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Abstract 

 

Anxiety influences how the brain estimates and responds to uncertainty. These behavioural 

effects have been described within predictive coding and Bayesian inference frameworks, yet 

the associated neural correlates remain unclear. Recent work suggests that predictions in 

generative models of perception are represented in alpha-beta oscillations (8-30 Hz), while 

updates to predictions are driven by prediction errors weighted by precision (inverse variance; 

pwPE) and encoded in gamma oscillations (>30 Hz). We tested whether state anxiety alters the 

neural oscillatory activity associated with predictions and pwPE during learning. Healthy human 

participants performed a probabilistic reward-learning task in a volatile environment. In our 

previous work, we described learning behaviour in this task using a hierarchical Bayesian 

model, revealing more precise (biased) beliefs about the reward tendency in state anxiety, 

consistent with reduced learning in this group. The model provided trajectories of predictions 

and pwPEs for the current study, allowing us to assess their parametric effects on the time-

frequency representations of EEG data. Using convolution modelling for oscillatory responses, 

we found that, relative to a control group, state anxiety increased alpha-beta activity in frontal 

and sensorimotor regions during processing pwPE, and in fronto-parietal regions during 

encoding predictions. No effects of state anxiety on gamma modulation were found. Our 

findings expand prior evidence on the oscillatory representations of predictions and pwPEs into 

the reward-learning domain. The results suggest that state anxiety modulates oscillatory 

correlates of pwPE and predictions in generative models, providing insights into a potential 

mechanism explaining biased belief updating and poorer reward learning.  

 

 

Significance Statement 

 

Learning plays a central role in clinical and subclinical anxiety. This study tests whether a 

temporarily-induced state of anxiety in healthy human participants alters the neural oscillatory 

patterns associated with predicting and learning from rewards. We found that precision-

weighted prediction errors were associated with increases in alpha-beta oscillations in our state 

anxious group. This finding suggested that anxiety states may inhibit encoding of relevant 

signals conveying the discrepancy between the predicted and observed reward. State anxiety 

also increased alpha-beta activity during processing predictions, indicating a stronger reliance 

on prior beliefs about the reward tendency. The results identify the alteration in alpha-beta 

oscillations as a candidate mechanism explaining misestimation of uncertainty and maladaptive 

learning in anxiety. 

 

 

 

  



1. Introduction 

Affective states closely interact with decision making (Lerner et al., 2015). For example, altered 

computations—such as learning rates and estimates of belief uncertainty—are considered 

central to explaining clinical conditions including anxiety, depression and stress from a 

predictive coding (PC) perspective (Browning et al., 2015; de Berker et al., 2016; Williams, 

2016; Pulcu and Browning, 2019). The PC and associated Bayesian frameworks propose that 

the brain continuously updates a hierarchical generative model using predictions optimised 

through their discrepancy with sensory data—prediction errors (PE)—and weighted by precision 

(inverse variance; Srinivasan et al., 1982; Rao and Ballard, 1999; Friston, 2010). This 

hierarchical message passing was hypothesised to be mediated by neural oscillations at 

specific frequencies, in distinct layers and regions of the cortex (Bastos et al., 2012). Recent 

empirical evidence supports this, identifying predictions in alpha-beta frequencies and prediction 

errors in gamma frequencies (Arnal and Giraud, 2012; Sedley et al., 2016; Auksztulewicz et al., 

2017; Bastos et al., 2020). Yet how affective states modulate the oscillatory activity associated 

with predictions and PE signals has been largely overlooked.  

Uncertainty makes refining predictions particularly challenging. Estimates of uncertainty (or  

precision) regulate how influential PEs are on updating our generative model of the environment 

(Yu and Dayan, 2005; Friston, 2008), scaling precision-weighted PEs (pwPEs). Uncertain and 

changing environments may render prior beliefs obsolete, down-weighting predictions in favour 

of increasing learning about sensory input. Recent studies have highlighted how important 

precision estimates are in explaining atypical learning and perception in neuropsychiatric 

conditions (Fletcher and Frith, 2009; Montague et al., 2012; Friston et al., 2013; Lawson et al., 

2014). Anxiety, in particular, has been shown to lead to insufficient adaptation in the face of 

environmental change (Browning et al., 2015; Huang et al., 2017), disruption in learning, and 

maladaptive biases—in both aversive and reward-learning contexts (Huang et al., 2017; Piray et 

al., 2019; Pulcu and Browning, 2019; Hein et al., 2021). Whether the learning alterations in 

anxiety are mediated by oscillatory changes representing predictions and pwPEs remains 

unknown. 

Within the Bayesian PC framework, growing evidence supports that feedforward PE signals are 

encoded by gamma oscillations (>30 Hz), while backward connections convey predictions 

expressed in alpha and beta (8–30 Hz) oscillations (Wang, 2010; Arnal and Giraud, 2012; 

Bastos et al., 2015;  van Pelt et al., 2016). Precision weights would also be modulated by alpha 

and beta oscillations (Sedley et al., 2016; Palmer et al., 2019). The evidence, particularly 

regarding the association between alpha-beta rhythms and encoding predictions, is consistent 

across multiple modalities, such as visual (Gould et al., 2011), motor (Schoffelen et al., 2005), 

somatosensory (van Ede et al., 2011), and auditory (Todorovic et al., 2015)—yet frequency-

domain evidence for reward-related predictions is currently lacking. Crucially, predictions in 

deep layers are thought to functionally inhibit the processing of sensory input and PEs in 

superficial layers (Bauer et al., 2014; Van Kerkoerle et al., 2014; Bastos et al., 2015; Mayer et 

al., 2016). This suggests that aberrant oscillatory states modulating predictions would alter 

encoding of PEs or pwPEs and associated learning behaviour.  



Here, we used convolution modelling of oscillatory responses (Litvak et al., 2013) in previously-

acquired EEG data to estimate the neural oscillatory representations of predictions and pwPEs 

during reward learning in healthy controls and a state anxious group. Our previous 

computational modelling study (Hein et al., 2021) revealed that state anxiety biases uncertainty 

estimates, increasing the precision of posterior beliefs about the reward tendency. We now 

asked whether this bias is associated with altered spectral characteristics of hierarchical 

message passing, which would represent a candidate mechanism explaining biased belief 

updating and poorer reward learning in anxiety. We hypothesised that the more precise 

predictions found in state anxiety should be associated with increased alpha-beta activity. This, 

in turn, would inhibit processing of expected inputs in line with PC accounts, resulting in lower 

gamma activity (and concomitantly higher alpha-beta activity; Lundqvist et al., 2016; 

Auksztulewicz et al., 2017) attenuating encoding of pwPE. 

  



2. Materials & Methods 

 

 

2.1 Participant sample 

 

The data used in the preparation of this work were obtained from our previous study Hein et al. 

(2021), which was approved by the ethical review committee at Goldsmiths, University of 

London. Participants were pseudo-randomly allocated into an experimental state anxiety (StA) 

and control (Cont) group, following a screening phase in which we measured trait anxiety levels 

in each participant using Spielberger’s Trait Anxiety Inventory (STAI; Spielberger [1983]). Trait 

anxiety levels were matched in StA and Cont groups: average score and standard error of the 

mean, SEM: 47 [2.1] in StA, 46 [2.2] in Cont). Importantly, the individual trait anxiety scores 

were lower than the previously reported clinical level for the general adult population (> 70, 

Spielberger et al., 1983). Further, the age of the control group (mean 27.7, SEM = 1.2) and their 

sex (13 female, 8 male) were consistent with those from the state anxiety group (mean 27.5, 

SEM = 1.3, sex 14 female, 7 male). This is important to consider as there are known age and 

sex-related confounds to measures of state anxiety (see Voss et al., 2015). 

 

2.2 Experimental design 

 

Both groups (StA, Cont) performed a probabilistic binary reward-based learning task where the 

probability of reward between two images changes across time (Behrens et al., 2007; Iglesias et 

al., 2013; de Berker et al., 2016). The experiment was divided into four blocks: an initial resting 

state block (R1: baseline), two reward-learning task blocks (TB1, TB2), and a final resting state 

block (R2). Each resting state block was 5 minutes. Participants were instructed to relax and 

keep their eyes open and fixated on a cross in the middle of the presentation screen while we 

recorded EEG responses from the scalp and EKG responses from the heart.   

 

The experimental task consisted of 200 trials in each task block (TB1, TB2). The aim was for 

participants to maximise reward across all trials by predicting which of the two images (blue, 

orange) would reward them (win, positive reinforcement, 5 pence reward) or not (lose, 0 pence 

reward). The probability governing reward for each stimulus (reciprocal: p, 1−p) changed across 

the experiment, every 26 to 38 trials. There were 10 contingency mappings for both task blocks: 

2 x strongly biased (90/10; i.e. probability of reward for blue p = 0.9), 2 x moderately biased 

(70/30), and 2 x unbiased (50/50: as in de Berker et al., 2016). The biased mappings repeated 

in reverse relationships (2 x 10/90; 2 x 30/70) to ensure that over the two blocks (TB1, TB2) 

there were 10 stimulus-outcome contingency phases in total. 

  

In each trial the stimuli were presented randomly to the left or right of the centre of  the screen 

where they remained until either a response was given (left, right) or the trial expired (maximum 

waiting time, 2200 ms ± 200 ms). Next, the chosen image was highlighted in bright green for 

1200 ms (± 200 ms) before the outcome (win, green; lose or no response, red) was shown in 

the middle of the screen (1200 ms ± 200 ms). At the end of each trial, the outcome was 

replaced by a fixation cross at an inter-trial interval of 1250 ms (± 250 ms).  



 

Specific task instructions to participants were to select which image they predicted would reward 

them on each trial and to adjust their predictions according to inferred changes in the probability 

of reward (as in de Berker et al., 2016). All participants filled out computerised questionnaires 

(state anxiety STAI state scale X1, 20 items: Spielberger, 1983) and conducted practice trials as 

detailed in Hein et al. (2021). Critically, the state anxiety manipulation was delivered just before 

the first reward-learning block (TB1) to the StA group (see the following section).  

 

2.3 Manipulation and assessment of state anxiety 

 

Our StA group was instructed to complete a public speaking task in line with previous work 

(Feldman et al., 2004; Lang et al., 2015). This meant, as detailed in Hein et al. (2021), that StA 

participants were told just before TB1 that they would need to present a piece of abstract art for 

5 minutes to a panel of academic experts after completing the reward-learning task, with 3 

minutes preparation time. By contrast, the Cont group were informed that they would need to 

give a mental description of the piece of abstract artwork for the same time privately (rather than 

to a panel of experts, see Hein et al., 2021). Importantly, the state anxiety manipulation was 

then revoked in the StA group directly after completing the second reward-learning block (TB2) 

and before the second resting state block (R2). They were informed that the panel of experts 

was suddenly unavailable. Both groups, therefore, presented the artwork to themselves after 

completing the reward-based learning task.  

 

To assess state anxiety, in our previous work we used the coefficient of variation (CV = 

standard deviation/mean) of the inter-beat intervals (IBI) as a metric of heart rate variability 

(HRV), as this index has been shown to drop during anxious states (Kawachi et al., 1995; 

Gorman and Sloan, 2000; Feldman et al., 2004; Chalmers et al., 2014; Quintana et al., 2016). 

Additional to this, the spectral characteristics of the IBI data were analysed to obtain an HRV 

proxy of state anxiety associated with autonomic modulation and parasympathetic (vagal) 

withdrawal (Gorman and Sloan, 2000; Friedman, 2007). HRV and high-frequency HRV (HF-

HRV, 0.15–0.40 Hz) measures were derived from the R-peaks extracted from the EKG signal 

recorded throughout the experimental sessions (see details in Hein et al., 2021, and section 

EEG acquisition and analysis below). 

 

In line with prior research, our previous study showed reduced HF-HRV and reduced HRV in 

state anxious participants relative to controls (Figure 1C). Reduction in these measures has 

been reliably shown across trait anxiety, worry, and anxiety disorders (Fuller, 1992; Klein et al., 

1995; Thayer et al., 1996; Friedman, 2007; Miu et al., 2009; Mujica-Parodi et al., 2009; Aikins 

and Craske, 2010; Pittig et al., 2013), and thus, significant changes to these metrics suggested 

physiological responses consistent with state anxiety. Subjective self -reported measures of 

state anxiety (STAI state scale X1, 20 items: Spielberger, 1983) were taken at four points during 

the original Hein et al. (2021) study, but the data could not be used due to an error in STAI data 

collection. We showed in a separate study, however, that HRV can effectively track changes in 

state anxiety, as validated by concurrent changes in STAI scores (state scale; Sporn et al., 

2020). 



 

2.4 Behavioural analysis and modelling 

 

For each trial (k) in this reward-learning task, the outcome (u) is binary. Our study consisted of a 

sequence of 400 trials. Trial outcomes (either the blue image rewarded [uk = 1] or the orange 

image rewarded [uk = 0]) were used as input to the Hierarchical Gaussian Filter (HGF, (Mathys 

et al., 2011, 2014) model, an open-source software in TAPAS 

http://www.translationalneuromodeling.org/tapas), as done in Hein et al. (2021), see Figure 1A.   

 

The HGF estimates beliefs about hidden states x1
(k), x2

(k),..., xn
(k) that elicit sensory input 

experienced by each participant across a series of k trials. These states are observed in a 

manner approximate to optimal Bayesian inference under a generative model where beliefs are 

updated hierarchically. The winning perceptual model used in Hein et al. (2021) was a 3-level 

HGF. The first level is for inputs, corresponding to one outcome in a trial (either a win or lose) 

that features expected uncertainty due to the probabilistic nature of the rewarded outcome 

(Soltani and Izquierdo, 2019). The second level represents the participant’s belief about the 

tendency for either image (blue, orange) to be rewarding—corresponding to informational 

(estimation) uncertainty (Payzan-LeNestour and Bossaerts, 2011). And the third level captures 

expected uncertainty, belief estimates about the actual changes due to the volatility of rewarded 

outcomes (Yu and Dayan, 2005; Bland and Schaefer, 2012).  

 

Paired with this perceptual model of hierarchically related beliefs is a response model that 

describes the most likely response for each participant in each state to minimise surprise. The 

winning model from Hein et al. (2021) used the unit-square sigmoid observation model for 

binary responses (Mathys et al., 2011, 2014; Iglesias et al., 2013). This response model 

reconditions the predicted probability m(k) that the stimulus (e.g. blue) is rewarding on trial k 

(outcome = 1) into the probabilities p(y(k) = 1) and p(y(k) = 0) that the agent will select that 

stimulus (blue, 1; or, orange, 0)—a function of the current beliefs. (Where higher values of the 

response parameter [ζ] increase the likelihood of selecting a response corresponding to the 

current belief about the rewarded stimulus). We refer the reader to the original HGF methods 

papers for more detail on the mathematical derivations (Mathys et al., 2011, 2014), and to Hein 

et al. (2021) for equations included in the original results. 

 

As this study focuses on using predictions and precision weighted prediction errors on level 2, 

below the mathematical expressions for these two quantities are provided. The belief update 

equation level 2 is as follows: 

 

 𝜇2
(𝑘)

= 𝜇2
(𝑘−1)

+𝛹2
(𝑘)

𝛿1
(𝑘)

 (1) 

 

Briefly, the update in belief about the reward tendency is proportional to the lower level’s 

prediction error δ1
(k) term weighted by the ratio of precisions Ψ2

(k) given below in Equation 2: 

 



 
𝜋1
(𝑘)

𝜋2
(𝑘) (2) 

 

As such, the precision ratio in Equation 1 above is a learning rate, and its multiplication with the 

PE term δ1
(k) comprises the mathematical formulation for the precision-weighted prediction error 

(Equation 3) on level 2 (ε2): 

 

 𝜀2
(𝑘)

= 𝜇2
(𝑘)

−𝜇2
(𝑘−1)

= 𝛹2
(𝑘)

𝛿1
(𝑘)

 (3) 

 

In the below analysis of the Hein et al. (2021) study, we use two trial-wise HGF estimates as 

regressors: the absolute predictions (|𝜇2|) on level 2 and the absolute precision-weighted 

prediction errors on level 2 (pwPEs, |ε2|). The new prediction is the old posterior (see 

Equation 1), while the pwPE on level 2 is an uncertainty weighted prediction error (see 

Equation 3). Below, to explain sensor level time-frequency responses in EEG data, we used the 

unsigned predictions and pwPE on level 2 as regressors. An example of the trial by trial 

trajectories of the predictions |𝜇2| and pwPEs |ε2| for an exemplar participant are provided in 

Figure 1B. Beliefs about the most likely rewarded image approximately mirror the trajectory 

randomly generated for each participant.  

 



 
Figure 1. HGF model, HGF trajectory estimates and HRV, HGF and model-free results. A) Schematic model of 3-level HGF 

used in Hein et al. (2021). The free parameters ω2, ω3 and the response parameter 𝜁 were estimated by fitting the HGF to observed 

inputs (x i
(k)) and individual responses (y1

(k)). B) HGF trajectories of the computational quantities used to form our GLM convolution 

regressors, from one participant. The lowest level shows the sequence of outcomes (green dots: 1 = blue win, 0 = orange win) and 

the participant’s responses (dark blue dots) on each trial. The black line indicates th e series of prediction error (PE) responses and 

the pink line the precision weight (π). PEs about reward outcomes increase when unpredicted, and progressively decrease as 

successfully learned. Precision increases as trials are predicted effectively. Precis ion then weights PEs. The middle layer of B) 

shows the trial-wise HGF estimate of pwPE about reward the tendency on level 2 (blue, Equation 3). For our GLM convolution 

analysis, we used unsigned values of ε2 as the first parametric regressor. The precision quantity included in the pwPE term, in 

succession, weights the influence of prediction errors on prediction updates, shown as predictions on the top level (purple).  We used 

the absolute predictions about the reward tendency on level 2 (Equation 1) as the second parametric regressor. Predictions about 

the tendency of reward from either image are highest for trials where the reward is determined with higher precision. C) In Hein et al. 

(2021) a significant drop in heart rate variability (HRV, a metric of anxiety using the coefficient of variation of the inter-beat-interval of 

the recorded heart beats), was observed in the StA group (StA, pink) relative to Cont (Cont, black). Panel C) shows the mean HRV 

(with vertical SEM bars) over the experimental task blocks 1 and 2 (TB1, TB2) and the final resting state block (R2). These blocks 

(TB1, TB2, R1) were normalised to the average HRV value of the first resting state block (R1: baseline). A significant effect  of group 



and block was discovered using non-parametric 2×2 factorial tests with synchronised rearrangements. After control of the FDR at 

level q = 0.05, planned comparisons showed a significant between groups result (black bar) in TB1. D) State anxiety impeded the 

overall reward-based learning performance as given by the percentage of errors. In the above, the mean of each group (StA, pink, 

Cont, black) is provided with SEM bars extending vertically. On the right of the group mean is the individual values depicting the 

population dispersion. State anxiety significantly increased the error rate relative to Controls. E) Model-based analysis between 

groups revealed lower ω2 in StA relative to Cont produces overall lower belief estimates of informational uncertainty about the 

reward tendency, with a main effect of the factor group (StA, pink; Cont, black). F) HGF results also revealed lower ω2 in StA leads 

to a main effect of group, with decreased environmental uncertainty compared with Cont G) And that state anxiety increased 

uncertainty about volatility (σ3, main effect for the factor block and group. Planned between-group comparisons also showed that 

StA displayed significantly higher σ3 relative to Cont in each task block separately (TB1, TB2, black bars). 

 

2.5 EEG and EKG acquisition and analysis 

 

EEG, EKG and EOG signals were recorded continuously throughout the study using the 

BioSemi ActiveTwo system (64 electrodes, extended international 10–20, sampling rate 512 

Hz). External electrodes were placed on the left and right earlobes to use as references upon 

importing the EEG data in the analysis software. EKG and EOG signals were recorded using 

bipolar configurations. For EOG, we used two external electrodes to acquire vertical and 

horizontal eye-movements, one on top of the zygomatic bone by the right eye, and one between 

both eyes, on the glabella. For EKG we used two external electrodes in a two-lead configuration 

(Moody and Mark, 1982). Please refer to Hein et al. (2021) for further details on the 

electrophysiology acquisition. 

 

EEG data were preprocessed in the EEGLAB toolbox (Delorme and Makeig, 2004). The 

continuous EEG data were first filtered using a high-pass filter at 0.5 Hz (with a hamming 

windowed sinc finite impulse response filter with order 3380) and notch-filtered at 48–52 Hz 

(filter order 846). Next, independent component analysis (ICA, runICA method) was 

implemented to remove artefacts related to eye blinks, saccades and heartbeats (2.3 

components were removed on average [SEM 0.16]), as detailed in Hein et al. (2021). 

Continuous EEG data were then segmented into epochs centred around the outcome event 

(win, lose, no response) from −200 to 1000 ms. Noisy data epochs defined as exceeding a 

threshold set to ± 100 μV were marked as artefactual (and were excluded during convolution 

modelling, see next section). Further to this, a stricter requirement was placed on the artefact 

rejection process to achieve higher quality time-frequency decomposition, as proposed for the 

gamma band (see Keren et al., 2010; Hassler et al., 2011). Data epochs exceeding an 

additional threshold set to the 75th percentile+1.5⋅IQR (the interquartile range, summed over all 

channels) were marked to be rejected (Tukey, 1977; Carling, 2000; Schwertman et al., 2004). 

The two rejection criteria resulted in an average of 22.37 (SEM 2.4) rejected events, with a 

participant minimum of 80% of the total 400 events available for convolution modelling. 

Following preprocessing, EEG continuous data were converted to SPM 12 

(http://www.fil.ion.ucl.ac.uk/spm/ version 7487) downsampled to 256 Hz and time frequency 

analysis was performed (Litvak et al., 2011).  

 

Preprocessed EEG and behavioural data files are available in the Open Science Framework 

Data Repository: https://osf.io/b4qkp/. All subsequent results shown here are based on these 

data. 

 



2.6 Spectral Analysis 

 

Prior to assessing the effect of HGF predictors on “phasic” changes in the time-frequency 

representations, we determined whether the average spectral power differed between state 

anxiety and control participants during task performance. To achieve this, we extracted the 

standard power spectral density (in mV2/Hz) of the raw data within 4–80 Hz and during task 

blocks TB1 and TB2 (fast Fourier transform, Welch method, Hanning window of 1 s, 75% 

overlap) and normalised it into decibels (dB) using the first resting state block R1 as reference. 

 

Standard time-frequency (TF) representations of the continuous EEG data were estimated by 

convolving the time series with Morlet wavelets. Total spectral power was estimated in the 

range 4 to 80 Hz, using a higher number of wavelet cycles for higher frequencies. For alpha (8–

12 Hz) and beta (13–30 Hz) frequency ranges, we sampled the range 8–30 Hz in bins of 2 Hz, 

using 5–cycle wavelets shifted every sampled point (Kilner et al., 2005)—achieving a good 

compromise between high temporal and spectral resolution (Ruiz et al., 2009; Litvak et al., 

2011). Gamma band activity (31–80 Hz) was also sampled in steps of 2 Hz, using 7-cycle 

wavelets. Theta activity (4–7 Hz) was additionally estimated to replicate the result that lose trials 

increase midline theta power relative to win trials, as documented in previous reward-based 

learning research (Cohen et al., 2007; Cavanagh et al., 2010). This supplementary analysis was 

carried out by convolving the time series with Morlet wavelets of at a centre frequency of 5 in 

steps of 1 Hz.  

 

Following the time-frequency transformation, we modelled the time series using a linear 

convolution model for oscillatory responses (Litvak et al., 2013). This convolution model was 

introduced to adapt the classical general linear model (GLM) approach of fMRI analysis to time-

frequency data (Litvak et al., 2013). The main advantage of this approach is that it allows 

assessing the modulation of neural oscillatory responses on a trial-by-trial basis by one specific 

explanatory regressor while controlling for the effect of the other regressors included in the 

model. This control is particularly relevant in the case of stimuli or response events with variable 

timing on each trial. Convolution modelling of oscillatory responses has been successfully used 

in EEG (Spitzer and Blankenburg, 2011; Litvak et al., 2013; Spitzer et al., 2016) and MEG 

research (Auksztulewicz et al., 2017).  

 

In brief, the convolution GLM approach is an adaptation of the classical GLM, which aims to 

explain measured signals (BOLD for fMRI or time-domain EEG signals) across time as a linear 

combination of explanatory variables (regressors) and residual noise (Litvak et al., 2013). In 

convolution modelling for oscillatory responses, the measured signals are the time-frequency 

transformation (power or amplitude) of the continuous time series, denoted by matrix Y in the 

following expression:  

 

Y = X ⋅ β + ε, 

 

Here 𝑌 ∈ ℝt𝑥ƒ is defined over t time bins and f frequencies. These signals are explained by a 

linear combination of n explanatory variables or regressors in matrix 𝑋 ∈ ℝt𝑥n, modulated by the 



regression coefficients β ∈ ℝn𝑥ƒ. The coefficients β have to be estimated for each regressor and 

frequency, using ordinary or weighted least squares.  

 

The convolution modelling approach developed by Litvak et al. (2013) redefines this problem 

into the problem of finding time-frequency images Ri for a specific type of event i (e.g. outcome 

or response event type):  

Ri = Bβi , 

 

Here, B denotes a family of m basis functions (e.g. sines, cosines) used to create the regressor 

variables X by convolving the basis functions B with k input functions U representing the events 

of interest at their onset latencies, and thus X = UB. The time-frequency response images Ri ∈ 

ℝp𝑥ƒ have dimensions p (peri-event interval of interest) and f, and are therefore interpreted as 

deconvolved time-frequency responses to the event types and associated parametric 

regressors. It is the images Ri that are used for subsequent standard group-level statistical 

analysis. For a visual depiction of the convolution modelling of time-frequency responses, see 

Figure 2. 

 

 



 
Figure 2. Convolution general linear model. Standard continuous time-frequency (TF)  representations of the EEG signal (Y) 

were estimated using Morlet wavelets. In GLM, signals Y are explained by a linear combination of explanatory variables or 
regressors in matrix X, modulated by the regression coefficients β, and with an added noise term (ε). 
Our design matrix X in this example included the following regressors (columns left to right): Win, Lose, No Response, absolute 
pwPE on level 2 or |ε2|, which were defined over time. Matrix X was specified as the convolution of an impulse response function, 

encoding the presence and value of discrete or parametric events for each regressor and time bin, and a Fourier basis function (left 
inset at the bottom). Solving a convolution GLM provides response images (TF estimate in the figure) that are the combination of the 
basis functions and the regression coefficients β i for a particular regressor type i. Thus, convolution GLM effectively estimates 

deconvolved time-frequency responses (TF estimate, rightmost image at the bottom) to the event types and associated parametric 

regressors.  
 
 

 

In our study, we were particularly interested in assessing parametric effects of computational 

quantities, such as pwPEs and predictions, on the time-frequency representations of the EEG 

data in a given electrode. We implemented convolution modelling by adapting code developed 

by Spitzer and Blankenburg (2011), freely available at https://github.com/bernspitz/convolution–

models–MEEG. The total spectral power was first converted to amplitude using a square-root 

transformation to conform with the GLM error assumptions (Kiebel et al., 2005; Spitzer and 

Blankenburg, 2011; Litvak et al., 2013). Our trial-wise explanatory variables included discrete 

regressors coding for stimuli (blue image, orange image), responses (right, left, no response), 

outcome (win, lose) and relevant parametric HGF regressors: unsigned HGF model estimates of 

predictions on level 2 (|𝜇2|) about reward outcome contingencies and precision-weighted 

prediction errors (pwPEs) on that level (|ε2|; see Figure 1B). We selected the absolute value of 

predictions and pwPE on level 2 because the sign in these HGF variables is arbitrary: a positive 

or negative value in ε2 or 𝜇2does not denote a win or a lose trial (see other HGF work using 

unsigned HGF variables as regressors, for instance, Stefanics et al., 2018, Auksztulewicz et al., 

2017).  

 

As in our previous work, pwPE on level 3 (ε3) about volatility were excluded from this analysis 

due to multicollinearity: high linear correlation between |ε2| and ε3 (for further detail, see Hein et 

al., 2021). Likewise, trial-wise HGF estimates of |𝜇2| were highly linearly correlated with 

predictions on the third level about volatility (𝜇3, Pearson correlation coefficients ranging from 

−0.97 to −0.03 across all 42 participants, mean −0.7). As such, we also excluded 𝜇3 from the 

analysis. (For details on the impact of multicollinearity of regressors on GLMs see Mumford et 

al. [2015] and Vanhove [2020]). The chosen HGF regressors  |ε2| and |𝜇2| were consistently 

uncorrelated (below 0.25 in line with previous work using  HGF quantities as regressors 

(Iglesias et al., 2013; Vossel et al., 2015; Auksztulewicz et al., 2017).  

 

Regressor |ε2| values were introduced at the latency of the outcome regressor and thus allowed 

us to assess the parametric effect of pwPE about reward tendency on the time-frequency 

responses in a relevant peri-event time interval. This convolution model was estimated using a 

window from −200 to 2000 ms relative to the outcome event. Although previous work analysed 

the effect of pwPEs on neural responses within an earlier window, 0–1000 ms, we showed in 

Sporn et al. (2020) that pwPEs can modulate neural oscillatory responses in the beta band up to 

1600 ms, and these responses are dissociated between anxiety and control groups. The recent 



studies by Bauer et al. (2014) and Palmer et al. (2019) also showed that the latency of PE and 

pwPE effects on neural activity can extend up to 2 seconds. 

 

Concerning regressor |𝜇2|, we considered different time intervals in which we could capture 

neural oscillatory responses to predictions. This is a challenging task acknowledged before 

(Diaconescu et al., 2017), as the neural representation of predictions likely evolves gradually 

from the outcome on the previous trial to the outcome on the current trial. It is thus not expected 

to be locked to a specific event. This explains why most of the previous work using the HGF 

framework excluded predictions as a regressor for GLM analysis. Here we followed 

Auksztulewicz et al. (2017), who analysed predictions locked to the cue, and Palmer et al. 

(2019), who assessed a wide interval surrounding the movement (response); note that in the 

Palmer et al. (2009) study, the motor response was the last event in each trial (i.e. there was no 

additional response feedback). We thus hypothesised that the neural representation of 

predictions on the reward tendency could be captured by focusing on two complementary 

windows of analysis: (i) an interval following the stimulus presentation (stimulus-locked); (ii) an 

interval preceding the outcome on the current trial (outcome-locked).  

 

To assess the stimulus-locked parametric effect of predictions on the time-frequency responses, 

we run a convolution GLM in a time interval from −200 to 2000 ms. For the outcome-locked 

parametric effect of predictions, the convolution GLM was run from −2500 to 0 ms. This later 

interval extended to −2500 to allow for the presence of a baseline interval in every trial prior to 

the preceding stimulus. Thus, two separate convolution GLMs were run with regressor |𝜇2| 

modulating either stimulus regressor or outcome regressor. The broad windows used for 

convolution modelling were further refined in our statistical analysis (see next section). 

 

As an additional sanity check, we analysed theta-band 4–7 Hz activity modulated by the 

outcome regressor (win, lose) in a separate convolution model run between -200 and 2000 ms. 

In each separate alpha-beta and theta-band convolution GLM analysis, discrete and parametric 

regressors were convolved with a 12th-order Fourier basis set (24 basis functions, 12 sines and 

12 cosines), as in Litvak et al. (2013). For convolution models run from −200 to 2000 ms locked 

to an event type, using a 12th-order basis functions set allowed the GLM to resolve modulations 

in the TF responses up to ~ 5.5 Hz (12 cycles / 2.2 seconds;  or 183 ms). For the outcome-

locked GLM run from −2500 to 0 ms, the 12th-order Fourier basis set resolves frequencies up to 

~5 Hz. Our choice of a 12th order set was compatible with the temporal extent of the pwPE and 

prediction effects on alpha-beta oscillatory activity reported in previous work (200-400 ms-long 

effects in Iglesias et al., 2013; Vossel et al., 2015; Auksztulewicz et al., 2017) up to 2000 ms-

long effects in Palmer et al. (2019). In the case of gamma oscillations modulating pwPEs, we 

considered a higher order basis function set to allow for potentially faster gamma effects to be 

resolved. Using a 20th-order Fourier basis set on the gamma-band convolution GLM within -200 

to 2000 ms enabled resolving modulations in the TF responses up to ~ 9 Hz (20 cycles / 2.2 

seconds; or 110 ms).   

 

2.7 Statistical analysis 

 



The time-frequency images (in arbitrary units, a.u.) from the convolution model were 

subsequently converted to data structures compatible with the FieldTrip Toolbox for statistical 

analysis (Oostenveld et al., 2011). We used permutation tests with a cluster-based threshold 

correction to control the family-wise error (FWE) at level 0.05 (5000 iterations; Maris and 

Oostenveld, 2007; Oostenveld et al., 2011). These analyses were conducted separately for 

alpha-beta and gamma ranges. In each case we collapsed the frequency dimension, thus 

running the permutation tests along the spatial (64 channels) and temporal dimensions. The 

statistics approach consisted of assessing first within-group effects using dependent samples 

two-sided tests, followed by between-group effects with one-sided tests. In the case of two-

sided tests, the cluster-based test statistic used as threshold the 97.5th quantile of the t-

distribution, whereas we used the 5th or 95th percentiles of  the permutation distribution as 

critical values in one-sided tests.  

 

Within-group statistical analysis 

At the within-group level, we assessed the changes in time-frequency activity relative to a 

baseline period (given independently below) separately in StA and Cont groups (N = 21 each). 

We tested whether the neural oscillatory responses to the HGF regressors were larger or 

smaller than baseline levels (two-sided test). For the analysis of the |ε2| regressor, the time-

frequency images were contrasted between an interval from 100 to 1600 ms post-outcome and 

a baseline level averaged from −200 to 0 ms, separately in each group. The 100–1600 ms time 

window of analysis encompasses the effects from our previous single-trial ERP study (Hein et 

al., 2021) and our work on the modulation of oscillatory responses by pwPEs during motor 

learning in state anxiety, which revealed effects up to 1600 ms (Sporn et al., 2020). 

 

For the stimulus-locked analysis of predictions, the statistical tests of the time-frequency images 

focused on the range 100–1000 ms locked to the stimulus and relative to a baseline level from 

−200 to 0 ms. This target window for statistical analysis balanced the evidence from previous 

work (Auksztulewicz et al., 2017; Palmer et al., 2019). In the current study, participants’ 

response preparation and execution times fell within the interval 100–1000 ms (reaction time 

was 598 ms on average, SEM 130 ms). However, the effects of the response were factored out 

from the prediction-related oscillatory activity by including the response regressor in the 

convolution GLM. We also tested the effect of the response regressor in the same time window 

between 100–1000 ms stimulus-locked to confirm independent changes in sensorimotor 

regions.  

 

Statistical analysis of the outcome-locked effects of predictions was conducted in a similar 

window 100–1000 ms preceding the outcome event (that is, from −1000 to −100 ms before the 

outcome). Activation in this interval was contrasted to a baseline level of 200 ms, from −2300 to 

−2100 ms. This baseline period was calculated to safely precede stimuli presentation across all 

trials, during which participants were fixating on a central point on the monitor. As mentioned 

above, to confirm independent changes in sensorimotor regions in response to the response 

regressor, we used an identical window of analysis. 

 

Between-group statistical analysis 



In line with our hypothesis of increased alpha-beta activity and reduced gamma activity in StA 

compared to Cont, we assessed between-group differences in the effects of HGF regressors on 

oscillatory responses using one-sided tests (N = 21 Cont, 21 StA), and separately for alpha-beta 

and gamma frequency ranges. Between-group differences in TF representations of pwPE were 

assessed, similarly to within-group tests, within 100–1600 ms. For predictions, the stimulus-

locked analysis was conducted within 100–1000 ms. The outcome-locked analysis targeted the 

interval from −1000 to −100 ms, as mentioned above.  

 

Finally, for the additional sanity-check analysis of the outcome regressor modulating theta-band 

activity in the joint sample (N = 42), we used the time window 100–600 ms post-outcome, 

corresponding to results from Cohen et al. (2007) and our own ERP results in the original Hein 

et al. (2021) study.   



 

3. Results 

 

3.1 Previous results: Biases of state anxiety on processing uncertainty 

 

In Hein et al. (2021) we showed state anxiety (StA) significantly reduced HRV and HF-HRV 

(0.15–0.40 Hz) relative to the control group (Cont, Figure 1C). This outcome suggested that our 

state anxiety manipulation had successfully modulated physiological responses in a manner 

consistent with changes in state anxiety (Fuller, 1992; Klein et al., 1995; Friedman, 2007; Miu et 

al., 2009; Pittig et al., 2013). We further showed that state anxiety significantly increased the 

percentage of errors made during reward learning when compared to the control group 

(Figure 1D). In parallel to the cardiovascular and behavioural changes induced by the anxiety 

manipulation, by modelling decisions with the HGF, we found that state anxiety impaired 

learning through lowering the perceptual model parameter ω2, reflecting that StA learners 

updated their beliefs about reward outcomes in smaller steps than controls. In addition, lower 𝜔2 

values in StA were further related to the altered processing of three forms of uncertainty. First, 

we found significantly reduced informational (belief) uncertainty (σ2) about the reward tendency 

in StA relative to Cont (Figure 1E). This bias in StA indicates that new information has a smaller 

impact on the update equations for beliefs about the tendency of reward (level 2). State anxious 

individuals also exhibited an underestimation of environmental uncertainty when compared with 

controls (Figure 1F). However, volatility uncertainty (σ3) increased in StA relative to Cont 

(Figure 1G). These HGF model-based results were aligned with the results of our separate 

model-free behavioural analysis as mentioned above, demonstrating a  significantly higher error 

rate in StA during reward-learning performance (Figure 1D).  

 

3.2  Time-frequency responses 

 

3.2.1 General modulation of spectral power 

 

The average spectral power during task performance did not differ between state anxiety and 

control participants (P > 0.05, cluster-based permutation test; Supplementary Figure 1). This 

finding suggested that the state anxiety manipulation did not significantly modulate the general 

spectral profile of oscillatory activity during task performance.  

 

 

 

 

 

 

  



3.2.2 Precision-weighted prediction errors about reward tendency 

 

The overall time course of the parametric modulation of alpha-beta oscillatory activity by pwPEs 

about the reward tendency (|ε2|) is displayed in Figure 3A. On the within-subject level, there 

was a significant decrease relative to baseline in alpha-beta activity in the control group  (one 

negative cluster, P = 3.9992e-4, two-sided test; within 425–1155 ms). This effect originated first 

in central parietal electrodes and later spread across the whole scalp (Figure 3B). In the StA 

group, a negative cluster was also found, corresponding to a decrease from baseline in alpha-

beta activity (P = 0.003, two-sided test; 599–1000 ms). This effect also originated at centro-

parietal electrodes but later shifted to frontocentral electrodes (Figure 3C). 

 

 

 
 

Figure 3 Alpha-beta activity is modulated by precision weighted prediction errors on the reward tendency: within -group 
effects. A) Time course of the average alpha-beta response (8–30 Hz) to pwPEs on level 2 (|ε2|) in each group (Controls, black; 



StA, pink), given in arbitrary units (a.u)). The time intervals correspond to the dependent-samples significant clusters (B, C) in each 
group are denoted by horizontal bars on the x-axis. B) Electrode-level correlates of pwPEs |ε2| in alpha-beta activity in the Cont 

group. One negative cluster was found between 425–1150 ms (P = 3.9992e-4). Left: The topographic distribution of this effect starts 
in posterior centroparietal regions (425–570 ms) and expands across all electrode regions (570–1150 ms). Right: Time-frequency 
images for pwPE on level 2, averaged across the cluster electrodes. The black dashed line marks the onset of the outcome, and 
black squares indicate the time-frequency range of the significant cluster. C) Same as (B) but in the StA group. We found a 

significant negative cluster between 599–1000 ms (P = 0.003) starting in posterior central electrodes (599–800 ms) and spreading 
to frontocentral electrodes later (800–1000 ms). Dashed and continuous black lines denote outcome onset and the extension of the 
significant cluster in the time-frequency range, as in (B).  
 

 

Complementing the within-subject results, independent samples statistical tests revealed 

significantly higher alpha-beta activity at left sensorimotor and frontocentral electrodes in StA 

relative to Cont (one significant positive cluster, P = 0.048, one-sided test; between 1200–1560 

ms, Figure 4AB). This result suggests that state anxiety-induced phasic increases alpha-beta 

oscillatory responses to pwPEs. Of note, in StA, a qualitative comparison of the sensorimotor 

and frontocentral alpha-beta activity associated with the significant cluster of the between-group 

statistical analysis revealed a greater activity increase in the sensorimotor than in the 

frontocentral electrode region (Figure 4C). In the control group, the alpha-beta response to 

pwPE decreased in both electrode regions, and the reduction was also more pronounced in 

sensorimotor electrodes (Figure 4C). Lastly, although we collapsed the frequency information 

(i.e. averaged) in the 8–30 Hz range for statistical analysis, following hypotheses of predictive 

coding, the between-group effects of pwPEs on oscillatory activity seem to be dominated by 

more pronounced modulations in the alpha range in StA relative to Cont (Supplementary 

Figure 2). This was also the case of the within-group effects, which primarily spanned the alpha 

range (Figure 3BC). One exception was the between-group effect in the sensorimotor 

electrodes, which was associated with more enhanced beta relative to alpha-band responses to 

pwPEs in the StA group.  

 

When testing outcome-locked gamma band (31–80 Hz) modulations due to pwPE on level 2 

(|ε2|), we found no significant within-group or between-group differences (Cont = 21, StA = 21, 

see Supplementary Figure 3).  

 

 

 
 

 



 
Figure 4. Between-group effects of pwPEs on level 2 (|ε2|) on alpha-beta oscillatory activity. A-B) Between-group differences 
in alpha-beta (8–30 Hz) activity to pwPEs on the reward tendency were localised to one significant positive cluster between 1200–

1560 ms (P = 0.048). A) The topographic distribution of this effect starts early in left posterior parietal regions (1200–1400 ms) and 
B) later shifts to frontocentral electrodes (1400–1560 ms). The time-frequency images on the right panels correspond to the 
electrode selection on the left topographic panels and are given in arbitrary units (a. u.). Note that there was one single significant 
cluster represented by the solid black rectangle; dashed black line ‘O’ represents the time of the outcome. C) The modulation of 

time-frequency responses to |ε2|  in the frequency range 8–30 Hz is displayed separately in sensorimotor (left) and frontal (right) 
electrodes pertaining to the significant cluster. Pink bars represent results in the state anxiety group (StA), whereas the c ontrol 
group (Cont) is denoted by black bars. Black “error” bars indicate the standard error of the mean (SEM).  

 

 

3.2.3 Predictions about reward tendency 

 

Stimulus Locked 

  



The temporal profile of the parametric modulations in alpha-beta oscillatory activity to the 

predictions regressor |𝜇2| is presented in Figure 5A, separately for each group. In state anxious 

participants, there was an increase from baseline in alpha-beta activity (one significant positive 

cluster within 280–644 ms, P = 0.02, two-sided test). This cluster emerged first in central 

parietal electrodes and subsequently peaked at left central-parietal electrodes (Figure 5B). 

There were no significant changes from baseline in the control group (P > 0.05). Between-group 

statistical analysis revealed that predictions about the reward tendency are associated with 

significantly higher levels of alpha-beta activity in StA than in Cont, and across frontocentral and 

parietal electrodes (one positive cluster from 292 to 698 ms, P = 0.03, one-sided test, 

Figure 5C).  

 

The effect of predictions on alpha-beta activity was not confounded by any concomitant effect of 

motor responses on the neural oscillatory responses, as we had included a response regressor 

in this analysis. Moreover, the oscillatory modulations to the response regressor showed the 

typical pattern of pre-movement alpha-beta decrease and a significant post-movement alpha-

beta rebound (Cont, one positive cluster, 370–880 ms, P = 0.003; StA, one positive cluster, 

370–900 ms, P = 0.003, two-sided tests). The topographic distribution of these effects spread 

over sensorimotor electrode regions, as expected (Supplementary Figure 4A-B). Independent 

samples tests revealed significantly higher levels of alpha-beta activity modulated by the 

response regressor in StA relative to Cont (one positive cluster, P = 0.01, one-sided test, 

Supplementary Figure 4C). This outcome is interesting, suggesting that motor responses in 

StA also altered oscillatory activity above and beyond the effects of predictions on the neural 

data. 

 

 



 
 
Figure 5. Stimulus-locked modulation of alpha-beta activity by predictions. A) Average time course of stimulus-locked alpha-

beta activity modulated by predictions on level 2 (|𝜇2 |) in Cont (black) and StA (pink). The average values are shown in arbitrary 
units (a.u). The significant within-group effect in StA corresponding to (B) is denoted by the pink bar on the x-axis. B) Dependent-
samples statistical analysis with cluster-based permutation tests demonstrated a significant increase from baseline in alpha-beta 
activity in the StA group (one significant positive cluster, P = 0.02). The effect occurred between 280–644 ms in centroparietal and 

frontocentral electrodes (left panel). Centre and right panels represent the time-frequency images to |𝜇2 | displayed separately in 
alpha and beta bands, respectively, and averaged across significant cluster electrodes. Dashed black lines represent the aver age 
time of the stimulus ‘S’ and response ‘R’. Solid black rectangles represent the frequency range and time of the significant cluster. C) 
An independent samples test on alpha–beta activity revealed a significant increase in StA relative to Cont from 292 to 698 ms 

across parietal and frontocentral electrodes (one significant positive cluster, P =  0.03). 

 

Outcome-locked 
 

Figure 6A displays the time course of the parametric effects of predictions about the reward 

tendency (|𝜇2|) on outcome-locked alpha-beta activity. State anxious participants exhibited a 

significant increase from baseline in alpha-beta oscillatory activity (one significant positive 

cluster from −1000 to −476 ms, P = 0.016, two-sided test). This effect peaked at central parietal 

and left frontocentral electrodes (see Figure 6B). In line with our pwPE results above, 

dependent samples testing on outcome-locked predictions in StA revealed increases in both 

alpha-and beta band changes. There were no significant changes from baseline in the control 



group participants and no significant between-group differences in outcome-locked alpha-beta 

activity. Similarly to our stimulus-locked results, the significant outcome-locked increase from 

baseline in alpha-beta oscillatory activity in the StA group was not confounded by motor 

modulation, as this was included as a separate regressor in the convolution model. A control 

analysis of the effect of the response regressor yielded non-significant changes in alpha-beta 

activity from baseline in either Cont or StA (Supplementary Figure 5) and no between-group 

differences. 

 

As an additional sanity check, we analysed the parametric modulation of theta (4–7 Hz) 

oscillatory responses by the outcome regressor (win, lose). We found that losing relative to 

winning elicits a strong frontocentral theta response between 104–659 ms (P = 1.9996e-04, 

one-sided test), consistent with previous findings (Cohen et al., 2007; Marco-Pallares et al., 

2008; Doñamayor et al., 2012, see Supplementary Figure 6). 

 

 

 
Figure 6. Outcome-locked modulation of alpha-beta activity by predictions. A) Average time course of outcome-locked alpha-

beta activity reflecting modulation by predictions on level 2 (|𝜇2|) in Cont (black) and StA (pink). Modulation of time-frequency 

images by a regressor is dimensionless, and thus given in arbitrary units (a.u). The significant within-group effect in StA (related to 

B) is implied by the pink horizontal bar on the x-axis. B) Within-group statistical analysis with dependent-samples cluster-based 

permutation tests revealed one positive cluster in the state anxious group  ([−1000, −476] ms, P = 0.016), reflecting increased 

alpha-beta activity in centroparietal and left frontal electrodes during processing predictions. Solid black lines represent the time and 

frequency of the significant cluster. Dashed black lines represent the average time of the stimuli presentation ‘S’, participant’s 

response ‘R’ and the outcome ‘O’.   

  



4. Discussion 

 

This study investigated how anxiety states modulate the oscillatory correlates of low-level 

reward predictions and prediction errors during learning in a volatile environment. Because in 

generative models of the external world precision weights regulate the influence that PEs have 

on updating predictions (Feldman and Friston, 2010; Friston, 2010), we assessed the neural 

oscillatory responses to precision-weighted PEs, rather than PEs alone, similarly to 

Auksztulewicz et al. (2017). We tested this by re-analysing data from our previous study, which 

investigated Bayesian Predictive Coding in state anxiety and showed that anxious individuals 

overestimate how precise their belief about the reward tendency is, attenuating pwPEs on that 

level and decreasing learning (Hein et al., 2021). In the current study, trial-wise model estimates 

of predictions and pwPEs were used as parametric regressors in a convolution model to explain 

modulations in the amplitude of oscillatory EEG activity (Litvak et al., 2013).  

 

Consistent with our hypotheses, we found that state anxiety alters the spectral correlates of 

prediction and pwPE signalling. Anxiety states amplified alpha-beta oscillations during 

processing of predictions about the reward tendency. This outcome may represent a stronger 

reliance on prior beliefs (Bauer et al., 2014; Sedley et al., 2016), downweighting the role of PEs 

in updating predictions and suppressing gamma responses (Bauer et al., 2014). While pwPEs 

did not significantly modulate gamma activity as a function of anxiety, we found increased 

alpha-beta modulations during the processing of pwPEs in state anxiety. As detailed below, this 

result can be reconciled with hypotheses from generalised PC (Feldman and Friston, 2010; 

Brown and Friston, 2013) in which attention modulates precision weights on PEs through 

changes in synaptic gains and lower frequency oscillations (Bauer et al., 2014; Sedley et al., 

2016). Overall, our results extend computational work on maladaptive learning in anxiety, 

suggesting that altered lower frequency oscillations may explain impeded reward learning in 

anxiety, particularly in volatile environments (Browning et al., 2015; Piray et al., 2019; Pulcu and 

Browning, 2019). 

 

In Hein et al. (2021), a 3-level HGF model best described learning behaviour. Key findings were 

that state anxiety decreased the overall learning rate, and led to an underestimation of 

environmental and estimation uncertainty about the reward tendency. As lower estimation 

uncertainty (inverse precision) about the reward tendency drove smaller pwPEs on that level, 

ultimately decreasing learning rates, here we predicted lower gamma activity during processing 

pwPEs in the state anxiety group. Given that gamma oscillations are anticorrelated with alpha-

beta oscillations across the cortex, as shown for sensorimotor processing and working memory 

(Hoogenboom et al., 2006; Potes et al., 2014; Lundqvist et al., 2016, 2018), we also 

hypothesised concurrent higher alpha-beta modulation during pwPE signalling.  

Our results provide novel insight into how rhythm-based formulations of PC—initially proposed 

for sensory processing—can be extended to reward-based learning. Our findings show that 

unsigned pwPEs (|ε2|) first decreased alpha-beta activity 400–1000 ms post-outcome, 

separately in each group, suggesting that attenuation of lower frequency responses is 

associated with processing pwPEs independently of anxiety. Subsequently, during 1200–1600 



ms, state anxiety relative to controls increased alpha-beta responses in sensorimotor and 

frontocentral electrode regions. This latter effect is closely aligned with the effects of state 

anxiety on beta activity (power and bursts) during processing pwPEs for reward-based motor 

learning (Sporn et al., 2020). Reduced alpha-beta activity was also linked to pwPEs in 

Auksztulewicz et al. (2017), yet this effect was paralleled by increased gamma oscillatory 

activity. We failed to find any effects of pwPEs on gamma activity, limiting the interpretation of 

the results. However, different accounts outlined below could paritally explain our lack of 

gamma-band effects.  

 

Suppression of PEs conveyed by gamma oscillations can occur through two main mechanisms: 

(1) the inhibitory effects of top-down predictions, and (2) postsynaptic gain regulation (Larkum et 

al., 2004; Brown and Friston, 2013; Bauer et al., 2014). Both mechanisms could partly account 

for our findings. On the one hand, the greater alpha-beta activity associated with predictions on 

level 2 in state anxiety would convey inhibitory input to superficial pyramidal neurons encoding 

PEs, decreasing gamma (Bastos et al., 2012; Sedley et al., 2016). On the other hand, in state 

anxiety, the lower estimation uncertainty σ2 reduces the precision ratio modulating PEs: 

𝜎2
(𝑘)

𝜎⁄
1

(𝑘)

 or 
𝜋̂1
(𝑘)

𝜋2
(𝑘) (Equation 2). Accordingly, pwPEs and associated gamma activity would 

decline.   

 

Mechanistically, precision is thought encoded via postsynaptic gain, modulated by 

neurotransmitters and attentional processes (Friston and Kiebel, 2009; Feldman and Friston, 

2010; Moran et al., 2013; Bauer et al., 2014). Empirical investigations of sensory PEs link alpha 

and beta oscillations to the encoding of the precision of predictions (Bauer et al., 2014; Sedley 

et al., 2016; Palmer et al., 2019), which is the numerator of the precision ratio 
𝜋̂1
(𝑘)

𝜋2
(𝑘) in the HGF 

update equations on level 2, and not affected by anxiety our study.  In visuomotor adaptation 

tasks, high sensory uncertainty after visual perturbations (low  𝜋1
(𝑘)

) is followed by greater post-

movement beta power, reflecting a greater reliance on priors (Palmer et al., 2019) and 

increased confidence in the feedforward estimations relative to sensory feedback (Tan et al., 

2016).  

 

Because we investigated reward-based learning to capture the effects of external motivational 

feedback on learning biases in anxiety, the relevant precision term in our computational model 

was π2, the precision of the posterior belief in the reward tendency. Increased precision π2, as 

we observed in state anxiety, could explain the increased alpha-beta activity in this group during 

encoding pwPEs, reflecting smaller updates to predictions and diminishing the magnitude of 

gamma activity. These accounts don’t explain, however, the lack of gamma results on the 

within-subject level. Our follow-up work with MEG will aim to elucidate the role of gamma 

oscillations during belief updating in healthy and subclinical anxiety samples. 

 

A further consideration for future work is the role of dopamine in mediating anxiety-related 

changes in alpha-beta activity during Bayesian PC. Dopamine is considered a relevant signal 

encoding the precision of beliefs during reward learning (FitzGerald et al., 2015) and is 



associated with sensorimotor beta oscillations in research on Parkinson’s (Jenkinson and Brown 

2011; Haumesser et al., 2021). Dopamine also plays an important modulatory role in fear and 

anxiety disorders (de la Mora et al., 2010). Pharmacological interventions are a powerful 

approach to link computational quantities to neurotransmitters (Vossel et al., 2014; Marshall et 

al., 2016), and thus may offer mechanistic insights into biased learning in anxiety. 

 

More generally, EEG/MEG studies consistently show that frontocentral beta oscillations are 

modulated by positive reward feedback or predicting cues (Marco-Pallares et al., 2008; Bunzeck 

et al., 2011; Cunillera et al., 2012). These effects seem to stem from cortical structures linked to 

the reward-related fronto-subcortical network, such as the PFC (O’Doherty, 2004; HajiHosseini 

et al., 2012; Mas-Herrero et al., 2015). These studies, however, did not directly model the 

update of reward predictions via PEs. Beyond the PC interpretations, a common view is that 

reduced beta activity in the prefrontal and sensorimotor territories facilitates the encoding of 

relevant information to shape ongoing task performance (Engel and Fries, 2010; Schmidt et al., 

2019). Accordingly, state anxiety could be more broadly associated with disrupting processing 

of relevant information through changes in alpha and beta oscillations, in line with some of the 

evidence on EEG markers of social anxiety disorders (Al-Ezzi et al., 2020). 

 

Capturing neural modulations by predictions is challenging (Diaconescu et al., 2017). The 

neural representation of predictions could develop anywhere between the previous and current 

trial’s outcome. To address this, we separately analysed oscillatory correlates of predictions 

post-stimulus and pre-outcome. Between-group effects were obtained exclusively in the 

stimulus-locked analysis, corresponding with an increase in alpha-beta activity between 300–

700 ms in the StA relative to the control group, with a widespread topography. This effect was 

paralleled by a significant alpha-beta increase in frontoparietal electrodes in state anxiety only. 

Prior to the reward outcome, −1000 to −500 ms, there was a similar pattern of enhanced alpha-

beta activity in frontoparietal electrode regions in state anxiety. Future studies may thus benefit 

from a stimulus-locked approach when assessing the oscillatory correlates of predictions.  

 

Previous work consistently linked alpha and beta oscillatory power to encoding predictions—

potentially down-modulating precision weights (Bauer et al., 2014; Sedley et al., 2016; 

Auksztulewicz et al., 2017). Yet previous work focused on sensory predictions and healthy 

control participants, which leaves open the question of how aberrant affective states may 

interact with oscillatory correlates of prediction signals. In our study, interpretation of results in 

healthy controls is limited given the lack of a significant modulation by prediction in this group. 

Scalp EEG predominantly samples brain electrical activity from the superficial layers (Buzsáki et 

al., 2012; Lopes da Silva, 2013) and may be less sensitive to oscillatory activity associated with 

predictions in deep cortical layers, at least in a normal physiological state. In temporary anxiety, 

by contrast, abnormally precise posterior beliefs would suppress PEs, strengthening predictions 

and exacerbating the associated alpha-beta activity. Further investigation is needed to identify 

the oscillatory responses to reward-based prediction and PE signalling in healthy controls, 

opening up rhythm-based accounts of Bayesian PC to reward learning. Above all, our findings 

extend recent computational work on learning difficulties in anxiety (Miu et al., 2008; de Visser 

et al., 2010; Browning et al., 2015; Huang et al., 2017). We propose one neurophysiological 



marker associated with state anxiety’s impairment of reward learning is enhanced alpha-beta 

oscillations, maintaining overly precise unyielding feedforward estimations of reward resistant to 

revision that inhibit PE encoding. 

 

We propose that one neurophysiological marker associated with state anxiety’s impairment of 

reward learning is enhanced alpha-beta oscillations, maintaining overly precise reward 

predictions that represent unyielding feedforward estimations resistant to revision, and  

inhibiting the encoding of PE signals. 

 

 

  



5. Supplementary Figures 

 

5.1 Spectral power 

 

 

 
 

Supplementary Figure 1. Grand-average of the normalised spectral power during task performance. The power spectral 

density during task performance was normalised into decibels (dB) with the average power spectral density during the preceding 

resting phase R1, and grand-averaged separately in state anxious (pink) and control (black) participants. Shaded areas denote the 

standard error of the mean (SEM). There was no significant difference in normalised power between groups (P > 0.05, cluster -

based permutation test). 

 
  



5.2 Alpha-beta: Bar graph by frequency (between-group effect, pwPE) 
 

 

 
 
Supplementary Figure 2. Modulation of time-frequency responses to |ε2| in alpha (8–12 Hz) and beta band (13–30 Hz) 

oscillations. The independent samples tests on the modulation in alpha-beta (8–30 Hz) activity by pwPEs about the tendency of 
reward revealed a significant effect in sensorimotor and frontal electrodes between 1200–1560 ms (P = 0.048). The left panel shows 
the mean time frequency response (in a.u.) in the sensorimotor effect for alpha band (8–12 Hz, yellow) and beta band (13–30 Hz, 

violet) separately between the StA and Cont group given on the x-axis. The right panel presents the contribution of each frequency 
band to the frontal effect. Black bars indicate the standard error of the mean (SEM).  

  



5.3 Gamma: pwPE 

 

 
Supplementary Figure 3. Gamma activity modulated by precision weighted prediction errors on the reward tendency. A) 
The average gamma response (31–80 Hz) in arbitrary units (a.u.) to pwPEs on level 2 (|ε2|) in each group (Controls, black; StA, 
pink), with time in seconds (s) on the x-axis. B) The correlates of pwPEs |ε2| in gamma activity in the Cont group. The left 
topographic distribution shows activity between 100–1600 ms; the right time frequency image is for |ε2| in gamma activity in all 

electrodes presented 0–2 s from the outcome (black dashed line, ‘O’). C) StA topographic representation of |ε2| in gamma activity 
(left), with the time frequency image (right) between 0–2 s (outcome given by black dashed line, ‘O’).  
 
 

 
 

 

  



5.4 Alpha-beta: Response 

 

 
Supplementary Figure 4. Stimulus-locked alpha-beta (8–30 Hz) power changes to response regressor (related to Figure 5). 

All responses were provided using the right hand. A) Dependent samples statistical analysis using cluster-based permutations 

showed one positive cluster in the control group (370–880 ms, P = 0.0026,  black dots indicate electrodes associated with the 

cluster) indicating a post-movement alpha-beta rebound. Prior to response is an expected decrease in pre-movement alpha-beta 

(8–30 Hz)  oscillatory activity (250–370 ms). The right-most time frequency image presents response related changes in alpha-beta 

activity for the control group averaged over the electrodes associated with the sensorimotor effect (0–1 s, stimulus-locked). Solid 

black lines give the time and frequency of the significant cluster. Dashed black l ines represent the average time of the stimuli 

presentation ‘S’ and the response ‘R’. B) For the state anxiety group (StA), a similar modulation to alpha-beta activity for post-

movement alpha-beta rebound was found (370–900 ms, P = 0.003) with a similar decrease in pre-movement activity (250–370 ms). 

The time frequency image shows these response modulations to alpha-beta activity over the sensorimotor effect electrodes (0–1 s, 

stimulus-locked, solid black lines for the time and frequency of the significant cluster and dashed black lines for the average time of 

the stimuli presentation ‘S’ and the response ‘R’. C) Independent samples tests revealed one positive cluster (P = 0.01) indicating 

more stimulus-locked alpha-beta (8–30 Hz) activity in StA relative to Cont modulated by the response regressor. The time of this 
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effect was in a window between 100 to 880 ms, primarily in central and right parietal electrodes. On the right is a time freq uency 

image from this effect showing the time of stimulus (black dashed line, ‘S’), the median response time (black dashed line, ‘R’), and 

the significant effect in time and frequency outlined using a solid black frame.  

 

 

 

 
 

Supplementary Figure 5. Outcome-locked modulation of alpha-beta activity (8–30 Hz) by the response regressor (related to 

Figure 6). All responses were provided using the right hand. The control group (Cont) in the top row and the state anxiety group 

(StA) in the bottom row both have two topographic distributions for outcome-locked modulation by the response regressor. The first 

is an early ([-1500, -1000] ms) window prior to response and the second is a later window ([−1100, −500] ms) following the 

response. Time-frequency plots are given in the rightmost column of both rows showing the time of the outcome (black dashed line, 

‘O’), the average stimulus time (black dashed line, ‘S’), and the average response time (black dashed line, ‘R’). No signific ant within-

group or between-group effects were found.  
 

  



5.5 Theta: Outcome 

 

The theta (4–7 Hz) profile due to parametric modulations by the outcome regressors (win, lose) 

are presented across time (−0.2–2 s) separately for each group in Supplementary Figure 12A. 

To test whether unrewarded outcomes (lose) elicit a stronger response in theta activity (4–7 Hz) 

relative to rewarded outcomes (win), we tested in all participants the difference in theta activity 

between lose and win regressors. Tests between 100–1600 ms demonstrated a significant 

increase in theta activity for unrewarded outcomes (lose) relative to rewarded outcomes (win, N 

= 42: one positive cluster at level P = 1.9996e-04, one-sided test, see Supplementary Figure 

12B). The time window of this difference was between 104–659 ms and the most prominent 

difference was over frontocentral electrodes. This result confirms previous research in reward-

learning and decision-making where a significant increase in theta activity has been shown to 

follow losses in comparison to wins in a similar time and electrode distribution (Cohen et al., 

2007). 

 

 
Supplementary Figure 6. Theta activity modulated by the outcome regressor. A)  The time course of the average theta 
response (4–7 Hz) to the outcome regressor (win, green; lose, pink), given in arbitrary units (a.u). The time intervals corresponding 

to the dependent-samples significant clusters is shown using a black bar on the x-axis. B) An independent samples test on theta (4–
7 Hz) responses modulated by the outcome regressor revealed significantly higher theta activity in unrewarded (lose) outcomes 
relative to rewarded (win) outcomes. This effect occurred between 104 to 459 ms across frontocentral electrodes (one significant 



positive cluster, P = 1.9996e-04, one-sided test). In the right panel, the time-frequency image gives the time of the outcome event 
given (black dashed line and label ‘O’) and the time and frequency of the significant effect in a solid black square.  
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