression may ultimately lead to the development of new therapy aiming to block metastasis and 

overall might improve cancer survival (Park and Choi 2016). In this project the role of HRH1 in OC 

progression and EV biogenesis was investigated. As the role of antihistamine and histamine in 

modulating EV release and their potential effect on OC spread has been barely studied, a better 

understanding of its biology can open avenues for future treatment options. 

6.1. Histamine receptors and OC 

In this project, the gene expression of histamine receptors was investigated in both OC cell lines and 

in OC clinical samples. Correlation analysis between histamine receptors gene expression and in vitro 

invasion and migration rates of six OC cell lines demonstrated that HRH1 was strongly correlated with 

both invasion and migration of the cell lines investigated. The other histamine receptors showed either 

no correlation with cellular behaviours (HRH2 and HRH3) or were not detected in the samples (HRH4). 

Similarly, analysis of microarray data on OC specimens showed that HRH1 and HRH2 were the only 

histamine receptors expressed in OC clinical samples, and while no association between HRH2 and 

tumour stage was found, HRH1 appeared to be associated with tumour stage. Indeed, OC samples 

obtained from patients with stage IV tumour presented a higher level of expression of HRH1 compared 

with tumour at stage II and III. Interestingly, no association between HRH1 expression and patients’ 

overall survival was found while low level of HRH1 were associated with a little improvement of 

patients’ progression free survival (2 months increase). This is not the first situations in which proteins 

deregulated in cancer tissues have no association with overall and progression free survival of cancer 

patients. For example, by studying correlation between gene expression and EOC survival, Gui et al. 

(2021) reported that both CDC5 and KLF4A were overexpressed in advanced EOC compared to normal 

ovarian tissues, but had no correlation with patient’s overall or progression free survival. In colorectal 

cancer, CDC6, CDC45 and ORC6 mRNA levels were found to be higher expressed in cancerous samples 
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than adjacent mucosa samples; however patients that had a low expression of CDC6 and CDC45 in the 

tumour samples had a worst prognosis while no association was found for ORC6 (Hu et al. 2019). 

Therefore, HRH1 might be biologically relevant to oncogenic processes in OC but its expression alone 

is not representative of disease outcome. This could be due to HRH1 being implicated in a more 

complex biological mechanisms, yet to be identified, that could regulate OC progression. To date, this 

is the first study analysing the correlation of histamine receptors, particularly HRH1, with OC migration 

and invasion in vitro and with disease progression in clinical samples. So far, only one publication from 

Wang and colleagues (2014) has investigated the prognostic values of HRH1 in different cancer types. 

From their genomic analysis, the authors identified that out of 153 clinical samples analysed only 23 

showed a correlation between HRH1 and cancer prognosis. Particularly, 2 cases of OC out of 18 total 

cases show that lower expression of HRH1 was related with poorer patients survival (Wang et al. 2014). 

The difference between the study from Wang and colleagues and the data presented in this thesis, 

may be related to the type of analysis conducted on the clinical samples. Whilst Wang and colleagues 

directly compared the expression of HRH1 with the survival rate of each single patient, in this project 

the overall impact of HRH1 with overall and progression free survival was analysed, and the data were 

segregated according to the expression levels of HRH1, using the median value of the dataset as 

threshold. As the relationship between the expression of HRH1 and prognosis varies among cancers 

and also in the same cancer, it can be hypothesised that HRH1 plays a more complex role in tumours 

and cannot be simply classified as tumour suppressor or oncogene.  

Another factor to consider is that antihistamines have been shown to downregulate HRH1 level at the 

mRNA level (Pype et al. 1998; Mizuguchi et al. 2012). For this reason, information regarding patients’ 

intake of antihistamine should have been taken into account if available, potentially leading to more 

informative results. Indeed, in their clinical study regarding the use of antihistamine and the risk of OC 

incidence Verdoodt et al. (2019) did not find an overall association between antihistamine use and the 

risk of EOC but they did identify an inverse association between antihistamine use and EOC risk in pre-

menopausal woman and between antihistamine use and risk of mucinous ovarian cancer (Verdoodt et 

al. 2019). The current lack of knowledge regarding the role of histamine receptors in ovarian cancer 

urges additional clinical studies and moving forward a more extensive bioinformatic analysis should be 

carried out to further validate HRH1 role in this disease. 

Another possibility could be that HRH1 level of expression in OC clinical samples is not directly 

correlated with OC stage, but it is actually related to their ‘therapy resistance status’. Indeed, in vitro 

studies demonstrated a higher expression of HRH1 at both the mRNA and protein level in therapy 

resistant breast cancer (T-474 and MDA-MB453 lapatinib-resistant and MDA-MB453 trastuzumab-

resistant cell lines), lung (cisplatin-resistant A549) and cisplatin-resistant HeLa cells (Fernández-
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Nogueira et al. 2018; Matsumoto et al. 2021). Inoculation of trastuzumab- and lapatinib-resistant 

MDA-MB-453 cells into the mammary fat pad of athymic nude mice demonstrated that HRH1 

upregulation is also retained in resistant tumours in vivo (Fernández-Nogueira et al. 2018). Moreover, 

administration of histamine to therapy-resistant cell lines increases their viability and promotes their 

proliferation without influencing the therapy sensitive counterpart (Fernández-Nogueira et al. 2018; 

Matsumoto et al. 2021). These data points toward the idea that HRH1 upregulation in resistant tumour 

might favour their proliferation and survival. In fact, the use of several HRH1 antagonists selectively 

induces apoptosis in trastuzumab-resistant MDA-MB453 and in cisplatin resistant Hela and A549 cell 

lines in vitro and dramatically reduces the growth of trastuzumab-resistant MDA-MB453 in athymic 

nude mice (Fernández-Nogueira et al. 2018; Matsumoto et al. 2021). One of the suggested 

mechanisms through which antihistamine could re-sensitise cancer cells to chemotherapy is by 

decreasing the expression of multidrug resistance (MDR)-associated P-glycoprotein 1. In fact, 

administration of loratadine, ebastine and astemizole (all antagonists of HRH1) to a MDR-variant of 

A549 (lung cancer) cell line significantly re-sensitised A549-MDR cells to vinorelbine (Ellegaard et al. 

2016). Based on these findings it will be interesting to analyse the clinical data used in this thesis in 

relation to patients’ therapy status. It could be that the higher expression of HRH1 in stage IV tumour 

specimens identified in this project is due to these patients been resistant to chemotherapy and not 

to their disease stage. Inhibition of HRH1 might lead to sensitization of OC to therapy and therefore 

open a new scenario for the use of antihistamine in cancer therapeutic. 

6.2. The role of HRH1 in the metastatic phenotype of OC in vitro 

HRH1 has been previously studied for its ability to promote several aspects of the metastatic cascade 

and induce cancer cells apoptosis. Indeed, as described in sections 1.4.3 and 4.1, HRH1 is involved in 

several steps of the metastatic cascade in different cancer subtypes (Cricco et al. 2006; Genre et al. 

2009; Fernández-Nogueira et al. 2018; Kennedy et al. 2018; Zhao et al. 2020).  

Before subsequent experiments, the expression of HRH1 was firstly validated in three OC cell lines. 

HRH1 was detected in SKOV3, OVCAR3 and OVCAR5 at both the mRNA and protein level, indicating 

the presence of this histamine receptors in OC cell lines. Secondly, HRH1 levels were modulated by 

either transient transfection with siRNA of via chemical activation or inhibition, and its role in EMT, 

adhesion, migration and invasion of OC cell lines was tested in vitro. The results obtained indicated 

that HRH1 modulates only some aspects of cell behaviour, that could be implicated in the metastatic 

cascade. Particularly, HRH1 does not impair the expression of E-cadherin and vimentin, two key EMT-

related genes, and does not change the adhesion of SKOV3, OVCAR3 and OVCAR5 to a monolayer of 

endothelial cells. HRH1 inhibition significantly slowed down the invasion ability of SKOV3 and OVCAR3 
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through a Matrigel® layer and the motility of SKOV3 and OVCAR5 from the edge of a ‘wound’. This is 

the first study investigating the role of HRH1 in metastasis-related properties of OC cells and suggests 

that HRH1 might be involved in invasion and migration of OC cells in vitro. Similar results have been 

previously obtained when studying the role of this receptor in invasion and migration of breast and 

hepatocellular carcinoma cell lines in vitro (Fernández-Nogueira et al. 2018; Zhao et al. 2020).  

Interestingly, the different modality used in this project to downregulate/inhibit HRH1 did not lead to 

the same results. For instance, HRH1 knockdown reduced the number of invasive SKOV3 and OVCAR3 

through a Matrigel® layer but its pharmacological inhibition did not produce the same effect in SKOV3 

cells. Similarly, motility of SKOV3 and OVCAR5 cells in a ‘wound healing’ assay was not modified 

following HRH1 transfection but it decreased following chlorpheniramine administration. The 

variability of the data indicates that either the approaches used in this project to modulate HRH1 

activity were not ideal or that there might be off-target effects leading to the results seen. Indeed, 

transfection efficiency has been variable across the project, thus influencing the outcome of the 

downstream experiment. Going forward, a cellular model either expressing no HRH1 or overexpressing 

HRH1 should be developed and used to elucidate HRH1 role in OC invasion. Similarly, although 

concentration of histamine and antihistamine and time of incubation were chosen based on the MTT 

assay and on previous literature findings, translating the mode of action of a compound from the 

human body to a cellular model is not easy to do. Probably, different concentrations or longer/shorter 

exposure time to the drug might have led to different results.  

Several reports have also indicated that administration of HRH1 antagonists to cancer cell lines could 

lead to biological effects independent from HRH1 activation. For example, administration of 

terfenadine, astemizol, diphenhydramine and triprolidine induces apoptosis of human melanoma cell 

lines (A375, HT144, HSs294T) through modulation of Ca2+ homeostasis and activation of tyrosine kinase 

and PLC-dependent apoptotic pathways, independently from HRH1 activation (Jangi et al. 2006; Jangi 

et al. 2008). Therefore, it is not possible to exclude that the effect seen in this project following 

chlorpheniramine or histamine administration might be due either to off target effects of the 

compounds or also to activation of different histamine receptors. The latter is supported by several 

publications that have highlighted the dual role of the other histamine receptors (HRH2, HRH3, HRH4) 

in modulating cancer invasion. Ranitidine (a HRH2 antagonist) treated 4T1 (mouse epithelial breast 

carcinoma cell line) tumour bearing Bulb-c mice showed a reduction of the number of lung metastasis 

compared to control mice (Vila-Leahey et al. 2016). HRH3 pharmacological inhibition or knockdown 

inhibits U87MG (glioblastoma) cells growth, EMT, their invasion through a Matrigel® layer and motility 

from the edge of a ‘wound’; indeed, HRH3 inhibition reduced tumour growth in a nude mouse model 

xenografted with the same cell line (Lin et al. 2015). Contrarily, clobenpropit (an HRH4 agonist) 
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administration to CCA (cholangiocarcinoma) cells has been reported to decrease their EMT, ECM 

breakdown, migration and invasion (Meng et al. 2011). Interestingly, Cricco and colleagues (2011) have 

demonstrated that histamine exerts a dual action on the invasion rate of MDA-MB 231 (breast cancer) 

cells by employing an in vitro Matrigel® assay; low doses of histamine (lower than 1 µM) induce cancer 

cell invasion, while high doses of histamine (more than 10 µM) diminish it, emphasizing the dual role 

of histamine in an invasive breast cancer cell line (Cricco et al. 2011). Going ahead with this project, a 

panel of activators and inhibitors of the four different histamine receptors should be tested to 

effectively rule out the involvement of HRH2, HRH3 and HRH4 in different metastatic mechanisms of 

OC in vitro and further clarify the role of HRH1. 

 

Numerous studies have focused on elucidating the effect of HRH1 antagonists on cell cycle and 

apoptosis in cancer cells. Loratadine stimulates G2/M cell cycle arrest in human colon cancer (COLO 

205) cells lines and induces their apoptosis in vitro, and also inhibits growth of tumours derived from 

human colon cancer (COLO 205) cells in vivo (Chen et al. 2006). In addition, loratadine enhances the 

DNA damage induced by ionizing radiation and induces G2/M cell cycle arrest in HT29 (human colon 

carcinoma), DU145 (human prostate carcinoma) and SF295 (human glioblastoma) cell lines (Soule et 

al. 2010). Meclizine, another HRH1 selective antagonist, induces apoptosis of human colon cancer cell 

lines (COLO 205 and HT 29) in a dose-dependent manner by inducing G0/G1 cell cycle arrest and 

upregulating p53 and p21 (Lin et al. 2007). The fact that HRH1 inhibitors can induce cell-cycle arrest 

and consequent apoptosis suggests that a similar effect might occur also in the model used in this 

thesis. Chlorpheniramine treatment, rather than selectively inhibit mechanisms associated with cell 

movement or invasion, could induce cytotoxic effects on OC cells. In future, Annexin V and PI staining 

could be used to check the viability of the three OC cell lines following chlorpheniramine or histamine 

treatment. Moreover, DNA could be stained with a fluorescent dye and flow-cytometry used to 

quantify cell cycle progression after histamine and chlorpheniramine administration. These analyses 

would not only further elucidate the role of HRH1 in OC cells but could also potentially explain the 

discrepancy between the results obtained after HRH1 knockdown and HRH1 chemical inhibition. 

6.3. HRH1 in EV biogenesis and cargo modulation and their effect on 

OC invasion in vitro 

Histamine has been identified as an inducer of EV biogenesis (Verweij et al. 2018) via activation of 

HRH1 and subsequent phosphorylation of SNAP23. At the same time, HRH1 inhibition via ketotifen 

administration has been related with a reduction of the number of EVs in HeLa (cervical cancer cell), 

MCF7 and BT549 (breast cancer) cell lines (Khan et al. 2018). This knowledge, together with the 
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findings that HRH1 knockdown decreased OC cell invasion while its activation via histamine increased 

it, suggested that the reduced invasion due to HRH1 knockdown was due to a reduction of EV release; 

conversely, an enhanced invasion of SKOV3 cells upon histamine activation was related to an increase 

in EV production. Therefore, EV biogenesis following histamine and chlorpheniramine administration 

was tested through NTA and TIRF microscopy. These two techniques produced equivocal results: NTA 

showed no difference in the number of EVs released after histamine or chlorpheniramine treatment, 

whilst TIRF microscopy revealed that SKOV3 treated with histamine presented a higher number of 

MVB-PM fusion events than control cells. In addition, SKOV3 treated with high doses of 

chlorpheniramine showed an overall decrease in the number of CD81 positive-MVB-PM fusion events. 

These data are in agreement with the literature regarding the involvement of histamine and HRH1 

antagonists in EV biogenesis and indicate that histamine induces EV biogenesis while HRH1 antagonists 

reduce it. Although this might be the case, it cannot be excluded that histamine and antihistamine 

might favour/inhibit the release of only a specific subpopulation of EVs. Indeed, studies on several EVs 

inducers/inhibitors have highlighted how they can influence the release of specific EV subpopulations. 

For instance, administration of GW4869, an inhibitor of neutral sphingomyelinase, inhibits the release 

of small EVs (50-100 nm) while increasing the release of bigger EVs (100-200 nm) (Menck et al. 2017). 

Due to the technical limitation of the NTA and to the way TIRF microscopy was used in this project 

(visualization exclusively of CD81 positive MVB population), it was not possible to study if histamine 

and antihistamine controlled the overall release of EVs or preferentially induced/inhibited a specific 

EV subtype. Going forward, dual-labelling TIRF microscopy, either using different tetraspanins or with 

a combination of tetraspanin and cargo proteins, could be employed to further elucidate the 

mechanisms underpinning histamine and antihistamine involvement in EV biogenesis.  

Due to the ability of histamine and chlorpheniramine to modulate EV biogenesis and to the previous 

finding highlighting a role of HRH1 in OC invasion in vitro, the participation of EVs in OC invasion was 

tested. Initially, endogenous EVs were added to control cells and cells knocked down for HRH1 and 

their invasion assessed in a Matrigel® assay. As expected, EV addition rescued the loss of invasion of 

SKOV3 following HRH1 knockdown, indicating that EVs are actively involved in OC cell invasion and 

may act downstream of HRH1. Other studies have shown that incubation with endogenous EVs 

enhances the tumorigenic characteristics of recipient cells (Menck et al. 2015; Raimondo et al. 2015; 

You et al. 2015b). For example, incubation of MCF7 and SK-BR-3 cells (both breast cancer cell lines) 

with autologous (derived from the same cell lines) or heterologous (derived from a different cell lines) 

MVs showed enhanced invasive potential, while the same effect was not observed upon incubation 

with MVs derived from immortalised mammary epithelial cell line (hTERT-HME1) (Menck et al. 2015). 

This demonstrates how the effect of EVs to mediate cellular invasion is dependent on the type of cells 
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used in each study, as the content of EVs released by cells with a metastatic phenotype differs from 

that of non-metastatic cells (Jeppesen et al. 2014). Proteomic analysis of EVs extracted from metastatic 

bladder cancer (FL3 and SLT4) cells lines revealed an enrichment of proteins related to metastatic 

propensity. Most of these proteins, such as vimentin, Casein kinase II, Hepatoma-derived growth 

factor, annexin 2 and moesin are related to EMT and were not present in the proteome of 

nonmetastatic cell (T24)-derived exosomes (Jeppesen et al. 2014). Therefore, it cannot be excluded 

that the ability of EVs to rescue the invasion of SKOV3 with reduced HRH1 is solely due to EVs being 

derived from highly metastatic cells (SKOV3). Therefore, future rescue experiments should be 

performed using EVs obtained from less invasive OC cell lines like OVCAR3; this would clarify to which 

extent the EV content (therefore their origin) affect metastatic activity, compared to the effect solely 

induced by the receptor. 

The ability of histamine in regulating EV biogenesis and EVs effect on OC cell invasion was further 

investigated via inhibition of EV biogenesis through GW4869 treatment or by transient transfection of 

Rab27a. Histamine was added to the same cells and invasion was measured via a Matrigel® invasion 

assay. GW4869 did not impair SKOV3 invasion while Rab27a knockdown together with histamine 

administration significantly slowed down SKOV3 invasion with histamine failing to rescue this 

phenotype. These data suggest that histamine function in OC cell invasion is mediated by EV biogenesis 

through a mechanism requiring Rab27a. Rab27a has been previously linked with cancer invasion as its 

reduction was shown to attenuate the invasive potential of metastatic breast cancer cells lines (MDA-

MD-435 and MDA-MD-231) in vitro (Wang et al. 2008). With regards to the effect of Rab27a on EV 

biogenesis, knockdown of Rab27a and consequent reduction of EV release reduced the invasive 

potential of bladder cancer (T24, FL3) cell lines in vitro (Ostenfeld et al. 2014) and of melanoma 

(WM164, WM983C and 1205Lu) cell lines in vitro and in vivo (Peinado et al. 2013; Guo et al. 2019). 

However, Rab27a has also been linked to the secretion of non-exosomal associated protein that could 

stimulate/reduce cancer cell invasion. Bobrie and colleagues (2012) showed that stable transfection of 

Rab27a in 4T1 (mammary carcinoma) cells decreases exosome secretion and reduces tumour growth 

and lung metastasis in Balb-c mice subcutaneously injected with the same cells. Rab27a knockdown 

also impairs the level of released soluble proteins; in particular, MMP9 was mostly released as a soluble 

form and its levels were lower in conditioned media of Rab27a knockdown 4T1 cells than in 

conditioned media of control cells. The concentration of other soluble factors like cytokines and 

chemokines was also modulated by Rab27a (Bobrie et al. 2012). The fact that Rab27a can regulate 

soluble factors that can modify tumour microenvironment and favour cancer spread suggests that the 

effect seen on SKOV3 invasion might be mediated by soluble factors and not by EVs. In the future, the 

interplay between Rab27a and HRH1 in EV biogenesis should be tested. For example, TIRF microscopy 
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could be used to quantify the number of MVB-PM fusion events in cells transfected with Rab27a siRNA 

before and after histamine addition. Also, downstream effectors of Rab27a, like muc13-4, could be 

used in functional experiments to further elucidate if Rab27a and histamine pathways cooperate in 

regulating EV biogenesis and OC invasion. 

Finally, EVs were extracted from control cells or cells treated with histamine or antihistamine and their 

ability to degrade a collagen substrate was quantified. Overall, EVs derived from histamine treated 

cells showed a higher proteolytic activity compared to EVs control or EVs derived from chlorphenamine 

treated cells. This finding suggests that histamine treatment might change the composition of EVs, and 

particularly of factors involved in ECM degradation and proteolysis. As ECM degradation is a necessary 

step of cancer cell invasion, addition of histamine-induced EVs to OC cell lines might further enhance 

their invasion through a matrix, confirming the previous result showed in chapter 4 and 5. Indeed, 

histamine increases the MVB-PM fusion rates and consequently induces release of EVs (section 5.3.3). 

Addition of histamine increase the invasion of SKOV3 through a Matrigel® layer (section 4.5.3) and 

rescues the loss of invasion through a Matrigel® layer of SKOV3 knocked down for HRH1 (section 5.3.5). 

Taken together these findings point towards the idea that by enhancing EVs release and potentially 

modifying their content, histamine can increase the ability of OC cells to breakdown the ECM and 

enhance their ability to invade through a Matrigel® layer. 

Proteomic analysis did not reveal upregulation of any specific molecule related to matrix degradation 

or metastatic behaviour in EVs derived from histamine treated cells. Nevertheless, GO-term analysis 

of downregulated proteins (1.5-fold change) in histamine- induced EVs revealed the presence of the 

term “negative regulation of endopeptidase activity”. This further support the idea that histamine 

might modify the EV cargo probably by reducing the presence of negative regulators of peptidase, 

therefore enhancing their proteolytic activity. Indeed, several endopeptidase inhibitors have been 

previously identified in EVs through proteomic analysis. For instance, TIMP (tissue inhibitor of 

metalloproteinases) 1,2 and 3 have been identified in cancer-derived EVs (Beckler et al. 2013; Chan et 

al. 2015; He et al. 2015; Minciacchi et al. 2015). Going forward, the proteolytic content of EVs could be 

assessed via zymography and in situ zymography. Depending on the result obtained, selected 

component of the MMP family and other proteases could be knocked down or inhibited in cell lines 

and EVs proteolytic activity could be tested again. These experiments might help understanding the 

specific molecular pathways involved in matrix degradation and OCs invasion following histamine 

administration. 
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6.4. Future directions and novel contributions 

In future, this project could be expanded to identify the specific molecular mechanism underpinning 

the results herein discussed. Firstly, as OC is a complex disease characterised by many subtypes, 

different cell lines representative of each OC subtype should be used to understand whether HRH1 

role in OC invasion and migration is conserved across them, or it is just specific to one subtype of OC. 

Secondly, it should be verified whether the concentration of histamine and chlorpheniramine used in 

this project do activate/inhibit HRH1. This could be achieved by performing FRET experiments or by 

quantification of downstream effectors like inositol 1,4,5-triphosphate (IP3)/IP2 or calcium (Zhang and 

Xie 2012). Thirdly, it will be important to validate if the effects of histamine on OC invasion and EV 

biogenesis are solely due to HRH1 activation and not to activation of the other histamine receptors. 

Therefore, a panel of specific HRH1 agonists should be used and both Matrigel® invasion assays and 

TIRF microscopy analysis should be repeated. Fourthly, it would be interesting to understand whether 

HRH1 is involved in cell cycle and apoptosis of OC. This could illuminate potential cytotoxic effects that 

together with the preliminary work presented in this thesis supports the idea of repurposing 

antihistamine for cancer treatment. Moreover, considering that HRH1 modulates several aspects of 

inflammation (chemotaxis of eosinophils and neutrophils and functional capacity of antigen-

presenting cells) and of the immune system (activation of Th1 lymphocytes and decrease of humoral 

immunity), it would be important to assess HRH1 toxicity in vivo at different concentration, in both 

wild type and immune compromised mice. Together, these experiments could provide new insights to 

the field of cancer biology and pave the way to antihistamine application for cancer treatment in the 

future. 

Finally, the novel contributions (Figure 6.1) of the work presented here are: 

• Demonstration that HRH1 mRNA is highly expressed in OC samples from patients with advance 

stage of cancer (stage IV) and its expression in OC cell lines correlates with their invasiveness 

and motility in vitro 

• Indication that HRH1 might play a role in OC invasion and motility in vitro but does not regulate 

expression of two EMT genes nor modulate the adhesion of OC cells to an endothelial cell 

monolayer 

• Prove that HRH1 modulates EV release and that its activation (via histamine) boost CD81-

positive MVB-PM fusion rate in SKOV3 cells, while its inhibition (via chlorpheniramine) 

decreases them 

• Demonstration that histamine- induced EVs have an enhanced proteolytic activity 
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• Indication that histamine effects on OC cell invasion might be a result of reduced EV biogenesis 

and this could be mediated by an interplay between HRH1 and Rab27a 

 

Figure 6.1: The proposed model for HRH1 role in OC progression and EV biogenesis. 
HRH1 mRNA expression is upregulated in OC clinical samples of patients in stage IV and it correlates with invasion 
and migration rates of six OC cell lines in vitro suggesting a potential involvement of this receptor in OC 
progression. HRH1 modulates EV release, particularly its activation increases the number of MVB-PM fusion events 
while its inhibition decreases them. Moreover, HRH1 activation via histamine increases the proteolytic activity of 
EV to degrade a collagen substrate. Reduction of expression of HRH1 or its pharmacological inhibition reduces 
invasion and migration of OC cell in vitro, in line with a mechanism in which HRH1, by modulating EV release and 
their proteolytic activity can affect pro-metastatic properties of OC cell lines.  
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7. Appendices 

Appendix 1: Supplementary material for chapter 4 
 

 

Figure 7.1: Dose response of SKOV3, OVCAR3 and OVCAR5 to chlorpheniramine. 
SKOV3, OVCAR3 and OVCAR5 were treated with increasing concentrations of chlorpheniramine (ranging from 10 
nM to 1 mM) for 48 h and then an MTT assay was performed to assess cell viability The four parameters regression 
model was employed to generate the sigmoidal curves and calculate chlorpheniramine IC50 for A) SKOV3, B) 
OVCAR3 and C) OVCAR5. IC50 curves resulted in the following concentrations: 420.9 μM for SKOV3, 371.1 μM for 
OVCAR3 and 250.7 μM for OVAR5. Three biological replicates, each one containing four technical replicates were 
combined for IC50 calculation. Bars show 1X SD. 
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Figure 7.2: Dose response curves of SKOV3, OVCAR3 and OVCAR5 to histamine. 
SKOV3, OVCAR3 and OVCAR5 were treated with increasing concentrations of histamine (ranging from 10 nM to 2 
mM) for 48 h and then an MTT assay was performed to assess cell viability The four parameters regression model 
was employed to generate the sigmoidal curves and calculate chlorpheniramine IC50 for A) SKOV3, B) OVCAR3 
and C) OVCAR5. Histamine did not affect cells viability therefore a concentration of 100 μM was used, as previously 
described in other studies (Verweij et al. 2018). Three biological replicates, each one containing four technical 
replicates were combined for IC50 calculation. Bars show 1X SD. 
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Figure 7.3: SKOV3, OVCAR3 and OVCAR5 proliferation under histamine and chlorpheniramine 
treatment. 
SKOV3, OVCAR3 and OVCAR5 were plated is 6-well plates and treated with control media, 100 μM histamine or 
250 μM chlorpheniramine and their proliferation was measured at time 0, 6. 24 and 48 h. Data were normalised 
to number of cells at time 0 h for each treatment. Cell proliferation for A) SKOV3, B) OVCAR3 and C) OVCAR5. 
Three biological replicates were combined. Statistical differences were calculated through a two-way ANOVA, 
followed by a Tuckey’s post hoc test. Bars show 1X SD. 
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Figure 7.4: Transfection efficiency of HRH1. 
HRH1 transfection conditions were validated prior to downstream experiments. RT-qPCR was used to measure 
knockdown efficiency for A) SKOV3, B) OVCAR3 and C) OVCAR5 after 24, 48 and 72 h transfection with siRNA 
control or siRNA specific for HRH1. Data for OVCAR3 are only available at 24 and 48 h. One biological replicate 
containing three technical replicates was used for the analysis. Statistical differences were quantified by using a t-
test followed by Welch’s correction. Bars show, 1X SD. *P<0.05, **P<0.01, ***P<0.001. 
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Appendix 2: Supplementary material for chapter 5 

 

Figure 7.5: Cell count and cell apoptosis of SKOV3 incubated with 10% FBS depleted media or with SFM. 
A) Percentage of SKOV3 cell count after 24 and 48 h incubation in 10% FBS depleted media or SFM. B) Percentage 
of live cell of SKOV3 cultured in 10% FBS depleted media or SFM for 24 and 48 h. Data were normalised to cell 
count in complete media. Three biological replicates. These data were kindly provided by Elise Padbury, a current 
PhD student in the lab. 
 
 

 

Figure 7.6: Full list of antibodies used for the MACSPlex assay. 
Flow cytometry data showing mean fluorescence intensity of 37 different EV surface epitopes on EVs extracted 
from control media (red bars), 100 μM histamine (yellow bars) or 250 μM chlorpheniramine (blue bars). Data are 
reported as mean fluorescence intensity normalised on CD9. Three biological replicates were used. Bars show 1X 
SD. 
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Figure 7.7: Dose response of SKOV3 to GW4869. 
SKOV3 were treated with increasing concentrations of GW4869 (ranging from 500 nM to 100 μM) for 24 and 48 
h and then an MTT assay was performed to assess cell viability The four parameters regression model was 
employed to generate the sigmoidal curves and calculate GW4869 IC50 for SKOV3 at A) 24 h and B) 48 h post-
treatment. IC50 curves resulted in the following concentrations 0.9 M for 24 h and 53 M for 48 h. Three biological 
replicates, each one containing six technical replicates were combined for IC50 calculation. Bars show 1X SD.  

 

 

Figure 7.8: Validation of Rab27a transient transfection on SKOV3. 
RT-qPCR analysis showing Rab27a mRNA expression in SKOV3 transfected with 10 or 50 nm of Rab27a 24 and 48 
h post transfection. β-Actin was used as endogenous control. Data are normalised to siRNA control for each 
condition and time point. One independent experiment with three technical replicates. Bars show 1X SD. 
 



 

175 | P a g e  
 

Appendice
s 

 



 

176 | P a g e  
 

Appendice
s 

Figure 7.9: Top 100 EVs proteins. 
Full list of the 100 most enriched proteins identified into EVs through mass-spec. This list was retrieved from the 
Vesiclepedia website accessed in June 2021 (http://microvesicles.org/extracellular_vesicle_markers). 

 
 

 

Figure 7.10: List of significant proteins identified in histamine- induced EVs and top 10 up and down 
regulated proteins. 
A) List of proteins presented in histamine- induced EVs with a p-value< 0.05. Proteins are sorted by fold-change 
expressed as Intensity LFQ histamine – Intensity LFQ control. B) Top 10 upregulated protein in histamine- induced 
EVs. C) top 10 downregulated proteins identified in histamine- induced EVs. Proteins are sorted by fold change. 
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