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Neural networks have been widely used in agent learning architectures; however, learnings for one task

might nullify learnings for another. Behavioural plasticity enables humans and animals alike to respond to

environmental changes without degrading learned knowledge; this can be achieved by regulating behaviour

with neuromodulation—a biological process found in the brain. We demonstrate that by modulating activity-

propagating signals, neurally trained agents evolving to solve tasks in dynamic environments that are prone

to change can expect a significantly higher fitness than non-modulatory agents and also achieve their goals

more often. Further, we show that while behavioural plasticity can help agents to achieve goals in these

variable environments, this ability to overcome environmental changes with greater success comes at the

cost of highly volatile evolution.
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1 INTRODUCTION

Natural and artificial environments are often complex, unpredictable, and dynamic, making learn-
ing and surviving a challenge for animals and artificial agents alike [32, 48]. To survive in these
challenging conditions, many organisms, such as nematodes [43] and fish [31], show behavioural
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plasticity to rapidly adapt to novel situations by temporarily changing behaviour [34, 35]. This
problem is not just specific to natural beings; artificial neural networks (ANNs), for example,
are also often tasked with learning in dynamic and unpredictable environments. Encoding new in-
formation in ANNs can result in a degradation of performance and catastrophic forgetting when
learning new tasks or experiencing novel environmental contexts [10, 13, 27, 42]; learned knowl-
edge must be changed to learn new things, often leading to knowledge loss [13]. One way ANNs
can “learn” is with neuroevolution, where ANNs are evolved with an evolutionary algorithm in
accordance to a fitness function [38]. Many applications of neuroevolution focus on evolving the
connection weights of ANNs [5, 9, 13, 33], however, more complex approaches that evolve both the
weights and topologies of ANNs exist [39, 46]. Learning complex, sequential or multi-stage tasks is
often hard for these neural controllers, as complete information about the environment—including
the available actions, their cues, and their consequences—is not usually accessible [12, 32]; this is
also evident when environments are shared, as the actions of individuals change the context of the
environment for others [5]. In nature, behavioural plasticity can be achieved with neuromodula-

tion—a biological process whereby chemical signals are regulated (often also termed “modulated”
or “gated”) in the brain depending on environmental stimuli [1]. Consequently, neuromodulation
has been used to aid neural controllers with learning new or sequential tasks and learning in dy-
namic environments [11, 13, 41].

We present an experimental study that abstracts these concepts to explore how neural con-
trollers evolve to achieve goals in variable and dynamic environments when they have no knowl-
edge of the task, environment, or others. We then present a comprehensive analysis of the effect
that behavioural plasticity has on evolution as an extension of previous work [4]; we ascertain
whether neuromodulation affects the ability to achieve goals at the end of, and during, evolu-
tion, and ultimately whether this affects evolutionary volatility. Observing evolutionary volatility
indicates how often fitness is prone to fluctuate during evolution—more volatility means less pre-
dictability in evolution. This is important to consider when designing systems—especially those
in highly variable or dynamic environments—as a tradeoff between fitness and predictability may
need to be considered.

The experiments use the River Crossing Dilemma testbed [5], which is designed to explore social
concepts of arbitrary complexity; as such, the study observes how agents evolve in single- and
multi-agent environments. ANNs are just one example of an agent controller in which behaviour
can be learned; we use ANNs in line with previous River Crossing testbeds [5, 9, 33] to explore
how ANNs make decisions in social environments to solve tasks of variable complexity. Here, we
define a multi-stage task as one that an agent must learn, and pass, through multiple states, and
perform different behaviours in different contexts to achieve their goal; this definition is inspired
by Reference [12].

We hypothesise that reversible and immediate behavioural changes as a result of neuromodu-
lation will enable agents to overcome the challenges associated with solving tasks and achieving
goals in unpredictable and dynamic environments with greater effect than non-plastic agents. We
demonstrate this using the River Crossing Dilemma (RCD) testbed introduced by Barnes et al.
[5] for multi-stage tasks, as well as a new adaptation of the testbed called the Protected River

Crossing Dilemma (PRCD) [4] for exploring single-stage tasks. The effect that behavioural plas-
ticity has on evolution can thus be observed in agents that evolve in different contexts and con-
ditions. We operationalise neuromodulation by gating (regulating) activity within a single neural
network, allowing agents to regulate their behaviour without affecting encoded knowledge; this
distinguishes our approach from others, which either use a separate modulatory network/neurons,
or regulate learning as well as, or instead of, behaviour [8, 11, 41]. By doing this, fewer resources
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are required for plastic behaviour—which becomes more critical as the size or complexity of the
network increases. Further, we investigate how regulating behaviour may help agents to evolve
in multi-agent environments, without the capacity to learn of the existence of others; introduc-
ing other agents to the environment changes the context of the task, which becomes an implicit
social dilemma. Neuromodulation has been used to explore social dynamics in multi-agent sys-
tems [3, 48], however, our work extends the notion of Barnes et al. [5], where cooperation and
exploitation may emerge but cannot be intended. A novelty of this study is therefore the explo-
ration of how neuromodulation affects agent evolution when agents are unable to perceive the
actions of others in the environment; we specifically structure the study around exploring how
agents evolve to solve single- and multi-stage tasks in single- and multi-agent environments. Ad-
ditionally, we analyse the fitnesses that agents receive during and after evolution, as well as the
evolutionary volatility experienced. These experiments are therefore designed to investigate the
extent to which behavioural plasticity affects agent evolution and the ability to achieve goals.

2 BACKGROUND

2.1 Behavioural Plasticity and Neuromodulation

One way to design adaptive systems is by utilising behavioural plasticity; this can be seen as the
ability to change or adapt behaviour based on changes in stimuli [28]. This is important for nav-
igating uncertain, novel, or dynamic environments and can be classed into two different types:
developmental and activational [35]. Developmental behavioural plasticity can be seen as learn-
ing from experience and external stimuli. Activational behavioural plasticity, however, enables
immediate behavioural changes; individuals can respond to new or dynamic environments during
their lifetime by changing their phenotype. These behavioural changes are reversible, as the geno-
type remains unchanged. Activational plasticity is also termed “innate” [28] or “contextual” [37]
plasticity.

Neuromodulation is a biological process found in animal brains [18], whereby chemical signals
modify, gate, or regulate synaptic plasticity based on the modulatory signal combined with the pre-
and post-synaptic activities and environmental stimuli [1, 13, 36]. In neuroscience, synaptic plastic-
ity is the modification of synapses between neurons through strengthening or weakening them [2].
In ANNs, synaptic plasticity is achieved by modulating neural network weights. Developmental
plasticity is thus achieved by regulating learning in the long-term, where modulatory signals alter
synaptic strengths; activational plasticity is achieved by regulating behaviour or synaptic activity
in the short-term, without affecting learning or synaptic strengths.

2.2 Achieving Developmental Plasticity with Neuromodulation

Similarly to ANNs being inspired by the connectionist architectures found in brains, neuromodula-
tion has been widely applied to artificial models to regulate synaptic plasticity and the learning rate
of neural connections. ANNs have been evolved with modulatory neurons to regulate learning and
mitigate the catastrophic forgetting associated with performing tasks in uncertain environments
[36]; this improves learning when agents forage in T-maze problems (either moving left or right in
a maze with a “T”-shape), in which the location of the reward can change. Other studies show that
promoting the evolution of modular neural networks by introducing a cost for neural connections
can mitigate catastrophic forgetting and improve learning—which is regulated with neuromodu-
lation [13]. Neuromodulation has also been used to develop conflict learning in ANNs [16] and
associative learning in robots [20]; these two approaches employ neuromodulation but do not use
neuroevolution as a learning mechanism.
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These approaches modulate learning, resulting in developmental plasticity, by regulating the
local learning rate of neurons in the network; they do not, however, demonstrate how behaviour
can be regulated in a short-term, reversible way without affecting learning to facilitate immediate

behavioural changes. Further, these approaches only use neuromodulation in ANNs or robots that
exist in isolation; we, however, explore how immediate behavioural plasticity can be achieved with
neuromodulation without regulating learning in both single- and multi-agent environments.

2.3 Achieving Activational Plasticity with Neuromodulation

Neurobiological mechanisms have been explored using a computational framework based on neu-
romodulatory systems such as the dopaminergic and serotonergic systems by regulating synaptic
activity [24]. Whilst this is proposed to aid autonomous agents in exploratory and exploitative
decision-making, activational plasticity is not applied as a tool to improve neuroevolution, but
rather to explore biological systems computationally. The effects of modulating neuroreceptors
and synaptic plasticity have been studied with spiking neural networks to model EEG data [14];
an aim of that work is to produce a tool to diagnose neurological disorders such as dementia—
and not to use neuromodulation to aid artificial agents in achieving goals. Supervised learning
methods and “context-dependent plasticity” (“activational plasticity” [35]) have been shown to be
beneficial for maintaining high accuracy for large numbers of sequential classification tasks, based
on the MNIST and ImageNet datasets [26]; this was achieved by regulating activity randomly in
the network for each task. In other work, “context-dependent selective activation” is achieved by
learning parameters of a separate neuromodulatory network, which in turn gates activity for a
prediction network [8]. This two-tiered neural network approach is used for learning sequential
tasks and indirectly modulates learning, as the amount of activity in the predictive network after
modulation is reflected in the back-propagation process.

While it is common for learning and activity to be regulated by a separate group of modulatory
neurons or an entire network [8, 11, 41], a distinguishing characteristic of our work is that we
explore the impact that regulating activity-propagating signals within a single neural network has
on an agent’s ability to learn tasks. By not explicitly regulating learning, we regulate behaviour
to provoke immediate phenotypic changes based on environmental stimuli. Additionally, we use
neuroevolution to evolve which neurons in the neural network are modulatory, resulting in a
more structured way of operationalising neuromodulation than Reference [26], for example, where
neuronal activity is gated randomly.

2.4 Multi-task Reinforcement Learning

The vast majority of Reinforcement Learning problems are single-task, meaning an agent is trained
to perform a specific task, such as playing a certain video game, and after training tested on the
same task. Impressive progress and success has been demonstrated in single-task Reinforcement
Learning in recent years due to the power of Deep Learning [25, 29]. Learning multiple tasks is a
more challenging problem, because as new tasks are learned, competency on previous tasks needs
to be retained. A straightforward way to fix this is to store all the previous training data in a replay
buffer, mix them together, and thus train on all tasks at once. While efficient, this is not biologically
plausible and does not scale to very large collections of tasks. A more realistic setting is one where
learning has to happen in a sequence. Humans and animals learn things sequentially all the time
[7], but AI systems tend to struggle with catastrophic forgetting of previously learned tasks when
they do so [27]. Many approaches have been suggested for reducing the impact of such forgetting
[13, 22, 40], but a general solution to this problem does not yet exist.

One particular solution that is closely related to the work in this article is to reduce catastrophic
forgetting with neuromodulation [42]. That work evolved neural networks with modulatory
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signals that modified learning rates, demonstrating that the neuromodulation helped networks
decompose the problem into subtasks, reducing forgetting and interference.

As mentioned above, we are in the current study interested in the less-studied activational plas-
ticity, rather than long-term regulation of learning as applied in previous studies applying neuro-
modulation as a tool to reduce catastrophic forgetting. Rather than decomposing the multi-task
learning problem, activational plasticity has the potential to learn everything together and on-
demand modify the ANN function depending on context.

2.5 Meta-learning

A problem closely related to multi-task learning, and also closely related to the problem studied
in this article, is meta-learning. Meta-learning is the challenge of “learning to learn,” that is, to
optimise a model to as quickly as possible master new tasks that it is presented with. Those new
tasks are never encountered during the initial optimisation, forcing the agent to acquire general
learning strategies [15].

Recent years have seen a large interest and exciting progress in this challenging problem. Influ-
ential contributions include MAML, which optimises weights of a neural network so a few updates
to those weights allow many new tasks to be mastered quickly [15], OML, which learns interme-
diate representations that are frozen and later shared across many learned tasks [21], and ANML,
which trains a neuromodulated activity-gating ANN that protects from catastrophic forgetting
during meta-learning [8].

The latter, which like our method relies on activity-gating neuromodulation, is the most closely
related to this work. However, in addition to important differences in the algorithm and training
procedure, ANML was focused on meta-learning for classification problems—whereas, we here
focus on evolving agents in multi-agent worlds.

2.6 Learning Multi-stage Tasks in Multi-agent Environments

Both humans and animals find learning in environments that change state or context without
explicit cues challenging; this, however, is a characteristic of most realistic environments [32], and
information about these changes is rarely explicitly available. Learning multi-stage tasks is also
difficult, as the full state-space of tasks is not usually available when learning [12]; changes in state
or stimuli also change the context in which behaviours are learned.

Navigating dynamic or uncertain environments, or learning to achieve new or many tasks, is
challenging for ANNs; encoded knowledge must be adapted to learn new things [13]. Regulating
synaptic plasticity with neuromodulation can facilitate adaptation and learning when the task or
environment changes, thus helping agents to overcome these issues [11, 13, 36, 42]. While neuro-
modulation has been used in multi-agent contexts, this is typically to explore the effect on cooper-
ative or competitive strategies in social dilemmas [3] or in competitive environments [48], where
agents are explicitly aware of others. Agents in novel environments may not have full or even
partial information about others, and thus cannot cooperate or compete intentionally. In previous
work, we have shown that learning in multi-agent environments without knowledge of others is
problematic, as the actions of others change the environment unpredictably [5]. Social action is
shown to improve learning in multi-agent environments [5], however, the agents in that study do
not exhibit behavioural plasticity; furthermore, the study is limited to exploring multi-stage tasks.

We aim to explore the challenges presented to neural controllers when they experience unpre-
dictable environments and observe the effect that behavioural plasticity arising from regulating
activity-propagating signals has on evolution. As seen in the natural world [43], we would ex-
pect plastic agents to adapt better to changing and uncertain environments than those that are
not. As plasticity is said to increase with environmental variability [23], we investigate this by
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Fig. 1. The River Crossing Dilemma testbed, proposed by Barnes et al. [5]. The grey agent (top left) is allo-
cated the two Resources in grey, and the black agent (bottom right) is allocated the two Resources in black;
agents cannot interact with Resources not allocated to them. Both agents can interact with all other objects.
For single-agent environments, the black agent is removed.

evolving agents that learn single- and multi-stage tasks in both single- and multi-agent environ-
ments; this covers different combinations of environmental changes and variations. Specifically,
we use the term “multi-stage task” similarly to Reference [12], where agents must learn multiple
stages of a task to achieve a goal. Further, we explore the effect that changing the context in which
an agent exists has on evolution by changing the environment from single- to multi-agent. We hy-
pothesise that behavioural plasticity will help agents to achieve their tasks in these environments
by facilitating immediate behavioural changes in response to varying environmental contexts or
conditions.

3 TESTBED AND AGENT DESIGN

3.1 The River Crossing Dilemma Testbed

The River Crossing Dilemma (RCD) testbed was introduced by Barnes et al. [5], to explore how
agents evolve to achieve individual goals in shared worlds; this extends the original River Crossing
Task proposed by Robinson et al. [33]. Agents must learn what their goal is and how to achieve it
with no prior knowledge of the task or environment. The RCD is a 19× 19 grid-world, with a two-
cell deep river of Water. Each river bank has four Stones; all empty cells are Grass (Figure 1). An
agent’s goal is to collect its allocated Resources from either side of the river, which gives a highly
positive fitness. Conversely, agents drown and receive a highly negative fitness when stepping into
the river. The task is multi-stage [12], as agents must evolve to perform the appropriate behaviours
in different contexts to achieve their goal: They must build a bridge to cross the river and avoid
drowning. Two Stones must be placed in the same Water cell to successfully build a bridge. Time
is measured in “timesteps”; an agent can move one cell per timestep. For experiments with two
agents, the agent starting in the top left of the environment moves first, then the agent starting in
the bottom right.

3.2 The Protected River Crossing Dilemma

We introduce the Protected River Crossing Dilemma (PRCD)—an adaptation of the RCD [5]
specifically used to explore how agents evolve to solve single-stage tasks; like with the RCD,
the PRCD is a Java implementation and is the same as Figure 1. However, the river acts as an
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Table 1. Payoff Matrix Using
Equation (1) to Show the Fitness

Achieved by Agent x in the RCD [5]
and PRCD Testbeds, Assuming that

Agent x Has Retrieved Both
Resource Objects and Another Agent

y Exists in the Environment

Sy = 0 Sy = 1 Sy = 2

Sx = 0 0.0 0.0 1.0
Sx = 1 –0.1 0.9 0.9
Sx = 2 0.7 0.7 0.7

Sx and Sy are the number of Stones

placed by each Agent. Sy = 0 also shows

the fitnesses that agent x could achieve

if it exists in an environment alone.

impassable and non-lethal obstacle; agents cannot fall into it mistakenly. This simple change means
that agents do not need to learn the different contexts in which they can interact with the river:
It is not safe unless carrying a Stone. Agents must still perform sub-tasks such as bridge-building
to succeed; removing the river entirely would remove the multi-stage task, but also make the task
trivial.

3.3 Gamification of the RCD and PRCD

The RCD and PRCD are gamified, such that agents incur an increasing, personal cost for each
Stone placed in the river; a bridge is successfully built with two Stones, since the river is two cells
deep. This cost introduces a social dilemma in multi-agent environments, specifically a Snowdrift
Game [30]; this means that agents may: complete their task individually and endure the full cost of
bridge-building; cooperate to share the cost; or exploit other agents by waiting for them to build a
bridge to avoid a cost at all. In addition to creating a social dilemma, this increasing cost for placing
Stones also deters agents from learning to simply place Stones in the river, encouraging them to
achieve their goal with the least effort. We use the term gamification in a slightly broader way
than is typically considered in, for example, the gamification of uninteresting tasks for people. In
this article, we simply use it to refer to the addition of game elements to a task. This gamification
means that there is less incentive for agents to cooperate due to the cost of bridge-building, but
defection can lead to failure if the agent is not able to achieve its goal. The fitness, or payoff, for
agent i is calculated with Equation (1):

pi =
ri

N
−
[
C × si

2
(1 + si )

]
− f , (1)

where ri is the number of Resources collected by agent i , N = 2 and is the number of Resources
that an agent must collect in total to achieve its goal (each Resource is allocated to a specific agent
to collect),C = 0.1 and is the cost of placing a Stone in the river, si is the number of Stones placed
in the river by agent i , and f = 1 if agent i falls in the river, or 0 otherwise. An agent’s fitness
is calculated based on its own behaviour. Commonly observed fitnesses are presented in a payoff
matrix in Table 1. Achieving the goal alone gives a fitness of 0.7, which increases to 0.9 if the cost
of bridge-building is shared or 1.0 if an agent exploits another; anything below 0.7 indicates the
goal is not achieved.
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Fig. 2. The deliberative neural network has three hidden layers and generates high-level sub-goals based on
the current state. Inputs are 1 or 0, corresponding to the agent’s current state: Grass (G), Resource (R), Water
(W), Stone (S), Carrying Status (C), if a Bridge partially exists (B). Outputs are 1 for attraction, 0 for neutral
or −1 for avoidance for each sub-goal: Resource (R), Stone (S), Water (W).

3.4 Agent Design

Agents in both the RCD and the PRCD use a two-tiered neural network architecture, adapted from
Barnes et al. [5] and inspired by Robinson et al. [33]. The first tier is the deliberative network, which
generates high-level sub-goals based on the current inputs, corresponding to the agent’s current
state. This network is responsible for decision-making; depending on the inputs and weights of
the network, the outputs indicate what the agent’s current sub-goals are (whether it is attracted
to, neutral towards, or repulsed from certain objects). The weights of the network (as well as the
type of each neuron) represent the agent’s genes, and therefore what behaviours it will exhibit
depending on what inputs. The inputs are 1 or 0, depending on whether the agent is on Grass,
a Resource, Water or a Stone, if it is currently carrying a Stone, and if a bridge has been built
partially in the environment (i.e., one Stone in the river out of two). The “partial bridge” input
informs agents anywhere in the environment that a Stone has been placed somewhere in the
river; this helps navigation efforts by indicating that some parts of the river are “shallower” than
others and only require one more Stone to build a bridge. This feed-forward network has six input
neurons, three hidden layers with eight, six, and four neurons, respectively, and an output layer
of three neurons (Figure 2); each neuron in each layer of neurons in the network is connected to
each of the neurons in the next layer. Resources, Stones, and Water will be attractive if the output
is 1, avoided if −1, or neutral if 0. Snell-Rood [35] posits that activational behavioural plasticity—
the focus of this work—increases with brain size in terms of the number of neurons; Herczeg
et al. [19] observe this effect in guppies, where brain size can indicate the degree of plasticity and
an individual’s ability to adapt to novel environments. Increasing the number of neurons in the
deliberative network in this study compared to prior work [5] is intended to increase the degree
of plastic behaviour compared to a smaller network.

The second tier is the reactive network, with the same dimensions as the environment—in this
case, 19 × 19; each neuron is connected to the surrounding eight. This reactive network uses the
shunting equation (Equation (2), References [5, 33, 44, 45]) to create dynamic activity landscapes
based on the current sub-goals; the activity for each neuron, and thus the overall activity landscape,
is calculated with this equation at each timestep, meaning agents can react immediately when their
goals change. Agents can therefore hill-climb towards the goals generated in the previous tier
by moving to the cell in its Moore neighbourhood (the surrounding eight cells) with the highest
activity. Note that Equation (2) is used exclusively in the reactive network, not the deliberative
network. Agents must make one move per timestep and cannot remain stationary. Agents also
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Fig. 3. Modulatory neurons in the deliberative network propagate activity the same as non-modulatory neu-
rons when the sum of the neuron’s inputs is ≥ 0; here, if the input signal to x2 is positive, then the outgoing
activity signals of x2 propagate through the connections to the next layer of neurons as usual (y1 and y2).
If, however, the input signal to x5 is negative, then the modulatory neuron regulates the outgoing activity;
specifically, neuron x5 will output signals of 0 along each of its outgoing connections (in this case to y3 and
y4), so the outgoing signal is effectively gated or “turned off” when the signal is multiplied by the weight
of the connection. This means agents can exhibit behavioural plasticity, as the weights of the neural net-
work are not changed, but temporarily suppressed; this leads to the network producing different outputs and
therefore different behaviours, without permanently modifying the network weights. Modulatory neurons
only affect their own outgoing connections, so the connections from x4 and x6 to y3 and y4 are unaffected
by x5.

cannot move into a cell occupied by another agent. An agent will pick up a Stone automatically
if it moves onto a cell with a Stone; an agent will also put a Stone in the river automatically if
the adjacent cell is Water—and if it is carrying a Stone. Equation (2) calculates the activity of each
neuron based on its own and the surrounding activations: A is the passive decay rate; xi is the
current neuron; wi j is the weight between neurons xi and x j , where x j is one of the surrounding
cells in xi ’s Moore neighbourhood (indicated by k = 8); [x j ]

+ is calculated bymax (0,x j ), meaning
that negative activity cannot propagate through the network. I is the Iota value of the neuron,
which depends on the sub-goals from the deliberative network (for a value of: 1, I = 15;−1, I = −15;
and I = 0 otherwise); this creates hills and valleys in the activity landscape, as inspired by the
original RCT testbed [33].

dxi

dt
= −Axi + Ii +

k∑

j=1

wi j [x j ]
+ (2)

3.5 Operationalising Activity-gating Neuromodulation

Modulated agents can immediately change their phenotype/behaviour by regulating and temporar-
ily suppressing activity within the deliberative network (Figure 2)—without permanently changing
network weights. Figure 3 shows an example of this activity-gating modulation. Neurons in the
deliberative network may evolve to be non-modulatory or modulatory; they both propagate activ-
ity in the same, standard way—except when the incoming signal (sum of inputs) to a modulatory
neuron is negative. In this case, the neuron will regulate activity (and ultimately behaviour) by
outputting a signal of 0 along each of its outgoing connections. These connections are thus ef-
fectively “turned-off,” or gated, as the signal is blocked locally; note that the weights themselves
are not changed. This gating or modulation of activity-propagating signals results in behavioural
plasticity; an agent’s genotype, represented by the evolved weights of the neural network and the
types of the neurons in the deliberative network, is therefore able to express multiple phenotypes—
without changing, or potentially destroying, the knowledge encoded in the weights. In other words,
a modulatory agent can temporarily change behaviour, depending on the stimuli and inputs; this
is because modulatory neurons that are “switched off” do not propagate any activity signals to the
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next layer of neurons, thus changing the output of the network and the resulting behaviour of the
agent.

3.6 Evolutionary Algorithm

All experiments are conducted using the PRCD and RCD testbeds with the following common pa-
rameters, inspired by Reference [5]. For each experiment, a population of 25 randomly initialised
agents is evolved using a Steady State Genetic Algorithm. Agents acquire knowledge, and therefore
“learn,” through evolution—there is no within-lifetime learning. At each generation, three agents
are randomly selected from the population and are evaluated in a tournament; each agent has 500
timesteps to achieve their goal. As a steady state genetic algorithm is used, only one agent is re-
placed in the population at each timestep; a tournament of three randomly selected agents allows
more areas of the solution space to be explored, whereas evaluating the whole population would
restrict the search. The evaluation stops if all agents reach the maximum amount of timesteps,
achieve the goal, or die. The agent with the worst fitness in each tournament is replaced with an
offspring generated from the best two. For each chromosome (layer of weights in the deliberative
network), this offspring has a probability of Pone = 0.95 to inherit the chromosome from a ran-
dom parent, otherwise single-point crossover is used. Each connection weightw in the offspring’s
deliberative network is then mutated by a random value from a Gaussian distribution with μ = w
and σ = 0.01.

For modulatory agents, the hidden neurons in the deliberative network are evolved in addition
to the weights (input and output neurons cannot be modulatory); neurons may evolve to be stan-
dard non-modulatory neurons or activity-gating modulatory neurons. The deliberative network
of each agent is initialised with non-modulatory neurons, then evolved with neuroevolution like
the weights of the network. At each generation, the new offspring inherits the neuronal structure
from a randomly chosen parent, where the parents are the two agents with the best fitnesses in
the tournament as described above; there is a probability of Pmut = 0.15 that one randomly cho-
sen hidden neuron in the deliberative network (Figure 2) will be mutated from non-modulatory
to modulatory or vice versa. This mutation rate is adapted from the mutation operators and prob-
abilities used in Reference [13]. Modulatory neurons regulate activity as outlined in Section 3.5.
Non-modulatory agents have a static network of non-modulatory neurons that do not evolve.

4 EXPERIMENTAL DESIGN

The experiments in this study aim to investigate the effect that behavioural plasticity through
activity-gating neuromodulation has on agent evolution when the environment is prone to change;
the experimental study is designed to explore how the ability to rapidly and reversibly change
phenotypic behaviour helps agents to solve tasks in varying environmental conditions. All exper-
iments are repeated 100 times, both with and without neuromodulation, and evolve agents for
500,000 generations from a randomly initialised state unless otherwise specified.

The experiments in Section 5.1 explore how agents evolve to solve a single-stage task in the
Protected River Crossing Dilemma (PRCD), when they exist alone in the environment. This
environment has the least inherent variability, which will provide a baseline to compare the effects
of neuromodulation in later experiments. Variability increases if there is more than one agent in
the environment, since the actions of each agent can change the environment unpredictably.

The second set of experiments introduces another agent into the single-stage task PRCD; this
creates a social dilemma, so agents may evolve to cooperate or exploit the other unintentionally. As
agents cannot perceive or reason about the actions or existence of other agents, their environment
appears unpredictable and is therefore harder to evolve in. These experiments evolve two separate,
randomly-initialised populations of agents that start on opposite corners of the environment. In
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Table 2. The Percentage of Agents that Receive Common
Fitnesses in Each Experiment, after 500,000 Generations of

Solving a Single- (S) or Multi- (M) Stage Task

Experiment Task
Fitness (% of Agents)

(S/M) 0.7 0.9 1.0 <0.7 ≥0.7

Alone S 40 0 0 60 40
Alone with NM S 85 0 0 15 85

Alone M 37 0 0 63 37
Alone with NM M 77 0 0 23 77

Together S 29 5 27 39 61
Together with NM S 49 2 46 3 97

Together M 27 5 36 32 68
Together with NM M 44 0 50 6 94

CE M 40 1 32 27 73
CE with NM M 47 2 50 1 99

Agents evolve alone, together, or with continued evolution (CE). 0.7 is a

goal-achieving fitness after a bridge is built with two Stones; 0.9 is

sharing the cost of bridge-building; 1.0 is exploitation; <0.7 does not

achieve the goal; ≥0.7 is a goal-achieving fitness.

multi-agent environments, only the evolution and goal-achievement of the agent that begins in
the top-left corner is analysed; this makes the results from single- and multi-agent environments
comparable. The other agent still evolves as described in Section 3.6, however, its evolution is not
analysed.

The third set of experiments investigates how agents that exist alone evolve to solve a multi-
stage task in the RCD environment. This also adds an element of variability and uncertainty com-
pared to the first set of experiments.

The fourth set of experiments use the RCD environment to explore how agents that share an en-
vironment together evolve to solve multi-stage tasks. Of these four experiments, this environment
is the most variable, due to the imperceptible actions of the other agent within the environment
and the challenge of the multi-stage task. We expect to observe the most pronounced benefit of
neuromodulation and behavioural activity in these experiments, as behavioural changes are in-
creasingly useful as environmental conditions change [43].

5 RESULTS

5.1 Learning Single-stage Tasks When Alone

We start by investigating how agents evolve to solve the simplest task in the least variable en-
vironment in the study—the single-stage task in the PRCD—and the role that neuromodulation
plays.

Figure 4(a) shows the mean best-in-population fitness of agents evolving alone in the PRCD,
both with and without neuromodulation. The benefit of neuromodulation is seen at the start of,
and is sustained throughout, evolution. 85% of modulatory agents were able to achieve their goal
at the end of evolution, compared to only 40% of non-modulatory agents (Table 2).

5.2 Learning Single-stage Tasks When Together

The single-stage task in the PRCD becomes gamified when there are two agents; the actions of the
other agent are unpredictable, meaning variability also increases. Agents may evolve to achieve
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Fig. 4. The mean best-in-population fitnesses of agents evolving to solve (a) a single-stage task alone,
(b) a single-stage task together, (c) a multi-stage task alone, and (d) a multi-stage task together, for 500,000
generations, with and without neuromodulation (NM). Single- and multi-stage tasks take place in the PRCD
and RCD, respectively. A fitness of: 0.7 indicates the goal is achieved individually; 0.9 indicates the cost of
bridge-building is shared; 1.0 indicates an agent exploits another’s act of building a bridge; 0.7 or above
indicates the goal is achieved; below 0.7 indicates the task is failed (Equation (1)).

their goal alone, cooperate unintentionally, or exploit the actions of the other agent; agents there-
fore have the potential to achieve a higher fitness at the risk of relying on the actions of another
to achieve their goal.

Figure 4(b) shows the mean best-in-population fitness of agents evolving together in a shared
PRCD environment. Similarly to when agents evolve alone (Figure 4(a)), neuromodulation is ben-
eficial from the start. Modulatory agents achieve higher fitnesses more often than their non-
modulatory counterparts, and by the end of evolution, 97% of modulatory agents achieve their goal
compared to 61% of non-modulatory agents (Table 2). The effect of neuromodulation is more promi-
nent when agents evolve together compared to when they evolve alone, as agents can achieve a
higher fitness. This finding is not interesting in itself, however, the fact that fewer agents evolve
to achieve their goals individually in shared environments (Table 2) demonstrates the impact that
evolving in shared environments can have on goal achievement. Relying on other agents to achieve
goals can be detrimental if those agents change their behaviour or leave the environment. Further,
the spike in fitness at the beginning of evolution is caused by both agents reacting to and evolv-
ing based on the changes in the other’s behaviour; once each agent’s behaviour becomes more
predictable, this spike drops. This is also observed in Figure 4(a).
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5.3 Learning Multi-stage Tasks When Alone

The multi-stage task in the RCD creates a more variable environment than in the single-stage
task PRCD; agents must evolve to match correct behaviours with different environmental stimuli
under different conditions, which is a more challenging—and more perilous—task when the pos-
sibility of falling in the river exists. When agents evolve alone in the RCD environment, they can
only achieve their goal once they have built a bridge on their own. As the environment is gam-
ified, the maximum fitness an agent can achieve is therefore 0.7, due to the bridge-building cost
(Equation (1)).

The mean best-in-population fitness increases over time as more agents evolve successful solu-
tions; after 500,000 generations, 37% of agents achieved their goal without neuromodulation, com-
pared to 77% with neuromodulation (Table 2). Figure 4(c) shows that the mean best-in-population
fitness is higher when agents use neuromodulation, indicating that agents are more likely to evolve
successful solutions and that they are able to do this in fewer generations than agents that do not
use neuromodulation.

5.4 Learning Multi-stage Tasks When Together

The fitness function presented in Equation (1) evaluates each agent individually. In a shared envi-
ronment, agents can still achieve their goal alone by building a bridge completely by themselves
and enduring the associated cost; they can also exploit the other to avoid the cost or cooperate to
share the cost of bridge-building. The maximum fitness therefore increases to 1.0 instead of 0.7, as
agents may achieve their goal without building a bridge. In each case, agents have no capacity to
perceive the existence or actions of the other, so cannot cooperate or exploit intentionally; instead,
agents perceive changes in environmental stimuli and attempt to adapt their behaviour accord-
ingly. The multi-stage task in the RCD adds yet another layer of complexity onto the task and
the environment; a multi-agent environment introduces an element of unpredictability, as agents
cannot perceive others, and a multi-stage task means that the agent must discover multiple states
and the corresponding consequences in the environment to achieve its task.

One thing to note about the difference between evolving in single- and multi-agent environ-
ments is that agents in multi-agent environments are affected by the actions of the other agent in
one way or another; this is seen when agents solve single- and multi-stage tasks. Table 2 shows
that fewer agents achieve their goals individually (by building a bridge on their own, to receive
a fitness of 0.7) when evolving together, than when evolving alone; overall, more agents achieve
their goals in shared environments because some exploit or cooperate with the other agent, but
this may be detrimental in the long run if agents are unable to learn bridge-building behaviour
themselves.

Figure 4(d) shows that modulatory agents evolve to achieve their goal more often, and in fewer
generations, than non-modulatory agents. After 500,000 generations, 94% of modulatory agents
achieve their goal, compared to only 68% of non-modulatory agents (Table 2). This shows that
agents receive a benefit from expressing behavioural plasticity in response to changes in environ-
mental stimuli caused by the actions of others.

5.5 Learning a Multi-stage Task with Continued Evolution

When agents evolve alone in the RCD, the maximum fitness they can achieve is 0.7 after the total
cost of building a bridge is deducted. When agents evolve together, this threshold increases to 1.0
as the possibility to utilise the bridge-building of other agents arises. In the following experiments,
agents undergo an initial period of evolution in the multi-stage RCD environment alone for 500,000
generations. Agents are then paired with another agent who has also evolved alone, and both
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Fig. 5. The mean best-in-population fitness of agents that evolve alone for 500,000 generations, then continue
to evolve together (Continued Evolution (CE)) with a partner for a further 500,000 generations, with and
without neuromodulation (NM). A fitness of 0.7 or above indicates the goal is achieved (Equation (1)).

Fig. 6. The mean best-in-population fitness of agents evolving with continued evolution (CE) with and with-
out neuromodulation (NM)—5,000 generations before and after the change from a single- to multi-agent
environment. A fitness of 0.7 or above indicates the goal is achieved (Equation (1)).

continue to evolve together in a shared, multi-stage task RCD environment for a further 500,000
generations. By changing the agents’ environment from individual to shared, the predictability
decreases not only because the environment is now shared—but because the context in which the
agents have evolved in is completely changed. Agents must adapt their behaviour to cope with a
change in environmental stimuli and the unanticipated actions of others in the environment.

Figure 5 shows the mean best-in-population fitness for agents that continue to evolve together.
The change in context from a single- to a multi-agent environment allows agents to immediately
capitalise on the actions of others to achieve a higher fitness; Figure 6 shows the 5,000 generations
either side of the context change at generation 500,000, which clearly shows a jump in fitness. This
spike then falls slightly while agents adjust to the new change in context. Agents evolve in tandem
and change their behaviour in response to the other agent’s changes in behaviour; the spike then
falls slightly as agents learn that other agents might not always be reliable, and thus evolve to
achieve lower fitness by achieving goals alone. Neuromodulation is observed to help agents to
adapt to their new, shared environment when the context of the task is changed. The benefit of
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Table 3. Statistical Moments and Median (to 3 S.F.) of the
Best-in-population Fitness after 500,000 Generations of Evolving Alone,

Together, and with Continued Evolution (CE)

Exp Task NM Mean Median Skewness Kurtosis Variance

Alone
S

N 0.58 0.5 0.408 1.17 0.00970
Y 0.67 0.7 –1.96 4.84 0.00515

M
N 0.574 0.5 0.539 1.29 0.00942
Y 0.654 0.7 –1.28 2.647 0.00716

Together
S

N 0.713 0.7 0.345 1.548 0.0422
Y 0.836 0.7 –0.0856 1.424 0.0252

M
N 0.754 0.7 0.0245 1.364 0.0447
Y 0.838 0.85 –0.282 1.60 0.0286

CE M
N 0.744 0.7 0.195 1.61 0.0385
Y 0.852 0.95 –0.132 1.21 0.0233

The highest mean and median, and lowest amount of skewness, kurtosis, and variance for

each experiment with and without neuromodulation are in bold.

neuromodulation is maintained for the remainder of the evolutionary process, resulting in 99% of
agents achieving their goal, compared to only 73% of non-modulatory agents (Table 2).

6 ANALYSING THE EFFECT OF BEHAVIOURAL PLASTICITY AND ENVIRONMENTAL

VARIABILITY ON AGENT EVOLUTION

In these experiments, activity-gating neuromodulation increases both the likelihood and the speed
that agents evolve successful solutions—both when they exist alone and when they exist together
(Figure 4). This section analyses agent evolution further and aims to ascertain whether behavioural
plasticity affects the fitness agents receive both at the end of and during evolution. Additionally,
we explore whether neuromodulation affects the volatility that agents experience in terms of fluc-
tuations in fitness during evolution.

6.1 Analysing the Fitness

The statistical moments and median for the best-in-population fitness of each experiment were cal-
culated at the end of evolution (Table 3). This analysis shows that modulatory agents have the same
or higher mean and median fitness across all experiments. Combined with the results presented in
Table 2, modulatory agents not only have a higher mean and median fitness, but they achieve their
goal more often than non-modulatory agents; this is observed both in single- and multi-stage tasks
and single- and multi-agent environments. The variance in the best-in-population fitness after
evolution is also lower in modulatory agents, which further illustrates the benefits of behavioural
plasticity.

The distribution of fitnesses after evolution for modulatory agents is negatively skewed; the
amount of skewness tends to decrease from highly skewed to more symmetrical as environmental
variability increases. This is supported by the median fitness tending to be higher than the mean
fitness for modulatory agents, meaning that agents would likely achieve a higher-than-average
fitness. The opposite is observed in non-modulatory agents, as the fitness distribution is positively
skewed; as with modulatory agents, the amount of skew tends to decrease as environmental vari-
ability increases. In each experiment, the mean fitness for non-modulatory agents is higher than
the median; this indicates positive skewness and that agents would be likely to achieve a fitness
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lower than the average. A contributing factor to this is that non-modulatory agents are less likely
to evolve a goal-achieving fitness at the end of evolution than modulatory agents, thus skewing
the distribution of fitnesses to the left.

The amount of kurtosis in the fitness distribution tends to increase in non-modulatory agents
as environmental variability increases, but decrease in modulatory agents; this suggests that more
outliers can be expected in non-modulatory agents as environmental variability increases, and
the opposite in modulatory agents. Saying this, all fitness distributions for each experiment are
platykurtic (where excess kurtosis is negative (kurtexcess = kurt − 3), or kurt < 3), meaning that
outliers and extreme values are not common overall.

To analyse the effect that activity-gating neuromodulation has on evolution further, statisti-
cal tests were performed to compare the best-in-population fitnesses of modulatory and non-
modulatory agents in each experiment. First, a Shapiro-Wilk test for normality is described by
Yap and Sim [47] as being powerful for a range of distributions that are skewed, symmetric, and
those with high or low kurtosis. As such, it is appropriate to test the distributions described in
Table 3. Each distribution was found to be non-normal (p < 0.05).

As the distributions are non-normal, Wilcoxon Signed Rank statistical tests were then conducted
to analyse the effects of behavioural plasticity on fitness and evolution. This non-parametric test
compares the medians of two paired distributions; the null hypothesis of a two-tailed test is that
the distribution medians are equal, whereas one-tailed tests have the alternative hypothesis that
there is a directional difference in the distribution medians (e.g., mn > mm ). The null hypothesis
can be rejected when the calculated p-value is significant, below 0.05. These results are presented
in Table 4. The two-tailed tests show that there is a significant difference in median fitness between
non-modulatory and modulatory agents for each experiment in the study; the null hypothesis that
the medians of the two distributions are equal can thus be rejected as p < 0.05. Additionally, two
one-tailed tests indicate that there is a significant directional difference in the medians of the two
distributions, where the median of the non-modulatory approach (mn ) is lower than the modula-
tory approach (mm ) for each experiment conducted; furthermore, the contrasting one-tailed test
(mn > mm ) shows no significant difference. These results demonstrate that neuromodulation has
a positive effect on the expected fitness of agents in all areas of the study.

6.2 Analysing Goal-achievement over Evolution

Thus far, the fitness that agents receive at the end of evolution has been assessed; modulatory
agents are observed to have a higher mean fitness than non-modulatory agents and achieve their
goals more often. However, while it is desirable to evolve agents that can receive a goal-achieving
fitness at the end of evolution, another benefit would be for agents to consistently achieve their
goals throughout evolution as well.

Figure 7 shows a box plot of the number of generations that agents receive a goal-achieving
fitness (≥0.7) during evolution. In each experiment, the first, second, and third quartiles of goal-
achieving generations is the same or higher in modulatory agents than in non-modulatory agents;
this shows that modulatory agents achieve their goal for more generations overall than their non-
modulatory counterparts. Not only is the data more heavily skewed to the left in modulatory
agents, but the spread of values is generally smaller than in non-modulatory agents; this indicates
that modulatory agents are more predictable and are likely to spend more generations receiving
a goal-achieving fitness than other agents. Modulatory agents thus spend more of their lifetime
able to achieve their goals than agents not capable of behavioural plasticity.

To evidence this claim further, Wilcoxon Signed Rank statistical tests were conducted to com-
pare the number of successful generations between non-modulatory and modulatory agents,
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Table 4. Wilcoxon Signed Rank Statistical Tests Comparing the
Fitness and Volatility Metrics (Section 6.3) of the Best-in-population

Non-modulatory (mn ) and Modulatory (mm ) Agents in Each Experiment:
Evolving in an Environment Alone, Together, or with Continued Evolution (CE),

with a Single- (S) or Multi- (M) Stage Task

Metric Exp Task
Statistical Test Alternative Hypothesis

(S/M) mn �mm mn < mm mn > mm

Fitness

Alone S 2.588 × 10−9 * 1.294 × 10−9 * 1
Together S 2.362 × 10−4 * 1.181 × 10−4 * 0.9999
Alone M 2.994 × 10−8 * 1.497 × 10−8 * 1
Together M 1.594 × 10−2 * 7.97 × 10−3 * 0.9922
CE M 2.593 × 10−4 * 1.296 × 10−4 * 0.9999

SDoT

Alone S 1.297 × 10−4 * 6.484 × 10−5 * 0.9999
Together S 4.535 × 10−3 * 2.267 × 10−3 * 0.9978
Alone M 2.052 × 10−7 * 1.026 × 10−7 * 1
Together M 6.919 × 10−2 3.46 × 10−2 * 0.9657
CE M 2.315 × 10−2 * 1.157 × 10−2 * 0.9885

CACoT

Alone S 5.881 × 10−5 * 2.941 × 10−5 * 1
Together S 3.459 × 10−10 * 1.73 × 10−10 * 1
Alone M 3.982 × 10−4 * 1.991 × 10−4 * 0.9998
Together M 1.371 × 10−6 * 6.856 × 10−7 * 1
CE M 1.213 × 10−5 * 6.064 × 10−6 * 1

CCoT

Alone S 5.699 × 10−5 * 2.849 × 10−5 * 1
Together S 3.52 × 10−8 * 1.76 × 10−8 * 1
Alone M 4.028 × 10−4 * 2.014 × 10−4 * 0.9998
Together M 3.152 × 10−5 * 1.576 × 10−5 * 1
CE M 1.982 × 10−6 * 9, 908 × 10−7 * 1

Significant p-values at the p < 0.05 level are indicated with an asterisk (*).

Table 5. Wilcoxon Signed Rank Statistical Tests Comparing the
Number of Generations that the Best-in-population Non-modulatory
(mn ) and Modulatory (mm ) Agents Receive a Goal-achieving Fitness

(≥0.7) in Each Experiment: Evolving Alone, Together, or with
Continued Evolution (CE), with a Single- (S) or Multi- (M) Stage Task

Exp Task
Statistical Test Alternative Hypothesis

(S/M) mn �mm mn < mm mn > mm

Alone S 2.128 × 10−7 * 1.064 × 10−7 * 1
Together S 1.846 × 10−7 * 9.23 × 10−8 * 1
Alone M 3.031 × 10−7 * 1.515 × 10−7 * 1
Together M 2.177 × 10−6 * 1.088 × 10−6 * 1
CE M 2.484 × 10−8 * 1.242 × 10−8 * 1

Significant p-values at the p < 0.05 level are indicated with an asterisk (*).

where a “successful” generation is one that an agent receives a goal-achieving fitness of ≥0.7
(Table 5). In line with Section 6.1, a Shapiro-Wilk normality test first indicated each distribution
was non-normal (p < 0.05). In each experiment, the two-tailed Wilcoxon Signed Rank test shows
that there is a significant difference in the median number of successful generations between
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Fig. 7. Box plot depicting the number of generations agents receive a goal-achieving fitness (≥0.7) during
500,000 generations of evolution in each experiment: alone (A), together (T), with continued evolution (CE,
excluding the initial period of evolving alone), with neuromodulation (N), in a single- (S) or multi- (M) stage
task.

non-modulatory and modulatory agents; as p < 0.05 in each test, the null hypothesis that the
medians are equal can be rejected. Further, the one-tailed tests show that there is a significant
directional difference between the two medians, where the median number of successful genera-
tions in non-modulatory agents is lower than in modulatory agents. The analysis thus far therefore
shows that behavioural plasticity can help agents to not only be more likely to receive a higher
fitness and achieve their goals after evolution, but it can also help them to be more successful
throughout evolution as well.

6.3 Analysing the Effect of Behavioural Plasticity on Evolutionary Volatility

Behavioural plasticity arising through neuromodulation has a positive impact on the fitness agents
achieve after evolution and the ability of agents to achieve their goals. In this section, we explore
how behavioural plasticity affects the evolution and thus the evolved fitness of agents.

Barnes et al. [6] proposed three metrics to analyse the volatility of agent evolution by capturing
the variability and dispersion of values over time. These metrics can therefore be used to describe
the evolutionary process of agents and whether the received fitness is prone to change frequently
during evolution.

The Standard Deviation over Time (SDoT) metric is inspired by a common metric used in
volatility forecasting in finance, capturing the dispersion and variability of values over time by
calculating the sample standard deviation over a defined time period. A high SDoT indicates that
agents have highly volatile evolution, meaning that the fitness has a high variability and dispersion
of values over time.

The Cumulative Absolute Change over Time (CACoT) metric is used to analyse how much
an agent’s fitness fluctuates over time by capturing the magnitude of fitness changes during evo-
lution; an agent whose fitness fluctuates by large amounts would therefore have a high CACoT.
This is calculated by totalling the absolute change in fitness between each generation.

Complementary to the previous metric, the Count of Change over Time (CCoT) metric cap-
tures how often an agent’s fitness changes from one generation to the next during evolution—
without capturing the magnitude of the changes; a high CCoT indicates that the fitness changes
often.
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Table 6. Statistical Moments and Median (to 3 S.F.) of the SDoT Volatility Metric for
the Best-in-population Agents after 500,000 Generations of Evolving Alone, Together,

and with Continued Evolution (CE)

Exp Task NM Mean Median Skewness Kurtosis Variance

Alone
S

N 0.0251 0.00306 1.10 2.40 0.00134
Y 0.0443 0.0374 0.254 1.56 0.00131

M
N 0.0188 0.00285 1.55 3.74 0.00101

Y 0.0419 0.0382 0.292 1.49 0.00139

Together
S

N 0.0489 0.0157 1.65 4.94 0.00371
Y 0.0665 0.0537 1.19 3.89 0.00315

M
N 0.0802 0.0310 0.763 2.07 0.00735
Y 0.0981 0.0804 0.636 2.16 0.00594

CE M
N 0.102 0.0616 0.507 1.56 0.0105
Y 0.130 0.133 0.159 1.59 0.00690

The lowest values for each experiment with and without neuromodulation are in bold.

Table 7. Statistical Moments and Median (to 3 S.F.) of the CACoT Volatility Metric
for the Best-in-population Agents after 500,000 Generations of Evolving Alone,

Together, and with Continued Evolution (CE)

Exp Task NM Mean Median Skewness Kurtosis Variance

Alone
S

N 4.28 1.70 5.95 45.3 72.2

Y 8.13 4.70 5.70 44.4 174

M
N 2.79 1.1 3.25 14.7 18.0

Y 4.37 2.30 2.57 9.59 29.5

Together
S

N 41.4 22.7 1.55 5.18 1,730

Y 206 116 2.69 13.5 69,600

M
N 40.8 13.3 5.15 37.2 6,560

Y 97.1 46.1 3.38 19.0 16,400

CE M
N 60.6 8.65 5.97 45.5 25,800

Y 231 47.0 2.68 11.8 149,000

The lowest values for each experiment with and without neuromodulation are in bold.

For all 100 runs of each experiment, a value for each of the three metrics was calculated us-
ing the best-in-population fitness at each generation across 500,000 generations of evolution or
all 1,000,000 generations for agents evolving with Continued Evolution. Statistical moments and
medians are presented for each metric in Tables 6, 7, and 8.

In all experiments, non-modulatory agents have a lower mean and median SDoT, CACoT, and
CCoT (Tables 6, 7, and 8, respectively) than their modulatory counterparts, indicating that evolu-
tion is more volatile for modulatory agents and that the received fitness tends to fluctuate often.
The increase in volatility when agents share an environment can be observed in Figures 4 and
5, since the line graphs appear “thicker” than when agents evolve alone; this is because the fit-
ness is fluctuating often. This volatility would partly be caused by agents reacting to the other
agent’s behaviour, which may potentially be different to the previous generation; it could also be
due to the mutations that occur at each generation, which would make the effect of neuromodula-
tion stronger or weaker, depending on the strength of the mutated connections in the deliberative
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Table 8. Statistical Moments and Median (to 3 S.F.) of the CCoT Volatility Metric for
the Best-in-population Agents after 500,000 Generations of Evolving Alone, Together,

and with Continued Evolution (CE)

Experiment Task NM Mean Median Skewness Kurtosis Variance

Alone
S

N 19.9 7.00 5.94 45.3 1,810

Y 39.1 22.0 5.70 44.4 4,340

M
N 12.5 4.00 3.25 14.7 449

Y 20.3 10.0 2.58 9.61 738

Together
S

N 155 75.5 2.52 11.6 39,600

Y 854 356 2.85 14.1 1,690,000

M
N 174 35.0 3.38 15.2 129,000

Y 373 134 4.00 24.2 360,000

CE M
N 321 32.5 8.05 73.3 1,530,000

Y 1130 228 2.58 10.9 3,470,000

The lowest values for each experiment with and without neuromodulation are in bold.

network. Further, agents have a lower mean and median CACoT and CCoT when evolving to solve
a multi-stage task than a single-stage task, both with and without neuromodulation. The results
therefore suggest that the best-in-population fitness fluctuates less and by lower amounts during
evolution when agents solve a multi-stage task compared to a single-stage task. The exception is
that the mean CCoT of non-modulatory agents evolving together is higher for the multi-stage task
than the single-stage task. A similar trend can be seen in Table 2, as more agents solve the single-
stage task than the multi-stage version—except when non-modulatory agents evolve together; this
would result in more fluctuations in fitness during evolution and a higher CCoT.

Non-modulatory agents have lower variability in CACoT and CCoT, however, modulatory
agents generally have a lower variability in SDoT. These findings, combined with a lower mean
and median in each metric, indicate that non-modulatory agents have fewer and more predictable
fluctuations in fitness with less magnitude and a higher and less predictable SDoT than in mod-
ulatory agents. Additionally, the mean, median, and variance for each metric tend to increase as
environmental variability increases; the results therefore suggest that agents will experience more
volatility as environmental variability increases, where volatility is likely to: be lowest in agents
that evolve alone; increase when agents evolve together; be highest when agents evolve with con-
tinued evolution.

Each metric for each experiment has positive skewness, showing that the data is right-skewed;
this is supported by the median being lower than the mean (except for a marginally higher me-
dian than mean for the SDoT of modulatory agents evolving with continued evolution in a multi-
stage task (Table 6)). The CACoT and CCoT distributions for each experiment are highly skewed,
whereas the SDoT is generally less skewed. Positive skewness indicates that agents would likely
have a lower SDoT, CACoT, and CCoT than the average, as the distribution is skewed by higher
values; agents would therefore be expected to have a lower CACoT and CCoT than the observed
mean and median. Further, the skewness and kurtosis of each metric is generally lower in modu-
latory agents than in non-modulatory agents; the values for each metric would be less likely to be
extreme and more likely to be symmetrical around the mean, with outlier values being less likely
in modulatory agents than non-modulatory agents.

Further to the analysis of fitness in Section 6.1, a Shapiro-Wilk test was conducted to detect
normality in the SDoT, CACoT, and CCoT distributions for each experiment; p < 0.05 for each
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test, indicating non-normality. Wilcox Signed Rank statistical tests (one two-tailed (mn � mm )
and two one-tailed tests (mn < mm , mn > mm )) were then performed; the results are presented
in Table 4. The two-tailed tests show that for each experiment, there is a significant difference
between the metric for non-modulatory and modulatory agents (except for the SDoT of agents
evolving together to solve a multi-stage task), as p < 0.05 in each test. Further, the results of the
one-tailed tests with the alternative hypothesis mn < mm show that for each experiment, there
is a significant directional difference in the medians of the two distributions, where the metric
for non-modulatory (mn ) agents is significantly lower than modulatory agents (mm ); each p-value
is below 0.05, thus the null-hypothesis that there is no directional difference in medians can be
rejected. The final one-tailed tests with the alternative hypothesis mn > mm show no significant
difference.

Overall, this analysis shows that modulatory agents experience more evolutionary volatility,
which also tends to increase with environmental variability; as the environment gets more unpre-
dictable and uncertain due to the unknowable actions of others, fitness tends to fluctuate more.
There does, however, seem to be a tradeoff between fitness and volatility; despite this higher level
of evolutionary volatility, modulatory agents are observed to have a higher mean fitness than non-
modulatory agents (Table 4) and achieve their goals more often.

6.4 Analysing the Modulatory Neurons in the Neural Networks

To understand the effect of behavioural plasticity via neuromodulation further, the arrangement
of modulatory neurons that evolve in the agents were examined to see whether any patterns
emerge. For each of the 100 runs of each experiment, the deliberative network for the single best-
in-population agent after evolution was recorded for comparison.

Table 9 presents the most common configuration of modulatory neurons evolved in the deliber-
ative networks in each experiment, broken down into agents that do and do not achieve the goal.
It is worth noting that the frequency of these common configurations is low in comparison to the
total number of agents that have and have not achieved their goal (e.g., six agents had a common
configuration out of 85 that achieved their goal when evolving alone to solve a single-stage task).
As such, no configuration leads agents to achieve their goal or not.

It is therefore apparent that agents can achieve their goal in many different ways, with differ-
ent numbers of modulatory neurons in each layer and in different arrangements. It is not clear
whether all modulatory neurons in these configurations are used or beneficial—some may be re-
dundant if the surrounding weights are near zero values. Saying this, no agent was observed to
evolve a neural network with either zero modulatory neurons or the maximum out of a possi-
ble 18—each agent evolved a deliberative neural network with at least three modulatory neurons.
This suggests that there is no obvious link between the number or configuration of modulatory
neurons and either the success of an agent, the behaviours that the agent switches between, the
stimuli that affects when modulation occurs, the type of environment it evolves in, or the task in
which it has to solve. Because modulatory neurons can regulate neural network activity locally,
this can potentially make goal-achieving behaviours (such as moving towards Water when a Stone
is being carried, potentially bypassing the need to learn the negative association with the river) be-
come accessible early on in evolution—without the agent needing to encode that exact knowledge
directly in the network. This could be an explanation of why neuromodulation increases the mean
best-in-population faster than in non-modulatory agents in Figures 4 and 5. Further, agents did
not converge to one single “successful” or “unsuccessful” configuration of modulatory neurons—
modulatory neurons can be arranged in a number of different ways to have a positive effect on
agent evolution and fitness.
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Table 9. The Most Common Number of Modulatory Neurons
Evolved in Each of the three Layers of the Deliberative

Networks (L1, L2, L3), and in Total (LT)

Experiment Task G L1 L2 L3 LT Freq Total

Alone
S

Y 4 3 3 10 6 85
N 3 3 3 9 2 15

M
Y 3 2 2 7 5 77
N 3 2 3 8 2 23

Together
S

Y 4 4 2 10 6 97
N - - - - - 3

M
Y 4 3 3 10 6 94
N - - - - - 6

CE M
Y 5 4 2 11 8 99
N - - - - - 1

Results are presented for agents evolving to solve a single- (S) or multi-

(M) stage task, and those that achieve (Y) their goal (G) and those that

do not (N). The frequency that the configuration occurs is shown, as

well as the total number of agents overall. A dash (-) indicates that no

configuration occurred more than once.

7 DISCUSSION AND IMPLICATIONS

Evolving to solve tasks in dynamic and uncertain environments can be difficult for neural networks,
as learning or altering behaviours in response to environmental changes means that knowledge
encoded in the network will be changed; if this happens, then goal-achieving behaviour may be
lost, and fitness may degrade as a consequence. Barnes et al. [5] demonstrate the implications that
pursuing individual goals in a shared environment can have when evolving neural networks as
agent controllers. When two agents—each unaware of the other—act within a shared environment,
these actions can interfere with the other’s learning and ability to achieve their own goals. Unin-
tended interactions can have an unexpected impact on how well suited an agent or system is for
the environment it is located in. These issues are becoming ever more important to consider when
designing technical systems, as they are increasingly being composed of many components or sub-
systems. As a result, it becomes increasingly likely that these systems will interact in unintended
and unpredictable ways [17], which can lead to the state of the environment changing without
warning through the actions of others. The ability for a system to behave appropriately regard-
less of unexpected interactions or changes in environmental states therefore becomes crucial. In
nature, animals and humans exhibit behavioural plasticity when faced with unknown situations;
this allows biological systems to temporarily perform different behaviours to those that have been
learned in an attempt to survive or overcome environmental changes. We have therefore investi-
gated how plasticity could affect systems that evolve to solve tasks in uncertain environments.

In this study, we have abstracted this concept by exploring how simulated agents evolve in vary-
ing environments, where variability increases in terms of the complexity of the task, and whether
another agent can affect the environment with its actions. In all cases, agents have no knowledge of
others and therefore cannot intend to interact with others—nor can they learn that a perceived en-
vironmental change is caused by the actions of another agent. We show that behavioural plasticity
in the form of evolving with neuromodulation has a positive effect on the fitness that agents receive
throughout and at the end of evolution. However, what may not be so intuitive is that behavioural
plasticity also increases the volatility of agent evolution. While fitness is higher in modulatory
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agents than non-modulatory agents overall, the fitness over evolution fluctuates more. One might
expect that dynamic behaviour would—in addition to improving the chance of success—actually de-
crease the volatility within the system by counteracting any dynamics or volatility present within
the environment. The three metrics used to measure the amount of evolutionary volatility (SDoT,
CACoT, and CCoT, Tables 6, 7, and 8, respectively) show this is not the case, as the mean and me-
dian for each metric tends to increase as the variability in the environment increases. Even in the
least variable environments in the study, plastic agents experience more evolutionary volatility
than agents that are not.

The findings and analyses presented in this article show that consequences can exist for sys-
tems that are unable to act appropriately in environments that are prone to change or those that
are shared. In reality, as systems and the components they are composed of grow larger, the op-
portunities for unintended interactions with others and unexpected environmental changes also
increase. Behavioural plasticity is one route to equipping systems with the ability to overcome en-
vironmental uncertainty, although we have shown that this leads to more evolutionary volatility.
Higher volatility is the cost for an increase in fitness and ability to achieve goals; further, agents
spend more of their lifetime or evolution able to achieve their goals than those that are not capable
of behavioural plasticity.

8 CONCLUSION AND FUTURE WORK

Increasing environmental variability makes learning challenging for neural controllers, as encoded
information must be overwritten to learn new things when environmental conditions change. The
capacity to immediately and temporarily change behaviour based on environmental stimuli is said
to promote adaptation in variable environments [35, 43]. We have thus investigated the effect that
activity-gating neuromodulation has on an agent’s ability to evolve to succeed in environments of
increasing variability by exploring how agents evolve to solve both single- and multi-stage tasks
in single- and multi-agent environments. An important element of this study is that agents cannot
learn about the actions or existence of other agents; in this way, they cannot intend to cooperate
or exploit one another.

This study uses the River Crossing Dilemma testbed [5] to explore how agents evolve to solve
multi-stage tasks; additionally, we propose a new adaptation called the Protected River Crossing
Dilemma to observe how agents evolve to solve single-stage tasks. Our results demonstrate that
activity-gating neuromodulation has a significant effect on the expected fitness of evolved agents
when the variability of the environment increases; this behavioural plasticity is beneficial to cre-
ate adaptive agent controllers that can temporarily change behaviour in novel environments or
situations. We also show that neuromodulation helps agents to adapt to new contexts and envi-
ronmental changes and that they can achieve their goals in many ways; no single arrangement
of modulatory neurons influences an agent’s ability to achieve goals in any of the experiments
conducted.

Using three metrics to analyse evolutionary volatility, we show that the fitness of modulatory
agents fluctuates significantly more than non-modulatory agents; this higher volatility is a result
of modulatory neurons regulating activity in the neural networks in response to changing envi-
ronmental stimuli. Despite this volatility, modulatory agents are more likely to achieve their goals
and more often during evolution, and receive a higher fitness than non-modulatory agents. Be-
havioural plasticity arising from neuromodulation therefore creates a tradeoff, as a significantly
higher fitness and chance of goal-achievement comes at the cost of higher evolutionary volatility.
This may indeed be desirable for agents that exist in highly unpredictable and unknown environ-
ments by equipping them with the ability to respond quickly and appropriately to environmental
change in a way that preserves or even improves fitness or performance.
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The most variable environment in this study evolved agents alone for an initial period of time,
before continuing to evolve them with another agent; future studies will investigate the extent
to which behavioural plasticity enables agents to maintain goal-achieving behaviours when the
presence of other agents is unpredictable. A limitation of this study is that a maximum of two
agents are observed in any environment; exploring how more agents interact and evolve together
in the future would give further insight into the consequence of unintended interactions and how
agents may evolve to overcome these to achieve their goals. Additionally, a future line of research
arising from this study surrounds whether an agent could retain goal-achieving behaviour when
a partner enters or leaves the environment unpredictably; this would test the limits or benefits
of neuromodulation further and give additional understanding about the interactions and conse-
quences of evolving systems in shared and dynamic environments.

As systems are increasingly located in unpredictable and variable environments, possessing the
ability to behave appropriately in unseen scenarios is ever more important. This study demon-
strates that activity-gating neuromodulation allows agents to temporarily change behaviour in re-
sponse to environmental changes without affecting knowledge encoded in their neural networks.
While behavioural plasticity is shown to improve fitness and goal achievement, we also demon-
strate that a tradeoff exists, as agents experience more volatility during evolution as a result.
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