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INTRODUCTION

Policies and regulations are adopted at the United Nations to 
reduce the greenhouse gasses (GHGs) emissions and the effect 
of the climate change (UNFCCC, 2015). The United Kingdom 
(UK) has a policy target of 80% reduction of GHGs emissions 
with respect to the 1990 level by the year 2050 (CCC, 2015). 
The realization of the target will involve a transition from 
fossil fuel based to low carbon-based electricity generation and 
consumption.

The transportation sector contributed 26%, the largest by a 
sector, of GHG emissions in the UK in the year 2016 (DBEIS, 
2018). The road transport, especially passenger cars, is the major 
contributor in this sector. Internal Combustion Engine (ICE) 
cars, as at the end of 2016, made up about 99% of all cars licensed 
by propulsion/fuel type in the UK (DfT, 2017). Also, in the year 
2016, the residential sector contributed 14% of the total GHG 
emissions in the UK (DBEIS, 2018). The GHG emissions from 
the residential sector are dominated by natural gas combustion 
for space heating (DBEIS, 2018). In Great Britain (GB) alone, 
84.2% of households use gas-fired boilers for heating (Ofgem, 

2015a). To reduce emissions in the transport sector, EVs are 
expected to play a dominant role. The UK Government’s 
ambition is that nearly all cars and vans on the roads are zero 
emission by 2040 (Parliament of UK, 2018). Government says 
as this number grows EVs will become a “resource for a smart 
electricity” bringing benefits for drivers and creating a more 
flexible and efficient energy system (Parliament of UK, 2018).

Therefore, there is considerable potential for cutting down 
on GHGs emissions with increasing uptake of EVs for road 
transportation, HPs for residential heating, and increasing 
integration of renewable energy sources (RESs) in the electricity 
generation mix. To this end, the UK Government initiated 
incentive schemes such as ‘Plug-in Car Grant’ to encourage 
uptake of EVs (OLEV, 2018), ‘Renewable Heat Incentive’ to 
encourage the switching from fossil fuel heating to renewable 
heating (DBEIS, 2016) and ‘Renewable Obligation’, which 
places a mandatory obligation on the UK’s electricity suppliers 
to source a particular proportion of their electricity from 
renewable sources (Ofgem, 2018).

Widespread uptake of EVs and HPs will introduce new load 
patterns, and may lead to much higher peak demand. The 
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higher peak demand may impact local LV distribution networks, 
particularly at clustered locations (Hilshey et al., 2013). The way 
in which conventional electricity networks have operated in the 
past is unlikely to manage these new challenges without much 
higher system costs and perhaps reduction in the overall system 
reliability (Karki et al., 2014; Farzin et al., 2016).

On this backdrop, the level of awareness, interest and activities 
related to the studies of impacts of EVs and HPs on the 
electricity system continue to grow. Many works considered 
the separate impacts of EVs and HPs on the LV distribution 
network (Akmal et al., 2014; Leou et al., 2014; Navarro-Espinosa 
& Mancarella, 2014; Neaimeh et al., 2015; Awadallah et al., 
2016; Protopapadaki & Saelens, 2017). In (Leou et al., 2014), LV 
distribution network operation security-risk information, such 
as over-current and under-voltage due to the uptake of EVs, 
was obtained from three-phase distribution load flow studies 
that use stochastic parameters drawn from Monte Carlo. The 
capability of providing security risk information by deterministic 
and stochastic analytical approaches was compared and impacts 
due to controlled and uncontrolled charging were analysed. 
The work concluded that stochastic approach gives better 
information, and that controlled charging could mitigate 
network problems.

In (Navarro-Espinosa & Mancarella, 2014), probabilistic 
methodology (Monte Carlo) and OpenDSS power flow software 
were used to assess the impact of HPs (ASHP and GSHP) on LV 
distribution network. The results from the studies showed that 
thermal problems are likely to arise at much earlier uptake levels 
of HPs than for voltage problems, and moving from upstream 
components (transformers) to downstream ones (feeders).

The significance of the work described in this paper is that it 
simultaneously investigated the combined impacts of future 
uptake of EVs and HPs up to the year 2050 on a typical real 
urban residential LV distribution network area. GridLAB-D 
is used for the analysis of the impacts in terms of voltage 
profile, transformer loading and cable thermal loading. These 
are evaluated for a range of EVs and HPs integration for 2020, 
2030, 2040 and 2050. Section II presents the methodology for 
modelling and scaling down of national uptake figures of EVs 
and HPs for the LV network. Section III presents the LV network 
modelling and the simulation implementation. The results of 
the model simulation are presented in section IV, and in section 
V conclusions are drawn.

METHODOLOGY

A. Scenarios Description

Gridlab-D power system simulation software was used to 
analyze the impacts of integration of EVs and HPs on a part of 
real urban LV network. The impact analysis was investigated 
under four scenarios for each of 2020, 2030, 2040 and 2050 
considering projected EVs and HPs uptake figures and seasonal 
load profiles. The scenarios are: (1) Steady State Summer 
Weekday (SSSmrWd), (2) Steady State Winter Weekday 

(SSWtrWd), (3) Two Degrees Summer Weekday (TDSmrWd) 
and (4) Two Degrees Winter Weekday (TDWtrWd).

The Two Degrees (TD) and Steady State (SS) scenarios are 
adapted from (National Grid, 2017). The scenario name ‘Two 
Degrees’ is derived from the Article 2 of the Paris Agreement 
(UNFCC, 2015) and it indicates the target of holding the 
increase in the global average temperature to well below 2oC 
above pre-industrial levels. The TD depicts a scenario of 
prosperous economic growth, increased focus on RESs and 
LCTs, and strong political drive to achieve the renewable 
integration and all of UK’s 2050 emissions reduction targets. It 
is a scenario in which technology and investment are focused on 
innovation in RESs (solar and wind) and low carbon (nuclear) 
generation. On the other hand, the SS scenario depicts a 
business-as-usual scenario with less prosperous economic 
growth, little innovation in RESs and LCTs and limited political 
drive to encourage the populace to embrace greener LCTs. In SS 
scenario, technological innovation and investment are business 
as usual, low risk and short-term value approach, which focus 
on security of supply at affordable cost.

B. Details of the Case Study LV Network

In this study, a typical real urban LV distribution network in 
GB is used as the case study. The area is supplied by a 500-kVA, 
11/0.415-kV (no load), 50-Hz, Dyn11, ONAN mineral oil filled, 
free breathing, ground mounted transformer. The transformer 
supplies 298 buildings in four feeders. Figure 1 is the simplified 
diagram of the LV network and Table 1 gives the analysis of the 
number of buildings per feeder, annual baseline load of the 
feeders in 2014 and the length of the feeders.

Analysis of the feeders indicates that both Feeders 1 and 2 have 
feeder density of approximately 8 and 9 buildings per 100m 
length of the feeder respectively. Feeders 3 and 4, on the other 
hand, both have feeder density of approximately 11 and 13 
buildings per 100m length of the feeder respectively.

C. Future Electricity Demand Projections for the LV Network

In this research work, residential baseline electricity demand is 
described as the household electricity demand which excludes 
the electricity demand of EVs and HPs. Projected residential 
annual baseline electricity demand for 2020, 2030, 2040 
and 2050 are estimated from the breakdown analysis of the 
annual demand presented in National Grid’s Future Energy 
Scenarios (National Grid, 2017). Residential annual electricity 
demand in GB in 2014, which is the reference year in this 
work, was 109TWh (DECC, 2015). In 2014, the uptake levels 

Table 1: Feeders analysis
Feeder 2014 Annual load 

(kWh)
Length (m) Number of Buildings 

(Units)

1 360,782.4 1190 95
2 202,291.8 555 51
3 402,697.1 1155 120
4 108,936.0 250 32

1,074,707.30 298
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of both EVs and HPs were very small, and their combined 
electricity demand was not visible in the total residential 
annual electricity demand presented in (National Grid, 2017) 
and (DECC, 2015). Therefore, residential annual electricity 
demand in 2014 is regarded as ‘reference baseline’ in the 
context of this work. Residential relative baseline electricity 
demands for 2020, 2030, 2040 and 2050 with respect to 2014 
are calculated. Given the 2014 residential annual electricity 
demand of the case study LV network, then its projected 
future annual baseline electricity demand can be obtained 
by equation (1).

	
LV LV Relbaseline baseline yrdmd yr dmd( ) ( )

= × ( )2014 � (1)

Where:

LVbaselinedmd yr( )  
is the projected LV network annual baseline 

electricity demand (MWh) of a particular year.

LVbaselinedmd 2014( )  is the baseline electricity demand (MWh) of the 
case study LV network in 2014.

Rel(yr) is the relative baseline demand of a particular year with 
respect to 2014 and yr is the year identifier index.

Projected annual baseline demand of the LV network for the 
respective years are converted to half-hourly seasonal (summer 
weekday and winter weekday) daily profiles based on the 
normalization of the profiles from (UKERC, n.d.).

Table 2 gives the summary of the residential annual baseline 
demands for 2014, projected residential annual baseline 
demand for 2020, 2030, 2040 and 2050 with their respective 
relative baseline demand with respect to 2014 residential annual 
baseline demand in the GB.

The relative baseline demand figures in Table 2 indicate changes 
in the future residential electricity demand. Over the 10 years 
from 2020 to 2030, the residential electricity demand barely 
increases. The Compound Annual Growth Rate (CAGR) of 
residential annual baseline electricity demand during the period 
is 0.1% as calculated by equation (2).
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end
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=

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−
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




 ×1 1 100%
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Where:

BaselineCAGR is the compound annual growth rate of the baseline 
electricity demand.

Table 2:  GB residential annual baseline demand and  relative 
baseline demand
Year Annual Baseline 

Demand (TWh)
Relative Baseline

Demand

2014 109 1.00
2020 112 1.03
2030 113 1.04
2040 118 1.08
2050 129 1.18

Figure 1: Simplified diagram of the case study LV network
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Baselineend is the baseline electricity demand (MWh) at the 
end of the period.
Baselinestart is baseline electricity demand (MWh) at the start 
of the period.
n is the time duration of the period in years.

The two counter acting factors responsible for this trend are 
the increase in the number of households (DCLG, 2016) 
and the declining electricity demand in the residential sector 
(DECC, 2015). Factors responsible for the declining electricity 
demand in the residential sector are: (i) the decrease in the 
average household size (DCLG, 2016), (ii) the increase in the 
ownership of new and more energy efficient appliances (DBEIS, 
2017a), (iii) the improved building insulation (DBEIS, 2017a) 
and (iv) the increase in the electricity retail prices (DBEIS, 
2017b). The CAGR of residential baseline electricity demand 
in the periods 2030–2040 and 2040–2050 are 0.4% and 0.9% 
respectively. Over the two-decade interval, the number of 
households keeps increasing (DCLG, 2016) whereas average 
household size and ownership of new and more energy efficient 
appliances figures are settling (DCLG, 2016; DBEIS, 2017a). 
This explains the rise in the CAGR from 0.4% to 0.9% during 
the periods.

The implication of low CAGR (0.1%), in spite of the increase 
in the number of households between 2020 and 2030 (DCLG, 
2016), is that more customers would need to be served by the 
Distribution Network Operators (DNOs) for disproportional 
and marginal increase in electricity demand in the residential 
sector. This condition is not business friendly and the DNOs 
may review residential electricity retail price upward to cover 
for additional resources committed to serving the increasing 
customers. However, with uptake of EVs and HPs the electricity 
demand from the residential sector is expected to increase 
considerably. This is because most EV owners, more than 
80%, find their homes to be the most convenient locations to 
recharge their EVs (UK Power Networks, 2014; Knight et al., 
2015). With the anticipated increasing uptakes of EVs and HPs 
over the coming years up onto 2050, the CAGR of electricity 
demand from the residential sector is expected to increase 
rapidly over that period. Rapid increase of residential electricity 
demand due to EVs and HPs uptakes present the DNOs 
with both technical challenges and business opportunities. 
Technical challenges because of the concern that distribution 
system might be stressed, and business opportunities because 
consumers’ energy spending is shifting from the oil and gas to 
the electricity industry.

D. EVs Uptake Projections in the LV Network

The projected future number of cars in the GB up unto 2050 
is first calculated. The calculation of the projected future 
number of cars in the GB is based on extrapolation from 
historical data of the number of cars in the GB (DVLA/DfT, 
2018), population of the GB (ONS, 2017b), and the number 
of households in the GB (DCLG, 2016; ONS, 2017a). Figure 2 
and Figure 3 show the trend in average household size, cars per 
household and cars per head of population in the GB between 
1994 and 2017.

As seen from Figure 2 and Figure 3 both cars per household 
and cars per head of population share similar trend in their 
relationships with the average household size. In both cases as 
the average household size in GB decreased by approximately 
0.4% between 1994 and 2004, cars per household and cars per 
head both increased by almost 2.0% in the same period.

Many economic and social factors, which are outside the 
scope of the present work, could be responsible for declining 
trend in the average household size. However, the somewhat 
inverse relation between average household size and cars per 
household could be explained; thus, two persons of the same 
household sharing a car may end up with two cars if one person 
goes out to form another household. Therefore, in GB, car 
ownership (hence number of cars) is associated with number 
of households and household size. In the last 10 years (2007-
2017), the average household size changed slightly by an annual 
decrease of 0.1%. Similarly, over the same period, both cars per 
household and cars per head figures increased at an annual rate 
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Figure 2: Average household size and cars per household in GB, 1994-2017
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of 0.2% each. For the rest of this work, it is assumed that the 
average household size decreases by 0.1% annually, while cars 
per household and cars per head figures both increase by 0.2% 
annually up unto 2050.

Average household size, cars per household and cars per head 
of the population are calculated up unto 2050 based on this 
assumption. Then from projected number of households in 
GB (DCLG, 2016; ONS, 2017a) and the projected population 
(ONS, 2017b; European Commission, 2018), projected number 
of cars are calculated by either equation (3) or (4).

	
Cars Cars HHprojected yr perHH yr projected yr( ) ( ) ( )= × � (3)

	
Cars Cars Populationprojected yr perH yr projected yr( ) ( ) ( )= × � (4)

Where:
Carsprojected(yr) is the projected number of cars (Millions) in a 
particular year.
CarsperHH(yr) is the number of cars per household in a particular 
year.
HHprojected(yr) is the projected number of households (Millions) 
in a particular year.
CarsperH(yr) is the number of cars per head of population in a 
particular year.
Populationprojected(yr) is the projected population (Millions) in a 
particular year.

The results of the calculations are shown in Table 3.

The percentage error between the average household size 
calculated based on the assumption earlier made from its 
relationship with cars per household and the average household 
size calculated from the projected population and projected 
number of households is less than 1% in 2020, 2030, 2040 and 
2050. The low percentage error justifies the assumption.

Projected percentage of future uptake of EVs in TD and SS 
scenarios are now calculated. The calculation is based on the 
projected number of EVs in GB in each scenario up unto 2050 as 
reported in (National Grid, 2017) and the calculated projected 
future number of cars up unto 2050. Table 4 shows the results 
of the calculation for the percentage of future uptake of EVs.

Presently, typical household annual average electricity 
consumption in GB as revised in 2017 is estimated to be 

3100kWh (Ofgem, 2017). Typical household annual average 
electricity consumption has been on a declining trend since 
2005 (Ofgem, 2010; Ofgem, 2013; Ofgem, 2015b; Ofgem, 
2017). However, for this study, it is assumed constant at the 
2017 revised value. Therefore, total number of households in the 
LV network can be determined by dividing its annual electricity 
demand by typical household annual average electricity 
consumption as expressed in equation (5).

	

LV
LV

HHNo

baseline

typical
HH yr

dmd yr

dmd yr

( )

( )

( )

=
� (5)

Where:
LVNoHH(yr) is the number of households in the LV network in a 
particular year.
LVbaselinedmd(yr) is the projected LV network annual baseline 
electricity demand (MWh) of a particular year.
HHtypicaldmd(yr) is the typical household annual average electricity 
demand (MWh) in a particular year.
yr is the year identifier index.

The number of future uptake of EVs in each of TD and SS 
scenario in the LV network for a particular year is the product 
of the number of households in the LV network, the number 
of cars per household and the percentage uptake of EVs for the 
corresponding year as expressed by equation (6).

	
LV LV Cars EVNo No perHH yr uptakeEV yr HH yr yr( ) ( ) ( )

= × ×( ) � % � (6)

Where:
LVNoEV(yr) is the number of EVs in the LV network in a particular 
year.
LVNoHH(yr) is the number of households in the LV network in a 
particular year. CarsperHH(yr) is the number of cars per household 
in a particular year
EV% uptake(yr) is the percentage uptake of EVs in a particular 
year
yr is the year identifier index.

Table 5 shows the results of calculation of equations (5) and 
(6) for the number of households and number of EVs in TD 
and SS scenarios.

E. EVs Charging Load Requirement in the LV Network

Average daily energy requirement of EVs in the LV network is 
estimated. In this work, average daily energy requirement of 

Table  3: Average household size, cars/household, cars/head, 
pouplation, number of households and number of cars GB, 
2020-2050
Year Ave. 

Household 
size

Cars per
household

Cars per 
head

Population
(Millions)

Number of 
households
(Millions)

Number 
of cars

(Millions)

2020 2.41 1.15 0.47 67 28 32
2030 2.39 1.17 0.48 71 30 35
2040 2.36 1.19 0.49 75 32 38
2050 2.34 1.21 0.50 78 33 40

Table 4:  Percentage uptake of EVs, GB, 2020-2050
Year Number

of cars
 (Millions)

Number of
EVs 

(Millions)

Percentage EV 
uptake

(%)

TD SS TD SS

2020 32.0   2.0 0.4   6.3  1.3
2030 35.0   9.0 2.0 25.7  5.7
2040 38.0 17.0 4.0 44.7 10.5
2050 40.0 25.0 7.0 62.5 17.5
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an EV is defined as that amount of kWh by which the battery 
is depleted at the end of all the day’s trips and by which the 
battery must be replenished before the start of the next day’s 
trips. Average daily energy requirement of an EV can be quickly 
estimated by the product of average daily travel distance of 
the EV and the battery efficiency of the EV as expressed in 
equation (7).

	
EV distancekWh daily EVdaily

= × � (7)

Where:
EVkWhdaily is the average daily energy requirement (kWh) of an 
EV.
distancedaily is the average daily travel distance (km) of an EV.
ηEV is the battery efficiency (kWh/km) of EV.

In this work, 2015 Nissan Leaf 24kWh model is chosen as 
the representative EV. Nissan Leaf is the most popular pure 
electric car in the UK (DfT, 2018b). 2015 Nissan Leaf 24kWh 
has a combined city and highway efficiency of approximately 
0.2kWh/km and a range of at least 120km on full battery charge 
(Nissan Motor Corporation, n.d.). From the National Travel 
Survey (DfT, 2018a), average daily car travel distance in the 
UK is estimated to be 36km. Therefore, with EV efficiency and 
average daily car travel distance already established, an EV will 
need 7.2kWh, which is 30% of the full state of charge (SoC) 
of the battery, as its average daily energy requirement. In the 
LV network, the total average daily energy requirement will be 
the number of EVs in the network multiplied by 7.2kWh as 
expressed in equation (8).

	
LV EVEV

i

n

ikWhdaily
= ×

=
∑
1

7 2. � (8)

Where:
LVEVkWhdaily is the average daily EVs charge requirement (kWh) 
of the LV network.
n is the number of EVs in the LV network.

The constant 7.2 presented in (8) is the average daily energy 
requirement (kWh) of an EV. Equation (8) only gives the 
minimum average daily EVs charge requirement of the LV 
network, since it assumes 7.2kWh as daily charge requirement 
for all EVs. In reality, this cannot be the case and can give a 
misleading optimistic result of the impact study. Therefore, 
a more realistic daily EVs charge requirement is proposed. It 
is assumed that the EV battery should not be depleted below 
7.2kWh (30% SoC), the minimum required to guarantee daily 
average travel distance. This gives the range of daily charge 

requirement of an EV to be between minimum of 7.2kWh (30% 
SoC) and maximum of 16.8kWh (70% SoC). A  probability 
distribution function (PDF) of daily charge requirement of 100 
EVs (representing 100% for easy normalization) was created with 
a mean of 12kWh and standard deviation of 3kWh between the 
minimum of 7kWh and maximum of 17kWh. Figure 4 shows 
the daily charge requirement distribution.

From Figure 4, the more realistic daily charge requirement of 
EVs in the LV network is the sum product of the values of the 
x and y axes of the bars as expressed by equation (9).

	
LV x yEV

k

K

k kkWhdaily
=

=
∑

1
� (9)

Where:
LVEVkWhdaily is the average daily EVs charge requirement (kWh) 
of the LV network.
K is the total number of bars.
y is the number of EVs.
x is the charge requirement (kWh).
k is the identifier index for the bars.
The half-hourly percent of average daily charge in (National 
Grid, 2015) is adopted in this work to generate the actual average 
half-hourly EV charging profile. Data such as number of trips, 
start and end times of trips, average distance travelled, arrival 
times at homes, etc. generated from the National Travel Survey 
and Time Use Survey formed the basis of this charging profile 
(National Grid, 2015). Figure 5 shows the average half-hourly 
EV charging profile used in this study.

From the charging profile of Figure 5, it seen that the bulk of the 
charging demand takes place between 16:00 and 00:00 hours. 
The average peak demand for EV charging, 5.1% of average daily 
energy requirement, occurs at 21:00 hours.

F. HPs Uptake Projections in the LV Network

Projected percentage of future uptake of HPs in TD and SS 
scenarios are first calculated based on the projected number of 
HPs uptake in each scenario according to (National Grid, 2017) 
and the number of households as earlier calculated and shown 
in Table 3. Table 6 shows the results of the calculation for the 
percentage of future uptake of HPs.

Table 5:  Number of EVs per scenario in the lv network
Year Number of 

households 
(Units)

Number of EVs  (Units)

TD SS

2020 357 26 5
2030 360 108 24
2040 374 199 47
2050  409 309 87
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The number of future uptake of HPs in each of TD and SS 
scenario in the LV network for a particular year is the product of 
the number of households in the LV network and the percentage 
uptake of HPs for the corresponding year. Table 7 shows the 
number of HPs in TD and SS scenarios.

G. Modelling the HP Operation

The operation of variable speed Air Source Heat Pump (ASHP) 
providing both space heating (SH) and domestic hot water 
(DHW) is modelled. The operation of variable speed ASHP 
is dynamic in that the heat output and the coefficient of 
performance (COP) of the HP vary with the heating demand 
of the building it is installed in and the external temperature. 
Figure 6, adapted from (Wemhoener, 2011), illustrates the block 
diagram of HP system configuration modelled in this work. 
The HP system configuration is such that the provision for 
DHW and SH are mutually exclusive. The DHW provision has 
priority control in the event of DHW demand and SH demand 
occurring at the same time. In this event, the DHW demand is 
met first and then the SH demand. This design configuration 
is the most common in the market (Wemhöner & Afjei, 2003; 
Wemhöner et al., 2007; Wemhoener, 2011).

H. SH Model Formulation

The formula, as adapted from (Shao et al., 2013), for the internal 
air temperature of the building after a time slot t is given as by:

	
T T Q Q HP y

t
qint t int t loss t gain t SH t t+( ) ( ) ( ) ( ) ( ) ( )= − − −( )1 � .
∆
∆ �

(10)

Where:
Tint(t + 1) is the internal air temperature      oCorK( )  of the building 
after a time slot t.

Tint(t) is the internal air temperature      oCorK( )  of the building 
in time slot t.

Qloss(t) and  Qgain t( )  
are the heat loss (W) and heat gain (W) of 

the building in time slot t.

 HPSH t( )  
is the heat output (W) of the HP in SH mode in time 

slot t.

y(t) is binary variable which determines the operational status 
(ON = 1 or OFF = 0) of the HP in SH mode in time slot  t .

∆t  is the duration of the time slot in (s).

 ∆q  is the energy needed to change the internal air temperature 
of the building by 10C

J
oC

� .




 

The heat loss of a building is the sum of heat loss through the 
fabric of the building (floors, walls, roof, windows and doors) 
and the heat loss due to ventilation/infiltration (Hall & Greeno, 
2011). The heat loss, Qloss t( ),�of the building in time slot t is 
given by:

Table 7: Percentage uptake of HPs GB, 2020-2050
Year Number of HPs

TD SS

2020 5 3
2030 45 9
2040 95 10
2050 207 12

Table 6:  Number of HPs per scenario
Year Number of 

households 
(Millions)

Number of HPs 
(Millions)

Percentage HP 
uptake (%)

TD SS TD SS

2020 28   0.43 0.24  1.5 0.9
2030 30   3.74 0.72 12.5 2.4
2040 32   8.09 0.86 25.3 2.7
2050 33 16.69 0.91 50.6 2.8

Figure 6: Block diagram of HP System Configuration (adapted from 
(Wemhoener, 2011))
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Figure 5: Average half-hourly EV charging profile (National Grid, 2015)

	
Q AU N V T Tloss t ac int t ext t( ) ( ) ( )= ( ) + × −∑( . ) (� )0 3 � (11)

Where:
U is thermal transmittance 

W
m K2







.
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A is surface area through which heat transfer occurs (m2).

Nac is the number of air changes per hour 
ac
h





V is the volume of the building (m3)

Text(t) is external air temperature oCorK   ( )  in time slot t
The heat gain, Qgain(t), of the building in time slot t is given by:

Qgain(t) = (Qp × Np) + (ASW × SHGC × Srad(t))� (12)

Where:
Qp is heat gain from one person (W).
Np is the number of occupants.
ASW is the area of window facing south (m2).
SHGC is solar heat gain coefficient of window.

Srad(t) is solar irradiance W
m2







 in time slot t.

The energy needed to change the internal air temperature of 
the building is given by:

   ∆q C Vair air= × × � (13)

Where:
Cair is specific heat capacity of air for typical room condition 

J
KgoC







ρair is density of air Kg
m3







V is the volume of the building (m3)

The operational status, y(t), of the HP in SH mode is 
represented by:

	

y

ON T T T

OFF T T T

y
t

int t set sg

int t set sg

t

( )

( )

( )

−( )

=

= < −

= > +

1

0

1

,� ��

,�

,, ��T T T T Tset sg int t set sg− ≤ ≤ +








 ( )

� (14)

Where:
Tint(t) is the internal air temperature oCorK   ( )  of the building 
in time slot t
Tset is the set-point temperature of the internal air oCorK   ( )

Tsg  is the swing temperature oCorK   ( )  of the HP in SH mode.

y(t - 1) is the operational status of the HP in previous time slot.

In equation (14), Tset is the desired internal air temperature 
and therefore the thermostat set-point. If the actual internal 
air temperature, Tint(t), drops below the temperature lower 
limit, Tlow, which is the difference between Tset and Tsg, then 
the HP is switched ON to raise the internal air temperature. 
Conversely, when the internal air temperature rises above the 
temperature upper limit Tup, which is the sum of Tset and Tsg, the 
HP switches OFF. However, the operational status of the HP 
remains unchanged if the internal air temperature is between 
Tlow and Tup.

Ignoring losses, the heat output of the HP in SH mode is equal 
to the radiator output which is also equal to the condenser 
output. That is:

	
HP Q QSH t condenser t radiator t( ) ( ) ( )= = � (15)

Where:

Qcondenser(t) is the condenser heat output (W) in time slot t. 
Qradiator(t) is the radiator heat output (W) in time slot t.

The heat flux inside the condenser of the HP can be expressed 
according to (Hall & Greeno, 2011) by:

	
Q mc T Tcondenser t flow return t( ) ( )= −( ) � (16)

Where:
m is the mass flow rate kg

s






 of water.

c is the specific heat capacity 
J

kgoC






 of water.

 Tflow  is the operating temperature oCorK   ( )  of the working 
fluid reaching the condenser.

Treturn(t) is the temperature oCorK   ( )  of the working fluid leaving 
the condenser.

The heat output of the radiator can be expressed as:

	
Q U A T Tradiator t rad rad rad t int t( ) ( ) ( )= −( ) � (17)

Where:

Urad  and Arad are the heat transmission coefficient W
m K2





  

and 
surface area (m2) of the radiator respectively.

 Tint t( )  is the internal air temperature      oCorK( )  of the building 
in time slot t.

 Trad t( )  is the radiator temperature oCorK   ( )  and is given by:

	
T

T T
rad t

flow return t
( )

( )=
+

2 � (18)

From (15), (16), (17) and (18) the return temperature, Treturn(t), 
can be expressed as:

	
T

T mc U A U A T

U A mreturn t
flow rad rad rad rad int t

rad rad
( )

( )=
−( ) +

+

2 2

2 cc  � (19)

Based on test data, from the Heat Pump Test Centre WPZ, of 
30 different models of ASHPs (Wärmepumpen-Testzentrum 
WPZ, 2013), the expression for the COP of HP can be 
deduced from the plot of COP against ‘Treturn  -  Text’ with a 
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coefficient of determination (R2 value) of 0.9797 by the 
following equation:

	
COP et

T Treturn t ext t

( )
− −( )= ( ) ( )7 90471
0 024

.
,

� (20)

Where:
COP(t) is the coefficient of performance of the HP at time slot t.

Text(t) is the external air temperature oCorK   ( )  at time slot t.

The COP-  curve, which is here defined as the plot of COP 
against ‘Treturn  -  Text’ derived from the test data, is shown in 
Figure 7. In Figure 7, there are 9 test points and the COP at a 
point is the average of COPs of 30 ASHPs at that point.

The actual electrical input, PSHelect(t) (W), for the operation of 
the HP in SH mode is therefore given by:

	

P
HP

COPSH
SH t

t
elect t( )

= ( )

( )
 � (21)

Two temperature regimes were used in the modelling. The 
set-point temperature,  Tset , of the HP between 00:00 hours 
and 10:30 hours is 180C with a swing temperature, Tsg, of 20C. 
Whereas Tset between 11:00 hours and 23:30 hours is 20.50C 
with a Tsg of 30C.

I. DHW Model Formulation

Here, the formulation of the model that describes the heat 
balance and temperature flow inside the hot water tank is 
developed. In the model formulation, single-node state is 
assumed since there is no occurrence of draw event large 
enough to trigger the transition from single-node state into 
two-node state. A hot water tank remains in single-node state 
and only changes into two-node state when a considerable 
volume of water is drawn in a usage event which occurs in 
a short interval of time (Nel et al., 2018). In single-node 
state, the water in the tank is considered as a single mass of 
body with the heat and temperature of the water uniformly 
distributed. That is the water in the tank is not stratified 
after a draw event into upper layer warm water and lower 
layer cold water from the inlet that replaces the drawn 
water. Figure 8 shows the DHW tank in single-node state as 
modelled in this work.

The temperature, T(t), of the water leaving the tank is the 
average temperature of the hot water inside the tank. The tank 
is refilled with inlet water at temperature,  Tin , to replace the 
drawn water. The inlet water mixes with the hot water inside 
the tank and a new average temperature, T(t + 1), is formed for 
the next water draw event. The heat (W) available inside the 
tank after a water draw event in time slot t can be expressed in 
terms of heat balance equation as follows:

	 Q Q Q Q HP zt t use t aml t DHW t t+( ) ( ) ( ) ( ) ( ) ( )= − − +1 . � (22)

Where:
Q(t + 1) is the heat (W) remaining after a water draw event.
Q(t) is the heat (W) available before the water draw event. Quse(t) 
is the heat (W) loss due to the water draw event.
Qaml(t) is the heat (W) loss to the ambience due to heat 
dissipation from the tank to the environment.
HPDHW(t) is the heat output (W) of the HP in DHW mode in 
time slot  t .
z(t) is binary variable which determines the operational status 
(ON = 1 or OFF = 0) of the HP in DHW mode in time slot  t .

The heat balance equation in (22) can be written in terms of 
volume and change in temperature as follows:

	

Vc T T

t

Vc T T

t

V c T T

t
t in t in use t t in+( ) ( ) ( ) +( )−( )

=
−( )

−
−( )

−1 1

60 60 60

UU A T T
Vc T T

t
zta ta t int t

flow return t

t( ) ( )
( )

( )−( ) + −( )
60

.
� (23)

y = 7.9047e-0.024x

R² = 0.9797 
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Figure 7: The COP-curve adapted from test data at HP Test Centre 
WPZ (Wärmepumpen-Testzentrum WPZ, 2013)

 Figure 8: DHW tank in single-node state
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Where:
V is the volume (l) of the tank. Vuse(t) is the volume (l)of the 
hot water used in time slot t. T(t) is the temperature oCorK   ( )  
of hot water inside the tank in time slot t. T(t) is also equal to 
the return temperature, Treturn(t), of the working fluid. T(t + 1) 
is the temperature oCorK   ( )  of hot water inside the tank after 
the water draw event. Tin is the temperature oCorK   ( )  of the 

inlet cold water. Uta and Ata are the heat transmission coefficient 
W
m K2







 and the surface area (m2) of the tank respectively. c is the 

specific heat capacity of water 4.184
kJ

kgoC
. Tint(t) is the internal 

air, that is the ambient temperature      oCorK( )  of the building 
in time slot t. Tflow is the operating temperature oCorK   ( )  of 
the working fluid. t is the duration of the time slot in minutes.

The operational status, z(t), of the HP in DHW mode is 
represented as follow:

	

z

ON T T T

OFF T T Tt

t set W sg W

t set W sg W( )

( )

( )=

= < −

= > +

1

0

,� ��

,�
( ) ( )

( ) ( )

zz T T T T Tt set W sg W t set W sg W−( ) ( )− ≤ ≤ +








 1 , ( ) ( ) ( ) ( )�

�� (24)

Where:
T(t) is the temperature oCorK   ( )  of hot water inside the tank 
time slot t.
Tset(W) is the set-point temperature oCorK   ( )  of hot water inside 
the tank.
Tsg(W) is the swing temperature oCorK   ( )  of the HP in DHW 
mode.
z(t - 1) is the operational status of the HP in previous time slot.

Substituting for constant and solving for T(t + 1) in (23) yields:

	
T

VT V T tU A

T T V T
t

t use t in ta ta

t int t flow

+( )

( ) ( )

( ) ( )=

+ −

−( ) +
1

0 0143.

−−( )
+( )

( ) ( )

( )

T z

V V

t t

use t

.
�
� (25)

The set-point temperature, Tset(W), of the HP for DHW is 500C 
with a swing temperature, Tsg(W), of 50C. The hot water set-
point temperature and the swing temperature are such that 
will prevent the growth of Legionella bacteria inside the tank. 
Legionella bacteria mostly thrives in the temperature range 
between 20oC and 45oC (HSE, 2014).

The COP of the HP while working in DHW mode is as expressed 
in (20) with Treturn(t) substituted by T(t). The actual electrical 
input, PDWHelect(t) (W), for the operation of the HP in DHW 
mode is given by:

	
P

HP

COPDWH
DHW t

t
elect t( )

= ( )

( )
 � (26)

J. HP Model Implementation

A 6-kW heat output capacity, variable-speed ASHP with a COP 
of 2.7 at test condition A-7/W35 and R407C as refrigerant 

(Wärmepumpen-Testzentrum WPZ, 2013) was modelled. 
The HP operational model as SH and DHW provider was 
implemented in MATLAB for a typical winter weekday and a 
typical summer weekday. Figure 9 is the block diagram of the 
implementation process of the model. Inputs to the model in 
the SH mode are time series external air temperature, time series 
solar radiation, thermostat set-point for the desired internal air 
temperature, SH swing temperature and the time series internal 
air temperature which is fed back from the output. These input 
parameters interact with intrinsic properties of the building 
(such as size of building, areas of building fabrics and U-values 
of building fabrics), number of occupants and the COP-curve 
of the HP to produce outputs in the SH mode.

In the DHW mode, the inputs are time series external air 
temperature, time series internal air temperature, temperature 
of inlet water, thermostat set-point for the desired hot water 
temperature, DHW swing temperature, time series water usage 
profile and the hot water temperature which is fed back from 
the output. The tank parameters like volume, surface area and 
heat transmission coefficient interact with the input parameters 
to produce outputs in the DHW mode.

The outputs of the model depend on the mode of the HP 
(SH mode or DHW mode) which is active in a time slot. The 
outputs of the model in SH mode are internal air temperature 
and the electricity consumption of the HP in that mode while 
the outputs in DHW mode are hot water temperature and the 
electricity consumption of the HP in that mode. The electricity 
consumption of the HP in a time slot t is determined by the 
following:

	
HP P y P zelect t SH t DWH telect t elect t( ) ( ) ( ). .= +

( ) ( ) � (27)

Equation (28) ensures that the HP can only operate either in 
SH mode or DHW mode at a given time slot.

		      
y zt t( ) ( ). �= 0

� (28)

The model is run with 100 buildings. Each building is considered 
as a single zone in the modelling process. In order to achieve 
diversity in the operation of the HPs in different buildings, 
the following input parameters of the model are randomized: 
building size, number of occupants, SHGC of windows, number 
of air change, initial internal air temperature and initial hot 
water temperature.

Figure  10 shows the profiles of the HPs average electricity 
demand on a typical winter weekday and a typical summer 
weekday. Peaks are observed at about 7:30 and 9:30 in the 
morning for both typical winter weekday and typical summer 
weekday average electricity demand of the HPs.

K. HP Model Validation

To validate the developed HP operational model, empirical 
data from credible sources were used as inputs to run the 
model. The model outputs, typical winter weekday and typical 
summer weekday average electricity demand of HPs expressed 
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in half-hourly intervals, were compared with the measured daily 
average electricity demand of HPs in the Carbon, Control and 
Comfort (CCC) project (Boait & Stafford, 2011). The comparison 
between the model outputs and the actual measured outputs of 
the CCC project showed close similarity in trends and kW values 
of the HPs daily average electricity demand profile. This gives 
reasonable credence to the usefulness of the developed model.

Figure 11 is the screenshot from CCC Project of average HP 
demand. The midnight peak observed in Figure 11 but not in 
Figure 10 is due to the fact that the HPs in the CCC project 
operate a weekly pasteurization cycle (raising the DHW 
temperature above 60oC  to kill Legionella bacteria) which 
always takes place at midnight.

L. Data Sources

Empirical data of the input variables used in the modelling of HP 
operation were carefully sourced for. Decision on the number of 
occupants per household was based on (ONS, 2017a). Average 
daily DHW requirement of household in litres/day was estimated 
in line with technical guidelines from (Henderson & Hart, 
2015) and it is given by 25Np + 36. Normalized DHW tapping 

profile from (Hendron & Burch, 2008) was used to estimate the 
actual DHW draw at any time of the day. Figure 12 illustrates 
the normalized DHW tapping profile. Data on geometric and 
constructional characteristics of the hot water tank came from 
(Kingspan (UK), 2016). Data about buildings parameters which 
consist of building type and size and U-  values of building 
elements were from (DCLG, 2015) and (HM Government, 2010) 
respectively. Weather data were from (UK Met Office, n.d.).

 Figure 9: Block diagram of implementation process of HP operation
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Figure 10: HP daily average demand
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LV NETWORK MODELLING AND SIMULATION 
IMPLEMENTATION

The loads were modelled using the ‘exact lumped load model’ as 
described in (Kersting, 2012). This model is useful in situation 
where the locations and sizes of the loads are unknown, providing 
reasonable results for the line losses and voltage drop along a feeder. 
In exact lumped load model, one-third of the load is placed at the 
end of the line and two-thirds of the load is placed one-fourth of 
the way from the source end. The EVs and the HPs are distributed 
amongst the feeders based on the ratio of the number of buildings 
per feeder. Table 8 below shows the EVs and HPs distribution. 
The components (lines and transformer) of the LV network were 
modelled in GridLAB-D power system simulation software.

Table 8:  EVs and HPs distribution
Feeder Year Scenario No of EVs No of HPs

1 2020 TD 8 1
SS 1 1

2030 TD 34 14
SS 7 3

2040 TD 63 31
SS 15 3

2050 TD 99 66
SS 28 4

2 2020 TD 5 1
SS 1 1

2030 TD 19 8
SS 4 1

2040 TD 34 16
SS 8 2

2050 TD 53 36
SS 15 2

3 2020 TD 10 2
SS 2 1

2030 TD 44 18
SS 10 4

2040 TD 80 38
SS 19 4

2050 TD 124 83
SS 35 5

4 2020 TD 3 1
SS 1 -

2030 TD 11 5
SS 3 1

2040 TD 22 10 
SS 5 1

2050 TD 33 22
SS 9 1

Power flow calculations of the LV network were performed 
using the power flow module of the GridLAB-D software. The 
GridLAB-D power flow simulation was run for twenty-four hours 
with half-hourly resolution for a typical winter weekday and a 
typical summer weekday for the years 2020, 2030, 2040 and 2050 
under the TD and SS scenarios. For the simulation, Newton-
Raphson power flow solver was chosen, and the results were output 
in comma separated values (CSV) format for further analysis.

SIMULATION RESULTS

The impacts of the electricity load profiles of EVs and HPs on 
transformer loading, voltage profiles of the feeders and ampacity 
loading of the cables were evaluated in the power flow simulation 
of the LV distribution network. The results of the transformer 
loading profiles of the LV network for the four scenarios for the 
years 2020, 2030, 2040 and 2050 are as presented in Figures 13 
(a-d) with the solid bold red line indicating the nominal capacity 
of the transformer in percentage.

In all the scenarios for all the years considered, there is a common 
trend of load build up in the early morning and in the early 
evening. The trend is, however, more pronounced in the WtrWd 
scenarios than in the SmrWd scenarios. The early morning load 
build up crests between 08:00 hours and 09:00 hours, while the 
early evening load build up crests between 18:00 hours and 19:00 
hours. The early morning load build up can be explained due to 
the increased usage of hot water and hence more operation of 
HPs at that time of the day. Figure 10 and Figure 12 allude to 
this plausible explanation. However, the more pronounced early 
evening load build up can be attributed to the combination of 
increasing EV charging as people are returning home from work 
and increased HPs demand triggered by the slightly increased 
hot water usage at that time of the day. Figure 5, Figure 10, and 
Figure 12 support this explanation.

Up until 2040, the transformer can withstand the load 
requirement of the LV area network in all scenarios as seen 
in Figures 13 (a) – (c). However, a continual increase in the 
transformer loading is observed from 2020 through 2040. The 
increase is most evident in the TDWtrWd scenario, increasing 
from 62% of the transformer nominal capacity at 18:00 hours in 
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Figure 12: Normalized DHW tapping profile (Hendron & Burch, 2008)
Figure  11: Screenshot from CCC Project of average HP demand 
(Boait & Stafford, 2011)
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2020 to 100% of the transformer nominal capacity at 18:00 hours 
in 2040. By 2050, as seen in Figure 13(d), the overloading of the 
transformer in the TDWtrWd scenario is significant. In this 
scenario, the nominal capacity of the transformer is exceeded 
on two instances. The transformer is first slightly overloaded 
by about 4% between 08:00 hours and 09:00 hours. Then from 
17:30 hours the transformer is subjected to a sustained overload 
of about 30% for not less than five hours. This is the most critical 
scenario, and it is going to be the focus of further interest.

In Figure 14 the voltage profiles at the farthest end of all the feeders 
in 2050_TDWtrWd scenario are presented with the solid bold red 
line indicating the statutory limit for voltage drop in per unit. There 

is no violation of voltage drop limit in any of the feeders. The voltage 
profiles of the feeders follow the same trend with two notable dips 
at 08:00 hours and 18:00 hours. The greatest dip in voltage of value 
0.96 p.u. occurs at the far end of Feeder 1 at 18:00 hours.

To observe the impact of the load profiles of EVs and HPs on thermal 
loading capacity of cables, percentage ampacity loading of the first 
cable of the four feeders in 2050_TDWtrWd scenario is examined. 
Figure 15 shows the percentage ampacity loading of the first cable 
of the feeders in 2050_TDWtrWd scenario with the solid bold red 
line indicating the nominal ampacity of the cables in percentage.
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Figure 13(a): Half-hourly Percentage Transformer Loading of the LV 
network, 2020
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Figure 13(c): Half-hourly Percentage Transformer Loading of the LV 
network, 2040
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 Figure 13(b): Half-hourly Percentage Transformer Loading of the LV 
network, 2030
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Figure 13(d): Half-hourly Percentage Transformer Loading of the LV 
network, 2050
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There is no cable that is loaded beyond its ampacity rating. 
The most loaded cable is the first cable in Feeder 1; reaching 
approximately 64% of its nominal ampacity at 18:00 hours.

SUMMARY AND CONCLUSION

The impacts of future uptake and electricity load profiles of EVs 
and HPs on LV distribution networks in GB were investigated. 
A typical real residential urban LV distribution network was used 
as the case study. Four scenarios were formulated based on the 
season and projected uptake of EVs and HPs in the years 2020, 
2030, 2040 and 2050. Calculations were made by scaling down 
the national projected number of EVs and HPs to estimate 

the uptake of EVs and HPs in the case study LV distribution 
network. Average minimum daily energy requirement of an EV 
was estimated to be 7.2kWh and the possible maximum daily 
energy requirement was estimated to be 16.8kWh. Average 
electricity demand profiles of HP for a typical winter weekday 
and a typical summer weekday were created by modelling the 
operation of HP and implementing the model in MATLAB. 
The modelled operation of the HP was validated against an 
actual field trial project.

For all the scenarios in all the years considered, power flow 
simulations of the LV area distribution network were carried 
out using GridLAB-D, an agent-based power system simulation 
software. The results of the simulations revealed the impacts of 
the uptake and load profiles of EVs and HPs on the LV network 
in terms of transformer loading, voltage profiles of the feeders 
and the ampacity loading of the cables.

Results showed no violation of voltage drop limit in any of the 
feeders in all the scenarios for all the years considered. Also, no 
cable was thermally overloaded in all the scenarios for all the years 
considered. In terms of transformer loading, the results showed 
that the transformer could withstand the load requirement of 
the LV network in all scenarios up until 2040. However, by the 
winter of 2050 under the most optimistic uptake level scenario 
of EVs and HPs (i.e., 2050_TDWtrWd), the transformer was 
subjected to a sustained overload of about 30% above its nominal 
rating from early evening for about five hours.

Therefore, the results of this study indicated that the first 
possible factor that may restrict further uptake of EVs and 
HPs at residential LV distribution networks is the issue of 
transformer overloading. Overloading of transformers will be 
an issue of concern to the DNOs considering the importance 
of transformers in the overall system reliability and their 
replacement cost. One direct solution to addressing the 
concern of overloading of transformers at LV distribution 
networks due to increasing uptake of EVs and HPs is the 
upgrading of the transformers’ capacities. However, the 
number of such transformers to be upgraded and the resources 
needed could be additional sources of concern to the DNOs. 
Other cost-effective solutions, which encourage optimal 
utilization of the existing transformers capacities, must be 
exploited.
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