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Abstract—The paper reviews the factors limiting the accuracy

of locating a fiber optic cable fault when using an optical time

domain reflectometer (OTDR) and describes an error estima-

tion method for typical use cases. The primary source of er-

rors lies in the complex relationship between the length of the

optical fiber (measured by OTDR), its routing, cable design

depending on cable design and type of installation (i.e. duct,

directly buried, aerial) as well as the spare lengths used for

service purposes. The techniques which considerably improve

the accuracy of the fault localization processes are presented,

the importance of accurate documentation of the network and

of referencing the fault location to the nearest splice instead

of end of the line are discussed, as is the absence of cable helix

factor in data sheets.

Keywords—fault location, fiber optic cable, helix factor, OTDR,

single-mode fiber.

1. Introduction

OTDR is a measurement instrument used for diagnosing

fiber optic networks [1], [2]. The main advantage of OTDR

over a less expensive testing technique relying on a light

source and a power meter is its ability to indicate the dis-

tance from the OTDR’s optical port (or another reference

location) to any discontinuity or “event” in the fiber being

tested.

However, OTDR gives the length of the optical fiber be-

tween the OTDR’s optical port and the fault. Due to the

design and installation conditions, the measured length of

the fiber is always longer than the length of the cable or

the distance measured along its route. In order to be useful

for fault location, such a value must be converted to cable

route length to the fault or, much better, to the distance

between the fault and the nearest component of the cable

link that may be located without much difficulty – usually

a cable splice.

Depending on the cable and installation technique used,

the fiber length may exceed the route distance by up to 8%.

With repeater sections in terrestrial fiber networks being up

to 100 km long (or longer), even a reasonable difference

of 1.5% may produce a location error of up to 1,500 m.

This prevents the fault from being located and identified

quickly by the service technicians arriving at the location

that is equal (route distance) to the (fiber) distance shown

by OTDR, as they may be unable to notice that a ditch

that has caused the cable to be cut is located approximately

800 m away.

This paper focuses on diagnosing of long (10–130 km)

fiber links used in telecom networks, where the accuracy

of OTDR-based fault location is of key importance, and

where installation techniques and record-keeping facilities

used tend to be consistent.

The article is arranged as follows. Section 2 presents the

relationships between cable route lengths, cable and fiber

lengths, as well as gives the definitions. Section 3 presents

a review of fiber optic cables and their helix factors. Sec-

tion 4 highlights the effects of cable installation on extra

lengths of cables and fibers. Section 5 presents OTDR

operating principles and issues that are important for the

accuracy of fault location, with Section 6 describing how

the fiber distance should be converted to cable or route dis-

tance in order to facilitate the process of locating faults.

Conclusions are presented in Section 7.

2. Optical Fiber Cables – Definitions

This section explains the definitions used: lengths (dis-

tances) of optical fiber, cable and cable route, understood

as a line joining all facilities between specific terminations

of the fiber optic cable link: buildings, manholes, poles,

etc.

Several terms used in this paper, such as the “helix factor”,

“fiber overlength”, or “index of refraction”, are not fully

standardized and are defined differently in the literature, in

datasheets, and in OTDR user manuals. To accommodate

this, alternative names are indicated throughout the paper.

There are three distinct lengths/distances between a line ter-

mination, typically at the optical distribution frame (ODF),

where access to fibers for testing purposes is provided, and

a cable failure (event) detected by OTDR:

• fiber length: physical length of optical fibers between

ODF and the event,

• cable length (sheath length): sum of the length of all

cables between ODF and the event,
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• route length: cable route length projected onto the

ground, as seen on a map, between ODF and the

event.

The common rule is:

Fiber length (LF)>Cable length (LC)>Route length (LR).

The difference between fiber and route lengths is usually

the largest in aerial networks, where the LF : LR ratio may

reach 1.08. The other extreme is a cable link with a limited

fiber count duct cable of a central loose tube design, and

moderate spare segments of cable at each splicing location,

say 2× 25 m every 2 km, where the LF : LR ratio is only

1.006–1.008. Even in this case, the difference between LF
and LR reaches, after 50 km, 300–440 m.

The relationship shown above is generally applicable due

to the following factors:

• outdoor fiber optic cables contain excess lengths of

each fiber to accommodate temperature variations

and tensile forces without exerting excessive strain

on the glass fibers. This is most often done by pack-

ing an extra segment into a protective tube a length

of fiber slightly longer than this tube, with the fiber

forming a helix. Cables with stranded loose tubes or

slots include an additional (“dead”) length of fibers

which cannot be used to compensate for cable elon-

gation;

• joint closures store additional lengths of fibers to al-

low re-splicing. They are usually 0.5–1 m long on

each side of the splice;

• spare lengths of cables, typically 20–40 m, are placed

at selected locations along the cable route, preferably

near each joint closure to allow repair works;

• aerial lines include vertical runs of the cable at each

splicing point;

• duct networks often include numerous road or rail-

road crossings and offset manhole locations. At each

of them, an additional length of duct and cable is pro-

vided, e.g. 20 m, but this is not always recorded in

network documentation and in the route length data;

• line terminations in big buildings include non-

negligible lengths of cables between the entry to the

building and ODF ports, typically they are 15–50 m

long, while the cable route shown on a map seems

to end at the entry to the building.

The above list is not exhaustive due to specific issues, such

as wrapping a compact fiber optic cable around a support

(messenger wire), which increases cable length.

2.1. Helix and Route Factors

The method used to install the fiber optic cable greatly af-

fects the relationship between the lengths of cable route LR,

cable LC, and optical fiber LF . If the network connection

follows a uniform set of rules, e.g. consistent lengths of

cable sections and spare lengths are used, with one type of

cable, the approximate relationship is:

LF = HF ×LC = HF ×RF ×LR , (1)

where HF or “helix factor” (sometimes also referred to as

the “cabling factor”) is the ratio between the length of fiber

in the cable and cable sheath:

HF =
LF

LC
. (2)

HF depends on the type of cable – see Section 3. RF or

the route factor is the ratio between the length of cable and

the length of route. This parameter accounts for all extra

segments of cable in the line introduced by:

• spare lengths of cables,

• vertical sections in aerial installations,

• undulation of directly buried cables to compensate

for soil movement,

• running the cable through manholes offset from

a straight line, etc.

HF and RF vary within the 1.005–1.04 and 1.01–1.10

ranges, respectively. For example, if a cable section in

a duct network is 2,000 m long, and spare lengths of 20 m

are stored on each side of each joint closure, RF = 2040 :
2000 = 1.02, even with perfectly straight installation ducts.

The highest HF and RF values are observed in aerial

networks, in particular those with optical ground wire

(OPGW) and all dielectric self-supporting (ADSS) cables

suspended on high voltage overhead power lines. Such

aerial cables are exposed to a wide range of temperatures

and tensile loads. In order to accommodate the resulting

cable length variations, the cable must have a high over-

length of fiber with respect to cable length, with HF of up

to 1.04 in cables with stranded loose tubes.

A consistent relationship between route, cable and fiber

lengths may be expected in regional or long distance lines

built as separate projects. In urban and suburban environ-

ments, a much greater variability of RF is observed due

to non-straight cable routes resulting from limited rights of

way, street layouts, re-use of existing ducts, and obstacles.

Hence, only the helix factor is useful in such cases.

While the helix factor is rarely included in cable specifica-

tions, it may be calculated from internal dimensions of the

cable or may be measured.

3. Fiber Optic Cables

In this section, a review of cable designs is presented to

familiarize the reader with differences between the length

of fiber in the fiber optic cable (natively indicated by the

OTDR) and the cable itself (marked on the sheath), as well

as with typical HF values.
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Fig. 1. Approximate helix diameter d and fiber overlength ∆LT for different numbers of fibers in a 0.25 mm primary coating placed

in a 1.6/2.2 mm loose tube. The bundle of fibers is assumed to form a helix with pitch p of 100 mm. All parts are to scale.

3.1. Loose Tube Cables

In outdoor cables, fibers shall be protected against strain,

crush, or excessive bending that takes place when the cable

length varies with temperature and tensile loads, or when

deformation is experienced. A bundle of fibers (colored for

identification purposes) [1], [2], is placed in a loosely fitting

protective tube, called a loose tube, with a smooth inner

surface. To prevent water penetration, the tube is filled with

a gel or includes a water-swellable material. Alternatively,

the fibers may be formed and glued into ribbons [3] which

are placed in cables of either loose tube or slotted core

design.

3.1.1. Loose Tube

The glass fibers are mechanically decoupled from the tube

by placing an additional, uniformly distributed length of

them with respect to the tube. This extra segment is known

as fiber overlength or excess fiber length (EFL). It is a re-

sult of post-extrusion shrinkage of the polymer tube when

it is cooled down from the extrusion temperature of 220–

260◦C to ambient temperature. Unlike thermoplastic poly-

mers, the fused silica fibers are characterized by a low

and almost temperature-independent thermal expansion co-

efficient within the range of temperatures typical for the

manufacturing and use of fiber optic cables, i.e. approx.

0.55 · 10−6 K for a bare glass fiber and 2.25 · 10−6 K for

a fiber with the standard primary coating with the diameter

of 250 µm.

The fibers inside the tube are bent to form a helix, and may

be partially or fully straightened when the tube and cable

are elongated by tensile force or bent more sharply when

the cable contracts in low temperature. As long as the fibers

are not fully straightened, they are protected against exces-

sive strain which may cause a failure. However, excessive

overlength causes severe bending of fibers and increases

attenuation.

The fiber length to tube length ratio is defined by:

HFT =
LF

LT
, (3)

where: HFT – helix factor of straight loose tube (≥ 1), LF
– physical length of optical fiber, LT – physical length of

tube.

In some publications and OTDR user manuals, an alterna-

tive definition of the helix factor (for tubes and cables) is

used, defined as an extra fiber length divided by tube length

and expressed as a percentage figure:

∆LT =
LF −LT

LT
·100% . (4)

This parameter is also known as fiber overlength, and this

concept will be used here.

If the fiber has a regular helical (spiral) shape with pitch p
and diameter d, HFT may be calculated as:

HFT =
LF

LT
=

√

1+

(

πd
p

)2

, (5)

while fiber overlength in the tube, expressed as percentage

rate, is calculated as follows:

∆LT =





√

1+

(

πd
p

)2

−1



 ·100% . (6)

For overlengths of up to 1%, encountered in all typical

cable designs, a simplified formula is used, retrieved after

error correction from [4]:

∆LT ≈ 493 ·
(

d
p

)2

[%] . (7)

Medium and high fiber overlengths, such as 0.1–0.6%

(HFT = 1.001–1.006) are desirable in outdoor cables that
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are exposed to tensile forces and variable temperatures. The

helix diameter d is lower than the inner diameter of the tube,

roughly by the width of the bundle of fibers, as shown in

Fig. 1. When the tube is filled with fibers, the fibers are

positioned straight and overlength is close to zero. This

is typical in “tight-fitting” tubes for micro cables or duct

cables with very high fiber count.

There is a trade-off between mechanical protection of fibers

and their density in the cable. According to the applicable

standard [5], a long-term strain of 0.20% is permitted for

silica fibers proof-tested at 1% strain. Overlength typical of

small diameter loose tubes is not satisfactory for many ap-

plications, particularly in aerial networks. Therefore, small

tubes are suitable for cables in which stranding results in

additional overlength or for cables which are blown into

ducts by dedicated pneumatic devices using well-controlled

tensile force.

3.1.2. Cable with Central Loose Tube (Unitube)

This type of a loose tube cable incorporates a single,

straight tube located in the center and surrounded by sheath,

strength members, ripcords, etc. An example is shown in

Fig. 2.

Fig. 2. Cross-section of a duct cable with central a loose tube.

In this case, the overlength of fibers is caused only by form-

ing a helix inside the tube, and:

HF =
LF

LC
= HFT =

LF

LT
, (8)

where: HF – helix factor of cable, LC – length of cable,

marked on its sheath.

3.1.3. Cable with Stranded Loose Tubes

In this design, the cable core incorporates multiple and

identical loose tubes stranded around a central rigid strength

member in one or more layers. The number of tubes is 4–12

in a single layer (Fig. 3). Stranding is either helical or re-

versible, also known as SZ or reverse oscillating lay (ROL).

Reversible stranding makes it easier to manufacture cables

with the use of more compact machinery and allows to

extract selected tubes during cable splicing. The mechan-

ical conditions for fibers are similar. The cable frequently

gets a second external strength member made of aramide,

glass or basalt fibers to withstand significant tensile forces,

especially in aerial applications.

Fig. 3. 60-fiber dielectric, gel-filled duct cable with 5 stranded

tubes and filler. All parts are to scale. Fillers enable to strand the

core with a reduced fiber and tube count.

Stranding results in overlength of tubes and fibers inside

with respect to cable sheath, adding to the overlength of

fibers existing in (straight) tubes. For helical stranding, the

formulas for the tube helix factor HFS and overlength are

the same as for fibers in the tube:

HFS =
LT

LC
=

√

1+

(

πdS

pS

)2

, (9)

∆LS ≈ 493 ·
(

dS

pS

)2

[%] . (10)

Here, pS and dS are the pitch and diameter of the helix

formed by each tube in the cable. Equations (9) and (10)

apply also to helically twisted slots in a slotted core cable.

The cable helix factor may be obtained by adding 0.03–

0.05% to account for the typical fiber overlength inside

a loose tube.

There are several differences with respect to straight loose

tube:

• helix diameter dS is large, typically 4–8 mm in a sin-

gle layer cable (Fig. 3), and ∆LS in the range of

0.5-4% may be obtained,

• helix pitch pS is set during stranding, and ∆LS is

adjusted as desired,

• fibers cannot move all the way to the axis of the cable.

Most of the fiber’s overlength is “dead”, not useful for

accommodating cable elongation, but the remaining

“net” overlength of 0.15–0.8%, is sufficient.

The resulting helix factor in a cable with stranded tubes is

a product of both components:

HF =
LF

LC
= HFT ·HFS . (11)

For relative fiber overlength, the approximate formula is:

∆L = ∆LT +∆LS . (12)
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The second component is most important, because the tubes

have usually a small diameter of 1.5–3 mm.

If the cable contains more than 12 tubes, they are stranded

in 2 or 3 layers, e.g. with 6 tubes in the inner layer and

12 tubes in the outer one (Fig. 4), each with a different

helix diameter and pitch. The resulting helix factor for

fibers in each layer may be different, because the cable is

manufactured to achieve an identical “net” overlength and

a strain-free window for all fibers. Additionally, manufac-

turers tend to minimize the length of fibers to reduce costs.

A detailed description of the manner in which helix factors

are calculated and other related parameters may be found in

patents filed by the Corning company [6], [7]. For example,

the said description includes the calculation of a complete

strain window i.e. cable extension and contraction range

with zero fiber strain.

Fig. 4. The cross section of 216-fiber duct cable with 18 (6+12)

loose tubes stranded in two layers.

A typical network operation support system (OSS), where

data for all cable routes is stored in the network database,

usually cannot handle separate HF values for specified

ranges of fiber numbers in a single cable, e.g. 1–72 and

73–216 for the cable shown in Fig. 4. Instead, a single HF
value for all fibers in a given cable is stored, which causes

errors in locating faults for specific parts of the fibers. To

overcome this problem, a comment on what range of fiber

numbers the HF applies to, e.g. 1–72, and using only

OTDR traces of these fibers for locating faults, may be the

solution.

Another OSS issue is the need to assign different HF values

to each cable section, as future maintenance of the link may

be performed with the use of a different cable type.

Duct and directly buried cables need only a moderate net

fiber overlength (0.05–0.20%), because they are exposed

to large tensile forces only temporarily during installation,

and are protected against temperature extremes by thermal

inertia of the soil. A compact central tube may be a good

approach here.

A different situation is experienced in aerial cables, such

as ADSS and OPGW, exposed to variable tensile loads,

extreme temperatures and sun heat, where a “net” over-

length of 0.4–0.8% is expected. This is realized by adopt-

ing a short tube stranding pitch, typically equaling 100–

150 mm, as opposed to 300–600 mm in duct cables. An-

other solution is to use a large diameter central tube, but

such a design suffers from other issues, like tube stiffness

and migration of fibers inside the tube in aerial installations.

3.1.4. Microcables

A microcable is a compact type duct cable with an outer

diameter of 1.2–9.5 mm. While the optical unit is of the

loose tube type, major differences may be identified:

• it has only a minimal strength member and a thin

sheath,

• it requires blowing with pneumatic machinery and

strict control of tensile forces,

• it is installed in plastic microducts of a small diameter

(5–14 mm).

Fiber counts reach up to 576 - this is possible due to the use

of compact fibers in 200 µm or 180 µm primary coating.

The loose tubes in micro cables have small diameters (1.2–

2 mm), thin walls and are almost completely filled with

fibers. Designs with stranded tubes and a low stranding

pitch dominate, but due to the compact optical unit, the

HF of a micro cable is usually below 1.015.

3.2. Ribbon Cables

A fiber ribbon is a group of 4–24 fibers in colored primary

coatings, laid in parallel and bonded together with a thin,

soft matrix (Fig. 5) that may be easily removed mechan-

ically [8]. The ribbon does not include any overlength of

fibers.

Fig. 5. Cross-section of a fiber ribbon with 12 single-mode fibers.

Back in the day, ribbons were fully coated with a binder

material and therefore relatively stiff and difficult to bend or

twist. Multiple ribbons of this type may be densely stacked

in a large diameter loose tube, or in a rectangular groove

in a slotted core cable, with fiber counts of up to 1000

(Fig. 6).

While stacked ribbons fill well rectangular slots, their stiff-

ness restricts undulation that is necessary to obtain over-

length of fibers in a tube or slot. A larger net fiber over-

length may be obtained in a cable with stranded tubes or

a slotted core, where the slots in the central element form

a helix. The helix factor of such cables is comparable to

that of conventional loose cables with stranded tubes.
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Fig. 6. Schematic of a 200-fiber slotted-core cable with 4-fiber

ribbons in rectangular slots.

3.3. High Fiber Count Cables

The recent trend is to develop duct cables with extremely

high fiber counts. Such cables have either one or 4–6 large

tubes filled with 12-fiber ribbons. The ribbons are of the

partially (periodically) bonded type, a solution that allows

for easy twisting or bending and ensures that almost 100%

of space in the tube is used, also because the “bending

tolerant” or “bending insensitive” single mode fibers com-

ply with the ITU-T G.657.A1/A2 standard [9] and, hence,

tolerate some mechanical pressure without an increase in

attenuation. A good example is a duct cable developed by

Fujikura, with the outside diameter of 35 mm and 6,912

fibers in 200 µm primary coating formed into 12-fiber par-

tially bonded ribbons, all in a single central tube.

Similarly to micro cables, this solution is characterized

by a low overlength of fibers in tubes (fibers are almost

straight). The helix factor may be higher in large diameter

cables having stranded tubes.

3.4. Cables with Tight Buffered Fibers

The tight buffer is a layer of a rigid polymer, such as PBT,

polycarbonate, polyamide or (moderately) plasticized PVC

extruded over a single primary coated fiber – directly or

with intermediate layer of a soft polymer, e.g. silicone. The

outer diameter of a tight buffered fiber is 0.9 mm (0.036”),

and is sometimes reduced to 0.6 mm in compact type

cables.

The fiber overlength of 0.05–0.15% (HF = 1.0005–1.0015)

is provided by the post-extrusion shrinkage of the outer

layer of the polymer, as in a loose tube. The ability to form

the fiber into a helix to accommodate overlength is limited

by the lack of empty space, and the glass fiber is subjected

to compressive strain that decreases with temperature.

The helix factor of an indoor cable with 1–12 straight fibers

is higher, e.g. 1.005, because the tight-buffered fibers are

surrounded by soft aramid fibers (the strength member) and

form a helix or assume a similar shape after the cable jacket

has been extruded and cooled. Large capacity indoor cables

typically include stranded fiber units, and their HF may be

calculated using Eq. (9).

4. Issues with Cable Installation

In this section, we explain how the type of the fiber optic ca-

ble and the method of its installation affect the relationship

between fiber distance (determined by OTDR) and route

distance.

4.1. Duct Installation

This type of outdoor network design is characterized by

low requirements in terms of the cables used. The cables

are pulled into ducts having the inner diameter of approx.

100 or 37 mm (or even lower in the case of micro cables)

and are subjected to moderate tensile loads after installa-

tion. Duct cables are protected from temperature extremes

by significant thermal inertia of the 80–120 cm thick layer

of soil above the ducts, and against crushing forces trans-

ferred from the soil. The joint closures and spare segments

are stored in underground manholes or handholes. How-

ever, the underground environment is frequently humid and

cables may be surrounded by water or mud entering the

manholes and/or ducts.

Duct cables are designed to withstand moderate tensile

loads and temperature ranges. Cables with a single central

tube and with multiple stranded tubes, as well as slotted

core cables with fiber ribbons (in some countries only) are

used here. Their HF ranges from approx. 1.005 for thin

unitube cables to 1.015 for large fiber count cables with

stranded tubes.

The route factor is the lowest in newly built cable networks

located outside of towns, e.g. with cables pulled into plastic

ducts laid directly in soft soil. For example, with the length

of a cable section of 1500–2500 m, the spare lengths of 20–

30 m on each side of the joint closure, with 0.25% of the

total length added to account for failing to lay the ducts in

an ideally straight line and to take into consideration other

factors, the resulting RF equals 1.018–1.042.

In a complex urban environment with multiple obstacles,

with existing manholes being used, RF may exceed 1.10.

Similar conditions prevail when large spare cable segments,

i.e. 200 m and more, are stored in underground contain-

ers to allow for splicing work to be performed away from

inconvenient terrain. Under such conditions, it makes no

sense to apply a uniform route factor. Large spare sections

or deviations from a straight route shall be documented as

separate objects with precisely recorded lengths and cable

length markings.

4.2. Direct Burial

In this type of network design, cables of the strengthened

variety, preferably armored, are laid directly in the soil,

and therefore are exposed to considerable crush forces and

potential soil movements. However, the range of operating

temperatures and tensile forces are similar to those expe-

rienced in the duct networks, and the design of an optical

unit of the cable and its HF are similar.
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The route factor is usually low and equals 1.01–1.02, be-

cause the spare segments cannot facilitate servicing opera-

tions, as moving the cable would require troublesome and

costly excavation work. However, the cable is frequently

laid in a somewhat undulated form if soil movement, par-

ticularly in areas with underground mines, is a known risk.

4.3. Aerial Type of Installation

In the aerial network, each segment of the cable is sus-

pended between two pylons. At both ends of each 2–3.5 km

section, the cable enters an enclosure where a spare length

LSP = 20–30 m is stored, allowing for splicing work at

ground level and for future repairs – see Figs. 7 and 8. In

addition, there are vertical runs of the cable at the end of

each section, down to the joint closure. For the OPGW ca-

ble suspended over the power conductors of a high voltage

overhead power line 30–40 m above ground level, a 25 m

vertical run is a typical solution. For ADSS cables placed

below phase conductors, the vertical runs are shorter. In

a high voltage network using OPGW or ADSS cables, the

joint closure is usually attached to the pylon 5–15 m above

ground to prevent acts of vandalism. When the cables are

installed on a medium or low voltage power network or

on telecom infrastructure, the vertical runs are short, so

we will focus on an OPGW installation on a high voltage

overhead power line, considering it to be the worst case

scenario.

A section of an aerial cable is presented in Fig. 7.

Fig. 7. Schematic of an aerial cable line with key parameters.

The aerial cable forms a catenary line whose length LA in

a section having the span length of LS and sag (drop) d
may be calculated using [10]:

LA = LS +
8d2

3LS
. (13)

In this scenario, the cable is subjected to tension. The

tensile strain in reference conditions (20◦C, no wind, no

ice) is approx. 0.15–0.20% for OPGW [11], [12]. To find

the true (strain-free) length of the suspended cable in the

span, a corrected formula for a reference strain value of

0.2% is suitable:

LA = 0.998 LS +
8d2

3LS
. (14)

Because the fibers in an aerial cable are protected from

strain at moderate tensile forces applied to the cable (see

subsection 3.1), the sag and its variations depending on

temperature, wind and ice hazards have little effect on the

physical length of optical fibers in the cable, unless the

conditions are extreme.

The typical span in 110, 220, and 400 kVAC overhead

power lines in Poland is 300–400 m, and the sag is

3.5–6 m according to [13].

For a 320 m span and a 5 m sag: LA = 319.568 m, and

LA/LS = 0.99865. Counter-intuitively, the actual (strain-

free) length of the cable installed in a single span LA is

shorter than LS, although the difference is low and equals

0.135% only. The extension of the cable exceeds the length

added due to the catenary arc formed by the suspended

cable. For the following cable and installation specification:

• HF = 1.035 (fiber overlength: 3.5%),

• number of spans in a cable section 10,

• route length of a cable section LR = 10 × LS =
3200 m,

• cable spare lengths 2×LSP = 2× 30 m (see Fig. 7

and subsection 4.4),

• cable vertical runs 2×LV = 2×25 m,

we get:

• length of cable in 10 spans: 3200 × 0.99865 =
3195.68 m,

• length of cable in a cable section: 3305.68 m (RF =
1.033),

• length of fiber in a cable section: 3421.38 m,

• HF × RF = 1.0692 (6.92% difference between

lengths of fiber and route).

HF in several ADSS cables exceeds 1.04 and the pylons

are higher in mountainous terrain, so the difference between

measured fiber length LF and route length LR may exceed

8%. Even if the location of the fault is referenced to a splice

at the beginning of a cable section, it may be difficult to

identify span requiring inspection.

4.4. Spare Lengths of Cables and Fibers

These segments allow to perform maintenance without

adding a new section of the cable and an extra splice.

The spare length of a duct or aerial cable LSP is preferably

stored on each side of the splice and is coiled on brackets

in a manhole or on a pole (Fig. 8). If the cable passes an

area that is difficult to access with a utility vehicle carrying

the equipment necessary for cable splicing, the line may

incorporate considerably longer spares, 200 m or more,

stored in underground enclosures to allow cable splicing at

an accessible location.
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Fig. 8. Spare lengths of aerial fiber optic cable accompanying

a joint closure box: OPGW on a 400 kV high voltage power line

(left) and ADSS on a low voltage line (right).

5. Use of OTDR for Fault Location

An extensive and detailed description of OTDR operation,

as well as an interpretation of fiber traces is presented

in [14]. E-book [15] is another publication covering this

subject, but is considerably less detailed.

The most common kind of fiber cable fault is a localized

damage, such as fiber breaks or severe bends, causing high

losses in optical fibers. Such failures typically result from

excavation and drilling works, as well as from vehicles hit-

ting poles or cabinets. They constitute more than 80% of

all fault, usually occur rapidly and affect all fibers in the

cable [16].

Fault diagnostics with the use of OTDR include trace ac-

quisition from one end of the affected line to save time. The

most common fault, as mentioned earlier, is either a reflec-

tive break of the fiber, or a non-reflective and localized loss

with uneven values in different fibers. The location of all

fiber events is identical and testing multiple fibers brings

no improvement in this regards. However, it confirms the

type of the fault, e.g. damage of only some of the fibers in

the cable suggests a rodent, a shot or a lightning strike.

A specific type of a fiber fault consists in the failure of

a contaminated connector or a sharply bent fiber carrying

a high-power optical signal in a transmission system em-

ploying EDFA amplifiers (up to 0.5 W or +27 dBm) or

Raman amplification with powerful (multiple watts) pump

radiation injected into the fiber. This kind of fault occurs

at the ODF or inside a joint closure located relatively close

to a line terminal. It results in the fiber coating overheat-

ing and burning out, followed some time later by a break

of exposed glass fiber. Both the fiber break and damaged

connector are highly reflective events. Other fibers and

connectors are not affected.

All OTDRs used for diagnosing telecom networks are ca-

pable of automatically analyzing the fiber trace for disconti-

nuities exceeding a set threshold, e.g. 0.10 dB. Such events

are automatically listed, along with their type and param-

eters (loss, reflectivity, fiber distance to event). The fiber

trace and the associated event table may be saved to a file or

may be uploaded to a remote server. However, the distance

displayed is the fiber length LF between the OTDR’s port

(or a reference connector, when a launch fiber is employed)

and the event. This value must be converted to cable length

LC, using Eq. (2), and next to distance between the fault and

the closest easy-to-find objects, such as manholes, cabinets

or poles with the joint closure.

The staff tasked with testing the fiber are often subcon-

tractors servicing multiple networks, and do not have any

precise data (ne f f , HF, route documentation) necessary for

precise location of the fault. This information must be

provided by the network operator from his OSS or cable

network database.

5.1. Instrument Uncertainty in Distance Measurement

The distance uncertainty is usually specified by OTDR

manufacturers as a sum of:

• 0.001–0.005% of distance measured (1–5 m for

100 km),

• cursor resolution (0.1–20 m depending on pulse

width).

For a distance of 100 km and the pulse width of 1 µs

(100 m), the uncertainty defined using this method is be-

low 25 m. With a longer pulse of 10 µs (1000 m), the

uncertainty is higher due to the shape of the pulse, optical

receiver’s impulse response, operator’s skill, software used,

etc. For a 10 µs pulse we can reasonably expect an uncer-

tainty of approx. 75 m. Still, this is only 0.075% of the

fiber distance measured.

The distance measurement error resulting from ignoring the

cable helix factor is in the 0.15–4% range, while the spare

lengths and vertical runs of cable and undulation of cable

may incorporate a comparable error.

5.2. Refractive Index of Optical Fiber

There are two parameters of the optical fiber that are im-

portant for fault location using OTDR:

• effective refractive index ne f f for calculating fiber

length between the OTDR’s optical port and the fault,

• attenuation limiting the maximum length of the fiber

which may be tested.

The geometry, attenuation, dispersion and mechanical pa-

rameters of telecom-grade fused silica fibers are standard-

ized under ITU-T [9], [17] and IEC [18], [19]. The fiber’s

effective refractive index ne f f , defined as the ratio of one-

way transmission delay τ in the fiber multiplied by the

speed of light in vacuum to the fiber’s physical length LF
is not standardized:

ne f f =
cτ
LF

. (15)

In general, ne f f of multimode fibers (1.47–1.50) is higher

than of single-mode fibers (1.46–1.47) because of the lower
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difference in the refractive index between the core and the

cladding, as well as frequent incorporation of depressed

(fluorine-doped) inner cladding in single-mode fibers.

Other names of this parameter include index of refraction

(IOR) [20], effective index of refraction (EIOR) [21], ef-

fective group index of refraction [22], and group refractive

index [23].

Specifications provided by fiber manufacturers include val-

ues of ne f f at intended operating wavelengths [22], [23]

with a decent resolution, e.g. ne f f = 1.4682. The esti-

mated consistency of ne f f , resulting primarily from its de-

pendence on the fiber mode field diameter (MFD) and its

production tolerance, typically ±0.4–0.5 µm, as well as

the tolerance of OTDR operating wavelength [21], approx.

±20 nm, amounts to approx. ±0.0003. The variations ob-

served with changes in temperature (for fibers in primary

coating) and aging are negligible. A margin for other factors

like rounding must be added, increasing ne f f uncertainty to

0.0001. However:

• ne f f is wavelength-dependent due to chromatic dis-

persion of the fiber, resulting in a difference between

values at 1310 nm and 1625 nm of up to 0.002 for

the ITU-T G.652 or G.657.A single-mode fiber (for

the worst case scenario),

• cable specifications often fail to include ne f f , as the

fibers in the cable can vary.

The uncertainty in measurement of fiber distance LF re-

sulting from the uncertainty of ne f f is proportional to the

measured value. Two scenarios are important here:

a) the user has entered the ne f f found in the data sheet of

the fiber under test,

b) the ne f f value from OTDR factory settings or from pre-

vious measurements is used.

The review of available datasheets indicated that ne f f val-

ues of commercially available single-mode fibers for ter-

restrial networks, conforming to ITU-T G.652.D, G.654.E,

G.655.C/D/E, and G.657.A1/A2 standards, are within the

following ranges:

• 1.4606–1.4710 at 1310 nm if the fiber is designed for

operation at this wavelength,

• 1.4620–1.4700 at 1550 nm.

The difference between extreme values is about 0.010, so

the combined error in setting the ne f f in the second case

increases to ±0.0110. Using a ne f f value for a wrong

wavelength, e.g. 1550 nm instead of 1310 nm, may increase

this error up to ±0.0130.

During the measurement of fiber distance of LF = 100 km,

the uncertainty expected in scenarios (a), (b), and (b)

with data for wrong wavelength is 68 m (0.068%), 748

m (0.748%), and 884 m (0.884%), respectively. This error

in scenario (a) is comparable with distance measurement

uncertainty specified by manufacturer of the OTDR.

5.3. Fiber Refractive Index and Cable Helix Factor

For reliable distance measurements, the value of ne f f pro-

vided by the fiber manufacturer must be set in the OTDR

for each wavelength at which fiber testing is planned. The

range is at least 1.4–1.6, giving a possibility of introducing

a large error by entering wrong ne f f , and it may be expected

that the value will be reduced to 1.00 due to the recent

introduction of low-latency photonic bandgap fibers with

a hollow core, designed for data center applications [24].

Fibers with ne f f values as low as 1.02 were developed re-

cently as well.

Many OTDRs allows to input cable HF or equivalent fiber

overlength as a percentage value [20]. This parameter is

wavelength-independent.

Because ne f f is usually specified at two or three wave-

lengths, such as 1310 nm, 1550 nm and sometimes 1625 nm

for single-mode fibers, the value at another wavelength, e.g.

1650 nm, may be estimated by linear interpolation or ex-

trapolation [21].

The default value of HF is 1.000 (0.0% fiber overlength).

If the OTDR has no HF setting function, a solution is still

possible – after setting ne f f equal to the ne f f of the fiber

multiplied by HF, the instrument will show the length of

cable instead of fiber.

5.4. Measurement of Cable Helix Factor

The length of an outdoor cable with a rigid strength mem-

ber, except for the OPGW made of stranded wires, is

marked accurately on the sheath by the factory (maximum

tolerance of cable length is 0–1% of length markings, while

the typical tolerance equals 0.2%). This allows to calculate

HF from the fiber length LF measured with OTDR and ca-

ble length LC between markings at both ends of the length

under test, using Eq. (2). However:

• the HF value established using this method is valid

only for a given type and size of cable. It varies con-

siderably for otherwise equivalent cables from other

suppliers,

• HF is much less consistent than fiber ne f f .

6. Distance Correction for Fault

Localization

The techniques enabling a more precise localization of fiber

cable faults include:

• conversion of the measured fiber length to cable

length using the helix factor,

• accounting for spare, vertical and indoor lengths of

cables,

• using the route factor which is useful only for long,

uniform lines,

• referencing distance to the nearest splice instead of

ODF.
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Effective use of these methods requires access to OSS in-

formation, i.e. a valid database of cable routes and net-

work facilities, including buildings, manholes, poles, street

cabinets, splice and termination locations, cables (type,

HF value, fiber type, count, and ne f f ), together with their

geographical locations and fiber IDs. Additionally, the OSS

shall store the reference OTDR traces of all fibers, mea-

sured from both ends of the line, for comparison with the

test data acquired before and after servicing.

With a decent set up and well-maintained OSS, the sys-

tem is capable of calculating the actual location of a fault

after entering a raw distance to the fault measured with

OTDR, and of presenting this location on a map together

with nearby objects, such as manholes or buildings for

reference.

Unfortunately, this is not always possible, as the mainte-

nance of infrastructure data is costly and labor-intensive.

In such cases, manual or semi-automated correction of dis-

tance to a fault may be the only option.

The best way is to set the OTDR up with HF of the cable to

be tested. Alternatively, cable length LC may be calculated

from the measured fiber length LF using Eq. (2).

This method has no use when the line is made up of two or

more different types of cable, unless corrections for each

part are made separately, which is complex and with inher-

ent error risk.

The use of route factor (RF) is recommended only for long,

uniform lines with one type of cable, uniform installation

rules, straight routes, and even so, specific “jitter” resulting

from the conversion of discrete spare and vertical lengths

of cables to a fraction of total cable length is experienced,

meaning that the accuracy of this method is low. The length

of route to fault LR may be calculated from measured fiber

length LF using Eq. (1).

Referencing to the nearest splice is the best approach when

combined with use of cable helix factor for conversion of

fiber distance to cable distance. While a complete single

mode fiber optic link may have a length of up to approx.

120 km, the cable section extending between splices is typ-

ically up to 4 km long, and most often 2.5 km or even less.

Consequently, errors in the measurement of distance to fault

stemming from an unknown or improperly set HF and ne f f
are proportionally reduced.

The suggested fault location procedure is as follows:

• acquire a fiber trace and set the cursor at the begin-

ning of a fault (spike or fall on the fiber trace),

• look for the nearest splice before the fault and mea-

sure the distance between them,

• verify whether this distance is smaller than the length

of the cable section. If not, this means that the near-

est splice was missed due to very low (apparent) loss,

and another fiber shall be tested,

• convert the measured splice-to-fault fiber distance to

cable distance, using Eq. (2),

• use this cable distance to find the relative location

of the fault with respect to the nearest objects in the

route documentation, e.g. the fourth manhole after

the one with a joint closure. The spare lengths of

cable must be included.

In a duct network with a 2000 m cable section, cable with

HF = 1.015 (1.5% fiber overlength), 0.2% uncertainty of

HF (0.002), and spare length of cable near the joint closure

LSP = 20 m, the expected error in a fault location process

relying on this procedure is approx. 5 m. Without cor-

rections for HF and spare lengths of cable, the error may

reach 50 m under the same conditions.

7. Conclusions

Precise location of a fault in an outdoor fiber optic cable

using an OTDR is crucial for enabling fast and efficient

cable repairs and for restoring the fiber connections. The

use of OTDR allows to locate a fault from a distance of

100 km or more, with the accuracy in order of 100 m,

therefore enabling to begin servicing without losing any

time on looking for the actual fault location.

The methods of estimating the locations of fiber cable

faults, as presented in this paper, shall be useful in achiev-

ing this goal, especially when a fully featured network OSS

is not implemented. The use of the parameter of fiber op-

tic cables discussed in this paper, i.e. the helix factor, is

always essential.
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