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ABSTRACT 

ESTIMATING VEHICLES EMISSIONS AT SIGNALIZED 

INTERSECTIONS IN THE HIGHWAY CAPACITY MANUAL 

 

by 

Yuanyuan Fan 

Over the past decades, motor vehicle volumes have continued to increase at a high rate. As a result, 

engineers in the transportation field not only need more robust knowledge of traffic operation control 

and transportation planning, but more attention is also needed to understand and estimate the 

influences that this increasing volume of vehicles has on the environment, especially the influence 

on air quality. The EPA has stated that reducing carbon monoxide (CO) from vehicle emissions is 

the most significant way to control air pollution from the transportation sector.  

The Highway Capacity Manual is a national and international resource that has become a 

guideline for evaluating the operation of roadway, transit and pedestrian facilities. The Highway 

Capacity Manual assesses the operation of a roadway based on the perception of its users. 

Performance measures are used to describe the traffic operation of the roadway. At present, no 

measures are provided to describe the operation of the roadway based on environmental impacts. 

The incorporation of air pollution estimation into the Highway Capacity Manual will allow the 

roadway’s operation to be assessed both from an operational and environmental aspect, ultimately 

creating a sustainable development for both transportation and the environment.  

The objective of this dissertation is to develop MOVES-like estimation models of vehicle 

emissions for pollutants at a signalized intersection that can be incorporated into the Highway 

Capacity Manual. “EPA’s Motor Vehicle Emission Simulator (MOVES) is a state-of-the-art 

emission modeling system that estimates emissions for mobile sources at the national, county, and 

project level for criteria air pollutants, greenhouse gases, and air toxics.” (EPA, 2014). A thorough 

understanding is needed about what parameters, and influence of these parameters on vehicle 

emissions. This dissertation develops two kinds of models in order to estimate emissions caused by 



on-road vehicles.  Two modeling approaches are used to estimate four kinds of emissions including 

CO, NO, NH3 and NOX separately. The following summarizes the work of this dissertation: 

(1) Two modeling approaches are used to estimate vehicle emissions including: multiple 

linear regression and Artificial Neural Network (ANN). In the multiple linear regression modeling, 

two different models were developed including one model using operation modes as independent 

variables and another model using traffic related parameters as independent variables. Both model 

approaches and independent variables are used to estimate four types of pollutant emissions. 

Statistically, the emission models using traffic parameters as independent HCM related parameters 

are capable of providing a better emissions estimate based on the higher R square value. For CO, 

the variables found to be significant were volume to capacity ratio and grade with an R2 of 61.56%. 

For NO, the variables found to be significant were volume to capacity ratio and grade with an R2 of 

99.47%. For NOx, the variables found to be significant were volume to capacity ratio and grade with 

an R2 of 99.47%. For NH3, the variables found to be significant were volume to capacity ratio and 

grade with an R2 of 99.25%. This study shows that volume to capacity dominate the emissions 

quality at a signalized intersection. The research found that for NOx, Idling and Moderate Speed 

Coasting were significant. For NH3, all variables were significant except Low Speed Coasting. For 

CO, Braking and Cruise/Acceleration were significant. It was also found that longer delay time 

reduces CO emissions, but it causes the other three pollutant emissions increase. 

(2) The ANN modeling method using the Levenberg-Marquardt method was used to train 

the HCM related variables and MOVES emissions outputs. The parameters of volume to capacity 

ratio, and road grade are used to estimate emissions. The Validated R value of the obtained ANN 

model is found. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Problem Statement 

 
The US Environmental Protection Agency (EPA) regulates six principal pollutants to 

ensure air quality. These pollutants include: carbon monoxide (CO), lead (Pb), nitrogen 

dioxide (NO2), ozone (O3), particulate matters (PM) and sulfur dioxide (SO2). Among 

these pollutants, about two-thirds of the total emissions of CO pollutant comes from the 

transportation sector. It has been shown that CO emissions from vehicles are as high as 

90% of the total amount of total urban CO emission (EPA, 1993). The EPA has stated that 

reducing carbon monoxide (CO) from vehicle emissions is the most significant way to 

control air pollution from the transportation sector.  

The Highway Capacity Manual (HCM) provides guidance that serves both traffic 

planners and traffic engineers in the planning, designing and operating of transportation 

facilities. Although the HCM is a tool recommended by the EPA to predict vehicles’ speeds 

in the estimation of emissions (HCM, 2010), the HCM does not include air quality in 

determining the performance of transportation facilities. The HCM 2010 makes some 

references about air quality stating “vehicle emissions are a significant contributor to poor 

air quality”, and referring to the Clean Air Act Amendments CAAA (HCM, 2010). 

Although the report “Extent of Highway Capacity Manual Use in Planning” (Dowling, 

2012) expects air impact analysis to be included ultimately in the HCM, current HCM users 

do not have strategies in the HCM to estimate air quality based on the design or operation 

of the transportation facility. 
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Several vehicle emissions estimation tools have been developed in recent years. 

The second generation EPA vehicle emissions model is called Motor Vehicle Emission 

Models (MOVES). It was developed by EPA's Office of Transportation and Air Quality 

(OTAQ) in 2002 and first released to the public in 2010. “EPA’s Motor Vehicle Emission 

Simulator (MOVES) is a state-of-the-art emission modeling system that estimates 

emissions for mobile sources at the national, county, and project level for criteria air 

pollutants, greenhouse gases, and air toxics.” (EPA, 2014). MOVES serves both the state 

and local agencies and it is capable of estimating 59 pollutants from 13 vehicle classes, 

five source types and five road types.  

Another emissions research tool that has been used in research is the 

Comprehensive Modal Emissions Model (CMEM). This emission tool was developed by 

the University of California-Riverside in 1995. CMEM is a module model that divides the 

whole estimation system into six parts, including power demand, engine speed, air to fuel 

ratio, fuel rate, engine-out emissions, and catalyst pass fraction.  

Emission estimations tools such as MOVES and CMEM often need vehicle activity 

data, including information on the operation mode of vehicles to complete the emission 

procedure. Research has shown that emission results are sensitive to the operation modes 

of vehicles (LeBlanc, 1995; Barth et al. 1997; Frey, H. Christopher, et al. 2002; Ritner, 

Mark, et al, 2013). Critical to the accuracy of the emissions estimation is how the vehicle 

activity data is collected. The existing research on vehicle emissions models discusses three 

types of approaches for collecting traffic activity data for emissions study. These 

approaches include: using simulation software (Abou-Senna et al., 2013; Chen et at. 2016); 

using lab experiment data (Djoric et al. 2014); and using sensors to measure field data 
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(Jimenez-Palacios, 1998). There are distinct advantages and disadvantages to using 

different sources of data. On-board emission technology is capable of collecting field 

emission data, but the cost is relatively high and only limited data is obtained at one time. 

Remote sensing technology is also difficult to collect multiple vehicle activity data at one 

time. Individual vehicle activity data or limited vehicle activity data is difficult to use in 

describing air quality performance influenced by vehicles’ operation modes. On the 

contrary, the cost of simulation-based approach is relatively low. In addition, the 

functionality of the simulation software enables generating simultaneous estimation of 

emissions by importing the simulated vehicle trajectory data. For this reason, vehicle 

activity data from simulation software becomes the first choice for data collection in this 

dissertation.  

Current emission models use a variety of parameters to model emissions’ output. 

For example, Abou-Senna and Radwan (2013) used vehicle speed as a variable to estimate 

emissions; Zhang et al. (2013) applied acceleration as a variable to find the emission 

outputs; Andrew et al. (2012) and Rouphail et al. (2000) used control delay percentage and 

time to predict emissions. Coelho, Farias and Rouphail (2005) used speed control signal as 

important predictors; Shabinhkhani and Gonzals (2013) utilized operation modes, time, 

stop and volume as predictors for emissions output study. Akcelik et al. (2003) used 

instantaneous speed and acceleration rate to estimate emissions. Li et al. (2011) used signal 

timing and delay as predictors to find the emissions outputs. These studies indicate that 

vehicle emissions can be estimated using various predictors.  At the same time, traffic 

engineers who are unfamiliar with these air pollution estimation tools find it difficult to 

conduct environmental analyses due to the complex vehicle emissions models. These 
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traffic engineers are familiar with the HCM and may be able to use the HCM to estimate 

vehicle emissions. The HCM has a variety of performance measures that can be used not 

only for estimating the operational performance of the roadway, but also can be used in 

estimating vehicle emissions. This dissertation focuses on providing traffic engineers with 

tools that can be used for estimating vehicle emissions.  

Many agencies in United States use the Highway Capacity Manual (HCM) in 

design and operation of their transportation facilities. Absent from the HCM, however, is 

the ability to estimate the performance of a roadway based on its impact on air quality. 

Although much has been studied on vehicle emissions and several models exist, none of 

the estimation methods have been incorporated into the HCM. This may be due to the fact 

that current emission estimation tools are not easily utilized by traffic engineers. 

Performance measures developed through the HCM methodology can be used in the 

development of a simplified vehicle emissions model that can be incorporated into the 

HCM. A reliable emission estimation methodology using traffic engineering parameters as 

inputs would be useful in realizing the goal of incorporating vehicle emissions into the 

HCM.  

Some of the current emissions models have problems of utilizing complicated input 

files, which can be time consuming to generate and then to use in the emissions process. 

To overcome this, simplified models can be developed which provide a baseline analysis 

of vehicle emissions for use in evaluating the emissions performance of the roadway 

facility.  

Many vehicle emissions models use speed as an input variable. Speed profile is one 

of the most significant inputs for the project level analysis in MOVES. In fact, either 
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average speed or vehicle second-by-second speed can be applied. The project level has 

three ways of importing the speed profile, they are: average speed, drive schedule and 

operation mode distribution. The operation mode is the description of the vehicle running 

states, such as Braking, Idling, Low speed coasting, Cruise/acceleration, and Moderate 

speed coasting. The operation modes distribution method is reported to be the most 

accurate input method for estimating emissions, but this type of input is a complicated input 

method (EPA MOVES, 2010) and requires a large quantity of vehicle activity data to be 

collected and formatted before being imported into MOVES. This has, therefore, decreased 

the use of this method. Instead, multiple agencies currently use average speed instead of 

the operation mode input, although this can cause biases in the emissions estimation and 

possibly impact the accuracy of the emissions estimation. Therefore, an easily used 

emission model which does not sacrifice prediction accuracy is pursued.  

Previous research has been performed to develop simplified emission estimation 

methods. Ozbay et al. (2012) developed a simplified vehicle emissions model based on 

MOVES outputs. In this study vehicle speed is used as an input variable and the Fourier 

series is used to fit the model. However, the manual used for EPA MOVES claims that 

vehicle speed cannot fully capture the relationship between emissions and the influence 

factors of vehicles’ running states (EPA MOVES, 2004). In addition, studies have shown 

that the vehicle’s operation mode can have a significant impact on the emissions results 

(LeBlanc, 1995; Barth et al. 1997; Frey H. Christopher, et al. 2002; Ritner Mark, et al. 

2013). For this reason, it is necessary to develop a model that includes these operation 

modes. Another study by Stanek et al. (2013) generated linear, polynomial, and logarithmic 

models as the relationship between emissions and volume of vehicles. Vehicle volume was 
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the only variable in that research. All of these studies utilize a relationship between 

emission outputs and a single influencing factor, such as speed, acceleration, volume. In 

addition, there are other potential variables that can be used to estimate vehicle emissions, 

including operation mode. At the same time, estimation accuracy should also be considered 

and evaluated in these models.  

 

 

1.2 Research Objectives 

 
The primary objective of this research is to develop a MOVES-like estimation model for 

use in estimating vehicle emissions of pollutants at signalized intersections. These models 

can be used as a performance measure for assessing roadway performance in the HCM. 

Pollutant emissions from on-road vehicles will be used as the dependent variable of 

interest. Vehicle operation modes will be used as independent variables as well as other 

traffic related variables. The relationship between the independent and dependent variables 

will be analyzed, and the best fitting model will be found to predict pollutant emissions for 

four pollutants: CO, NO, NOx, and NH3. The result will assist HCM users in the design 

and assessment of roadways using both operational performance measures, as well as 

through the use of vehicle emissions estimates. The following tasks are to be accomplished 

in order to achieve the objectives. 

Task 1: Validate the reliability of VISSIM results used for estimating vehicle 

operation mode 

Task 1-1: Measure real-world vehicle speed and acceleration data on a second-by-

second basis at an intersection.   
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Task 1-2:  Simulate the intersection in VISSIM under the same conditions for the 

real-world conditions,  

Task 1-3:  Compare the field data of operation modes with the simulation data. 

Task 2: Develop a vehicle emissions model by using multiple linear regression 

method   

Task 2-1: Optimize the signal timing for various demand volumes at the 

intersection. The purpose of this step is to minimize the control delay.  

Task 2-2: Simulate the intersection in VISSIM and generate second-by-second 

activity data for different demand volume conditions.  

Task 2-3: Use MOVES to estimate emissions for four pollutants.   

Task 2-4: Develop a vehicle emissions model relating vehicles’ operation models.   

Task 2-5: Develop vehicle emissions prediction models with HCM parameters. 

Task 3: Develop vehicle emissions prediction models by using artificial neural 

network model (ANN) 

Task 3-1: Use artificial neural network model (ANN) to develop an emissions 

model.  

Task 3-2: Develop ANN Graphic User Interface model (GUI) to users.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

This chapter provides an overview of previous studies on vehicle emissions. Section 2.1 

introduces the methodology assessing the automobile mode in studying urban street 

segments in the HCM. Section 2.2 introduces the method to calculating delay at 

intersections in HCM 2010. Section 2.3 introduces the pollutants the EPA mainly regulates. 

Section 2.4 introduces tools currently used to estimate vehicle emissions. The last section 

of this chapter is a literature review of possible influencing factors and existing 

methodologies on tailpipe level emissions. 

 

 

2.1 Automobile Mode in Urban Street Segments in HCM 2010 

 

This subsection of the literature review describes the methodology used in HCM 2010 for 

assessing the performance of the automobile mode in urban street segments. Understanding 

the operational behavior of the automobile mode in urban street segments becomes an 

important step for generating vehicle emissions that will be used in the second stage of 

developing the emissions model. The section begins with a discussion of urban street 

segments including some vital inputs for key procedures. Second, a discussion is provided 

on the used to determine the delay. 

Input data for the automobile methodology consists of traffic characteristics and 

geometric design. Specifically, the input data elements for the boundary intersection 

include: demand flow rate; number of lanes upstream intersection width, and turn bay 

length; through control delay, through stopped vehicles, 2nd and 3rd-term back-of-queue 

size, and capacity. A summary of input data and their further notes presents in Table 2.1. 
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A thorough review for a signalized intersection measurement methodology will be 

introduced in next subsection. 

 

Table 2.1 Input Data for Boundary Intersection in Urban Street Segment 

 

Source: HCM (2010)  

 

 

2.2 Intersection Performance in HCM 

 
The methodology used to determine the operational performance of a signalized 

intersection includes evaluating four modes of travel at the intersection. These modes are 

automobile mode, pedestrian mode, bicycle mode and transit mode. Performance measures 

cited in HCM includes four aspects. They are volume-to-capacity ratio, automobile delay, 

queue storage ratio, and delay. This research especially focuses on automobile mode and 

delay calculation. Delay, the primary performance measure, is found form step eight. 

Figure 2.1 exhibit these descriptions. Step one of the auto mode methodology is to 

determine the movement group and lane group. The two groups are different only when a 

shared lane is presented. The second step is to determine the movement of group flow rate. 
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The third step determines the lane group flow rate. The fourth step is to calculate the 

adjusted saturation flow rate. Step 4: Determine Adjusted Saturation Flow Rate. 

                                        (2.1) 

Where        s=adjusted saturation flow rate (veh/h/ln)  

S0= base saturation flow rate (pc/h/ln) 

fw=adjusted factor for lane width, 

fHV=adjustment factor for heavy vehicles in traffic stream, 

fg=adjustment factor for approaching grade, 

fp=adjustment factor for existence of a parking lane and parking activity 

adjacent to lane group, 

fbb= adjustment factor for blocking effect of local buses that stop within 

intersection area, 

fa= adjustment factor for area type, 

fLU= adjustment factor for lane utilization, 

fLT= adjustment factor for left-turn vehicle presence in a lane group, 

fLpb= pedestrian adjustment factor for left-turn group, and  

fRpb= pedestrian-bicycle adjustment factor for right-turn groups.  

 

0 w HV g p bb a LU LT RT Lpb Rpbs s f f f f f f f f f f f
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Figure 2.1 Methodology flowchart of delay (HCM 2010). 

 

 

Step 5 is to determine the proportion of vehicles arriving during green. Step 6 of 

the HCM is to determine the phase duration. Step 7 is to determine capacity and volume to 

capacity ratio. The proportion of vehicles arriving during the green impacts the control 

delay and queue size. It is found that shorter delay and queue size when there is a larger 
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proportion of vehicles arriving at the green time. The following equation represents 

proportion of vehicles arriving at each lane group.  

                                                               (2.2) 

Step 6 is to determine signal phase duration, this procedure is suitable for those 

phase duration is not known. The time of an actuated phase is defined as: 

                                                               (2.3) 

Where 

Dp is the phase duration (s) 

l1= start up lost time=2 secs. 

gs= queue service time, 

ge = green extension time, 

Y= yellow change interval, 

Rc = red clearance interval. 

 

The effective green time for the phase is computed with the equation: 

                                                                               (2.4) 

The effective green time in this type of duration unknown control is represented as: 

                                                                      (2.5) 

Where 

L1 = Clearance lost time, 

e= extensive lost time, 2 sec. 

Step 7 is to determine capacity and volume-to-capacity ratio. 

                                                                      (2.6) 

Where C is cycle length (s). 

Volume capacity ratio is defined as: 

p
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                                                                             (2.7) 

Where 

v is demand flow rate (veh/hr), 

c is capacity (veh/hr). 

X = volume- to-capacity ratio. 

And then find critical intersection Volume-to-Capacity Ratio 

Step 8 is to determine the delay. The delay means vehicles’ average delay during 

the study period. These delays include uniform delay, incremental delay and initial queue 

delay. The control delay equation is represented as: 

                                                                (2.8) 

Where 

d = control delay(s/veh),  

d1 =uniform delay (s/veh), 

d2 = incremental delay (s/veh), and 

d3 = initial queue delay (s/veh). 

 

Queue size at the end of interval i represented as: 

                                                (2.9) 

Where 

Q=queue size at the end of interval i (veh) 

q= arrival flow rate=v/3600 (s/veh). 

Td,i= duration of time interval ii during the arriving flow rate and saturation flow 

rate are constant (s). 

  

To calculate uniform delay, 

                                                        (2.10) 
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To calculate the incremental delay, 

                                               (2.11) 

With  

                                                                     (2.12) 

Where 

C = cycle length  

X= v/c ratio 

k = incremental delay factor; 

I = upstream filtering/metering adjustment factor; 

T = duration of analysis period (h). 

 

 

2.3 EPA Regulations and MOVES 

 
The Clean Air Act Amendment (CAAA) requires the Environmental Protection Agency 

(EPA) to set National Ambient Air Quality Standards (NAAQS). EPA addresses the most 

recent updated NAAQS for the six principal pollutants. The pollutants are carbon 

monoxide, lead, nitrogen dioxide, ozone, particle pollutants and sulfur dioxide. The 

pollutants are set as primary and secondary standards separately. Primary pollutants are 

mainly for protecting people’s health and the secondary standard set for protecting public 

welfare. Pollutants mainly caused by the mobile source are listed in Table 2.2 and they 

include carbon monoxide, ozone, nitrogen dioxide, and particle pollution.  
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Table 2.2 Six Principal Ambient Air Pollutants Standards  

 

Pollutants Primary/Secondary 
Averaging 

Time 
Level From 

Carbon Monoxide 

Primary 
8 hour 9ppm 

Not to be 

exceeded 

more than 

per year 1hour 35ppm 

Primary and secondary 3 months Avg. 0.15 μg/m3 
Not to be 

exceeded 

Nitrogen Dioxide 

Primary 1 hour 100 ppb 

98th 

percentile, 

average over 

three years 

Primary and secondary Annual 53 ppb 
Annual 

Mean 

Ozone Primary and secondary 8hour 0.075ppm 
Average over 

3 years 

Particle 

Pollution 

PM2.5 

Primary Annual 12μg/m3 

Annual 

Mean 

average 3 

years 

Secondary Annual 15 μg/m3 

Annual 

Mean 

average 3 

years 

Primary and secondary 24 hour 35 μg/m3 

98th 

percentile, 

average over 

three years 

PM10 Primary and secondary 24 hour 150 μg/m3 

Not to be 

exceeded 

more than 

once per year 
Source: EPA, 2012 

 

 

Motor Vehicle Emission Simulator (MOVES) was released by EPA in 2010 to 

estimate on-road vehicle emissions. Project level analysis is used for roadway intersections, 

highways, transit projects, parking lots and intermodal terminals. MOVES input file 

includes “link, metrology, link source type, fuel supply, fuel formulation, source type age 

distribution, off-network link” which is required to import to Project Data Manager. 

Among all input database: metrology, I/M (inspection and maintenance), fuel, and fuel 

formulation can be exported using default data for the location and time that selected in 
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study. Thirteen types of vehicles in Vehicle/Equipment are available to make combinations 

with fuel type for selected vehicles, such as gasoline-passenger car or diesel fuel-school 

bus. MOVES has five types of road types. These road types include off-network, rural 

restrained access, rural unrestricted access, urban restricted access, urban unrestricted 

access. “Urban Unrestricted Access” is selected from road types for this case study because 

this proposal is focus on signalized intersection emissions study in urban area. An output 

file name is then set up and units chosen for all outputs. The pollutants chosen to be studied 

are CO, NH3. NO, and NOX. These pollutants were chosen because these pollutants are 

MOVES’s outputs allowed to estimate in once. In addition, gram is selected for weight 

unit, joules for energy use and mile for distance. The following snapshot exhibits the output 

from MySQL Browser that MOVES used to provide emission outputs. 

 

 

(a) 
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(b) 

Figure 2.2 MOVES input and output interfaces. (a) MOVES graphic user interface (GUI); 

(b) MySQL output interface. 

 

 

The methodology that MOVES uses to calculate emissions is based on the Vehicle 

Specific Power (VSP), which is a function dependent on grade, speed and acceleration.  

The function used in EPA MOVES is represented as: 

     
(2.13) 

Where: 

 a = Vehicle acceleration (mph/sec) 

 v = Vehicle speed (mph) 

 

 

2.4 Comprehensive Modal Emissions Model (CMEM) 

 
Comprehensive Modal Emissions Model is another widely used software that has been 

used to simulate vehicles emissions. This model was first introduced by University of 

California-Riverside in 1995. CMEM has been funded and supported by EPA from 1999. 

The model structure of CMEM is shown in Fig. 2.3. 

      3 /  * 1.1  9.81  0.132 0.000302  VSP kW ton v a a tan sin grade v    
 
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Figure 2.3 CMEM model structure ( CMEM manual 2006) 

 

 

From Figure 2.3 we can know, the tailpipe emission can be expressed by the 

following:  

                                        (2.14) 

Where, FR is the fuel use rate in grams per second; CPF is the catalyst pass fraction. 

It is defined as ratio of tailpipe to engine emission. CPF is a function of fuel to air ratio and 

engine out emissions.  

In Figure 2.3, there are total six modules. Each module has its model to be presented 

in mathematics form. In our literature review, it is necessary to mention some key concepts, 

as for the detailed description and illustration, they can be found from the CMEM manual. 

First, Engine Power Demand Module is presented as following: 

             (2.15)
 

Where 

M =mass,  

* *emission

fuel

g
TailpipeEmissions FR CPF

g


1
(M a sin ) g Cr cos ) v/1000

2
p M G Cd A v M             
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V=speed m/sec 

A=acceleration m/s2, 

g=gravity constant, 

Ѳ= grade angel, 

Cd is the coefficient of the rolling resistance  

A is the frontal surface area (m2) 

= air density (kg/m3) 

=coefficient of the rolling resistance. 

Engine speed module is shown as: 

                                                                                  (2.16)

 

Where  

=engine speed at time t, 

S= engine speed/ vehicle speed ratio in top gear Lg (rpm/mph) 

=gear ratio in Lth gear, 

= the vehicle speed at time t, 

Fuel rate module is presented as: 

                                            (2.17)

 

Where  

      FR=fuel use rate in grams/sec, 

      P= engine power output in KW, 

      K = the engine fraction factor, 

      N = engine speed, 

      V= engine displacement (liter), 

     = efficiency of engine which is 0.45, 

     =10-4  

      c 0.00125 

And Engine-out Emission Module is represented as: 

 
                                                             (2.18)

 

Where  is the engine-out emission rate in g/s, 

           , =emission index coefficients of pollutant . 
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2.5 Previous Research 

 
There are numerous studies estimating and predicting vehicle emissions at intersections in 

recent years. The most prominent factors associated with vehicles emissions in the 

intersection system can be classified into four categories.   These categories include: traffic 

related, vehicles mode and year related, traffic control strategies related, and others factors 

such as season and weather. The data-compiling method used in these researches is also 

different to each other: some traffic data is acquired in a project-level study, and then 

emissions under the proposed traffic scenario can be calculated. The data used to analyze 

vehicle emission at an intersection have several collection sources in some studies the 

traffic data is obtained by collectors who stand at the intersection and use devices to capture 

the measurement.  And in some studies the traffic data is collected through GPS (Zhang et 

al., 2013). In other studies the traffic data is obtained by using the traffic simulation 

software create virtual traffic data. Then the traffic data is imported into the emission 

simulation software such as MOVES to be further analyzed by a statistical method. 

 

2.5.1 Traffic Condition in a Study Period 

 
The existing research for the traffic conditions is mainly related to the following 

parameters, including: vehicle volume at the intersection, speed, number of stops, queue 

length and delay time.  

Yu et al. (1998) have applied remote sensing to study vehicle emission produced 

per time duration in Huston area. They found a vehicle’s emissions are related to vehicle’s 

instantaneous activity profile. In other words, emissions output is a function of 

instantaneous speed and acceleration. The authors found that initial indicators of engine 

load are vehicle’s velocity and operating mode. Li Jie et al. (2012) indicated that by 

optimizing traffic control can reduce the vehicles emission. They used the image 
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processing method to obtain the real vehicles trajectory to calibrate the driving behavior 

parameters in VISSIM, to identify and adjust the most influential parameters, so as to 

ensure the correctness of the simulation outputs results. 

Stanek and Breiland (2013) estimated vehicles emissions for two lanes roadway by 

using the Synchro and SimTraffic simulation software. They developed a multivariate 

regression model to estimate the vehicles pollutants emission per day. The authors 

considered daily volume, percentage of major volume, turning traffic and peak hour as the 

influencing factors. Statistical R Square reached to 0.856 and 0.921 for all way stop and 

roundabout respectively. 

Abou-Senna and Radwan (2013) studied the relationship of vehicle emission and 

speed. They found that with the increasing of speed from 20mph to 80mph, CO2 emission 

first decreased and then increased, and at the speed of 60mph, there is a minimum emission 

appeared. In their study, VISSIM and MOVES were utilized to generate the traffic data 

and the corresponding emissions, respectively. The results were then analyzed using 

stepwise regression. In this research, Abou-Senna and Radwan also estimated the CO2 

emission at the condition of 0% grade and non-truck condition. In addition, Abou-Senna 

and Radwan found the relationship of vehicle flow rate and CO2 emission. Emission 

linearly increases as flow rate increase from 1000vph to 7000vph.  

Zhang et al. (2013) established a model to evaluate emissions due to acceleration 

at an intersection. Field data were collected at an intersection during the peak hour. GPS 

data were also collected from passenger cars about 2500ft away from the intersection. 

Acceleration models were built to calculate the instantaneous speed. 

Stanek and Breiland (2013) estimated Green House Gas (GHG) emission at two 

lane roadway intersections. The concept of this research is that fuel and emissions are 

convertible since carbon amounts can be measured both in polluted emissions and in fuel. 
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Thus, the research uses fuel consumption to present emission based on demand volume. 

The authors sought to find out how different control types would affect vehicle emission 

and the fuel consumption. The analysis assumes an intersection of 2500 feet with four legs. 

There are fifty-four groups of variables are designed as inputs for the simulation model to 

obtain emission outputs, of which each group of variables include intersection daily 

volume, volumes of major and minor streets, and turning traffic percentages. By the 

Synchro and SimTraffic, the experimental data are obtained. Based on the obtained data, 

three forms of regression models are used to best fit these data in order to find a quick 

estimation of the emissions. These regression forms include linear, polynomial, and 

logarithmic respectively. The others parameters assumed are Peak Hour Factor (PHF), 

conflicting pedestrians and bicyclists, heavy Vehicle percentage, passenger car distribution 

between light passenger car and SUV, speed limit, and single lane approaches. The 

experimental parameters include the split of major street volume, the direction volume, and 

the turning percentages. Multivariable regression method was used to analyze the 

relationships between fuel consumption and key variables. The study found that among 

these variables, the vehicle volume is the most significant variable for all the regressions 

models. It also shows major and minor street splits were not prominent for all models. 

Based on the R-square value, the polynomial and logarithmic equations shows a better fit 

because R square values are closer to 1. Polynomial regression contains volume square as 

an independent variable. The form of the polynomial model is presented as: 

                                                                              (2.19)
 

Where 

 to b0 to  are regression coefficients; 

 to  are intersection volume properties.  

1 1 2 2o n nY b b x b x b x   
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The logarithm model contains Logarithm of fuel consumption value as the 

dependent variable and is presented as follows: 

                                             (2.20) 

Andrew et al. (2012) studied emissions at congested and uncongested intersections 

using MOVES2010. In order to measure the amount of nitrogen oxides and PM emission 

at a signalized intersection, traffic intersection scenarios using levels of service from B to 

E were established to estimate the emission.  The study found that emission is more 

sensitive to control delay during congested conditions. Cruising and acceleration can cause 

more than 80% of the total emissions and idling can cause 18% of emissions. In the second 

step, the methodology used to calculate the time spent in each mode was split into two 

parts. In the first part, percentage of control delay at an intersection was determined by 

considering queue length, number of lanes, vehicle spacing in queue, vehicle flow and 

cycle length. In the second part, the time spent at each activity was calculated by 

considering variables including percentage of control delay, vehicle flow, and the 

maximum speed. In third step, multiply emission factors (EFs) was determined and would 

change with the corresponding time in each mode to obtain the total emission amount as 

grams per hour. The methodology for studying EFs is based on MOVES. With MOVES 

each vehicle’s amount of emission per second is obtained.  

Similarly, Coelho, Farias, and Rouphail (2005) used the time-in-mode concept 

when they studied the impact of speed control signals on pollutant emissions. The fixed 

emission rate, which is the same as the EFs prepared for the total emission estimation 

model, and the differences between with and without control devices are expressed as 

                                         (2.21) 

  1 1 2 2  o n nLog y b b x b x b x   

–i i a a d d c cDE EFt EF t EF t EF t  
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Where a is acceleration, i is idling, d means deceleration and c means cruising. EFi 

means emission factor in idling, ti is the time duration in the idling. EFa is the emission 

factor in the acceleration mode, ta is time spent on acceleration, EFd is emission factor 

during deceleration, td is the time spend on deceleration, EFc is emission factor during 

cruising, and tc is the time spent on cruising. The common elements of these papers are that 

they all used different vehicle deceleration, acceleration, idling time, and their emission 

rate to calculate the total emission. 

Shabinhkhani and Gonzales (2013) presented an analytical model of vehicle 

emissions at a signalized intersection at a microscopic level. MOVES is used to obtain 

emission factors for different driving modes, and then the total intersection emission was 

estimated with an analytical traffic model. The model takes into consideration stops in a 

signal cycle, idling time, and cruising time, and this model is developed by kinematic wave 

theory. MOVES is used on a project level to study emission at the microscopic level. In 

that research, the author assumed some parameters were fixed in the input files. 

Some studies use traffic simulation such as VISSIM, and Next Generation 

SIMulation (NGSIM) which provide second-by-second vehicle trajectory (reference). 

After the driving modes are obtained from the vehicles, emissions can then be calculated. 

In a research Shabinhkhani and Gonzales selected 126 data records from 1000 traffic 

trajectories ready to use by smoothing, filling the gaps and selecting the acceleration, as 

well as a decelerating event. Emissions are then calculated by MOVES, each vehicle’s stop 

is input as a link file. With regards to traffic, the authors designed different traffic volume 

and signal control time for intersections to obtain emission factors (EF) at intersections. To 

create an analytical model, kinematic wave theory was used in estimating the traffic state. 

The number of vehicles is calculated, then time of idling and cruising are modeled. Then, 

the emission model is calibrated in terms of speed and acceleration. The calibrated 
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simulation is applied to validate the model. An isolated intersection is simulated depending 

on different demands. Stops per vehicle and the time spent on each mode are obtained from 

the simulation. Finally, the emission estimate is determined. This paper pointed out that 

decreasing the number of stops from approaching vehicles is significant to reducing the 

emissions at an intersection. 

Akcelik et al. (2003) developed the emission model using SIDRA and MOTION. 

In that research, instantaneous speed and acceleration rate are generated by MOTION. 

SIDRA is used to simulate the drive cycle, which included cruising, acceleration, 

deceleration and idling. Fuel consumption in each mode are then added together to get the 

total emission amount. The model for estimating the emissions is represented as: 

  
               (2.22)

 

Where RT=total tractive force, α, β2 are parameters, v is velocity,  is acceleration 

rate. And F is emissions value. 

Kyoungho et al. (2002) developed a method to evaluate environmental impact for 

transportation planning purposes network wide. The research involved the vehicles 

participating in the test are five light-duty vehicles and three light-duty trucks. The authors 

acquired the experimental data from Oak Ridge National Laboratory (ORNL) including 

fuel consumption and emissions rates. The experimental data includes second-by-second 

speed, instantaneous acceleration and measure of effectiveness (MOE) which is presented 

below. They are measured and collected from the selected vehicles and each of them is 

measured 1300 to 1600 times. With the data available, the proposed model is developed 

based on the relationship between tractive effort and other variables that Post et al. (1981) 
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first revealed. Many combinations of speed and acceleration are used in the derivation of 

models. The final model includes three forms of variables of speed and acceleration. As 

shown below: 

  MOEe=∑ ∑ (𝐾𝑖, 𝑗 ∗ 𝑠𝑖 ∗ 𝑎𝑗)3
𝑗=0

3
𝑖=0                                                          (2.23) 

    ln( MOE)e=∑ ∑ (𝐾𝑖, 𝑗 ∗ 𝑠𝑖 ∗ 𝑎𝑗)3
𝑗=0

3
𝑖=0                                                    (2.24) 

                             ∑ ∑ (𝐿𝑖, 𝑗 ∗ 𝑠𝑖 ∗ 𝑎𝑗)3
𝑗=0

3
𝑖=0   for a>=0 

ln(MOE)e=                                                                                                       (2.25) 

    ∑ ∑ (𝐿𝑖, 𝑗 ∗ 𝑠𝑖 ∗ 𝑎𝑗)3
𝑗=0

3
𝑖=0   for a<=0 

Where  

(MOE)e= Instantaneous emission rate 

Kei,j= Model regression coefficient for MOE “e” at speed power “i” and 

acceleration power “j” 

Lei,j=Model regression coefficient for MOE “e” at speed power “i” and 

acceleration power “j” for positive accelerations 

Mei,j=Model regression coefficient for MOE “e” at speed power “i” and 

acceleration power “j” for negative accelerations 

s=Instantaneous Speed (km/h) 

a=Instantaneous acceleration (m/s2) 

The first equation shows a third degree polynomial combination to estimate 

instantaneous emission rate.  The equation can include most ORNL data except a few 

negative dependent variables. Equation 2.24 is used by a data transformation technique to 

transfer results in the first equation. Equation 2.25 is used to express positive and negative 

acceleration separately in regression model. The real-world data is used to validate the 

proposed model. The field data included EPA measurement at automotive Testing 

laboratory in Ohio and EPA’s national vehicle and fuels emission lab in Michigan in 1997. 

The result shows a good fit in the model compared with the field data. As a conclusion, the 
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model developed by Kyoungho et al. (2002) revealed the relationship between speed and 

acceleration. Traffic and drive related factors are especially emphasized in the model and 

they are represented by the instantaneous speed and acceleration. But this model does not 

consider the heavy-duty vehicle emissions, which plays a significant constitution of road 

emission source. 

Yao et al. (2013) has brought video camera to emissions estimation. The light of 

their study mainly shows to obtain vehicles activities data from the video camera. Then 

speed file are imported into MOVES to estimate the emissions. Even there maybe still exist 

error from camera calibration or image warping (Yao et al., 2013). This method compared 

to the many traditional methods has improved the vehicles’ operation mode input so that 

accuracy of emissions results output is said to be improved. 

 

2.5.2 Vehicles Conditions 

 
The presence of trucks in the traffic flow can greatly affect CO2 emissions (Abou-

Senna and Radwan, 2013). In addition, vehicle conditions including vehicle types, ages, 

weight, mode and the year the vehicle was produce can also impact tailpipe emissions. 

Poor maintenance can worsen emissions in all types of vehicles.  When the vehicle speed 

is at 45 mph, CO2 emissions increase from 0.6 kg/veh-mi at 0% of truck to 1.2 kg/veh-mi 

at 15% of trucks involved. Ozguven el al. (2013) estimated emissions based on various 

vehicle types with the methodology based on MOVES. The study applies an approximated 

emission function to estimate the emission using MOVES output. Thirteen vehicle types 

were included in the analysis. These vehicles are assigned to run in MOVES with speeds 

ranging between2 mph to 80 mph, with an increasing quantity of 5 mph each time to obtain 

different emissions. The relationship between emission and speeds were then determined. 

An eight order Fourier series function was investigated to best fit the output emissions from 
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MOVES. The function is related to the roadway link speed, and also 16 coefficients are 

used to weight the velocity series, as shown in Equation 2.24. In addition to the vehicles in 

motion, idling is also considered in the development of the function. The vehicle type and 

pollutant level at a speed of zero is analyzed by using MOVES in project-level carbon 

monoxide analysis. Then the formulated Fourier function and idling estimation parameters 

are input into Assist-Me or Advanced Software for Statewide Integrated Sustainable 

Transportation System Monitoring and Evaluation. This software is used for visualizing 

and analyzing results of the transportation planning model. The Fourier function is 

represented as: 

Where a, b are function coefficients; V is link speed, w is the basic angular frequency of 

emission fluctuation, and the unit of emission level is grams/veh-hour. 

Rouphail et al. (2000) explored the field observed emissions at the signalized 

arterials. Data in this research is obtained from real-time through the use of portable, on-

board Emission Measurement Unit. The rate of vehicle emissions was evaluated in each 

mode including deceleration, idling and acceleration. Then the relationship between 

control delay and vehicle emission were studied. Four different vehicle types are used in 

the data collection. These include 1996 Oldsmobile Cutlass sedan, 1998 Plymouth Breeze 

sedan, 1999 Ford Taurus sedan, and Ford Club Wagon 15 passenger. Total 72 hour testing 

experiment was carried out with a travel distance of 2000 vehicle miles. Then the data are 

analyzed. This analysis shows car type and mode can cause very different emission results. 
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 Pandey et al. (2016) have described the influences of the petrol vehicle’s age and 

its mileage on tailpipe emissions of HC and CO.  The plot of the influence relationship is 

as shown in Figure 2.4, which illustrates that as vehicles mileage and age increases, 

Emissions increase correspondingly. Vehicles after four years or mileage beyond 50000 

miles will lead to a relative steady increase.  

Figure 2.4 Influences of the vehicle’s mileage and age on HC and CO emission. 

 

 

2.5.3 Traffic Control Strategies 

 
The previous research which emphasized the impact of traffic control strategies on vehicle 

emissions often focused on pre-timed control or an adaptive traffic control strategy applied 

at the study intersection; also an isolated signal intersection or coordinated intersections. 

The cycle time is often 50-100 seconds long in some cases. And some authors working on 

this aspect designed different scenarios based on different green time and cycle length to 

find the relationship between emission and length of various time (cycle length and green 

time). Li et al. (2011) investigated the impact of signal timing on vehicle emissions at an 

intersection.  The study was based on a typical case when experienced by a vehicle at an 
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intersection which includes deceleration, a full stop, and acceleration. The methodology 

can be divided into as two parts, which is called “two-stage approach”. The first step is to 

develop an optimization model in order to find out a “trade-off” between stops and vehicle 

delays; the output from the first part then is used in the second part to model the vehicle 

emission. In the first stage, number of stops and delay are formulated based on the study 

of Webster in 1958. Then an index gives a soft approach to obtain the balance between 

number of stops and delay. A vehicle trajectory of stopped delay and control delay in the 

under-saturation condition is analyzed under pre-timed traffic control. Li (add reference) 

et al. (2011) also used a model from Webster (1958) about the average delay per vehicle 

and the stop rate of vehicles to calculate the designed cycle length. By using the Webster’s 

model, several traffic and pre-timed control factors are involved, which include: traffic 

demand, cycle length, green time, effective green spilt, saturation flow and degree of 

saturation. All the potential cycle lengths are selected between 50 seconds to 200 seconds, 

then the average delay and stop rate are calculated. 

Frey et al. (2002) used the Vehicle Specific Power mode (VSP) to estimate the 

vehicle emissions. It is presented as:  

                               
 

Where,  is road grade, v is vehicle speed, and a is acceleration. Individual vehicle 

emissions are calculated based on the range of VSP value. Based on Frey’s study, VSP can 

be calculated from -2 to 39, which is then classified into 14 bins.  Each corresponding bin 

can be then used to estimate CO, CO2, NOX, and HC amounts as a unit of grams per second. 
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2.5.4 Weather and Other Characteristic 

 
Temperature and road grad change can affect CO2 emission (Abou-Senna and Radwan, 

2013). Abou-Senna and Radwan designed an approach for developing a microscopic 

transportation emissions model, which can be used to predict CO2 emissions on limited 

access highways. Key parameters, such as traffic-related (volume, truck percentage, speed 

limits), geometry-related (road grade) and environment-related (temperature), are selected 

for detailed evaluation. The results demonstrated that temperature changes from 50F to 

100F increase about 12% CO2 emission. 

Early in 1997, Enns et al, have found that increases grade can cause CO production 

increase. Honmark (2002) indicated a relationship between engine load due to operation 

on a grade and elevated emissions in Baltimol. The author found that the grade is 

statistically significant in modeling vehicles emissions’ model. This finding is quantified 

by Cicero Fenamdez et al. in 1997. The authors found that there will be 0.04g/mile of HC 

and 3g/ mile of CO increase produced by vehicles when 1% grade increases. Then Zhang 

and Frey (2012) carried out sensitivity analysis study to evaluate the importance of road 

grade with respect to vehicle’s specific power and emissions. Their finding found that VSP 

and emissions are different as road grade and speed changes. They pointed out that when 

grade changes from 0-6%, VSP will increase 20 wt/ton. Sentoff et al. (2014) compared 

VSP frequency when grade is account and without account in calculating of second-by-

second VSP. They found it is true in various road types. Sentoff et al. (2014) reveals that 

up to 48% CO emissions difference can be caused with and without considering grade in 

emissions calculation. They proved that account in road grade also could cause difference 

in operation mode distribution in all road type. 
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2.6 Summary 

 

The research of the existing literature is mainly focus on the study of the impact of 

several aspects on the vehicle emissions. The one is the traffic condition, including the 

vehicle volume at the intersection, speed, number of stops, queue length and delay time; 

the second is the vehicle conditions, including the vehicle types, ages, mileage, weight, 

mode and the year the vehicle; and the third is the traffic control strategy, such as pre-

timed control or an adaptive traffic control strategy; the fourth is the weather condition, 

such as temperature and road grad change, and the road grade also influence vehicle’s 

emissions too. But as for the impact of operation modes of on-road vehicles, although it 

is said very important according to the description of reference (LeBlanc, 1995; Barth et 

al. 1997, Frey, H. Christopher, et al 2002, Ritner, Mark, et al, 2013,), but at present, there 

is no intense research to quantitatively evaluate the relationship between the operation 

modes and emissions. In addition, in this research, we use MOVES to obtain the 

emissions output, with its most accurate input method, to get the emission result, which is 

also few applied in current study. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Data Generation and Processing Method 

 
As previously stated, the objective of this dissertation is to develop a vehicle emissions 

model that is capable of estimating Carbon Monoxide (CO), Ammonia (NH3), Nitric Oxide 

(NO), and Nitrogen Oxide (NOX), from on-road vehicles. Two model approaches are used 

including: multiple linear regression and ANN. For the multiple linear regression modeling, 

two kinds of regression models are developed: one using the operation modes as 

independent variables and another regression model using traffic related parameters as 

independent variables. Both regression models use the four types of pollutant emissions as 

the dependent variables. To achieve this goal, experimental data being used in the 

development of the estimation models is first generated using transportation and vehicles 

emission simulation software. The detailed methodological approach for the development 

of the emissions models is illustrated in Figure 3.1. Each module of the flow chart is 

discussed separately. 

The organization of this chapter includes: Section 3.1 reviews the tasks to be 

performed. A flowchart of the methodology illustrates and explains the approach being 

used. Section 3.2 identifies the road characteristics for the study intersections. Section 3.3 

discusses how vehicle activity data are collected through the traffic simulation software of 

VISSIM. Section 3.4 discusses how emission quantities of on-road vehicles are estimated 

through emission simulation software of MOVES. Section 3.5 and Section 3.6 provide two 

statistical analysis methods to develop the vehicle emissions estimation models, including 

multiple linear regression method and ANN method. 
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Figure 3.1 Flowchart of the methodology. 

 

 

In this dissertation, the total emission at a signalized intersection within an hour 

period is interested. Figure 3.1 shows the flow chart of the methodological approach used 

in estimating the vehicle emissions estimation models. Firstly, we define two intersections. 

Intersection #1 is a real world signalized intersection, and intersection #2 is a virtual 

intersection. The purpose of the first intersection is to determine whether VISSIM can 
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provide reliable operation mode fractions, which are the important parameters for 

generating vehicles emissions. Intersection #2 is established to generate vehicle emissions 

using a range of vehicular volume and grade as the key variables.  

Figure 3.1 is the flow chart of methodology. The overall procedure can be divided 

into three parts. The first is to validate the operation mode fractions generated from 

VISSIM at a real world signalized intersection (Intersection #1). The second part is to 

generate operation mode fractions using VISSIM at a general signalized intersection 

(Intersection #2), and further to produce four types of emissions using MOVES. The third 

part is to develop the emission estimation models by using multiple linear regression 

(MLR) and Artificial Neural Network (ANN). In order to estimate the emission models 

using HCM related parameters, as many as possible variables, either traffic related 

parameters or road geographic parameters, are initially considered and collected. These 

variables include vehicular volume, road grade, delay, cycle length, Volume to capacity 

ratio (V/c) and green to cycle length ratio (g/c). Then from VISSIM, we can obtain every 

vehicle’s second-by-second speed and acceleration at the intersection for a one-hour 

period. After getting the vehicle’s second-by-second speed and acceleration from VISSIM, 

the vehicle’s specific power (VSP) can be calculated and the operation mode percentage 

can be determined. Finally, using the operation mode fractions and other MOVES inputs, 

such as link source type, link, age distribution, metrology, fuel, impair and maintenance 

program (I/M), hoteling and retrofit data, vehicle emissions can be generated in unit of kg 

within one hour’s period. In addition, a correlation analysis is carried out to determine 

correlation between the generated outputs and all possible influencing factors.  

For the multiple linear regression models, we have two groups of variables to 

develop two kinds of multiple linear regression models. The first group of variables uses 

operation modes as the independent variables and aims to determine the contribution of 
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each operation mode on each pollutant emission separately. The second group of variables 

uses HCM related variables such as volume and grade, to estimate the four types of 

emissions separately.  This model aims to determine the contribution of each traffic related 

parameters on each pollutant emission separately.  

VISSIM version 6 is used for generating the vehicle running data used in the 

development of the operation modes. The input parameters of VISSIM include: vehicle 

volume, signal timing, turning percentage, road characteristics, vehicle characteristics, 

driving behavior, and desired speed. Among them, the first two parameters are adjustable 

and the remaining variables use fixed values for each simulation run in this research. The 

output of VISSIM provides each vehicle’s: speed, acceleration, delay time, in-queue, 

dwelling time, and number of stops. The advantage of using VISSIM is that we can obtain 

the speed and acceleration of every vehicle at every second within one-hour period. This 

data can be used to categorize the operation modes of the vehicles, which will be used as 

independent variables in the vehicle emission models. 

The operation modes of vehicles are based on the second-by-second speed and 

acceleration information obtained from VISSIM.  This data is used to categorize every car 

into five operation modes, i.e., Braking, Idling, Cruise/Acceleration, Low Speed Coasting, 

and Moderate Speed Coasting. Using the second-by-second speed and acceleration data 

obtained from VISSIM, the time fractions (or percentage) each vehicle spends in the five 

operation modes are calculated and imported into MOVES.  Then the corresponding 

emissions of various vehicles pollutants are determined. Furthermore, through statistical 

analysis by using multiple linear regression method and ANN method, we can establish the 

relationship between vehicle emissions and the five operation modes, which can be used 

to ultimately estimate vehicles pollutant emissions. 
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3.2 Roadway Identification 

 
The roadway used in this research generate microscopic data through VISSIM6. As shown 

in Figure 3.2, is a four-lane urban unrestricted access road with a signalized intersection. 

The length of the intersection is 1000 ft per leg. Details of the intersection layout and 

volume is zoomed in and shown on the right side of the figure to illustrate the intersection 

characteristics. 

Figure 3.2 Roadway identification and simulation in VISSIM.  

 

 

The road used in this dissertation has the following constraints (HCM 2010): 

 12 ft lanes in each direction 

 No heavy vehicles 

 Grades vary from -5% to 5%  

 No parking 

 No bus stop in the intersection  

 Turning traffic 5% 

 

From previous research on estimation of emissions, road grade has been found to 

have an important impact on vehicles’ emissions. In this research, we will include road 

grade as one important influencing factor on vehicles emissions and determine its influence 

on vehicles emissions. Furthermore, we will explore the impact of volume changes on 

vehicle emissions. 

following constrains (HCM 2010): 
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3.3 Vehicle Activity Data Generation from VISSIM 

 
VISSIM is used to generate data of on-road vehicles at the second-by-second level. The 

input to VISSIM includes operation time, number of vehicles, signal timing, random seed 

and geometric-related parameters, to generate the simulated vehicles runs. A simulation 

time of 3600 seconds is used for each simulation run. The volume of vehicles is to be 

simulated ranges from 200 veh/hr to 880 veh/hr per lane group approaching the 

intersection. The outcome of VISSIM includes the speed and acceleration of every vehicle 

for every second, which is called the activity data and will be used to categorize the 

operation modes of each vehicle into one of 23 mode IDs based on the EPA MOVES 

standards. In order to calculate the operation mode fractions, vehicle specific power (VSP) 

will first be calculated. VSP is a useful parameter that represents the amount of power 

required by one unit weight of vehicle to overcome rolling resistance, engine force and air 

force. The EPA introduced in VSP as an important influential factor of vehicle emissions 

when it was known that the speed alone could not fully reveal the relationship between 

vehicle emissions and the vehicle’s performance. Generally, if the air resistance is assumed 

as a constant and the road grade is assumed to be zero, then the VSP only depends on the 

vehicle’s instantaneous speed and acceleration/deceleration. Each vehicle’s VSP and its 

instantaneous speed are combined to determine the vehicle’s five operation modes, i.e., 

Braking, Idling, Cruise/Acceleration, Low Speed Coasting, and Moderate Speed Coasting. 

Table 3.1 shows an example for determining the operation mode, mode ID and 

fraction for the studied intersection under the case when the intersection volume is selected 

to be 200 vph. The 200 vph includes the total number of vehicles at the intersection within 

an hour with 90% the vehicles through movements, 5% turning right and 5% turning left. 

Column 1 in Table 3.1 provides the ‘link’ number that corresponds to the operational mode 

of the vehicles. In MOVES, a ‘link’ is defined as the partial length of roadway that belongs 
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to the same operation mode. For example, at an upstream location when the signal turns 

green, vehicles tend to accelerate. This is a link of acceleration, which is different from 

other operation modes such as a deceleration mode when approaching vehicles need to 

stop. There are five links based on the operation mode definition. 

 

Table 3.1 Link, Link Length and Volume 

 

Lin

k 

Operation 

Mode 

Mode 

ID 

Frequenc

y(vph) 

Frequenc

y (vph) 

based on 

Link 

Operation 

mode 

Fraction 

Op 

Mode 

Fraction 

based on 

Link 

Link 

Length 

Link 

Volu

me 

1 Braking 0 8467 8467 0.1207 0.1207 0.0549 97 

2 Idling 1 8139 8139 0.1160 0.1160 0.0528 93 

3 

Low 

Speed 

Coasting 

11 20366 20366 0.2903 0.2903 0.1321 232 

5 

Moderate 

Speed 

Coasting 

21 11921 11921 0.1699 0.1699 0.0773 136 

4 
Cruise/Ac

celeration 

12 4837 

21264 

0.0689 

0.3031 0.1379 242 

13 1638 0.0233 

14 1566 0.0223 

15 11273 0.1607 

16 731 0.0104 

22 39 0.0006 

23 25 0.0004 

24 60 0.0009 

25 135 0.0019 

27 0 0.0000 

28 70 0.0010 

29 202 0.0029 

30 688 0.0098 

33 0 0.0000 

35 0 0.0000 

37 0 0.0000 

38 0 0.0000 

39 0 0.0000 

40 0 0.0000 

 



 

40 

 

In Table 3.1, the second column “Operation Mode” classifies vehicles’ operation 

activity into one of the previously stated five operation modes. Column 3 includes 23 kinds 

of ‘Mode ID’. Each vehicle’s activity is assigned a specific Mode ID based on the VSP and 

speed data. The list of mode IDs is provided in the Table 3.2. The frequency in column 4 

represents the total number of seconds that vehicles at the intersection operate in the 

corresponding Mode ID. Column 5 shows the frequency based on the corresponding Link. 

Column 6, ‘Operation mode Fraction’, is the percentage of vehicles associated with the 

frequency of the Mode ID. In column 7, ‘Op-Mode Fraction based on Link’, is the number 

of vehicles associated with the frequency of the corresponding Link. The information 

provided in Table 3.1 also includes the link length and link volume parameters, which are 

used as inputs to MOVES for estimating vehicle emissions. 

 

Table 3.2 EPA Defined VSP and Speed Range for Each Operation Mode 

 
Mode ID Operation Mode 

0 Braking: Acceleration<-2 mph/s, or<-1 mph/s for 3 consecutive seconds 

1 Idling: -1≤Speed<1 

11 Low Speed Coasting: VSP<0; 1≤Speed<25 

12 Cruise/Acceleration: 0≤VSP<3; 1≤Speed<25 

13 Cruise/Acceleration: 3≤VSP<6; 1≤Speed<25 

14 Cruise/Acceleration: 6≤VSP<9; 1≤Speed<25 

15 Cruise/Acceleration: 9≤VSP<12; 1≤Speed<25 

16 Cruise/Acceleration: 12≤VSP; 1≤Speed<25 

21 Moderate Speed Coasting: VSP<0; 25≤Speed<50 

22 Cruise/Acceleration: 0≤VSP<3; 25≤Speed<50 

23 Cruise/Acceleration: 3≤VSP<6; 25≤Speed<50 

24 Cruise/Acceleration: 6≤VSP<9; 25≤Speed<50 

25 Cruise/Acceleration: 9≤VSP<12; 25≤Speed<50 

27 Cruise/Acceleration: 12≤VSP<18; 25≤Speed<50 

28 Cruise/Acceleration: 18≤VSP<24; 25≤Speed<50 

29 Cruise/Acceleration: 24≤VSP<30; 25≤Speed<50 

30 Cruise/Acceleration: 30≤VSP; 25≤Speed<50 

33 Cruise/Acceleration: VSP<6; 50≤Speed 

35 Cruise/Acceleration: 6≤VSP<12; 50≤Speed 

37 Cruise/Acceleration: 12≤VSP<18; 50≤Speed 

38 Cruise/Acceleration: 18≤VSP<24; 50≤Speed 

39 Cruise/Acceleration: 24≤VSP<30; 50≤Speed 

40 Cruise/Acceleration: 30≤VSP; 50≤Speed 
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3.4 Emissions Quantities Generated by MOVES 

This section explains how emissions quantities are produced by MOVES. The operational 

mode of each vehicle is calculated based on a combination of the VSP and speed data 

ranges. The VSP calculation method can be found in Chapter 2 from EPA MOVES. 

    (3.1) 

Where,  is the instantaneous acceleration,  is the speed, and grade is the ratio of 

the road height over the road length. These ranges and the operation modes associated with 

speeds are presented in Table 3.2. For every vehicle and for each second of the simulation 

within an hour period, a vehicle’s operational mode can be defined. Hence, the number of 

seconds that vehicles are in a particular operational mode can be determined. The EPA 

provides an emission rate for each Mode ID or operational mode, which is then used to 

convert the number of seconds for each operational mode to calculate the total emissions 

during an hour. 

For most of the input files in MOVES, default values can be used including fuel, 

vehicle age distribution, impair and Maintenance program (I/M), which can be extracted 

from the EPA MOVES database. Files of operation mode fraction, link, volume and grade 

are significant in determining vehicles emissions’ quantity of interested pollutants in 

MOVES and therefore default values are not used. 

 

 

3.5 Emissions Model Development 

 

3.5.1 Multiple Linear Regression Model Development 

 
The vehicle emissions model to be developed in this research will be based on the data 

obtained from MOVES. The model will be developed using multiple linear regression to 

estimate the relationship between pollutant emissions and the five operation modes.  A 

      3 /  * 1.1  9.81  0.132 0.000302 VSP kW ton v a a tan sin grade v 
 

   

a v
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second model will estimate the relationship between pollutant emissions and HCM related 

parameters. 

First, five operation modes are taken as the independent variables in the multiple 

linear regression process. These operation modes are denoted as vector

, where m is represented as the number of the independent variables, i.e., m=1 to 5. The 

four types of pollutant emission elements are the independent variables and they are 

denoted as vector . Let  to be the matrix coefficient, and 

. 

The second kind of multiple linear regression model involves the HCM related 

parameters as the independent vector. These HCM related parameter, grade and v/c, are 

denoted as vector , where m represent the independent number, i.e., 

m=1 for grade and m=2 for v/c. The four types of pollutant emissions are the dependent 

variables, denoted as vector . 

and satisfy the following linear regression model (Kutner and Chris,2004): 

                                ,                                                               (3.2) 

Where  refers to the random noise vector and satisfies the following conditions of the 

mathematical expectation  and the variance: 

,                                                                 (3.3) 

Where:  is a 4×4 identity matrix, and  is the variance of the random noises. A 

multiple linear regression model with more than two predictor variables can be presented 

as:  

                                                                             (3.4) 
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The coefficient  can be calculated by using the minimum least square method. The 

estimated values are denoted as  

                                               (3.5) 

And fitting errors can be expressed as: 

                                          (3.6) 

So the multiple linear regression equation between  and  can be expressed as: 

                 (3.7) 

Where, the vector  is the estimator of the four types of emissions 

and refers to the regression model estimated coefficients.  

 

3.5.2 Significance Test of Multiple Linear Regression Equation  

 

The F-distribution test is used to verify if the obtained linear regression equations are 

significant, as shown in the following: 

    k=1~n, i =1, 2, 3, 4            (3.8) 

where is the serial number of the sample data of , and n is the sample size of the 

experiment data.  

Let 
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                                            (3.9) 

Where  is the estimated pollutants emissions value of type  in the k-th number of 

sampling using the predicted model of Equation (3.8).  is the mean value of the 

sample. SSR is the regression sum of squares, and SST means the residual sum of squares. 

The F-test is used to verify the significance of the obtained multiple linear 

regression models. Suppose the Null hypothesis is stated as

, and the alternative hypothesis is stated as : not all 

betas equal to zero. Based on Equation (3.9), we have: 

                                                        (3.10) 

Where m is the number of the independent variables, and n is the number of the sample 

size of the independents and dependents. If we choose a significance level of , such as 

0.02 or 0.05, then we can find the corresponding critical value of , as 

shown in Figure 3.3. If the calculated Fi is greater than , which means 

the obtained regression model is a small probability event, hence, H0 hypothesis should be 

rejected. The results can be used to verify whether the constructed multiple linear 

regression relationships between independents and dependents variables are significant or 

not. 
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Figure 3.3 F distribution plot (William, 2006).  

 

3.5.3 Calculation of Standard Regression Coefficients  

 

The standardized regression coefficients  can be used to reveal the importance of an 

independent variable’s influence on the dependent. The method of obtaining  is to 

transform the distribution of the independents into the standard normal distribution, so that 

we can transform non-standardized coefficients of  to be standardized values of . 

Standardized coefficients also are recommended for improving the calculation accuracy 

(Neter, et al. 1989). Standardized betas measure the impact of independent variables on 

dependent variable. The method of calculating the standardized regression coefficients is 

as following:  

                                                                          (3.11) 

Where  is the standardized regression coefficients, and  are standard 

deviation of the independent variables and the dependent variables, respectively. They 
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presented as: 

                                                          (3.12) 

                   =                                             (3.13) 

From Equation (3.8) we can obtain the following equation, where  refers to the 

mean value of the observed dependent and  the mean value of observed independent 

value. 

                                         (3.14) 

Subtracting Equation (3.14) from (3.8), and dividing the difference by the 

standard deviation , then: 

        (3.15) 

The larger the value of the standardized value of , the greater the influence of 

that independent variable on the emissions. Therefore, we can quantitatively evaluate the 

contribution of various operation modes on the different kinds of polluted emissions.  

 

 

3.6 Emissions Predicting Using Artificial Neural Network 

 
3.6.1 Introduction 

 
Artificial Neural Networks is simulating the structure and function of the human neural 

network. It is a kind of computing method, which is based on the mechanism of human 

neurons. ANN consists of many Neurons. They are organized according to a certain 
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topology, and connected with each other. ANN is a network, which has the function of 

parallel processing. Anderson (1992) provides a classical framework of neural network 

architecture selection. All the problems are categorized into one of the five major 

application of using neural network including: prediction, classification, data association, 

data conceptualization and data filtering. Prediction happens when a set of input data and 

target data is given and approximate function then generated after the network learning. 

The success of prediction depends on the quality of training data and architecture of the 

natural network. (Taylor, 2006) Artificial Neural Networks (ANN) method is applied in 

estimating four types of emissions through the HCM traffic related variables in this 

dissertation. Back-propagation and five other learning methods are commonly used in 

prediction purpose. In addition, for number of neurons, the following Equation 3.16 is 

suggested a good rule-of- thumb (Anderson, 1992)  

             Ni =
Number of training Data Pairs

(Number of input Neurons+Number of output Neurons)∗α
                      (3.16) 

Where Ni is the number of neurons in the i-th layer. 

α  is the factor from one to fifty, which is selected based on the noiseless of the data. 

Nearly noiseless data is suggested to use α value between one and five. Typically, noisy 

data is to use ten. It is noted that too many neurons within a hidden layer causes training 

set to be simply memorized (Taylor, 2006) 

ANN has the following characteristics: (1) massively parallel processing; (2) 

robustness and fault tolerance; (3) self-learning ability; (4) large-scale nonlinear systems 

adaptive, collective operations. At present, ANN has been widely used in various fields 

including Economics, Industry, Transportation, and others (Taylor, 2006). 

 

3.6.2 Model of Artificial Neurons 

 
Fig. 3.4 shows the schematic of the model of an artificial neuron. 
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Figure 3.4 Model of artificial neuron. 

 

 

In Figure 3.4,  refers to the inner status of the neuron, θ refers to the threshold 

value which refers to an inner status value of the artificial neuron. Only when the external 

stimulus value exceeds the threshold value, is the artificial neuron able to produce a 

response.  ( ) refers to the various variables input into the neuron. Wij is the 

weight value connected with the neurons i and j. Si refers to the external environmental 

influence, and yi is the output value of the neuron. The model can be expressed as: 

                                                        (3.17) 

                                                                    (3.18) 

Where 
 
represents the net input of a neuron, g function means the active function. H 

refers to the output function. The most commonly used H functions are shown in Fig. 3.5 
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Figure 3.5 Activation function of an artificial neuron (Neural Network, 2017). 

 

In Figure 3.5, the x-axis refers to the input of the H function, and the y-axis refers 

to the output of the H function. In neural network area, the sigmoid function is generally 

used. For the Sigmoid function, the x input is from -∞ to +∞, the y output is from 0 to 1 

and suitable to neural networks with output values between 0 and 1. For the Linear 

function, the x input is from -∞ to +∞, the y output is also from -∞ to +∞ and suitable to 

neural networks with output values between -∞ and +∞. Therefore, according to the 

modelling needs, we can choose different activation functions for the artificial neuron 

modeling. 

 

3.6.3 Neuron’s Learning Rule (Adjustment of Weight Value) 

 
Figure 3.6 shows the complex structure of the ANN and weight values. 

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjIksb54q7MAhWJdD4KHajiCkYQjRwIBw&url=http://mropengate.blogspot.com/2015/06/ch15-4-neural-network.html&psig=AFQjCNFfYOEXA0tPli44doGNuKECH9dqyw&ust=1461844757278766
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Figure 3.6 ANN structure. 

 

 

In order to adjust the weights in Fig. 3.6, there are two main learning rules: 

1）Hebb Learning Rule:  

Assume  is the input of the j-th neuron. It may come from the other neuron’s 

output, or an input from the exterior networks. Since the i-th neuron output  could be the 

next neuron’s input, we denote it as  instead of . Suppose Wij is the weight value of 

input  to neuron j. Let  and  be the  and  values at sample S. When there 

are M-1 sample being input into the neuron, in terms of Hebb rule, the weights are 

expressed as: 

                                                            (3.19) 

jx

iy

ix iy

ix s

ix
s

jx ix
jx

1
(s)

0

(i j)
(t)

0 (i j)

M

i

sij

x
W








 
 



https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwilyePa4q7MAhULdT4KHQAUBV0QjRwIBw&url=http://dataunion.org/22141.html&psig=AFQjCNFfYOEXA0tPli44doGNuKECH9dqyw&ust=1461844757278766


 

51 

 

At the moment (t+1), inputting M sample, the weight values become: 

                                     (3.20) 

Then the weight change can be calculated by: 

                                                    (3.21) 

Hebb rule shows that when and  do calculation (not clear with what is “do 

calculation”, and if they match, then the weight value  is to be strengthened, or the 

weight value will be weakened. 

We take consideration of other neuron’s inputs and exterior’s inputs, and denote 

them as  , then the rule is: 

                                                            (3.22) 

Further, when , and let  =1, then we have 

                                                                (3.23) 

let the active function  , the model is simplified: 

                                                           (3.24) 

Or 

                                                                        (3.25) 

If it is represented as vector,  

                                                                                                (3.26) 
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It shows the input vectors and output vectors have related with function of f, and 

this relationship can be either linear or non-linear. 

2) Widrow-Hoff Rule 

At time t, neuron i has a weight value to the jth input. At time t+1, the factor 

of j is xi, at this moment, the expectation of neuron i is d, and the real output is xi. In terms 

of Widrow-Hoff Rule, 

                                                                  (3.28) 

or  

                                                         (3.29) 

Where  is modifier factor, when >0, is the difference value from the expected 

value and the real output . 

 

3.6.4 Error Back Propagation Method (BP) 

 
BP network has been most widely used for data training, which represents about 80 to 90 

percent among all other networks, as shown in Fig. 3.7. There are mainly three 

characteristics of a BP network. First, Pattern recognition and classification are especially 

used in language, words and graph identification. It is also used for categories in medical 

characteristics, and diagnosis. Second, BP network can be used for function approximation. 

It can be used for nonlinear curve fitting control, the trajectory of the robot, and industry 

control. It can also be used for data compression, storage and retrieval. 
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Figure 3.7 BP neural network structure. 

 

 

Error Back Propagation Method shows the above structures in Figure 3.8. The 

neuron model that applied for nodes is represents as: 

                                                                                   (3.30) 

Or 

                                                                                       (3.31) 

The characteristics of BP network starts from the input layer, experiences hidden 

layers and finishes as an output layer. There are no connections in the same layer, but only 

for the adjacent layers. For BP network, all transfer functions use Equation 3.31, which is 

also called sigmoid function.  

                                                                                        (3.32) 
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Figure 3.8 BP neural network calculation procedures. 

 

 

The procedure of BP neuron network generally consists of two steps: one is the 

forward working to calculate the connection weight values; it starts from the nodes of the 

first layer to the last layer, until every node of every layer has been all calculated. The other 

step is called a learning step. In this procedure, the output of each node remains unchanged. 

From the output layer, backwards adjusting the weights of every node one layer by one 

layer until the input layer is reached. This procedure is then repeated until the error is 

limited within the settled error. 

https://www.google.com.hk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjPp4rf5K7MAhXFVz4KHdC1B1MQjRwIBw&url=http://www.mdpi.com/1660-4601/10/8/3619?trendmd-shared=0&psig=AFQjCNFJ5d6BJicZqLg2PM-5W1kp0FtDgQ&ust=1461845427164793
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CHAPTER 4 

EXPERIMENTAL DATA PROCESSING AND RESULTS ANALYSIS 

 

4.1 Data Processing Flowchart 

 
This chapter consists three parts. Section 4.2 describes the VISSIM outputs validation; 

section 4.3 describes the emission data generation; and section 4.4 describes the emission 

model development. As described in Chapter 3, VISSIM was used to generate operation 

mode fraction data.  Chi-squared tests were then used to determine whether VISSIM 

simulation data and field collected data are close to each other. The operation mode data 

were then used in MOVES 2014a and four types of pollutant emissions were generated.  

These pollutants included CO, NO, NOX and NH3. Using the emissions results from 

MOVES, multiple linear regression models were estimated.  In order to improve the 

estimation accuracy, an ANN model was developed based on the HCM related parameters. 

Finally, MOVES-like estimation models of vehicle emissions at a signalized intersection 

were developed Figure 4.1 shows a flowchart of the steps taken in developing the models. 

It is noted that two groups of variables are prepared for developing the multiple 

linear regression (MLR) models: the operation modes and the HCM related variables. As 

mentioned in Chapter 1, vehicle’s operation modes have a significant impact on the 

emissions results (LeBlanc, 1995; Barth et al. 1997; Frey H. Christopher, et al. 2002; Ritner 

Mark, et al. 2013). Hence, operation mode model helps one understand how each operation 

mode can influence the four types of emissions, respectively in various conditions. The 

HCM related variables considered in the development of the multiple linear regression 

model included delay, V/c, cycle length, road grade and g/c as the potential variables. The 

purpose of this model is to use the HCM related parameters to predict vehicles emissions. 

Correlation analysis is used to avoid multicollinearity in the MLR model.  
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Figure 4.1 Data processing flowchart. 

 

4.2 Validation of VISSIM Output Operation Mode Data by Using Real World 

Vehicle Running Data  

 
There are many benefits to using simulation to study emissions. Some of these benefits 

include lower costs, lower risk and an easier way to capture a large quantity of vehicles’ 

second-by-second data. Various traffic simulation models are used to process emissions 

study. VISSIM has been used in previous research in the study of vehicle emissions and the 

use of the simulation’s output. Some research also tested the reliability of the data generated 

from VISSIM for emissions’ study (Song et al. 2013). To verify the speed and acceleration 

results obtained from VISSIM in this dissertation, field data was collected and compared 

with the simulation data output from VISSIM. This validation has practical significance as 

it verifies the feasibility of using VISIMM’s output results to study vehicles emissions. 

Therefore, validation was done to determine the adequacy of using VISSIM’s speed and 
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acceleration output data for using in MOVES. A Chi-square test was then performed to 

illustrate whether the VISSIM data were close to the field data at one intersection.  

Figure 4.2 shows the validation procedure flowchart. Using VISSIM, a real world 

signalized intersection was simulated. Volume and signal timing at the selected intersection 

during 6-7 pm on weekdays was surveyed in the field and further used in the VISSIM 

simulation to generate the vehicle’s running information. A total of 30 simulation runs with 

different random seeds were applied in VISSIM. Based on the second-by-second speed and 

acceleration output obtained from VISSIM simulation, the VSP, Mode ID, and then the 

average operation mode fraction was calculated.  

Speed and acceleration data were also collected at the same intersection under 

similar operating conditions in the real world. Using this data, the operation mode fraction 

was calculated using a similar approach as was used for the simulation data. In the field 

measurement, vehicles running data were collected for 32 runs by driving from different 

approach directions. A chi-square test was performed where the calculated Chi-square 

value, which is the difference between the observed (field) data and expected (VISSIM) 

data, is 0.304147. Compared to the Chi-square table, which has a degree of freedom of 4, 

for a significance level of 5%, the Chi-square table value is 9.488. The calculated Chi-

square value is smaller than the Chi-square critical value for a significance level of 0.05. 

Based on this comparison, the observed value and the simulation value are likely to be 

close to each other. Therefore, VISSIM output data is accepted for using in this emissions 

study.  
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Figure 4.2 VISSIM validation processing flowchart. 

 

 

4.2.1 Intersection Selection 

 

Figure 4.3 shows the intersection used to perform the field test to validate VISSIM’s speed 

and acceleration data. The data collection procedure included collecting speed and 

acceleration data by using an in-vehicle mounted device.  Further details of this device is 

provided below. The device collected information about the running data including speed 

and acceleration experienced during the vehicles operation. The operation modes’ fractions 

were then calculated using this data and the results compared to similar results obtained 

from VISSIM. The VISSIM simulation model used similar geometric, volume and speed 

data as existed in the location where the field data were gathered. Finally the field-measured 

operation modes were compared with the VISSIM simulated operation modes, to validate 

the effectiveness of the VISSIM simulation output. 
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Figure 4.3 Intersection (1): snap shot of study location from Google map. 

 

 

Figure 4.4 illustrates the average volume of the intersection during 6-7 pm on 

weekdays. This volume is used in VISSIM input to obtain the simulated vehicles running 

data such as second-by-second speed and acceleration, and further used to calculate the 

simulated operation modes fractions at this intersection. Speed and acceleration data was 

measured and this data is then used to calculate the field VSP and operation modes fractions. 

And finally, both the operation modes fractions from VISSIM simulation and the field data 

are compared. 

 
Figure 4.4 Vehicles average volume distribution at each direction between 6-7 pm on 

weekdays. 
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4.2.2 VISSIM Simulation Results 

VISSIM simulation is designed for exactly the same study location, as shown in Figure 

4.5.  

 
Figure 4.5 VISSIM simulation location for data collection during 6-7 pm on weekdays.  

 

 

4.2.3 Field Measurement Results 

 

Speed and acceleration were obtained using a measurement device named “Performance-

box”. “Performance-box” is a tool that is installed in a vehicle and can measure the vehicle’s 

instantaneous speed and location and acceleration. The device is a professional car test tool 

that is accurate and easy to measure vehicles’ running data, such as location, distance, 

speed, acceleration, running time information, and other parameters. The device is installed 

on the window of the tested car as shown in Figure 4.6. Performance-Box is a GPS based 

performance meter that allows one to measure G-forces, speed, lap & split times, braking 

distance and many more. The new Predictive Lap Timing function (live comparison to best 

lap) provides instant feedback during one’s driving times. All parameters are logged to an 

SD memory card ten times per second for downloading and comparison. Performance-Box 

contains an integrated antenna, is compact in size and very easy to install. (Performance-

Box Technical Specifications. Accessed on January 19, 2017) 
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The technical specifications of Performance-Box have the following 

characteristics:  

(1) Velocity: accuracy of 0.1 Km/h (averaged over 4 samples); of 10 Hz; minimum 

velocity of 0.1 Km/h; maximum velocity of 1600 km/h; resolution of 0.01 Km/h. 

(2) Distance: accuracy of 0.05 % (<50cm per Km); resolution of 1 cm. 

(3) Acceleration: accuracy of 1 %; maximum of 4 G; resolution of 0.01 G. 

(4) Heading: resolution of 0.01° (averaged over 4 samples): accuracy of 0.1°. 

(5) Lap Timing: resolution of 0.01 s; accuracy of 0.01 s. 

 
Figure 4.6 Performance-box installed on the window of tested car. 
 (Photo credit by Yuanyuan Fan) 

 

 

Considering the VISSIM simulation uses car following algorithm, our testing also 

tries to follow its leading vehicle to collect the running data. At the experiment intersection, 

the test car follows other cars. Under this rule, several test runs were performed in the study 

area using the Performance-box. A similar field data collection method has been used in 

data collection of field car following trajectories in Beijing (Song et al. 2013).  

Figure 4.7 shows the speed plot of one extracted data specifically for the study, 

which also shows the start and end point of the study intersection. The red plot is the speed 

record of the vehicle, the x-axis refers to the time in 0.1 second unit, and the y-axis refers 

to the speed value (km/h). When the speed is zero, this means the vehicle is idling. The 
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plot on the right is the topographic map of the running route, in which the x-axis and the 

y-axis refer to the distance from the start point.  

 
Figure 4.7 Performance-box measured vehicles speed and trajectory plot. 

 

 

The procedure was used to obtain the field measurement of five operation modes. 

Approximately one hour of tests were performed for every approach to the intersection, 

such as from south to north, from north to south, from east to west, west to east, from south 

right turn to east, etc. The variables collected from the field including speed, location, and 

acceleration. Further data processing was performed by which we used the recorded speed 

and acceleration data of vehicles to determine operation modes fractions. Next, we 

averaged the collected data of the five operation modes fractions in every direction. Further, 

the averaged field measured operation modes fractions in each direction were weighted 

based on the volume to capacity ratio as shown in Figure 4.4. Finally, the weighted 

operation modes fractions in each direction were summed and the five operation modes 

fractions at the intersection in one-hour period were obtained. 

End point  

Start point 
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4.2.4 Comparison of the Simulated and the Field Operation Modes 

 

The comparison of the simulated operation modes fractions by VISSIM and the field 

measured operation modes fractions are compared and illustrated in Figure 4.8.  

 
Figure 4.8 Comparison between VISSIM simulated and field measured operation modes 

fractions. 

 

 

Further, in order to validate the similarity of the two kind’s data, the Chi-Square 

Test and P-value test were applied. The Chi-Square Test can determine how closely the 

field collected operation mode as compared to the VISSIM generated data. The calculated 

Chi-square value between the observed (field) data and expected (VISSIM) data is 

0.304147. Compared to the Chi-square table, which has a degree of freedom of 4, for a 

significance level of 5%, the Chi-square table value is 9.488. The calculated value is 

smaller than the Chi-square critical value for a significance level of 0.05. Therefore, the 

null hypothesis is not rejected. The field-collected data is statistically close to the VISSIM 

simulation data. 

 
Figure 1.  Flow Chart and Histogram of VISSIM Validation (please correct the word “Breaking” 

to “Braking” in the chart) 
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4.3 Data Generation and Correlation Analysis 

At the data generation stage, the volumes used in VISSIM to simulate the studied 

intersection ranges from 200 to 880 vehicles per hour (Level of Service A to E). The 

detailed experimental data is listed in the Appendix. The entire volume range was used to 

generate the data. Traffic simulation data is obtained from VISSIM 6 and emissions outputs 

is obtained from MOVES 2014a. MOVES 2014a is the newest EPA authorized vehicles 

emission estimation tool. The output of VISSIM is the speed and acceleration of every car 

at every second during an hour period. Then, through calculation, we obtain the 

percentages of five operation modes, which is further input into MOVES. Additional 

information obtained from MOVES also includes: time period, county, link length, link 

volume, road type, road grade, temperature, humidity, vehicles’ age, vehicle type, and fuel 

formula. Next we get the emissions of the four pollutants. Vehicle operation modes as well 

as other traffic-related variables will be used as independent variables respectively to 

predict the emissions of vehicles. The relationship between pollutant emissions, i.e., CO, 

NO, NOx, and independent variables are analyzed using the two types of models previously 

described. 

 

4.3.1 Operation Mode Data as Variable Model 

 

Two groups of independent parameters are used to develop vehicles emissions estimation 

models. Parameters in group one used the five operation modes to predict four types of 

emissions. The purpose of using operation mode to evaluate emissions is to determine how 

operation mode contributes to the four types of emissions under the different conditions. 

Figure 4.9 shows the change of operation mode under different grade and volume 

conditions. It is noted that as volume and grade increased, each operation mode contributes 
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different fraction to the overall five operation modes. But the total operation modes in each 

condition is sum as 100%.  

   

Figure 4.9 Fractions distribution of five operation modes under different vehicle volumes 

 

 

The figure shows for a downgrade of 5 %, that the majority of vehicles operate 

under “Low speed coasting” with this percentage decreasing as the volume increases.  As 

the volume increases the largest percentage of vehicles operate under “Idling”.  These 

results are intuitive as more vehicles added to the intersection will reduce speeds resulting 

in more vehicles idle vehicles.  For the condition where grade is 0%, the largest percentage 

of vehicles is operating at cruise acceleration at low volume.  As volume increases, the 

largest percentage of vehicles is operating at idling.  At a grade of 5%, the largest percent 

of vehicles is operating at cruise acceleration.  Similar to the other grades, as the grade 

increases, the largest percentage of vehicles is operating at idling. 
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4.3.2 HCM Variable and Correlation  

 

Using HCM related parameters to evaluate emissions is aimed to develop a MOVES-like 

estimation model of vehicle emissions for pollutants at signalized intersections with HCM 

parameters. In HCM 2010, the parameters that used to estimate delay at signalized 

intersection includes several variables:  volume to capacity ratio (v/c), green time to cycle 

length (g/c), number of lanes, lane width, heavy vehicles, approaching grade, adjustment 

of existence of parking adjacent to the lane group, area type, lane utilization, left turn lane 

characteristics, right turn lane group characteristics, presence of pedestrians, and for 

pedestrian and bicycle conflicts. Among all these variables, volume to capacity ratio, green 

time to cycle length, approaching grade, and delay are considered as potential variables.  A 

correlation analysis was performed to develop emission models with variables that would 

not result in multicollinearity.  Further discussion of the correlation analysis is provided 

below. At the completion of determining the correlation between the independent variables, 

a model containing volume to capacity together with grade had the highest R2 for the four 

emissions models. 

Four types of emissions are used as the dependent variables, with corresponding 

potential HCM related variables as mentioned above. Table 4.1 shows the range of 

variables used in generating the emissions models.  MOVES generated CO is in the range 

of 0.4kg/hr-1.8kg/hr kg per hour. NOx emissions range is between 0.5kg/hr-2.1kg/hr. NH3 

is in the range of 0.2kg/hr-0.9kg/hr. NOX is between 0.5kg/hr-2.1kg/hr. Based on the delays at 

the intersection for the volume conditions, the intersection data are for level of service 

conditions between A and E. Volume to capacity ratio ranges from 0.28 to 1.02. Delay time 

from 7.7 sec/veh to 59.1 sec/veh, and approaching road grade is from -5 to 5. It is noted 

that default simulation speed is 30 mph, turning percentage is 5%, and no heavy vehicles 

are accounted in the vehicle flows. 



 

67 

 

Table 4.1 Description of HCM related variables and Emissions 

 Description Number  

Dependent 

Variables 
MOVES output 74 sets 

   

NO Tail pipe  0.4kg/hr-1.8kg/hr 

NH3 Tail pipe  0.2kg/hr-0.9kg/hr 

NOX Tail pipe  0.5kg/hr-2.1kg/hr 

CO Tail pipe  8.2 kg/hr-79kg/hr 

   

Independent 

Variables 
HCM related 74 sets 

   

Delay  [7.7sec/veh,59.1 sec/veh] 

   

V/c 
Volume to capacity 

ratio 
[0.28,1.02] 

   

g/C green to Cycle [0.43,0.47] 

   

Road Grade  [-5, 5] 

   

Cycle length  [40 sec to 100 sec] 

   

Continuous 

Variable   

Desired speed  

 

30mph 

Turning 

percentage  5% 

Truck Percentage 0% 

  

 

 

4.3.3 Correlation Matrix Study 

The correlation coefficient is a way to describe how closely two variables are related. It is 

an indicator reflecting the strength of the linear relationship between two physical 

characteristics. The correlation coefficient is a numerical measure of two variables’ linear 

strength. The correlation coefficient is usually denoted as r. The correlation coefficient is 

always between -1 and 1. A positive value indicates that the least-square line has a positive 

slope, whereas a negative slope shows two variables have a negative relationship. A value 

of the correlation coefficient close to -1 or 1 indicates that a strong linear relationship exists 
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between two variables. If the value of correlation coefficient close to 0, it indicates weak 

relationship between two physical characteristics. If r=0, two variables are said to not have 

any relationship. Table 4.2 to 4.5 illustrates the correlation matrix analysis for the variables 

under study. The correlation analysis is made between four types of pollutants, road grade, 

delay, v/c, g/c and cycle length.  In Table 4.2, the correlation between NOx, grade, delay, 

v/c, cycle length and g/c is determined. The correlation table shows cycle length and 

volume to capacity ratio having a strong linear relationship. The g/c and cycle length have 

a strong relationship. The g/c also has a strong relationship with v/c. Road grade has very 

weak relationship with cycle length, v/c and g/c. Delay has a strong correlation with cycle 

length, v/c, and g/c, but has a very weak linear relationship with road grade. The last 

column of table 4.2 shows that NOX emission has a strong correlation with cycle length, 

v/c, g/c and delay. In addition, v/c and NOX exist the strongest linear relationship with each 

other. Therefore, as independent variables, grade together with v/c are available to build 

the model, which also is believed to provide the highest R2 among these parameters.  

 

Table 4.2 NOX Correlation Matrix  

 Cycle 

Length V/c g/C 

Road 

Grade Delay NOX 

Cycle Length 1 .820 .923 .072 .976 .847 

Volume to 

Capacity 

 1 .822 .054 .820 .996 

Green to Cycle   1 .044 .883 .850 

Road Grade    1 .092 .005 

Delay     1 .843 

NOX      1 

 

 

The second correlation analysis is between NH3, grade, delay, v/c, cycle length and 

g/c. The correlation table shows that v/c and cycle length are strongly correlated. The g/c 

and cycle length, volume to capacity ratio also has strong correlation coefficients. Road 
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grade is weakly correlated with cycle length, volume to capacity ratio, and green to cycle 

length. Delay is strongly correlated with cycle length, volume to capacity ratio, green to 

cycle length but does have a weak correlation with road grade. NH3 shows a strong linear 

relationship with cycle length, volume to capacity ratio, g/c and delay. V/c and NH3 also 

exist the strongest linear relationship with each other. Therefore, as independent variables, 

grade together with v/c are available to build the model, which is also believed to provide 

the highest R2 among these parameters.  

The third correlation analysis is between NO, grade, delay, v/c, cycle length and 

g/c. The Table 4.4 shows V/c and cycle length are strongly correlated. The g/c and cycle 

length, volume to capacity ratio also has strong correlation coefficients. Road grade is 

weakly correlated with cycle length, volume to capacity ratio, and green to cycle length. 

Delay is strongly correlated with cycle length, volume to capacity ratio, green to cycle 

length but has a weak correlation with road grade. NO shows a strong linear relationship 

with cycle length, volume to capacity ratio, g/c and delay. V/c and NH3 also exist the 

strongest linear relationship with each other. Therefore, as independent variables, grade 

together with v/c are available to build the model, which is also believed to provide the 

highest R2 among these parameters.  

The fourth correlation analysis is between CO, grade, delay, v/c, cycle length and 

g/c. V/c and cycle length are strongly correlated. The g/c and cycle length, volume to 

capacity ratio also has strong correlation coefficients. Road grade is weakly correlated with 

cycle length, volume to capacity ratio, and green to cycle length. Delay is strongly 

correlated with cycle length, volume to capacity ratio, green to cycle length but does have 

a weak correlation with road grade. CO shows medium correlation with cycle length, 

volume to capacity ratio, g/c grade and delay. The order of the strength is road grade, v/c, 

g/c, cycle length and delay. It illustrates in Table 4.5. 
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Table 4.3 NH3 Correlation Matrix  

 
Cycle 

Length V/c g/C 

Road 

Grade Delay NH3 

Cycle Length 1 0.820 0.923 0.072 0.976 0.847 

Volume to 

Capacity  

 1 0.822 0.054 0.820 0.996 

Green to Cycle   1 0.044 0.883 0.849 

Road Grade    1 0.092 0.095 

Delay      1 0.846 

NH3       1 

 

Table 4.4 NO Correlation Matrix  

 
Cycle 

Length V/c g/C 

Road 

Grade Delay NO 

Cycle Length 1 0.820 0.923 0.072 0.976 0.847 

Volume to 

Capacity 

 1 0.822 0.054 0.820 0.996 

Green to 

Cycle 

  1 0.044 0.883 0.850 

Road Grade    1 0.092 0.005 

Delay     1 0.843 

NO      1 

 

Table 4.5 CO Correlation Matrix 

  
Cycle 

V/c G/C 
Road 

Delay CO 
Length Grade 

Cycle 

Length 
1 0.82 0.923 0.072 0.976 0.362 

Volume to 

Capacity 

 
1 0.822 0.054 0.82 0.494 

Green to 

Cycle 

  
1 0.044 0.883 0.38 

Road Grade    1 0.092 0.64 

Delay     1 0.35 

CO           1 
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CHAPTER 5 Emission Estimation Model Results 

 

The previous chapter describes the variables to be used in estimating vehicle emissions. 

This chapter presents the model development and their results. Three emissions models are 

estimated.  Model 1 estimates vehicle emissions using operation mode variables using 

MLR.  Model 2 estimates vehicle emissions based on HCM related variables by using 

MLR. Model 3 estimates vehicle emissions based on HCM related variables by using ANN 

modeling. The coefficients of Model 1 can be used to determine the contributing weight of 

each operation mode on vehicle’s emission. Models 2 and 3 are intended to estimate and 

predict vehicles emissions. MOVES generated emissions are treated as the observed 

emissions quantities. Emissions estimated using Models 2 and 3 are treated as the expected 

values. The observed emissions from MOVES and the estimated emissions from Models 2 

and 3 are tested by Chi-square test to determine how closely the models fit the observed 

data. The MLR models are verified by F test. 

 

 

 

5.1 Multiple Linear Regression Models Development 

 

5.1.1 Operation Modes and Traffic Related Parameters as Independent Variables 

 

The model was fit using Minitab 17 Statistics software. Model 1, which estimated vehicle 

emissions using operation mode as the independent variables is shown in Table 5.1. 

Volume to capacity ratio and grade shows the influences on traffic related variables to 

pollutant emission’s generation. In the other model, which illustrated in Table 5.2, we take 

the fractions of five operation modes as the independent variables, and also find their 

influences on four kinds of emissions including NO, NOX, NH3, and CO as the dependent 

variables.   
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The obtained coefficients of the independent variables in Models 1 and 2, where 

multiple linear regression is used in estimating the models, are used to explain the influence 

of vehicle operation modes on pollutant emissions. In this test, the P value is used to 

determine significant variables. “The P-value is defined as the probability under the 

assumption of hypothesis H0 of obtaining a result equal to or more extreme than what was 

actually observed. The smaller the P-value, the larger the significance because it tells the 

investigator that the hypothesis under consideration may not adequately explain the 

observation.  Then, based on the obtained P-value, we can determine whether the factors 

are significantly related to the emissions outputs or not. The hypothesis H0 is rejected if 

any of these probabilities is less than or equal to a small, fixed but arbitrarily pre-defined 

threshold value α, which is referred to as the level of significance.” (Bhattacharya and 

Bhaskar; Habtzghi 2002, Hung et al 1997). In this research, the level of significance is set 

to 0.05. A P-value of of less than 0.05 will result in H0 being rejected. From Table 5.1, we 

can find that for NO, NOX and CO, grade is not significant to these emissions.  Volume 

has significant influence on each type of emissions.  

 

Table 5.1 HCM Related Variables’ Significance for NO, CO, NH3 and NOX  

 

Variable Coef T-Value P-Value    Variable Coef T-Value P-Value 

  NO   CO 

Grade -0.001 -0.670 0.504 Grade -0.189 -0.790 0.431 

V/c 0.002 121.600 0.000 V/c 0.033 9.960 0.000 

  NH3   NOX 

         Grade 0.009 10.850 0.000      Grade -0.001 -0.670 0.504 

V/c 0.001 83.490 0.000 V/c 0.002 121.600 0.000 

 

 

In Table 5.2, it shows five operation mode including Braking, Idling, Low Speed 

Coasting, Moderate Speed and Cruise/acceleration are used to measure the weight of the 

drive mode contribution to the emissions. Not every operation mode has a significant 

https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Statistical_significance
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influence on pollutant emissions. For NO and NOX, Idling is not a significant parameter. 

Moderate Speed is not significant for CO, all operation mode have significant influence on 

NH3.   

 

Table 5.2 Operation Mode Variables Significance for NO, CO, NH3 and NOX 

 

Variable Coef T-Value P-Value Coef T-Value P-Value 

  NO    CO  

Braking -0.0739 -2.91 0.005 -31.48 -6.35 0 

Idling -0.0305 -1.22 0.227 -15.94 -3.27 0.002 

Low Speed Coasting 0.0577 2.84 0.006 -14.63 -3.68 0 

Moderate Speed 

Coasting 
-0.061 -2.87 0.005 4.75 1.15 0.256 

Cruise/acceleration 0.0811 3.16 0.002 32.58 6.49 0 

  NH3    NOX  

Braking 0.0627 3.66 0 -0.0844 -2.91 0.005 

Idling -0.07 -4.16 0 -0.0348 -1.22 0.227 

Low Speed Coasting -0.0289 -2.11 0.039 0.0659 2.84 0.006 

Moderate Speed 

Coasting 
0.0353 2.46 0.016 -0.0696 -2.87 0.005 

Cruise/acceleration -0.0591 -3.41 0.001 0.0927 3.16 0.002 

 

 

5.1.2 Standardized and Unstandardized Coefficients of Regression Equations for 

Four Pollutants Emissions  

 

Table 5.1 provides a coefficient analysis that allows one to understand if variables are 

significant in the multiple linear regression model.  Table 5.2 illustrates standardized and 

unstandardized regression coefficients analysis between pollutants and five operation 

modes. The non-standardized coefficients are not suitable to horizontally compare the 

impacts of independent variables.  This is because in the non-standardized regression 

models the independent variables may have different units or distributions. After 

standardizing the non-standardized regression models, the independent variables have been 

all transformed into the standard normal distribution N (0, 1), then the obtained 

standardized coefficients can be used to be horizontally compared, which also means that 

the standardized coefficients  can be directly used to quantitatively evaluate the impact ˆ *

i
β



 

74 

 

size of each operation mode on the emissions of each pollutant. The larger the absolute 

value of the standardized coefficients, the greater the impacts of the independent variables 

on the dependent variables.  

The obtained unstandardized and standardized regression coefficients are listed in 

Table 5.3. By the standardized coefficients, we can evaluate and compare the significance 

size of each of the five operation modes on four vehicle missions including NO, CO, NH3 

and NOX. Unstandardized coefficients can be used for emission estimation, but operation 

mode is not easy to measure in the real world. Therefore, for estimation purpose, we plan 

to use macroscopic parameters to develop the estimation models. HCM related parameters 

are used to develop the emissions model and will be discussed in later of this chapter.   
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Table 5.3 Standardized Coefficients and Unstandardized Coefficients for Operation Mode 

of MLR 

 

 
Unstandardized 

Coef. 

Standardized 

Coef. 

Unstandardized 

Coef. 

Standardized 

Coef. 

 NO  NOx  

Braking -.063 -.991 -.071 -.991 

Idling / / / / 

Low Speed 

Coasting 
-.071 .033 .081 .033 

Moderate Speed -.018 -.132 -.095 -.132 

Cruise/acceleration .102 1.087 .080 1.087 

 NH3  CO  

Braking -.099 -3.368 -11.576 -36.797 

Idling /  -4.510 -.966 

Low Speed 

Coasting 
-.071 -.072 -3.761 -.398 

Moderate Speed -.018 -.060 / / 

Cruise/acceleration .102 3.429 30.630 11.720 

 

 

The variable coefficients and the R2 for the models provide regression results of the 

multiple linear regression models. In Multiple linear regressions, NO R2 is 0.999, NH3 R2 

is 0.998, NOX R2 is 0.999, and CO R2 is 0.853.   

According to the standardized coefficients, for NO and NOX emission, 

Cruise/acceleration have the most significant influence on emissions.  Braking, Moderate 

speed, Low Speed Coasting, Moderate Speed Coasting and Braking are next in terms of 

their influence on emissions. For NH3 Cruise/acceleration has the most significant 

influence, then in turn Moderate speed, Low Speed Coasting and braking has the next 
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significant influence. For CO emission, Cruise/acceleration has the most significant 

influence, then in turn idling, and braking has the next significant influence. The findings 

reveal that Cruise/acceleration has the most significant influences on vehicles emissions. 

This finding matches the results by Andrew et al. (2012). Their research found that more 

than 80% of total emission are generated from cruising and acceleration.  

 

5.1.3 Multiple Linear Regression Results Using HCM Related Variables 

 

The results of Model 2 development is shown below in Table 5.4. For NO, the R2 is 99.47% 

with all variables having a p value smaller than 0.05.  This indicates that there is a small 

chance that this variable is not a significant variable. The t-statistic calculates the difference 

between the dependent variable NO and the independent variables. The greater the 

magnitude of T (it can be either positive or negative), the greater the evidence against the 

null hypothesis that there is no significant difference between the measured emissions and 

the prediction variables. The closer T is to 0, the more likely there is not a significant 

difference. So for all t value in the test, the larger the better. VIF, Variance Inflation Factor, 

is 1. VIF measures how much the variance (the square of the estimate's standard deviation) 

of an estimated regression coefficient is increased because of collinearity. It is the reverse 

of tolerance; it means the level of reliable of variable as independents. VIF >5 is means 

tolerance is small.  

For NH3, the model results are shown below with an R2 of 99.25%. All variables 

have p value smaller than 0.05, and VIF is 1.  

The model developed for NO is shown below with an R2 of 99.25%. All variables 

have a p value smaller than 0.05 and the VIF is 1.  

The model development for CO is shown below with an R2 of 61.56%. All variables 

have a p value smaller than 0.05, and VIF is 1 
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Table 5.4 HCM Related Variables Model Development   

 

Depended 

variables 
R2 

Independent 

Variable 

Estimated 

Coefficient 
T-value  P-Value    VIF 

NO 99.47% 

Constant -0.058 -3.690 0.001  

Volume to 

capacity  
1.749 80.200 0.000 1.000 

Grade  -0.004 -3.490 0.001 1.000 

NH3 99.25% 

Constant -0.023 -2.620 0.013  

Volume to 

capacity  0.809 0.012 0.000 
1.000 

Grade  0.002 3.090 0.004 1.000 

NOX 99.47% 

Constant -0.066 -3.690 0.001  

Volume to 

capacity  1.997 80.200 0.000 
1.000 

Grade  -0.0048 -3.49 0.001 1.000 

CO 61.56% 

Constant 9.04 5.49 0.000  

Volume to 

capacity  10.49 4.58 0.000 
1.000 

Grade  0.701 5.55 0.000 1.000 

 

 

5.1.4 Analysis of Prediction Equations for HCM Related Variables by Non-

Standardized Coefficients 

 

1) For NO emissions we find that the emission of NO can be estimated by the volume 

to capacity ratio, and grade. These two variables have positive coefficients with the 

emission of NO, which indicates that these two variables have positive relationship to NO’s 

emissions. It reveals that higher volume to capacity ratio will result in heavier NO 

emissions. On the other hand, road grade has a negative reaction for emission of NO, which 

shows that steeper grades will make the emission of NO decrease. 

2) For emission of NH3 two variables including volume to capacity ratio and grade, 

both variables have positive coefficients for the emission of NH3, which indicates that these 

two variables all have a positive relationship to NH3’s emission. It reveals that greater 

volume, and higher road grade would result in heavier NH3 emission.  

3) For emission of NOX， we can find that the emission of NOX can be estimated by 
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volume to capacity ratio and grade. Among these three variables, volume to capacity ratio 

has positive coefficients for the emission of NOX, which indicates that they have positive 

relationship with the emission of NOX. On the other hand, road grade has a negative 

coefficient for emission of NOX, which indicates that it has negative relationship with 

NOX’s emission. It reveals that, the grade change would not have an obvious positive 

increase on NOx generation. Furthermore, volume to capacity ratio has the biggest absolute 

coefficient, which indicates that volume has the most significant influence on the emission 

of NOX.  

4) For emission of CO， we find that the emission of CO can be estimated by grade 

and volume to capacity ratio. Both variables have positive coefficients for the emission of 

CO, which indicates that all the variables have positive co-relationship with CO’s emission. 

When volume to capacity ratio and road grade increases, then the CO emission will 

increase.  

 

5.1.5 Standardized Multiple Linear Regressions Experiments 

 

The standardized regression coefficients can be used to reveal the importance of an 

independent variable’s influence on the dependent variable.  From Table 5.5, it can be seen 

that for NO, NH3 and NOX, volume to capacity ratio dominates the total quantity of these 

pollutants. Grade only plays a marginal influence on these three types of emissions.  For 

CO, grade has more weight on measuring the generation of CO emissions with V/c also 

significant in CO emissions generation. Both variables show positive signs indicating that 

an increase of V/c and grade will cause the CO emission to be heavier.  
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Table 5.5 Standardized Coefficients of V/C and Grade  

 

Standardized Coefficients V/c Grade 

NO 0.999 -0.043 

NH3 0.993 0.046 

NOX 0.999 -0.043 

CO 0.488 0.591 

 

 

5.1.6 Verification of Regression Models by F test 

 

The F statistical values are calculated and used to identify the significance of the above 

obtained linear regression equations. Table 5.6 shows the statistics of the MLR equations 

using operation mode as the independent variables.   

  Table 5.6, the test is used to determine if a null hypothesis that the obtained 

coefficients in the models are equal to 0. First we have obtained the F value from the SPSS 

17.0. The F value is compared to F table using a significance level of 5% and 1%. The 

critical value of  can be obtained by checking the F-distribution table for 

a chosen α value. M refers to the number of random errors, which is 5 for the Five Operation 

Modes regression model and 2 for the traffic Parameters regression model. N is the sample 

size of the experimental data, which is 78 for operation mode model and 37 for HCM 

parameter model These values represent half of the data which was used to develop the 

models. The remaining half is used for model validation. When the value of the significance 

level  is set to 0.1, the critical value  is 1.93 for the operation mode 

regression model and 2.46 for the traffic related regression model. When the value of the 

significance level  is set to 0.05, the critical value of  is 2.5 for the 

operation mode regression model and 3.31 for the traffic related regression model. From 

Table 5.6 and Table 5.7, we know that the  statistical values for four pollutants’ linear 

regression models are all higher than of F table value when either set α as 0.1 or 0.05. 

(1 )F ( , 1)m n m  


(1 )F ( , 1)m n m  


(1 )F ( , 1)m n m  

F
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Therefore, the models of regression equations are of significance and effective. 

 

Table 5.6 F Statistics of Multiple Linear Regression Equations for NO, NH3, NOX, and 

CO as Operation Mode as Variables 

 

Parameter 

Linear 

regression 

equations 

for 

SST SSR F   

Five 

Operation 

Modes 

regression  

NO 
13.110 

 

13.102 

 

23358.25

1 

 

1.93 2.5 

NH3 
2.820 

 

2.809 

 

3900.653 

 
1.93 2.5 

NOX 
17.093 

 

17.083 

 

23353.43

8 

 

1.93 2.5 

CO 2097.469 1789.7 87.76 1.93 2.5 

 

 

Table 5.7 Statistics of Multiple Linear Regression Equations for NO, NH3, NOX, and CO 

as HCM Parameters as Variables 

 

Parameter 

Linear 

regression 

equations 

for 

SST SSR F   

Traffic 

parameters 

(V/c and 

grade) 

regression 

NO 5.837 5.806 3216.580 2.46 3.31 

NH3 1.263 1.253 2239.328 2.46 3.31 

NOX 7.61 7.57 3217.054 2.46 3.31 

CO 879.308 541.277 27.221 2.46 3.31 

 

 

5.2 ANN Precision Estimation Models  

 

In order to increase the estimation capability of the pollutants emissions, AN

N model method are used. The ANN models are developed from the traffic paramete

rs by volume to capacity ratio and grade. By developed ANN model, we can compare 

the validation R, to find out the closeness of estimated model and experimental resul

ts. 

 

(1 0.1)F (5,72) (1 0.05)F (5,72)

(1 0.1)F (3,74) (1 0.05)F (3,72)
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5.2.1 Structure Design of ANN Model  

 
The ANN model developed for emission study is designed to be of two and three layers, 

with the number of neurons in the hidden layer calculated using equation 3.16. The 

structure includes the input layer, hidden layers and the output layer. The input layer 

includes the volume to capacity ratio and grade, which refer to the two inputs of the ANN 

model. The first and second hidden layer transfer function uses a sigmoid function. Three 

commonly used algorithms include Levenberg-Marquardt, Bayesian regularization and 

scaled conjugate gradient are tested for the training data. They are denoted as ‘trainlm’, 

‘trainbr’ and ‘trainscg’ in the MATALB software. We have 74 data pairs in total for inputs 

and outputs pair. It is noted that 70% of the data pair are randomly chosen to be in training 

(52 data pair), 15% for validation and 15% for testing. The validation R is used to compare 

the goodness of fit of the ANN model, based on the hidden layer, number of neurons and 

the algorithm. We also noted that training and validation results vary due to the different 

initial and training sample. Therefore, for 5 times each structure of the ANN model is 

trained and the average validation R value used for comparison. It is worthy to mention 

that based on Anderson’s (1992) rule for identifying the number of neurons, as given in 

equation 3.16, α value is suggested to take one to five, ten and twenty based on the level 

of data’s noise. In this study, we took all suggested number of neurons depending on the 

training size, and the number of inputs and outputs. 

 

5.2.2 ANN Modeling Results Analysis 

 
The results of the four ANN models for each of the four vehicle emissions are illustrated 

in Tables 5.8 and 5.9. CO shows large difference when compared to the models for NO, 
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NOX and NH3.  For this reason, two ANN models are fitted for emission input and output 

data. One is for CO, and the other is for NO, NOX and NH3. For the CO results shown 

Table 5.8, the number of inputs is 2 and the output is CO only. Based on equation 3.16, the 

number of neurons in hidden layer can be one, two, three, four, six, nine, and seventeen. 

Algorithms including Levenberg-Marquardt (lm), Bayesian regularization (br) and scaled 

conjugate gradient (scg) are tested to train 70% of randomly selected data pairs. The 

validation R is used to check the effects of fitting the results compared to the training R. 

The number of hidden layer is tested for one and two. From the Table 5.8, we found using 

scg algorithm, with two hidden layers and six neurons achieves the best results. The 

validation R is equal to 0.920822.  

 

 

Table 5.8 ANN Validation R Results for CO 

CO Description Algorithm   Algorithm  

Input and  

output (2,1) Lm br         scg  Lm br scg 

Ni 

No. of 

Neurons in 

hidden 

layer (1 

hidden 

layer) 

   

No. of 

Neurons 

in hidden 

layer (2 

hidden 

layer ) 

   

1 0.729244 0.741072 0.865533 0.865636 0.790968 0.828442 

2 0.789525 0.863229 0.798139 0.849978 0.811972 0.882938 

3 0.855642 0.84032 0.836659 0.870412 0.820008 0.902746 

4 0.819807 0.858684 0.880127 0.848866 0.886542 0.80915 

6 0.853736 0.854618 0.912984 0.878188 0.87126 0.920822 

9 0.866419 0.906302 0.893705 0.88321 0.874246 0.895124 

17 0.82661 0.906648 0.809937 0.798552 0.908492 0.895236 

 

 

The ANN fitting model is applied for NO, NOX and NH3 input-output data pair, for 

these three pollutant emissions have the similar tendency, therefore one model was used to 

fit all three emissions. The number of inputs are two and outputs are three. Based on 

equation 3.16, number of neurons in the hidden layer could be one, two, three, five and ten. 

The optimized fitting was found using the scg algorithm, two hidden layers and one neuron 
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in each layer. The optimized fitting model has validation R of 0.99925 based on Bayesian 

regularization with hidden layer of two and each layer of two neurons. 

 

Table 5.9 ANN R2 Results for NO, NOX and NH3 

NO, NOX,NH3 Algorithm   Algorithm  

Input and output 

(2,3) Lm br scg  Lm br scg 

Ni No. of 

Neurons 

in 

hidden 

layer (1 

Hidden 

layer) 

   No. of 

Neurons 

in 

hidden 

layer (2 

hidden 

layer ) 

   

1 0.99907 0.99907 0.99790 0.99915 0.99868 0.99491 

2 0.99605 0.99888 0.99801 0.99915 0.99925 0.89976 

3 0.99927 0.99906 0.99573 0.99857 0.99910 0.95932 

5 0.99919 0.99853 0.99559 0.99854 0.99870 0.99123 

10 0.99848 0.99876 0.99644 0.99917 0.99870 0.99262 

 

 

5.2.3 GUI Design for the ANN Model from HCM Related Parameters  

 

The results of the obtained ANN model show that the fitting accuracy is high. Hence, by 

this ANN model, if we import the measureable grade and calculated V/c, the emissions of 

the four pollutants can be precisely predicted.  

Therefore, based on ANN model, a friendly graphic user’s interface (GUI) is 

developed. The purpose is to provide traffic engineers an access to estimate environmental 

problems caused by traffic parameters. Without traffic simulation software such as 

VISSIM and MOVES, the developed GUI can still provide a quick and accurate emissions.   

The experiment data used in development of the ANN model is based on traffic 

simulation data and the EPA MOVES 2014. The data base in MOVES is from lab testing 

and authorized through the nation and states. But this ANN model also has its limitation. 

Based on the factors of analyzing signalized intersection of HCM 2010, several factors 

were not included as variables in the analysis including: percentage of heavy vehicles in 

traffic stream; existence of a parking lane and parking activity adjacent to lane group; 

blocking effect of local buses that stop within intersection area; area type; lane utilization; 
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left and right-turn vehicle presence in a lane group. All these variables can be considered 

for inclusion in a vehicle emissions model in future work. 

5.3 Validation and Comparison of MLR and ANN Models 

 

There are a total of 74 groups of data involved in the model development and the validation. 

70% of data are used to develop the ANN model and the other 30% used for validating and 

testing the model. The MOVES generated emissions are compared with the developed ANN 

model’s results. Root-mean-square error (RMSE) is the measure to indicate the difference 

between the experimental emissions data and ANN model predicted emissions. The smaller 

RMSE indicates the better fitting effect. It shows the predicted values are closer to the 

experimental outputs.  

Previously, we also use MLR to estimate four types of emissions. Therefore, it is 

useful to compare two types of model’s RMSE value, so that one can understand which 

models are better tools for estimating emissions. Table 5.10 shows the RMSE values for 

each pollutant by using two different methods: MLR and ANN. It is found that the ANN 

model have lower RMSE compare to the MLR model. Therefore, the ANN model is more 

accurate for emissions estimation than MLR model.  

 

Table 5.10 RMSE Values for Each Pollutant by Using MLR and ANN 

 
 ANN  MLR 

 Validation R    RMSE  R^2          RMSE 

CO 92.08% 1.6632E+00 61.56% 5.91770 

NO 99.93% 1.2237E-02 99.25% 0.84292 

NOX 99.93% 1.2237E-02      99.47%             4.76456 

NH3 99.93% 1.2237E-02 99.25% 0.44941 
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CHAPTER 6 

CONCLUSIONS 

6.1 Conclusion  

The motivation of this dissertation is to incorporate vehicles’ emission estimation into the 

Highway Capacity Manual. The Highway Capacity Manual is a national and international 

resource that has become a guideline for evaluating the operation of roadway, transit and 

pedestrian facilities.  The operation of the roadway is described based on a performance 

measure that describes the roadway’s operation based on the perception of its users. The 

performance measures are used describe the traffic operation of the roadway.  At present, 

no measures are provided to describe the operation of the roadway based on the 

environmental impacts.  The incorporation of air pollution estimation into the Highway 

Capacity Manual is believed to create a sustainable development for both transportation 

and environment. In addition, The HCM is recommended by the EPA to predict vehicles’ 

speeds in the estimation of emissions (HCM, 2010). The HCM 2010 makes some 

references about air quality that stating “vehicle emissions are a significant contributor to 

poor air quality”, and referring to the Clean Air Act Amendments CAAA (HCM, 2010). 

Furthermore, the report Extent of Highway Capacity Manual Use in Planning (Dowling, 

2012) expects air impact analysis to be ultimately included in the HCM. 

The objective of this dissertation was to develop MOVES-like estimation models 

of vehicle emissions for pollutants at a signalized intersection. A thorough understanding 

is needed about what parameters, and the influence of these parameters on emission 

quantity. This dissertation develops two kinds of models in order to make estimation of 

emissions caused by on-road vehicles. Two modeling approaches are used to estimate four 

kinds of emissions including CO, NO, NH3 and NOX separately.  The following points 
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conclude the work of this dissertation: (please correct the following based on the 

corrections already made for the abstract) 

(1) Two modeling approaches are used to estimate vehicle emissions including: 

multiple linear regression and Artificial Neural Network (ANN). In the multiple linear 

regression modeling, two different models were developed including one model using 

operation modes as independent variables and another model using traffic related 

parameters as independent variables. Both model approaches and independent variables are 

used to estimate four types of pollutant emissions. Statistically, the emission models using 

traffic parameters as independent HCM related parameters are capable of providing a better 

emissions estimate based on the higher R square value. For CO, the variables found to be 

significant were volume to capacity ratio and grade with an R2 of 61.56%. For NO, the 

variables found to be significant were volume to capacity ratio and grade with an R2 of 

99.47%. For NOx, the variables found to be significant were volume to capacity ratio and 

grade with an R2 of 99.47%. For NH3, the variables found to be significant were volume to 

capacity ratio and grade with an R2 of 99.25%. This study shows that volume to capacity 

dominate the emissions quality at a signalized intersection. The research found that for NOx, 

Idling and Moderate Speed Coasting were significant. For NH3, all variables were 

significant except Low Speed Coasting. For CO, Braking and Cruise/Acceleration were 

significant. It was also found that longer delay time reduces CO emissions, but it causes the 

other three pollutant emissions increase. 

(2) The ANN modeling method using the Levenberg-Marquardt method was used 

to train the HCM related variables and MOVES emissions outputs. The parameters of 

volume to capacity ratio, and road grade are used to estimate emissions. The Validated R 

value of the obtained ANN model is found. 
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6.2 Significance of Research 

 

The research performed in this dissertation fills the gap and allows researchers and engineers 

to use HCM related variables to estimate vehicle emissions. The incorporation of vehicles 

emission into the HCM can benefit transportation planners and traffic engineers evaluating 

the performance of a roadway to capture environmental influences based on on-road traffic. 

There are also more detailed findings and significance of that are found in the following 

paragraphs. 

The resulting models are based on a large dataset that included microscopic data 

under the various volume scenarios on second-by-second basis for each vehicle. The 

classification of operation modes are based on VSP and speed, the standard is EPA MOVES. 

It helps one to understand how each operation mode could have influence on emissions’ 

generation.  

The data source used to develop the emissions model is based on a rich data set. The 

models developed in this research are based on a significant dataset gathered through both 

simulation data and field studies. VISSIM was run for 25 volume conditions with these 

volumes ranging between 220 vph per lane group to 880 vph per lane group.  The volume 

ranges were established to ensure that the intersection would be evaluated at all LOS 

between A and E.  These volumes were then run under three road grade levels at g=-5%, 

g=0% and g=+5%, resulting in 75 scenarios of volume and grade that was run in VISSIM. 

This resulted in a total of 165,060 vehicles being simulated during these 75 scenarios.   

Speed and acceleration data were captured for every vehicle on a second-by-second 

basis for 3600 seconds or for one hour.   For a total of 5.94 million seconds of vehicle data.  

Using each vehicle-second speed and acceleration, the vehicle’s operation mode was then 

determined.  The use of this activity data to generate vehicle emissions model, rather than 
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the use of average speed, results in emissions models that are based on a rich set of 

microscopic data. 

As previously mentioned, the volumes used in the analysis were selected to ensure 

all levels of service were captured in the development of the emissions model.  Prior to 

using VISSIM to generate speed and acceleration data for each of the volume scenarios, the 

intersection’s signal timing was optimized for each volume condition using Synchro.  This 

required running Synchro 75 times to gather the signal timing information under each 

volume condition.  The result was the ability to run VISSIM using signal timings that were 

based on optimal signal timing condition.  Without performing this step, the speed and 

acceleration data gathered from VISSIM may have been influenced by more than the 

volume conditions. If poor signal timing was used, the speed and acceleration data would 

have had some impact on these values. 

Despite the widespread use of the HCM, it is limited in its ability to allow traffic 

engineers to be able to estimate the performance of the roadway using the same types of 

data used for performing an operational roadway analysis.  This research fills this gap and 

makes the estimation of vehicle emissions for feasible for the types of users currently 

performing operation analysis. This is a significant accomplishment that has not before been 

done.  In the past, environmental engineers worked on vehicle emissions and traffic 

engineers worked on roadway operation.  With the inclusion of the models developed within 

this dissertation, traffic engineers are more readily able to estimate vehicle emissions using 

models that have been validated and based on a rich data set. 

The models developed were based on operational modes, which has not before been 

performed.  From the study, it is noted that as volume and grade increased, each operation 

mode contributes different fraction to the overall five operation modes. But the total 

operation modes in each condition are sum as 100% in each situation. It is found the cruise 
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and acceleration mode greatly increased when the approaching road grade increases. This 

phenomenon is especially obvious when lane group volume is heavy.  Andrew et al. (2013) 

found that emissions generated from cruise and acceleration takes up to 80% of the total.  

The other finding of the research is that we have found the most significant 

variables to reflect the influence of on-road vehicles to the environmental are volume to 

capacity ratio and the approaching road grade, for a signalized intersection, with signal 

timing optimized, based on the various volume and default parameters.  

An ANN model has seldom to be seen in the existing research for the purpose of 

estimating emissions at signalized intersections with traffic related parameters. This study 

also proved that ANN provides a more accurate emission prediction model compared with 

another model used in this study. It is especially obvious for CO and NOx. Grade as a 

significant variable, it was over simplified in the existing emissions study, but this research 

found emission is significant for a vehicle’s emission generation. Grade is especially more 

significant in estimate CO, from the MLR coefficient can be seen this. 

 

 

6.3 Future Work 

 

The models in this dissertation are built by using both linear and non-linear regression 

models.  Model 1 is based on the variables of five operation mode, and Model 2 is based 

on the HCM2010 related parameters for analyzing signalized intersection. For HCM traffic 

related parameters, several factors were not included as variables in the analysis including: 

percentage of heavy vehicles in traffic stream; existence of a parking lane and parking 

activity adjacent to lane group; blocking effect of local buses that stop within intersection 

area; area type; lane utilization; left and right-turn vehicle presence in a lane group. All 

these variables can be studied for inclusion in the models for estimating vehicle emissions 

in a future work. A simple plan for the future work is as follows: 
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 Bring heavy traffic into the vehicle flow, change the percentage to find the 

influence on emissions. 

 Determine if existence of a parking lane and parking activity adjacent to lane group 

could have an effect on vehicles’ speed and acceleration so that influence operation 

mode and emissions generation. 

 Determine if the blocking of local buses that stop within intersection area could 

impact the speed and acceleration of vehicles, and in so doing influence the total 

emissions generation. 

 Take into consideration of area type changes for total emissions study  

 Determine if left and right-turn vehicle presence changes in a lane group would 

cause vehicles operation mode to change so that it influences the total emissions. 

 Revise the default value of MOVES input file such as vehicles age distribution, to 

find out if the increase aged vehicles can increase the vehicles emissions. 

  Change the desired speed in signalized intersection to find out if speed limit is a 

significant factor for estimation emissions. 

Taking into consideration each parameter above to determine its impact on 

emissions analysis and modeling would better satisfy different kinds of estimation needs 

when estimating environmental influences caused by the traffic side. 
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APPENDIX A 

EMISSISON DATA AND POTENTIAL VARIABLES 

Table A.1 and Table A.2 show the experimental data. The first table is the emission data 

and traffic related data. The later one is the operation mode and vehicles emission data. 

 

Table A.1 Experimental Data for Traffic Related Parameters and Vehicles Emissions 

v 
Cycle 

Length 
g/C v/c Delay G (NO) (NH3) (NOx) (CO) 

220 40 0.43 0.29 7.7 5 0.463668 0.237903 0.529431 15.01989 

220 40 0.43 0.28 7.7 -5 0.464009 0.210749 0.52982 8.239245 

220 40 0.43 0.28 7.7 0 0.46817 0.212639 0.534571 8.827985 

247 40 0.43 0.33 7.8 5 0.519541 0.265037 0.593228 16.23091 

247 40 0.43 0.32 7.8 0 0.525255 0.238567 0.599753 9.530512 

247 40 0.43 0.31 7.8 -5 0.538149 0.244423 0.614476 12.09101 

276 40 0.43 0.36 8 5 0.576491 0.279666 0.658255 14.07557 

276 40 0.43 0.35 7.9 0 0.581849 0.264272 0.664374 9.827095 

303 40 0.43 0.38 8 -5 0.582976 0.264783 0.665661 8.420522 

276 40 0.43 0.34 7.9 -5 0.598941 0.272034 0.68389 13.00839 

303 40 0.43 0.4 8.1 5 0.638881 0.323195 0.729495 19.21658 

303 40 0.43 0.38 8.1 0 0.64047 0.290896 0.73131 10.93906 

330 40 0.43 0.42 8.2 0 0.681685 0.309616 0.778369 8.240266 

330 40 0.43 0.43 8.3 5 0.682402 0.330248 0.779188 14.24361 

330 40 0.43 0.41 8.2 -5 0.713284 0.323968 0.81445 15.12046 

357 40 0.43 0.46 8.4 0 0.733377 0.333094 0.837392 8.438867 

357 40 0.43 0.45 8.3 -5 0.752252 0.341666 0.858945 11.28802 

357 40 0.43 0.47 8.5 5 0.754783 0.371317 0.861835 21.55297 

385 40 0.43 0.48 8.5 -5 0.799976 0.363342 0.913437 10.11465 

385 40 0.43 0.51 8.6 5 0.804719 0.402709 0.918853 21.1053 

385 40 0.43 0.49 8.6 0 0.809494 0.367666 0.924307 12.91961 

413 40 0.43 0.52 8.7 -5 0.861826 0.391435 0.98406 11.66861 

413 40 0.43 0.53 8.7 0 0.863846 0.392352 0.986366 12.90131 

413 40 0.43 0.54 8.8 5 0.864173 0.431566 0.986739 22.23572 

440 40 0.43 0.56 8.9 0 0.913799 0.415041 1.043404 12.10729 

440 40 0.43 0.55 8.8 -5 0.920804 0.418221 1.051402 13.10663 

440 40 0.43 0.58 9 5 0.920917 0.45937 1.051531 23.67233 

468 40 0.43 0.59 9 -5 0.962517 0.437167 1.099032 10.39211 

468 40 0.43 0.6 9.1 0 0.980054 0.445133 1.119057 14.5261 

468 40 0.43 0.62 9.2 5 0.987665 0.489508 1.127746 27.73532 

495 40 0.43 0.62 9.2 -5 1.02179 0.464089 1.166713 11.55475 

495 40 0.43 0.65 9.8 5 1.02808 0.506803 1.173894 23.33692 
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495 40 0.43 0.64 9.4 0 1.031747 0.468612 1.178081 14.40619 

523 45 0.43 0.67 10.8 5 1.079074 0.53102 1.232119 22.20087 

523 40 0.43 0.67 10.1 0 1.092673 0.496283 1.247648 15.34671 

523 40 0.43 0.65 9.7 -5 1.115922 0.506843 1.274197 20.18813 

550 40 0.43 0.69 10.7 -5 1.121224 0.50925 1.280248 11.13961 

550 45 0.43 0.71 12.1 5 1.138293 0.556848 1.299738 23.78456 

578 45 0.43 0.73 12.6 0 1.179247 0.535604 1.3465 12.98772 

578 45 0.43 0.75 13.3 5 1.183981 0.576743 1.351906 21.18441 

578 45 0.43 0.71 11.8 -5 1.204396 0.547027 1.375217 15.20547 

605 45 0.43 0.76 13.8 0 1.209963 0.549556 1.381573 12.06755 

605 55 0.455 0.76 14.9 5 1.23425 0.607431 1.409305 21.27041 

605 45 0.43 0.74 13 -5 1.235039 0.560944 1.410205 12.47227 

633 45 0.425 0.78 14.3 -5 1.278816 0.580828 1.460193 11.82888 

633 55 0.455 0.79 16.2 5 1.288692 0.630874 1.471468 21.15264 

633 55 0.445 0.77 15.3 0 1.293349 0.587428 1.476787 14.46487 

660 55 0.455 0.79 15.8 -5 1.339804 0.608528 1.529831 12.88652 

660 55 0.455 0.83 17.8 5 1.345992 0.661457 1.536893 22.8075 

660 55 0.445 0.81 16.7 0 1.348384 0.612425 1.539626 15.07919 

688 55 0.445 0.84 13.8 0 1.404474 0.637901 1.603672 16.39538 

688 55 0.46 0.79 19 -5 1.408917 0.63992 1.608747 14.80764 

688 55 0.445 0.86 19.8 5 1.413561 0.688784 1.614048 26.37711 

715 55 0.445 0.88 20.6 0 1.457633 0.662045 1.664371 16.99346 

715 55 0.47 0.85 18.8 -5 1.467063 0.666328 1.675139 15.6767 

715 65 0.455 0.88 22.8 5 1.472072 0.71401 1.680858 27.89661 

743 65 0.455 0.87 21.6 -5 1.516892 0.688961 1.732035 15.44825 

743 70 0.46 0.91 26.4 5 1.521844 0.735585 1.73769 27.08645 

743 70 0.46 0.89 23.7 0 1.522252 0.691394 1.738154 17.98499 

770 70 0.46 0.9 24.5 -5 1.554034 0.705829 1.774444 14.59476 

770 65 0.455 0.95 31 5 1.562209 0.760127 1.78378 24.86989 

770 65 0.46 0.93 27.3 0 1.576211 0.715902 1.799768 16.16398 

798 65 0.455 0.94 28.4 -5 1.617757 0.734772 1.847206 17.53451 

798 70 0.455 0.95 32.4 0 1.634897 0.742556 1.866776 19.25528 

798 75 0.46 0.97 37.2 5 1.635689 0.793093 1.867682 18.71535 

825 75 0.46 0.95 33.6 -5 1.659786 0.753861 1.895195 17.47304 

853 75 0.46 0.99 39.8 -5 1.66693 0.757106 1.903354 14.35942 

825 75 0.46 0.98 38.4 0 1.675899 0.76118 1.913595 18.07855 

825 75 0.46 1 44.1 5 1.682098 0.812779 1.920673 18.85347 

853 100 0.47 1.01 51.4 5 1.72461 0.832168 1.969215 17.86352 

853 100 0.47 1 46.2 0 1.741325 0.790896 1.988299 19.65795 

880 100 0.48 1.02 52.6 0 1.785516 0.810968 2.03876 19.6899 

880 100 0.47 1 46.6 -5 1.78982 0.812922 2.043673 19.52345 

880 100 0.47 1.05 59.1 5 1.79583 0.86638 2.050535 19.71665 
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Table A.2 Experimental Data for Operation Modes and Vehicles Emissions 

g Vol

ume 

Breakin

g 

Idling Low 

Speed 

Coastin

g 

Moderat

e Speed 

Coastin

g 

cruis/ac

celerati

on 

(NO) (NH3) (NOx) (CO) 

0 200 0.1298 0.0930 0.3265 0.0134 0.4374 0.4256 0.1933 0.4859 8.0239 

0 220 0.1298 0.0930 0.3265 0.0134 0.4374 0.4682 0.2126 0.5346 8.8280 

0 247 0.1216 0.1128 0.3360 0.0119 0.4177 0.5253 0.2386 0.5998 9.5305 

0 276 0.1440 0.1162 0.3422 0.0113 0.3862 0.5818 0.2643 0.6644 9.8271 

0 303 0.1302 0.1295 0.3342 0.0102 0.3959 0.6405 0.2909 0.7313 10.939

1 

0 330 0.0719 0.3736 0.2492 0.0066 0.2986 0.6817 0.3096 0.7784 8.2403 

0 357 0.0728 0.4021 0.2360 0.0058 0.2832 0.7334 0.3331 0.8374 8.4389 

0 385 0.1354 0.1487 0.3445 0.0080 0.3634 0.8095 0.3677 0.9243 12.919

6 

0 413 0.1264 0.1959 0.3245 0.0066 0.3466 0.8638 0.3924 0.9864 12.901

3 

0 440 0.0875 0.3129 0.2934 0.0045 0.3016 0.9138 0.4150 1.0434 12.107

3 

0 468 0.1231 0.1964 0.3405 0.0058 0.3343 0.9801 0.4451 1.1191 14.526

1 

0 495 0.1157 0.2367 0.3307 0.0044 0.3126 1.0317 0.4686 1.1781 14.406

2 

0 523 0.0977 0.2596 0.3323 0.0041 0.3063 1.0927 0.4963 1.2476 15.346

7 

0 550 0.1024 0.3218 0.2425 0.0025 0.3311 1.1346 0.5153 1.2955 27.206

0 

0 578 0.0716 0.4419 0.2368 0.0027 0.2470 1.1792 0.5356 1.3465 12.987

7 

0 605 0.1887 0.3146 0.2655 0.0020 0.2292 1.2100 0.5496 1.3816 12.067

6 

0 633 0.0943 0.3885 0.2716 0.0016 0.2439 1.2933 0.5874 1.4768 14.464

9 

0 660 0.0943 0.3885 0.2716 0.0016 0.2439 1.3484 0.6124 1.5396 15.079

2 

0 688 0.0719 0.4383 0.2336 0.0014 0.2549 1.4045 0.6379 1.6037 16.395

4 

0 715 0.0738 0.4417 0.2272 0.0012 0.2561 1.4576 0.6620 1.6644 16.993

5 

0 743 0.0724 0.4176 0.2542 0.0013 0.2545 1.5223 0.6914 1.7382 17.985

0 

0 770 0.0775 0.4121 0.2522 0.0014 0.2569 1.5762 0.7159 1.7998 16.164

0 

0 798 0.0767 0.4091 0.2600 0.0010 0.2531 1.6349 0.7426 1.8668 19.255

3 

0 825 0.0669 0.4748 0.2248 0.0013 0.2322 1.6759 0.7612 1.9136 18.078

5 

0 853 0.0665 0.4490 0.2400 0.0010 0.2436 1.7413 0.7909 1.9883 19.657

9 

0 880 0.0633 0.4882 0.2118 0.0008 0.2358 1.7855 0.8110 2.0388 19.689

9 

5 200 0.1423 0.1035 0.0866 0.0032 0.6643 0.4229 0.2155 0.4829 13.991

1 

5 220 0.1509 0.1039 0.0859 0.0030 0.6562 0.4637 0.2379 0.5294 15.019

9 
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5 247 0.1430 0.1313 0.0874 0.0026 0.6357 0.5195 0.2650 0.5932 16.230

9 

5 276 0.0785 0.2993 0.0761 0.0020 0.5441 0.5765 0.2797 0.6583 14.075

6 

5 303 0.1325 0.1389 0.1032 0.0030 0.6224 0.6389 0.3232 0.7295 19.216

6 

5 330 0.0748 0.3621 0.0754 0.0016 0.4862 0.6824 0.3302 0.7792 14.243

6 

5 357 0.0970 0.1945 0.1070 0.0016 0.5999 0.7548 0.3713 0.8618 21.553

0 

5 385 0.1175 0.2181 0.1011 0.0016 0.5618 0.8047 0.4027 0.9189 21.105

3 

5 413 0.1150 0.2165 0.1080 0.0015 0.5590 0.8642 0.4316 0.9867 22.235

7 

5 440 0.1135 0.2179 0.1123 0.0014 0.5548 0.9209 0.4594 1.0515 23.672

3 

5 468 0.1063 0.1863 0.1157 0.0014 0.5903 0.9877 0.4895 1.1277 27.735

3 

5 495 0.0979 0.2919 0.1086 0.0007 0.5009 1.0281 0.5068 1.1739 23.336

9 

5 523 0.0951 0.3344 0.1008 0.0008 0.4690 1.0791 0.5310 1.2321 22.200

9 

5 550 0.0881 0.3309 0.1087 0.0006 0.4717 1.1383 0.5568 1.2997 23.784

6 

5 578 0.0820 0.3994 0.0980 0.0005 0.4201 1.1840 0.5767 1.3519 21.184

4 

5 605 0.0941 0.3972 0.0944 0.0005 0.4137 1.2342 0.6074 1.4093 21.270

4 

5 633 0.0875 0.4217 0.0984 0.0004 0.3920 1.2887 0.6309 1.4715 21.152

6 

5 660 0.0923 0.4027 0.1075 0.0002 0.3973 1.3460 0.6615 1.5369 22.807

5 

5 688 0.0826 0.3817 0.1114 0.0004 0.4239 1.4136 0.6888 1.6140 26.377

1 

5 715 0.0772 0.3813 0.1166 0.0003 0.4246 1.4721 0.7140 1.6809 27.896

6 

5 743 0.0726 0.4186 0.1072 0.0002 0.4014 1.5218 0.7356 1.7377 27.086

4 

5 770 0.0799 0.4556 0.0971 0.0002 0.3673 1.5622 0.7601 1.7838 24.869

9 

5 798 0.0764 0.4070 0.2630 0.0010 0.2526 1.6357 0.7931 1.8677 18.715

4 

5 825 0.0719 0.4448 0.2341 0.0009 0.2483 1.6821 0.8128 1.9207 18.853

5 

5 853 0.0696 0.4947 0.2055 0.0011 0.2291 1.7246 0.8322 1.9692 17.863

5 

5 880 0.0701 0.4436 0.2444 0.0008 0.2411 1.7958 0.8664 2.0505 19.716

7 

-5 200 8.1244 0.4256 0.1933 0.4859 8.1244 0.4256 0.1933 0.4859 8.1244 

-5 220 8.2392 0.4640 0.2107 0.5298 8.2392 0.4640 0.2107 0.5298 8.2392 

-5 247 12.0910 0.5381 0.2444 0.6145 12.0910 0.5381 0.2444 0.6145 12.091

0 

-5 276 13.0084 0.5989 0.2720 0.6839 13.0084 0.5989 0.2720 0.6839 13.008

4 

-5 303 8.4205 0.5830 0.2648 0.6657 8.4205 0.5830 0.2648 0.6657 8.4205 

-5 330 15.1205 0.7133 0.3240 0.8144 15.1205 0.7133 0.3240 0.8144 15.120

5 



 

95 

 

-5 357 11.2880 0.7523 0.3417 0.8589 11.2880 0.7523 0.3417 0.8589 11.288

0 

-5 385 10.1147 0.8000 0.3633 0.9134 10.1147 0.8000 0.3633 0.9134 10.114

7 

-5 413 11.6686 0.8618 0.3914 0.9841 11.6686 0.8618 0.3914 0.9841 11.668

6 

-5 440 13.1066 0.9208 0.4182 1.0514 13.1066 0.9208 0.4182 1.0514 13.106

6 

-5 468 10.3921 0.9625 0.4372 1.0990 10.3921 0.9625 0.4372 1.0990 10.392

1 

-5 495 11.5548 1.0218 0.4641 1.1667 11.5548 1.0218 0.4641 1.1667 11.554

8 

-5 523 20.1881 1.1159 0.5068 1.2742 20.1881 1.1159 0.5068 1.2742 20.188

1 

-5 550 11.1396 1.1212 0.5093 1.2802 11.1396 1.1212 0.5093 1.2802 11.139

6 

-5 578 15.2055 1.2044 0.5470 1.3752 15.2055 1.2044 0.5470 1.3752 15.205

5 

-5 605 12.4723 1.2350 0.5609 1.4102 12.4723 1.2350 0.5609 1.4102 12.472

3 

-5 633 11.8289 1.2788 0.5808 1.4602 11.8289 1.2788 0.5808 1.4602 11.828

9 

-5 660 12.8865 1.3398 0.6085 1.5298 12.8865 1.3398 0.6085 1.5298 12.886

5 

-5 688 14.8076 1.4089 0.6399 1.6087 14.8076 1.4089 0.6399 1.6087 14.807

6 

-5 715 15.6767 1.4671 0.6663 1.6751 15.6767 1.4671 0.6663 1.6751 15.676

7 

-5 743 15.4483 1.5169 0.6890 1.7320 15.4483 1.5169 0.6890 1.7320 15.448

3 

-5 770 14.5948 1.5540 0.7058 1.7744 14.5948 1.5540 0.7058 1.7744 14.594

8 

-5 798 17.5345 1.6178 0.7348 1.8472 17.5345 1.6178 0.7348 1.8472 17.534

5 

-5 825 17.4730 1.6598 0.7539 1.8952 17.4730 1.6598 0.7539 1.8952 17.473

0 

-5 853 14.3594 1.6669 0.7571 1.9034 14.3594 1.6669 0.7571 1.9034 14.359

4 

-5 880 19.5235 1.7898 0.8129 2.0437 19.5235 1.7898 0.8129 2.0437 19.523

5 
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