
1 

 

An Automatic Process for Sample Return 
Missions Based on Dynamic Programming 

Optimization 

A. Bellome1 and Joan-Pau Sanchez Cuartielles2 
Cranfield University, Cranfield, Bedfordshire, MK430AL, United Kingdom 

Jose Ignacio Rico Alvarez3 
Cranfield University, Cranfield, Bedfordshire, MK430AL, United Kingdom 

Hadrien AFSA4 
Cranfield University, Cranfield, Bedfordshire, MK430AL, United Kingdom 

Stephen Kemble5 
Cranfield University, Cranfield, Bedfordshire, MK430AL, United Kingdom 

Leonard Felicetti6 
Cranfield University, Cranfield, Bedfordshire, MK430AL, United Kingdom 

This work describes a methodology to design sample return missions and rendezvous 

trajectories options towards cometary objects. These are visited through a succession of fly-

bys with Solar System planets, on an overall Multiple Gravity Assist (MGA) transfer. The 

method is based upon dynamic programming in conjunction to a specific MGA trajectory 

optimization model to investigate sample return mission scenarios. The model implemented is 

based on evaluation of grids of transfers between successive planets. The grid is obtained with 

Lambert arc transfer for a range of departure dates at one planet and range of time of flight 

to the next planet. For each successive planet in the sequence, discontinuities between 

incoming and outgoing Lambert arcs arise, which are in part compensated by the fly-by of the 

planet and, if required, an additional Δv maneuver is added on the given leg of a planet-to-

planet transfer. The solutions identified are validated by re-optimizing the complete MGA 

trajectories as sequences of swing-bys, Deep Space Maneuvers and Lambert arcs transfers. A 

procedure for discontinuities removal using position constraints is also presented. Mission 
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scenarios towards Saturn are used to validate the accuracy of proposed methods. Trajectory 

design for novel sample return options and rendezvous are explored for objects among Jupiter 

Family Comets (JFCs), as well as for never explored targets and orbital regions, as highly 

inclined Centaurs objects. 

I. Introduction 

Comets represent the trace of primitive Solar System formation processes. These objects are usually icy bodies that 

outgas when passing close to the Sun. Apart from water ice, cometary nuclei contain a variety of organic compounds, 

which may include methanol, ethanol, ethane and possibly long-chain hydrocarbons and amino acids. The comets 

exploration begun in the 80’s with the close passage of Halley comet performed by Giotto mission [1], which showed 

for the first time the shape of a comet nucleus and found the first evidence of organic material in a comet. NASA’s 
missions Deep Space 1 [2], Stardust [3] and Deep Impact [4] studied the geology, bulk properties of cometary nuclei, 

the nature of cometary dust and the cometary activity for comets 19P/Borrelly, 81P/Wild and 9P/Tempel 1 and 

103P/Hartley, respectively. Stardust was the first mission that returned to Earth with dust samples collected from the 

coma of a cometary object, namely 81P/Wild. ESA’s Rosetta mission [5] performed a rendezvous with comet 67P/ 

Churyumov-Gerasimenko, with the aim of studying the origin of comets, the relationship between cometary and 

interstellar material and its implications with regard to the origin of the Solar System. 

 Despite the success of past cometary missions, important questions in cometary science and Solar System 

formation remain open. These mainly regard the assembly processes of cometary materials and their relation with 

large-scale mixing in the antient Solar System, the role of comets in delivering volatiles and prebiotic compounds to 

early Earth, as well as the interaction between dust coma, surrounding plasma and nucleus [6]. Many of these questions 

do require cometary sample analysis with techniques only available on Earth, leading the scientific community to 

consider missions to return stored sample of cometary nucleus to Earth as a cornerstone in the extra-terrestrial 

exploration. Moreover, missions that can perform the rendezvous with new classes of comets, as main belt comets and 

Centaurs, can further enhance the understanding of Solar System formation and history, as well as providing a never-

reached point of view of the out-of-the-ecliptic space, as in the case of highly inclined Centaur objects. 

 An obvious choice for designing rendezvous and sample return missions to those classes of comets relies on 

Multiple Gravity Assist (MGA) trajectories. In interplanetary missions, MGA transfers make use of successive 

passages, also called swing-bys or fly-bys, with planets to change the spacecraft heliocentric velocity. This permits to 

gain or lose energy with no propellant expenditure, thus allowing to explore cometary regions that would be 

demanding to reach otherwise. Although extensive literature exists addressing the problem of designing MGA 

transfers [7–9], the number of fly-bys that are required to perform a sample return mission are generally higher than 

any interplanetary transfers towards Solar System planets considered. This implies a huge number of design 

parameters, such as the presence of Deep Space Maneuvers (DSMs), fly-by parameters, encounter dates etc. In 

addition, current approaches often struggle to obtain true Pareto sets that reflect the multi-objective nature of the 

problem. 

 The present work proposes a novel approach based on multi-objective dynamic programming to automatically 

construct long MGA sequences for sample return missions towards cometary objects. The aim is to robustly solve the 

automatic MGA trajectory design, i.e., finding feasible sequences of planetary encounters and Pareto fronts of 

trajectories for the given sequence. Robustness is here assured by means of a quasi-systematic search of feasible MGA 

transfers, in addition to a specific MGA trajectory optimization model to investigate sample return mission scenarios. 

The MGA sequencing problem is here solved with Tisserand graph exploration, while the optimization model uses 

approximated Δ𝑣 occurring right at each swing-by planet, referred as infinity velocity defect. This allows for 

significant reduction of optimization parameters, while maintaining good representation of the actual design space. 

This also allows to obtain wide Pareto sets for missions of interest, approximating any maneuver required during the 

mission.  

 The paper articulates as follows: II describes the approach followed to automatically construct MGA transfers; 

section III describes the dynamic programming approach used to construct sample return missions; section IV focuses 

on the search for possible MGA transfer options for missions towards Saturn, used as a validation case, and cometary 

objects. 

II. Multiple Gravity Assist Trajectory Design 

The MGA trajectory design is a global optimization problem in its nature, as for a given trajectory option, namely 

a planetary sequence, there exist several locally optimal trajectories, in terms of planet phasing, presence of DSMs, 
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etc. Designing an MGA transfer corresponds to solve a Mixed-Integer Non-Linear Programming (MINLP) problem 

[10], as it involves the optimization of both integers and continuous variables. The first correspond to the unknown 

planetary sequence, the latter to specific events like the departing date, transfer times, fly-by parameters and so on. 

The combination of discrete and continuous variables forms a challenging MINLP problem, as a variation of even a 

single planet implies a considerably different optimal transfer. For the present paper, Tisserand graphs are used to 

assess the feasibility of solving the first challenge, i.e., finding suitable planetary sequence to reach desired regions of 

the Solar System. A method based on successive evaluations of Lambert arcs linked at planetary encounters is then 

used to find trajectories between identified planets.  

A. Tisserand Graphs Exploration 

Designing an optimal MGA trajectory constitutes a MINLP problem that can be automatized by complex algorithms 

that go through combinations of planets, departure dates, time of flights, etc. in an exponentially increasing search 

space. To simplify the problem and guide the search, Tisserand graphs are used to perform a preliminary analysis of 

multi-gravity assist trajectories, within a circular and coplanar 2-body model. 

A Tisserand graph is a visual tool [11] which can be used in interplanetary mission design for quick assessment of 

feasibility of different gravity-assist sequences. It has been used over the past decades for trajectory analysis and 

design of interplanetary missions. Some examples include the Galileo Orbiter’s trajectory design [12], as well as 

Europa Orbiter design [13,14]. Tisserand graph has also been employed for building the winning trajectory of the 6 th 

edition of the Global Trajectory Optimization Competition (GTOC) [15]. Several modified versions were developed 

to adapt it to specific purposes, as the Saturn moon tours [16], the case of circular-restricted 3-body problem [17], and 

low-thrust propulsion trajectories [18]. 

Tisserand graphs can be obtained by parametrizing the Tisserand invariant with respect to the spacecraft relative 

velocity to the gravity assist body, also called infinity velocity �⃗�∞. It is thus possible to visualize how a gravity assist 

changes the orbit of the spacecraft relating the Tisserand invariant and the turning angle 𝛼 (see Fig. 1) with the resulting 

orbit of the spacecraft. 

 

Fig. 1 Vector diagram representing the effect of the fly-by in front (left image) and behind (right image) a 

given gravity assist body. Left and right cases result in minimizing and maximizing the energy after the 

swing-by, respectively. 

 The vector diagram in Fig. 1 represents the effect of a close passage with a generic planet with velocity �⃗�𝑔𝑎. The 

spacecraft velocities before and after the fly-by are �⃗�𝑠𝑐−  and �⃗�𝑠𝑐+ , respectively. The turning angle 𝛿 determines the orbit 

of the spacecraft after the flyby, rotating the infinity velocity vector from �⃗�∞− to �⃗�∞+. The flyby is assumed to occur 

instantaneously when compared to the interplanetary travel times. 
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Fig. 2 Infinity velocity contours of 3 km/s at Venus and Earth, respectively. Tick marks separate flybys with 

200 km altitude. The squared mark represents a possible transfer between the two planets. 

 For different values of 𝛼 and �⃗�∞ magnitudes, one obtains different orbits, that can be represented in a map as in 

Fig. 2, representing the spacecraft orbits as function of 𝑟𝑎 and 𝑟𝑝, i.e., apoapsis and periapsis, respectively. If 𝛼 =0 𝑑𝑒𝑔, then the spacecraft velocity is aligned with the planet one, corresponding to the highest orbital energy for a 

given �⃗�∞ magnitude (see also Fig. 2); if 𝛼 = 180 𝑑𝑒𝑔, the spacecraft velocity is antiparallel to the planet’s one, 
resulting in the lowest orbital energy for the given �⃗�∞ magnitude. Intersections between different contours represent 

possible transfer orbits between two planets. However, this opportunity only exists from an energy point of view, 

since Tisserand graphs contain no explicit information regarding the planetary phase and transfer time. Thus, the 

exploration of a Tisserand graph consists in evaluating the effect of all the possible sequences of planetary swing-bys 

in the parameters of the Tisserand invariant, i.e., 𝑟𝑎 and 𝑟𝑝. It is thus possible to automatically enumerate all the 

planetary sequences and excess velocities which are energetically feasible to reach the desired target orbit by 

connecting different contours when intersections occur. A Depth First (DF) [19] algorithm is used for this purpose. A 

node in the search space is defined as a given position in the Tisserand map (i.e., 𝑟𝑎 and 𝑟𝑝), corresponding to a 

heliocentric orbit. Once a starting node is defined, the second level (i.e., the set of potential reachable new nodes) is 

constructed by evaluating all the possible planetary swing-bys from the given departing condition. This is done by 

considering the intersections between the current node and the orbits of all the planets in the Solar System. If the 

current node defines an orbit that crosses the orbit of a planet, then a swing-by with this given planet is possible. 

Successive levels are built by checking all the possible flybys from each resulting orbit from the previous level. The 

search is stopped either when the arrival node or a maximum number of levels (i.e., iterations) is reached. 

Table 1. Common resonances for innermost Solar System planets 

Planet Resonances available 

Mercury 1:1, 6:5, 5:4, 4:3, 3:2 

Venus 1:1, 2:1, 3:4, 2:3, 1:2 

Earth 1:1, 2:1, 3:1, 3:2, 2:3 

Mars 1:1, 2:1, 3:1 

 

 However, as the change of the orbit induced by a flyby is limited by the minimum altitude the spacecraft can have 

during the maneuver, a single flyby may be insufficient to reach the next planet. On the Tisserand graph, this implies 

that the orbit cannot shift enough along a contour to reach the next intersection. Therefore, one needs to prune paths 

with unfeasible legs or try to find reachable intermediate orbits on the contour, as with resonant transfers. These allow 

the spacecraft to perform a 360 degrees revolution around the Sun on a same planet-to-planet transfer. On resonant 

transfers, a ratio of integers exists between the planet and the spacecraft orbit periods. The ratio is expressed as 𝑀:𝑁, 

where 𝑀 and 𝑁 are the number of planet and spacecraft revolutions, respectively. For Solar System planets, the most 

used resonances are listed in Table 1. As a result, a list of feasible fly-by sequences is conveniently obtained, as well 

as approximate infinity velocities at planetary encounters, useful to inform successive stage of trajectory optimization. 
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B. MGA Trajectory Optimization via Grid-based Multi Objective Tree Search 

Once planetary sequences and encounter velocities have been obtained, a method is used to find optimal trajectories. 

It employs evaluation of grids of transfers between successive planet fly-bys in an overall mission design. The grid is 

obtained by solving Lamberts problem from a range of start dates at one planet and a range of transfer durations to the 

next planet, for each successive pair of planets in the sequence. 

The cost of an MGA planet-to-planet leg (without considering DSMs) could be either approximated by a powered 

fly-by or by a small maneuver applied after the first planet of the leg. A powered fly-by model assumes a Δ𝑣 

manoeuvre at the pericentre of the incoming hyperbola to match the incoming and outgoing spacecraft velocities. 

However, this methos has not been implemented in the context of real interplanetary missions, due to navigation 

challenges that it arises. Therefore, Δ𝑣 are computed as defects between incoming and outgoing spacecraft relative 

velocities with respect to the planet, which are solutions of Lambert’s problem for the given leg. These velocity 
discontinuities between legs are thus considered as impulsive maneuvers applied right after the planetary encounter.   

The defects are thus computed as: 

Δ𝑣 = {||�⃗�∞+| − ||�⃗�∞−|                                                           𝑖𝑓 𝛿 ≤ 𝛿𝑚𝑎𝑥√|�⃗�∞+|2 + |�⃗�∞−|2 − 2|�⃗�∞+||�⃗�∞−| cos(𝛿𝑚𝑎𝑥 − 𝛿)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
( 1) 

Where: �⃗�∞− and �⃗�∞+ are the infinity velocities before and after the planetary encounter (see again Fig. 1) as coming 

from Lambert solutions; 𝛿 defines the change of direction between incoming and outgoing legs of the fly-by, such 

that as cos(δ) =  �⃗⃗�∞− ∙�⃗⃗�∞+|�⃗⃗�∞− ||�⃗⃗�∞+ |, with a positive 180-degree range. The maximum deflection is limited by the periapsis of 

the swing-by hyperbola 𝑟𝑝,𝑚𝑖𝑛, through 𝛿𝑚𝑎𝑥 = 2 asin ([1 + 𝑟𝑝,𝑚𝑖𝑛 | �⃗⃗�∞|2𝜇𝑝𝑙 ]−1), where 𝜇𝑝𝑙 is the gravitational parameter 

of the fly-by planet. Note that since �⃗�∞− and �⃗�∞+ represent spacecraft velocities relative to the fly-by body, the Δ𝑣 as 

from eq. ( 1) ultimately depends upon planet ephemerides, through its heliocentric velocity at the encounter epoch. 

This allows for a great reduction of the design parameters, while maintaining a good representation for the search 

space, as any DSM is included in the search if sufficiently large defect is considered. The objective functions to be 

optimized are the total transfer time required for the MGA transfer and the total Δ𝑣 cost expressed as: 

𝑓 = |�⃗�∞,𝑑𝑒𝑝| + ∑ Δ𝑣𝑖𝑛
𝑖=1 + |�⃗�∞,𝑎𝑟𝑟| 

( 2) 

Where: �⃗�∞,𝑑𝑒𝑝 and �⃗�∞,𝑎𝑟𝑟 are the spacecraft velocities relative to departing and arrival object, respectively, and Δ𝑣𝑖  
are the defects computed at each fly-by and 𝑛 is the total number of fly-bys. As the optimization is iterated along the 

MGA planets, the number of identified routes grows. If particularly long fly-by sequences are sought, the number of 

possible routes may potentially grow to unmanageable numbers. However, this problem is mitigated via the 

application of both a multi-objective Beam Search (MO-BS) [20] strategy and an incremental pruning to identify and 

filter out infeasible routes. Both these filters are based on heuristic information that can be directly related with 

practical mission design constraints, as the magnitude of the defects and overall mission duration. 

On MO-BS, each node represents a transfer that can be incrementally constructed expanding one or more of its 

branches (i.e., adding a trajectory leg in an overall MGA sequence). In BS algorithms, the computational effort is 

bounded by employing heuristics that prevent the exploration of non-promising branches. In the present paper, the 

exploration of the trajectory options is performed one depth-level at a time. To preserve the multi-objective nature of 

the problem at hand, the pruning scheme introduced by the BS is applied together with Pareto dominance concepts, 

where the top nodes to be kept for further expansion are determined through non-dominated sorting. In MO-BS, the 

size of the beam, designated as the beam width, governs the selection process, as it represents the number of options 

retained for successive expansion. A full grid search, on which the beam width is the maximum allowed, carries 

forward all the solutions. This ultimately has computer memory issue. For the purposes of the present paper, a wide 

beam can carry forward more solutions with both larger defects and longer time of flights, for consideration in the 

final Pareto set after arrival at the target. On the other hand, a too narrow width will prune out local optimal solutions. 

Regarding constraints over the Δ𝑣 defects at each swing-by, these are linked to limitations on spacecraft propulsive 

system, thus large values are not feasible for standard spacecraft designs. To achieve computational efficiency, Δ𝑣 

defects should be the minimum possible, but subject to the condition that locally optimal solutions are not lose and 

Pareto sets characteristics are retained. This implies an upper limit on the DSM in-between two consecutive swing-
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bys, which is related by the leveraging ratio, i.e., ratio between Δ𝑣 defect and precedent DSM (see also later section 

III and D). The leveraging ratio varies between typically 0.5 and 6.5 for the range of missions considered in the present 

paper; so, for example a maximum defect of 2000 𝑚/𝑠 implies a maximum DSM magnitude of about 310 𝑚/𝑠 in 

the extreme leveraging cases (note that 6.5 is still a high leveraging ratio and will be generally less than this). 

Therefore, in this paper, only  Δ𝑣 ≤ 2 𝑘𝑚/𝑠 are retained for further considerations. The MO-BS approach provides 

non-dominant Pareto front of mission overall duration and objective value as from eq. ( 2). However, Δ𝑣 defects are 

manoeuvres applied immediately after departing from a fly-by, and so they do not represent real maneuvers in the 

context of a mission design. Therefore, as a post-processing stage, these Δ𝑣 are converted to DSMs between two 

successive planets in the sequence. This is done employing the so-called MGA-DSM model [21] with a Particle Swarm 

Optimization (PSO). 

C. Defects Removal by DSM Correction Using Position Constraint 

Insertion of a DSM to remove an infinity velocity defect at the next fly-by is here used to establish the relationship 

between the maneuver and the corresponding correction of the defect. The incoming defect dependency on a preceding 

mid-course DSM is obtained. We refer to this dependency as leveraging ratio, i.e., the ratio between the defect and a 

precedent DSM. A key consideration is the maintenance of the subsequent rendezvous with the target planet for the 

fly-by, as well as the removal of the defect. The DSM is assumed to take place at a time 𝑡0 on a planet-to-planet leg, 

while the successive planetary encounter occurs at 𝑡𝑓. The DSM is derived in a reference frame which has �̂�𝑣, �̂�𝑝 and �̂�𝑛 as unit vectors, which are components along the velocity vector, in-orbit plane perpendicular to the velocity vector 

and out-of-plane normal, respectively. The DSM has an impact on the position vector achieved at the epoch of the fly-

by. Therefore, a constraint vector 𝐶 should be considered that maintains the relative position error with respect to the 

swing-by planet and the infinity velocity defect at zero. The constraints are thus 𝐶 = [𝑟𝑟𝑒𝑙 , Δ𝑣∞]𝑇 , on which 𝑟𝑟𝑒𝑙 =𝑟 − 𝑟𝑃𝐿 , is the difference between the spacecraft and planet position vectors at 𝑡𝑓 (i.e. 𝑟 and 𝑟𝑃𝐿 , respectively), and Δ𝑣∞ is the infinity velocity defect at 𝑡𝑓. The control variables are thus �⃗⃗⃗� = [Δ𝑣(𝑡0), 𝑡𝑓]𝑇, on which Δ𝑣(𝑡0) =[𝐷𝑆𝑀𝑣 , 𝐷𝑆𝑀𝑝, 𝐷𝑆𝑀𝑛]𝑇 is the manoeuvre vector, written in the reference frame identified by �̂�𝑣, �̂�𝑝 and �̂�𝑛, as 

defined above. 

Therefore, the control law is:  

𝜕𝐶𝜕�⃗⃗⃗� Δ�⃗⃗⃗� = [ 000−Δ𝑣∞]  

( 3) 

 From which the control increment Δ�⃗⃗⃗� is found via matrix inversion. From equation ( 3), the vector [0, 0, 0, −Δ𝑣∞ ]𝑇 corresponds to the required change in the constraint vector 𝐶, and the matrix 
𝜕𝐶𝜕�⃗⃗⃗� is defined as 

follows: 

𝜕𝐶𝜕�⃗⃗⃗� = [ 𝜕𝑟𝑟𝑒𝑙(𝑡𝑓)𝜕Δ�⃗⃗�(𝑡0) 𝜕𝑟𝑟𝑒𝑙(𝑡𝑓)𝜕𝑡𝑓𝜕|�⃗⃗�𝑟𝑒𝑙|(𝑡𝑓)𝜕Δ�⃗⃗�(𝑡0) 0 ]  

( 4) 

 Where �⃗�𝑟𝑒𝑙 = �⃗� − �⃗�𝑃𝐿 , is the spacecraft velocity vector relative to the fly-by planet computed at time 𝑡𝑓 (�⃗� and �⃗�𝑃𝐿 are the spacecraft and planet velocities at 𝑡𝑓, respectively). By computing the State Transition Matrix (STM) Φ 

between 𝑡0 and 𝑡𝑓, one has: 

Φ = [   
 𝜕𝑟(𝑡𝑓)𝜕𝑟(𝑡0) 𝜕𝑟(𝑡𝑓)𝜕�⃗�(𝑡0)𝜕�⃗�(𝑡𝑓)𝜕𝑟(𝑡0) 𝜕�⃗�(𝑡𝑓)𝜕�⃗�(𝑡0)]  

  
 

( 5) 

 Using 
𝜕𝑟𝑟𝑒𝑙(𝑡𝑓)𝜕�⃗⃗�(𝑡0) = 𝜕𝑟(𝑡𝑓)𝜕�⃗⃗�(𝑡0), then: 
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𝜕𝑟𝑟𝑒𝑙(𝑡𝑓)𝜕Δ�⃗�(𝑡0) = [𝜕𝑟(𝑡𝑓)𝜕�⃗�(𝑡0) �̂�𝑣  𝜕𝑟(𝑡𝑓)𝜕�⃗�(𝑡0) �̂�𝑝   𝜕𝑟(𝑡𝑓)𝜕�⃗�(𝑡0) �̂�𝑛] 
( 6) 

 Moreover, one has: 𝜕𝑟𝑟𝑒𝑙(𝑡𝑓)𝜕𝑡𝑓 = �⃗�(𝑡𝑓) − �⃗�𝑃𝐿(𝑡𝑓) 
( 7) 

 Where �⃗� and �⃗�𝑃𝐿  are again the spacecraft and planet velocities computed at 𝑡𝑓, respectively. Then, to evaluate the 

following: 𝜕|�⃗�𝑟𝑒𝑙|(𝑡𝑓)𝜕Δ�⃗�(𝑡0) = [𝜕|�⃗�𝑟𝑒𝑙|(𝑡𝑓)𝐷𝑆𝑀𝑣   𝜕|�⃗�𝑟𝑒𝑙|(𝑡𝑓)𝐷𝑆𝑀𝑝   𝜕|�⃗�𝑟𝑒𝑙|(𝑡𝑓)𝐷𝑆𝑀𝑛 ] 
( 8) 

 One uses: 𝜕|�⃗�𝑟𝑒𝑙|(𝑡𝑓)𝜕𝐷𝑆𝑀𝑖 = 𝜕(�⃗�(𝑡𝑓) − �⃗�𝑃𝐿(𝑡𝑓))𝜕𝐷𝑆𝑀𝑖 ∙  �̂�𝑟𝑒𝑙 = 𝜕�⃗�(𝑡𝑓)𝜕𝐷𝑆𝑀𝑖 ∙  �̂�𝑟𝑒𝑙 
( 9) 

On which 
𝜕�⃗⃗�(𝑡𝑓)𝜕𝐷𝑆𝑀𝑖 = 𝜕�⃗⃗�(𝑡𝑓)𝜕�⃗⃗�(𝑡0) ∙ �̂�𝑖,  for each 𝑖 = 𝑣, 𝑝, 𝑛. Therefore, it is possible to compute 

𝜕𝐶𝜕�⃗⃗⃗� as defined in ( 2) using 

equations ( 4), ( 5) and ( 6), and thus Δ�⃗⃗⃗� from ( 1). This is again evaluated via STM along the nominal trajectory for 

different values of 𝑡0. The leveraging ratio Δ𝑣∞/|Δ�⃗�| can also be derived as a function of 𝑡0. Its maximum value, 

corresponding to the minimum |Δ�⃗�| over the trajectory, can then be obtained. The terms 
𝜕𝑟(𝑡𝑓)𝜕�⃗⃗�(𝑡0) and 

𝜕�⃗⃗�(𝑡𝑓)𝜕�⃗⃗�(𝑡0) used in 

equations ( 4) and ( 6) are obtained from the standard STM as in equation ( 3) for the trajectory between 𝑡0 and 𝑡𝑓. 

III. Application of Bellman’s Principle of Optimality to Sample Return Missions 

To look for optimal trajectories in the context of sample return missions with MGA transfer, a dynamic 

programming approach has been developed. A dynamic programming algorithm benefits from a description of 

optimization problems such that Bellman’s principle of optimality [22] is true or holds. Such principle states that an 

optimal policy has the property to be independent from initial state and decisions. This means that the optimal policy 

is the same even if the optimal control is found starting at intermediate states. Here, by optimal policy is meant a 

sequence of decisions which is the most advantageous from a preassigned criterion. Translated to the MGA trajectory 

design, Bellman’s principle of optimality would state that, regardless of the object at which the spacecraft is, the 

optimal set containing this specific object would contain the optimal subset of objects before and after the visited one. 

Here, optimality is again referred to multi-objective criteria, considering both mission duration and propellant 

consumption. This principle thus allows to apply tree search procedure as described in section B at more local level. 

In the context of comet sample return missions with rendezvous, on which the spacecraft velocity must match the 

one of the selected objects, given a set of comets of interest, the following approach can find among them those with 

feasible trajectories for a particular planet-comet-planet (P – C – P’) sequence. Planets before and after the cometary 

encounter are detected with Tisserand map.  

The problem can be formulated as: 

Find 𝒙 ∈ 𝐼 

That minimizes Δ𝑣(𝒙) = Δ𝑣1 + Δ𝑣2 ( 10) 

Where: 𝒙 = [𝑡0, 𝑇1, 𝑇𝑜𝑝𝑠, 𝑇2], 𝑡0 being the departure epoch at last planetary encounter before the cometary 

rendezvous, 𝑇1 the duration needed to travel along the conic arc joining the planet and the comet, 𝑇𝑜𝑝𝑠 the duration of 

the operations phase at cometary rendezvous, and 𝑇2 the time needed to travel along the conic arc joining the comet 

at the end of the operations phase and the arrival planet; 𝐼 = 𝐼0 × 𝐼1 × 𝐼𝑜𝑝𝑠 × 𝐼2 is an hyperrectangle in ℝ4 representing 

the domain for 𝒙; Δ𝑣1 is the impulse required to capture comet’s orbit and Δ𝑣2 is the impulse necessary to depart from 
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comet’s orbit at the end of the operations phase. The idea is to decompose the P – C – P’ in two bidimensional 
uncoupled subproblems, i.e., P – C and C – P’, linked by the operations phase in the vicinity of the comet’s orbit. 
Consequently, 𝐼 = 𝐼0 × 𝐼1 × 𝐼𝑜𝑝𝑠 × 𝐼2 can be transformed into 𝐼′ = 𝐼0 × 𝐼1  ∪  𝐼𝑜𝑝𝑠 × 𝐼2 as from Fig. 3, where 𝑡1, 𝑡𝑜𝑝𝑠 

and 𝑡2 are now the epochs at which the comet is encountered, left and the next planet is flown-by, respectively. 

 

 

Fig. 3 Decomposition of the P-C-P’ problem. 

All the potential transfers in terms of P – C and C – P’ are computed over grid of departing and arrival epochs 𝑡0 

and 𝑡1. This is done for all the combination of planets P and P’ identified by the Tisserand map and for all the comets 
C of interest. All the solutions obtained are then filtered to find among them all the transfers achieved by an impulse 

less than a given restriction Δ𝑣𝑚𝑎𝑥 . It must be noticed that the restriction corresponds to the maximum 𝛥𝑣 allowed for 

each subproblem, 𝛥𝑣𝑖 < Δ𝑣𝑚𝑎𝑥  where 𝑖 = 1,2. At this point, a given comet may be discarded if it is not accessible by 

any transfer that fulfils this requirement. Filtered solutions conform the search space assessed throughout the rest of 

the procedure. Then, all comets with feasible transfers for a particular P – C and C – P’ subproblem are considered. 
Among them, one finds those comets with viable transfers for both subproblems. Hence, these bodies are considered 

as potential candidates to accomplish the complete P – C – P’ sequence. The process is repeated until all the different 

sequences of interest are analyzed. It is now possible to obtain optimal trajectories for all the P – C – P’ sequences 
under study. 

 

 

Fig. 4 Pork-chop plot for Mars – 67P leg in the 2030-2050 timeframe. 

One first considers the P – C subproblem. This can be represented in a pork-chop plot as in Fig. 4, on which an 

example for rendezvous comet 67P/Churyumov-Gerasimenko is shown. The pork-chop is with respect to the departure 

epoch until a feasible leaving date from departure planet 𝐷𝑖  is found (see Fig. 4). Minimum and maximum admissible 

arrival date to the comet, i.e., 𝐴min𝑖   and 𝐴max𝑖  , respectively from Fig. 4. These two values comprise the region of 

allowed arrival dates to the comet, for a given 𝐷𝑖 . Thus, any arrival date to the comet 𝐴𝑗, must obey:  𝐴𝑗 ∈[𝐴min𝑖  , 𝐴max𝑖  ]. Now, the second subproblem is analysed, exemplified by its pork-chop plot in Fig. 5. 
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Fig. 5 Pork-chop plot for Earth – 67P leg in the 2030-2050 timeframe. 

For each 𝐴𝑗 ∈ [𝐴mini , 𝐴𝑚𝑎𝑥𝑖], the minimum and maximum allowed departure dates from the comet are defined, 

i.e. 𝐷𝑚𝑖𝑛𝑖  and 𝐷𝑚𝑎𝑥𝑖 , respectively, from Fig. 5. These two values depend on the minimum and maximum allowed 

duration for the operations phase within comet’s orbit. The stripped region from Fig. 5 is scanned to find the minimum Δ𝑣2. This value dictates the departure date from the comet 𝐷𝑗  and the date when the arrival planet is intercepted 𝐴𝑘. 

The whole procedure is repeated for the next feasible 𝐷𝑖  until all the possible solutions are assessed. 

Once the P – C – P’ problem is thus solved, methods described in section A, B and C are used to construct full 

MGA trajectories for sample return mission. Since the P – C and C – P’ phases are now considered fixed, one expands 
the tree of possible fly-by options backward in time, i.e., from the last available planet P before the cometary encounter 

to Earth departure, and forward in time, i.e., from the first planet P’ after the cometary departure to Earth arrival. Fig. 

6 illustrates the application of Bellman’s principle of optimality applied to the comet sample return problem. Once the 
intermediate P – C – P’ problem is defined, the (Pareto-)optimal sub-sequences can be obtained in backward and 

forward sides, and thus the overall sample return trajectory is obtained. 

 

 

Fig. 6 Backward and forward tree expansion for a given comet sample return mission. Central left node 

corresponds to cometary rendezvous, while central right node to cometary departure on the return phase. 

Bold nodes and branches belong to optimal sequence.  

IV. Results 

Optimal transfers are determined for benchmark missions as well as for building novel transfers for sample return 

options. An MGA mission towards Saturn is firstly tested referring to ESA’s Cassini mission [23] towards Saturn, to 

verify the ability to reproduce past mission transfers, as well as to discuss the capability of the procedure as in sections 

A and B to approximate any maneuver required during the mission. Moreover, sample return mission options are 

presented for objects among the Jupiter Family Comets (JFCs) and Centaurs in the context of practical mission design. 
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D. Missions towards Saturn 

Transfers towards Saturn are searched in the 1997 launch window, which is the one of Cassini mission [23]. Cassini 

performed successive close passages at Venus-Venus-Earth-Jupiter-Saturn (resulting in an EVVEJS sequence, the 

first planet being the departing one), launching in October 1997 and approaching Saturn in July 2004. This is known 

to be one of the most difficult impulsive thrust missions to find optimal transfers [21,24,25], as large DSMs are needed 

to achieve Saturn with reduced Δ𝑣, while maintaining reduced transfer times. The mission required at least one large 

DSM between the two Venus fly-bys to reach its destination. In this case, the Δ𝑣 computed with the method described 

in section B may lead to larger values. This is because the Δ𝑣 identified in the preferred method are maneuvers applied 

immediately after departure from a fly-by, thus not representing DSMs in a real mission design context. In this case, 

a simple post-process computation as described at the end of section B is needed. 

 

Fig. 7 Pareto fronts for sequences towards Saturn for departure date in 1997. Total cost refers to the sum of 

infinity velocities at departure and arrival planet and all the defects employed along the transfer. 

This problem has been evaluated with a range of time constraints to consider the following scenarios: 

- The actual Cassini mission, i.e., a fast transfer to Saturn of about 7 years. 

- A test case reported in [26] with relaxed time constraints, i.e. solutions with about 9.9 years with a 2200 days 

upper limit on the last leg from Jupiter to Saturn, corresponding to the best-known time constrained transfer. 

- A transfer without time constraints. Although this would not be a practicable mission design, it is of 

importance to understand the capability of the presented procedure to identify local and global optima. 

In particular, Fig. 7 shows that Pareto front for sequence EVVEJS is comprehensive in that it correctly 

identifies both the fast transfer to Saturn, as actually employed for Cassini [23], and the best known solutions7. 

 Details and trajectories representations can be found in Table 2 and Table 3, as well as in Fig. 8 and Fig. 9. Results 

indicate that the proposed procedure correctly identifies best-known solution, as launch and epochs of fly-bys 

correspond closely to within a day. 

 A key feature of the method described here is the relationship between the infinity velocity defects identified with 

the grid optimization and the DSMs identified in the refinement stage. Real world missions utilize DSMs, and these 

are inserted via the optimization procedure on the refinement step. The analytical approximation employed is 

described in section C. This allows the leveraging obtainable from a DSM to be evaluated, i.e., the dependency of an 

infinity velocity defect on a preceding DSM. As it can be seen from both Table 2 and Table 3, large defects occurring 

in the Venus-Venus leg of EVVEJS (both for actual Cassini and best-known solutions) are replaced by DSMs, 

reducing from about 1.9 𝑘𝑚/𝑠 to approximately 400 𝑚/𝑠. The Δ𝑣 defects occurring in all the other legs are reduced 

to zero. 

 
7 https://www.esa.int/gsp/ACT/projects/gtop/ , last accessed March 10, 2021 

https://www.esa.int/gsp/ACT/projects/gtop/
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Fig. 8 Cassini-like EVVEJS transfer with departure date in 1997. Left plot is obtained with defects 

formulation, while right plot with DSMs formulation. From innermost to outermost, black circles represent 

Venus, Earth, Jupiter, and Saturn orbits, respectively. 

 

Fig. 9 Best-known solution for EVVEJS transfer with departure date in 1997. Left plot is obtained with 

defects formulation, while right plot with DSMs formulation. From innermost to outermost, black circles 

represent Venus, Earth, Jupiter, and Saturn orbits, respectively. 

Table 2. Results for actual Cassini trajectory compared to grid optimization solutions in 1997 launch window. 

If a 𝜟𝒗 is not present on a given leg, a ‘--’ is included in the table. 

Event Actual Cassini Grid Optimization Refinement 

Launch 6 October 1997 23 November 1997 20 October 1997 𝐶3 (departure) 18.1 𝑘𝑚2/𝑠2 16.05 𝑘𝑚2/𝑠2 16.03 𝑘𝑚2/𝑠2 

Venus 21 April 1998 22 May 1998 29 April 1998 Δ𝑣 466 𝑚/𝑠 1974 𝑚/𝑠 431 𝑚/𝑠 

Venus 20 June 1999 01 July 1999 26 June 1999 Δ𝑣 − − 604 𝑚/𝑠 − − 

Earth 19 August 1999 20 August 1999 18 August 1999 Δ𝑣 − − 214 𝑚/𝑠 − − 

Jupiter 30 December 2000 01 January 2001 11 January 2001 Δ𝑣 − − − − − − 

Saturn 01 July 2004 04 June 2004 19 July 2004 𝐶3 (arrival) 31.3 𝑘𝑚2/𝑠^2 29.9 𝑘𝑚2/𝑠2 26.8 𝑘𝑚2/𝑠2 
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Table 3. Results for best-known solution to Cassini-like problem compared to grid optimization solutions in 

1997 launch window. If a Δv is not present on a given leg, a ‘--’ is included in the table. 

Event Best known Grid Optimization Refinement 

Launch 13 November 1997 23 November 1997 11 November 1997 𝐶3 (departure) 10.6 𝑘𝑚2/𝑠2 16.05 𝑘𝑚2/𝑠2 16.03 𝑘𝑚2/𝑠2 Δ𝑣 480 𝑚/𝑠 − − 462 𝑚/𝑠 

Venus 29 April 1998 20 May 1998 04 March 1998 Δ𝑣 398 𝑚/𝑠 1832 𝑚/𝑠 398 𝑚/𝑠 

Venus 27 June 1999 02 July 1999 28 June 1999 Δ𝑣 − − 682 𝑚/𝑠 − − 

Earth 20 August 1999 21 August 1999 20 August 1999 Δ𝑣 − − − − − − 

Jupiter 31 March 2001 18 April 2001 01 April 2001 Δ𝑣 − − − − − − 

Saturn 09 April 2007 24 October 2007 16 April 2007 𝐶3 (arrival) 18.0 𝑘𝑚2/𝑠^2 17.7 𝑘𝑚2/𝑠2 18.0 𝑘𝑚2/𝑠2 

 

 

Fig. 10 Leveraging ratios per leg considered for actual Cassini mission. 

 When comparing the fully optimized solution coming from the refinement step with the first grid-based solution, 

in the full solutions the defect at the start of the second leg (i.e., on the Venus-Venus one) has been removed by 

lowering the infinity velocity at Venus, with no DSM applied in the first leg. This lower initial infinity velocity at 

Venus causes a large defect at the second Venus encounter, but it is corrected by a DSM in the second leg, where high 

efficiency of DSMs is seen. The grid-based solution has higher cost (i.e., Δ𝑣 prediction) than the optimised solutions, 

because the optimization performed in the refinement step redistributes the infinity velocity defects to maximally 

utilise the DSM leveraging. This is also noticed from the leveraging ratios computed on each leg of the EVVEJS 

transfer in Fig. 10. The parameter plotted is the ratio of the infinity velocity defect corrected to magnitude of a DSM 

versus time elapsed into the segment. Leveraging rations are obtained through the procedure described in 6. The plot 

illustrates that in the second segment (i.e., the Venus-Venus leg), the peak ratio is close to 6, and therefore it implies 

that any infinity velocity defect can be efficiently corrected with a much smaller DSM, which is what happens in the 

refinement. In the first segment (Earth-Venus), the ratio is generally less than 1, but it exceeds 1 towards the end of 

the leg, reaching approximately 1.4. The efficiency in this segment is clearly much less than the Venus-Venus one. It 

is also interesting to notice that in the last Jupiter-Saturn leg, the leveraging ratio remains below 1 for all the time 

elapsed in the segment, reaching its maximum value i.e., 1, only at Saturn. This suggests that no DSM are useful to 

leverage the infinity velocity at Saturn, as also confirmed by optimized results in Table 2. 
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Fig. 11 Leveraging ratios per leg considered for global optimum solution of EVVEJS mission. 

 The nominal Cassini mission transfer towards Saturn lasts under 7 years from launch to rendezvous with Saturn. 

As a fast and time-constrained transfer, this mission does not represent the optimum. Faster transfers increase the 

infinity velocity at Saturn and lead to increased infinity velocity at Earth and larger DSMs. The best reported solution 

for the Saturn problem at this launch years, as compared to the actual Cassini one, is characterized by lower infinity 

velocities at departure and arrival, but with much higher transfer time (mainly due to the last Jupiter-Saturn leg of the 

transfer). However, this is still constrained in terms of duration. The Pareto set shown in Fig. 7 includes constraints 

on the legs’ duration. To allow a search for global optimum, these should be released, as one might expect the actual 
global minimum solution to lie much farther to the right in terms of transfer times. In fact, when duration constraints 

are removed and therefore the total mission duration extends, a significant improvement in objective can be obtained. 

This is confirmed from Table 4 describing results on which a much larger transfer time is employed for the last Jupiter-

Saturn leg. Regarding the grid optimization solution, the transfer duration is about 17.3 years, with an objective value 

of 9.50 𝑘𝑚/𝑠. This is not far from best solution obtained with constrained total time of flight of about 9.9 𝑦𝑒𝑎𝑟𝑠, on 

which 10.6 𝑘𝑚/𝑠. However, when refined, global optimum solution is significantly better in terms of Δ𝑣 with respect 

to refined best-known solution (see again Table 3). Part of this is the removal of the infinity velocity defects and 

replacement with DSMs in the early transfer legs. However, there is also a significant effect on the last leg. From Fig. 

11, by evaluating the leveraging ratio on the last Jupiter-Saturn segment, one notices that it exceeds 1 around the mid-

region of the last leg. Therefore, it is more efficient to remove most of the final infinity velocity at Saturn with a large 

DSM between Jupiter and Saturn. However, by applying this leveraging DSM, a large time increment in the arrival 

time is needed (in the order of 12 years), which is confirmed by the refined results, where usually the correction 

required is in the order of few days. This is also noticeable from Fig. 12, representing trajectories on the ecliptic plane 

before and after the refinement when time constraints on the last leg are removed. 

 A general consideration is that, when large part of the total cost for the mission consists in infinity velocity defects, 

then PSO optimization scales down the solutions by replacing defects with optimal DSMs. Grid-based optimization 

will give the most accurate predictions for near-ballistic transfers with zero or low DSM need and shows greater 

divergence from fully optimized solutions where large DSMs are needed. The DSM at about 400 𝑚/𝑠 in the early 

trajectory phase of the Cassini transfer, for example, is relatively large when compared with many interplanetary 

transfers. However, the use of grid-based optimization to initialize the subsequent refinement leads to the expected 

optimal solution. 
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Fig. 12 Optimum solution for EVVEJS transfer with departure date in 1997. Left plot is obtained with defects 

formulation, while right plot with DSMs formulation. From innermost to outermost, black circles represent 

Venus, Earth, Jupiter, and Saturn orbits, respectively. 

Table 4. Results for optimum solution to Cassini-like problem in 1997 launch window. If a Δv is not present 
on a given leg, a ‘--', is included in the table. 

Event Grid Optimization Refinement 

Launch 13 November 1997 13 November 1997 𝐶3 (departure) 13.2 𝑘𝑚2/𝑠2 11.1 𝑘𝑚2/𝑠2 Δ𝑣 − − 394 𝑚/𝑠 

Venus 10 May 1998 02 May 1998 Δ𝑣 1419 𝑚/𝑠 195 𝑚/𝑠 

Venus 02 July 1999 07 July 1999 Δ𝑣 123 𝑚/𝑠 − − 

Earth 27 August 1999 28 August 1999 Δ𝑣 52 𝑚/𝑠 − − 

Jupiter 18 July 2002 31 July 2002 Δ𝑣 − − 2273 𝑚/𝑠 

Saturn 02 March 2015 16 July 2027 𝐶3 (arrival) 18.2 𝑘𝑚2/𝑠2 0.248 𝑘𝑚2/𝑠2 

E. Sample Return Missions Towards Comets 

The first family explored for sample return mission options is the one of Jupiter Family Comets (JFCs). These 

objects are characterized by periapsis of approximately 1 AU and apoapsis close to the orbit of Jupiter, which makes 

them accessible for sample return and rendezvous opportunities. A mission to those comets is made by a cruise phase 

needed to reach the desired object, an operational phase, on which the spacecraft position and velocity are assumed to 

match the ones of the comet for sampling purposes, and another cruise phase for returning the cometary samples to 

the Earth. From Fig. 13, representing JFCs orbits on Tisserand map, some JFCs can be accessed with virtually zero Δ𝑣 if Mars, Earth of Jupiter are considered for a last planetary encounter. This is the case of the comet 

67P/Churyumov-Gerasimenko, i.e. the target of Rosetta mission [27], on which Mars can be considered as last fly-by 

planet to rendezvous with the comet at null cost. For the present work, sample return options for 67P are investigated, 

although with the procedure described in section 7 a full catalogue of options towards JFCs is obtainable. 
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Fig. 13 Tisserand map representing Venus, Earth, Mars, and Jupiter contours with infinity velocities ranging 

from 3 to 15 km/s spaced by 0.5 km/s. 2:3, 1:1, 3:2, 2:1 and 3:1 resonant orbits for Earth and 1:1, 2:1 and 3:1 

resonant orbits for Mars are represented. Apoapsis and periapsis of JFCs are also reported. 

 

However, due to the high apoapsis of 67P, several Mars fly-by would be required, involving 2:1 and 3:1 resonant 

orbits which imply long transfer times, resulting in unfeasible mission options, especially if a sample return is 

considered. Therefore, fly-bys with Earth and Venus are also considered to speed up the overall transfer, due to higher 

planetary masses. Tisserand map exploration in fact shows that sequences like EVEE, EMEE (the one employed by 

Rosetta), EVVE, EVEM and EMEM are in fact able to reach 67P orbit. From Tisserand map exploration, one should 

notice that if Earth is considered as last planetary encounter, compared to Mars encounter, a higher Δ𝑣 is needed to 

rendezvous with the comet, to increase the periapsis of spacecraft orbit to the one of 67P. 

When optimized with grid-based optimization as described in section 5, Pareto fronts can be obtained as shown in 

Fig. 14, on which only few of those sequences appear feasible in the selected time window. The operations phase at 

cometary rendezvous are assumed to take place between 6 to 12 months after the comet arrival. One notices that, for 

the instance considered, the well-known EVEE and EVEM sequences perform well for reaching the comet, while 

EEME and EEVE share very similar performances when considering the return phase. It is worth noticing that, even 

though from Tisserand map exploration Mars results in being the best planet to reach the comet orbit, when looking 

for optimal trajectories on a full planetary ephemerides model, sequences involving Earth and Venus results in being 

the optimal ones. This is because the synchronicity between Earth and Venus for cheap transfers is more likely to 

happen when compared to Mars, resulting in more expensive transfers overall. 

 

 

Fig. 14 Pareto fronts for missions towards 67P (left) and return (right) for an arrival to the comet in the 2035-

2045 timeframe as from grid-based optimization. 
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Table 5. Sample return mission towards 67P as coming from grid optimization involving EVEM and EEVE 

sequences for cometary rendezvous and return phases, respectively. If a Δv is not present on a given leg, a ‘--', 
is included in the table. 

Towards the comet Return phase 

Event Value Event Value 

Launch 2 June 2039 Launch 24 September 2045 𝐶3 (departure) 10.34 𝑘𝑚2/𝑠2 Δ𝑣 (Comet departure) 1028.2 𝑚/𝑠 Δ𝑣 − − Δ𝑣 − − 

Venus 19 November 2039 Earth 7 November 2047 Δ𝑣 − − Δ𝑣 − − 

Earth 15 October 2041 Earth 7 November 2049 Δ𝑣 1034.4 𝑚/𝑠 Δ𝑣 289.1 𝑚/𝑠 

Mars 22 February 2042 Venus 12 March 2052 Δ𝑣 414.6 𝑚/𝑠 Δ𝑣 − − 

67P 28 March 2045 Earth 21 August 2052 Δ𝑣 (Comet rendezvous) 944.5 𝑚/𝑠 𝐶3 (arrival) 15.92 𝑘𝑚𝑠/𝑠2 

Table 6. Refined EVEM sequence towards 67P. If a Δv is not present on a given leg, a ‘--', is included in the 

table. 

Towards the comet 

Event Value 

Launch 4 June 2039 𝐶3 (departure) 10.55 𝑘𝑚2/𝑠2 Δ𝑣 − − 

Venus 19 November 2039 Δ𝑣 − − 

Earth 13 October 2041 Δ𝑣 1017.2 𝑚/𝑠 

Mars 21 February 2042 Δ𝑣 431.1 𝑚/𝑠 

67P 23 March 2045 Δ𝑣 (Comet rendezvous) 868.0 𝑚/𝑠 

 

 

Fig. 15 EVEM (left) and (EEVE) sequences for 67P sample return as resulting from Tisserand map 

exploration. The red arrow represents the Δv needed to reach 67P after last Earth fly-by. 2:1 Earth resonant 

orbits are also represented. Venus, Earth, and Mars contours are also reported with infinity velocities 

ranging from 3 to 15 km/s spaced by 0.5 km/s. 

This is also confirmed in Table 5 and Table 6 showing an example of full sample return mission towards 67P 

involving EVEM and EEVE transfers for the two phases of the mission (see also Fig. 16 and Fig. 17 for trajectories 
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representation). Note that Table 6 and Fig. 17 only reports optimized solution for EVEM sequence, as the EEVE one 

does not vary much from the grid optimization. From Fig. 15, as expected from Tisserand map exploration, having 

Mars as last fly-by body allows to have low Δ𝑣 for cometary rendezvous, but high defects to encounter the planet, due 

to rare synchronicity with other planets. On the other hand, having the Earth as last fly-by encounter permits quite 

lower defects during the swing-by sequence, but with substantial Δ𝑣 for departing 67P. 

 

 

Fig. 16 EVEM (left) and EEVE (right) transfers for 67P sample return as from grid optimization. From 

innermost to outermost, black circles represent Venus, Earth, and Mars orbits (left plot), respectively, and 

Venus and Earth orbits (right plot), respectively. 

 

Fig. 17 Illustration of refined EVEM sequence towards 67P. From innermost to outermost, black circles 

represent Venus, Earth, and Mars orbits. 

 Another interesting case for rendezvous missions is represented by Centaurs, which are objects with wide range 

in orbits, from nearly circular ones, right outside Jupiter orbit, to those ones beyond Uranus, as well as those with 

eccentricity that crosses planets orbits. Typical classification [28] of these objects considers them to have perihelion 

and semi-major axis between the orbits of Jupiter and Neptune. Fig. 18 illustrates eccentricity, inclination, and semi-

major axis of known Centaurs. 
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Fig. 18 Eccentricity, inclination, and semi-major axis for Centaur objects. 

 A potential rendezvous mission to Centaurs is of interest to understand comet activity going beyond the water ice 

snowline, as well as to observe early phases of in cometary evolution. Moreover, as from Fig. 18, most objects are 

characterized by relatively high inclination with respect to the ecliptic plane, thus providing the chance to observe the 

Solar System from a privileged point of view. Therefore, for the purposes of the present paper, a Centaur object with 

high inclination (i.e., greater than 40 𝑑𝑒𝑔) is selected as target, namely 2017/R17, to explore potential rendezvous 

opportunities as reference for future missions’ options. Table 7 reports main Keplerian orbital elements for 2017/R17. 

Table 7. Keplerian elements for Centaur object 2017/R17. 

Keplerian element Value 

Semi-major axis 6.62 𝐴𝑈 

Eccentricity 0.45 

Inclination 42.69 𝑑𝑒𝑔 

Right Ascension of the Ascending Node 135.67 𝑑𝑒𝑔 

Argument of Periapsis 295.53 𝑑𝑒𝑔 

 

 Transfers to such objects are characterized by long transfer times, as well as by relatively high Δ𝑣 for plane change 

manoeuvres and rendezvous. To achieve such inclinations, a close passage with Jupiter is considered as last planetary 

fly-by. The high mass of Jupiter allows to perform the plane change without spending any Δ𝑣. Moreover, to further 

mitigate the impact of 2017/R17 orbit on trajectory design, the last planetary encounter shall occur close to the orbital 

nodes of the Centaur, i.e., at about 135.67 𝑑𝑒𝑔 and 315.67 𝑑𝑒𝑔 of solar longitude. A tolerance of ±5 𝑑𝑒𝑔 is 

employed. Fig. 19 reports Pareto fronts for a rendezvous mission towards 2017/R17 for different sequences departing 

in the 2040-2045 timeframe. As it can be seen, a whole range of options appear, with a clear trend of decreasing Δ𝑣 

at higher transfer times. As expected, favorable options in terms of Δ𝑣 exist at very high cruise duration, while very 

few show up in a feasible range of propellant consumption and transfer times. The latter belong to the well-known 

EVEEJ sequence with 2:1 resonance on the successive Earth fly-bys, which performs well for the selected scenario, 

showing a Pareto front that dominates all the other solutions. As transfer times increase, other planetary sequences 

might become competitive such as EVVEJ. Sequences employing Mars fly-bys do not seem competitive, and this is 

mainly because of the rare synchronicity between Mars with other planetary encounters. For example, the sequence 

EVEMEJ, i.e. the same one selected as baseline transfer for JUICE mission [29], repeats with similar performances 

with a period of about 12 years, while sequences involving only Earth, Venus and Jupiter occur every 1-2 years. Fig. 

20 and Fig. 21 represents fast and long 3D trajectories for EVEEJ-2017/R17 transfers, respectively. Fast transfer refers 

to a solution from Pareto fronts in Fig. 18 with < 8 𝑦𝑒𝑎𝑟𝑠 and Δ𝑣 < 8.5 𝑘𝑚/𝑠, considered feasible in context of 

practical mission design, while the long transfer is the top right solution of the same Pareto set. Table 8 and Table 9 

provide details of the two solutions, respectively, both for the grid optimization and the post-processing. The main 

difference between fast and short transfer relies on the presence of DSMs as well as in an increased Δ𝑣 required for 

the manoeuvre. In the case of fast mission, it is worth noticing that defects on Venus-Earth and Earth-Jupiter legs are 
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mapped almost unmodified in the successive optimization, to reduce the next defect, i.e., the one on the Jupiter-

Centaur leg, to zero. The overall fast trajectory as coming from the refinement optimization is thus cheaper in terms 

of Δ𝑣, while the time-of-flight results slightly increased, i.e., from about 7.798 𝑦𝑒𝑎𝑟𝑠 to 8.238 𝑦𝑒𝑎𝑟𝑠. On the other 

hand, the long transfer option maps quite well from the grid optimization to the refinement stage, as defects from grids 

optimization were already quite small. This again proves that ballistic transfers are easily transcribed from grid to PSO 

refinement. 

 

 

Fig. 19 Pareto front of some sequences for rendezvous with 2017/R17 departing in the 2040-2045 timeframe. 

In the legend, when ‘res’ is present, a 2:1 resonance is used on the Earth-Earth fly-by. 

 

Fig. 20 3D representation of a fast transfer to 2017/R1 employing an EVEEJ sequence. Left plot is obtained 

with defects formulation, while right plot with DSMs formulation. From innermost to outermost, black circles 

represent Venus, Earth, and Jupiter orbits, respectively. 
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Fig. 21 3D representation of a long transfer to 2017/R1 employing an EVEEJ sequence. Left plot is obtained 

with defects formulation, while right plot with DSMs formulation. From innermost to outermost, black circles 

represent Venus, Earth, and Jupiter orbits, respectively. 

 

Table 8. Results for fast EVEEJ transfer to 2017/R17 in 2040-2045 launch window. If a Δv is not present on a 
given leg, a ‘--', is included in the table. 

Event Grid Optimization Refinement 

Launch 14 April 2044 23 April 2044 𝐶3 (departure) 13.12 𝑘𝑚2/𝑠2 13.12 𝑘𝑚2/𝑠2 Δ𝑣 − − − − 

Venus 9 October 2044 5 October 2044 Δ𝑣 24.2 𝑚/𝑠 24.9 𝑚/𝑠 

Earth 16 August 2046 14 August 2046 Δ𝑣 − −  

Earth 16 August 2048 13 August 2048 Δ𝑣 747.4 𝑚/𝑠 797.5 𝑚/𝑠 

Jupiter 11 April 2050 28 March 2050 Δ𝑣 521.1 𝑚/𝑠 − − 

2017/R17 31 January 2052 19 February 2052 Δ𝑣 (rendezvous) 3668.0 𝑚/𝑠 3569.0 𝑚𝑚/𝑠 

 

Table 9. Results for long EVEEJ transfer to 2017/R17 in 2040-2045 launch window. If a Δv is not present on a 
given leg, a ‘--', is included in the table. 

Event Grid Optimization Refinement 

Launch 24 February 2041 25 February 2041 𝐶3 (departure) 15.56 𝑘𝑚𝑠/𝑠2 15.68 𝑘𝑚2/𝑠2 Δ𝑣 − − − − 

Venus 13 August 2041 13 August 2041 Δ𝑣 16.6 𝑚/𝑠 − − 

Earth 25 June 2042 25 June 2042 Δ𝑣 − − − − 

Earth 25 June 2044 24 June 2044 Δ𝑣 72.9 𝑚/𝑠 − − 

Jupiter 29 September 2050 25 September 2050 Δ𝑣 18.5 𝑚/𝑠 − − 

2017/R17 4 July 2057 2 July 2057 
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Δ𝑣 (rendezvous) 1575.1 𝑚/𝑠 1566.0 𝑚/𝑠 

V. Conclusion 

This paper presented an innovative approach based upon the Bellman’s principle of optimality and dynamic 
programming to automatically design long MGA trajectories to cometary bodies, employing high number of planetary 

encounters, more than any mission considered before. The key aspect of the methodology consists in approximating 

the required DSMs as infinity velocity defects at each fly-by, to generate wide sets of solutions to represent broad 

Pareto sets, useful for preliminary mission analysis. This enables a reduction of the number of design parameters, 

while maintaining a good representation of the search space. The understanding of the effectiveness of this approach 

is further enhanced by the evaluation of the relationship between impulse model types. 

Moreover, preliminary results for sample return and rendezvous missions for cometary objects and never-explored 

bodies and orbital regions are presented, to prove the effectiveness of the proposed methods. 

Future work will concentrate on providing full missions scenarios and launch windows analysis for both comet 

sample return and high-inclined Centaurs objects, both with impulsive and low-thrust transfers. Moreover, additional 

research will be conducted to focus on mapping swing-by discontinuities into actual DSMs while in the search step, 

maintaining efficient computational efforts. 
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