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systems with losses [24] as well as currents in open Bose–Hubbard (BH) quantum system have been studied
[25]. Here, we work with a quantum many-body system of bosons with attractive interaction. In one spatial
dimension, such a many-body system, recently demonstrated to be sustaining the quantum analog of bright
solitons [26, 27], potentially leads to an enhancement of sensitivity to variation of effective magnetic flux
beyond the quantum standard limit [28]. At the same time, one dimensional (1D) attracting bosons with a
localized impurity are very interesting many-body systems. In this context, the seminal work of Kane and
Fisher on fermionic Luttinger liquids defines a true paradigm for the physics of the system. Accordingly, in
the renormalization group sense, a single localized impurity in an attractive (repulsive) fermionic system is
suppressed (enhanced) by the interaction [29]. Our system does not fall in the Kane–Fisher scheme for
several reasons. First, our system is made of attracting bosons. In fact, despite low energy attractive
fermions being expected to behave as repulsive bosons [30–32], attractive bosons display a quadratic
dispersion [33]. Recent studies do indicate that strongly attractive bosons (super Tonks regime) can define a
Luttinger liquid, but such a state is a specific excited state [34, 35]. Second, our set up is of mesoscopic size.
The persistent current for repulsive bosons on a mesoscopic-size ring was studied recently [21]. Particularly,
the impurity results to be suppressed by interaction, but to a finite value, with the persistent current
displaying a remarkable non-monotonous dependence on interaction.

We note that at intermediate interactions the mesoscopic regimes of attractive bosons in presence of a
localized impurity are not known.

In this paper, we harness the features of an attracting many-boson quantum fluid to define the
atomtronic device based on entangled solitonic currents: the quantum solitons atomtronic quantum
interference device (S-AQUID). In our system, the quantum fluid flows in a mesoscopic ring-shaped
potential and interrupted by a single weak link. We will show that our solitonic current has peculiar
transmission properties. While we find that the interaction can pin the quantum soliton, the actual
interplay between transmission and interaction substantially departs from Luttinger liquid behavior.
The interplay of such parameters is important for the generation of specific states of entangled solitonic
currents. In certain regimes, we demonstrate that the system is characterized by a two-level system (TLS)
dynamics. For the analysis of such states, we devise a specific quench protocol defining the atomtronic
counterpart of the Rabi-type measurement protocol of the persistent current. Finally, we show that the
read-out of the system can be carried out by a specific analysis of the atomic cloud after the free expansion
of the system.

2. Model system

We consider a system of N interacting bosons loaded into a 1D ring-shaped optical lattice of Ns sites. The
discrete rotational symmetry of the lattice ring is broken by the presence of a localized potential on one
lattice site, which gives rise to a weak link. The ring is pierced by an artificial magnetic flux Ω. In the
tight-binding approximation, this system is described by the 1D BH Hamiltonian

Ĥ(Ω) =
Ns∑

j=1

[
U

2
nj

(
nj−1

)
−J

(
e−i Ω̃a†j aj+1+ h.c.

)
+λjnj

]
, (1)

where aj and a†j are site j annihilation and creation Bose operators and nj=a†j aj. The parameters J and U in
(1) are respectively the hopping amplitude and the strength of the on-site interaction. Here we consider
U < 0 to describe the particles attraction. The presence of the flux Ω is taken into account through the

Peierls substitution: J → J e−iΩ̃ with Ω̃
.
= 2πΩ/(Ω0Ns), with Ω0 the single-particle flux quantum. The

potential barrier considered here is localized on a single site j0, i.e. λj = λδj,j0 with δi,j being the
Kronecker delta.

In the absence of the barrier λ = 0, the ground state of the system (1) is a bound state of solitonic
nature with approximately quadratic dispersion, becoming flat as |U|N increases. For any finite negative
interaction, extended (or scattering) states are separated from the bound state by a finite energy gap
increasing with |U| (see detailed definitions and characteristics of these states in [26]). For sufficiently large
|U|, any bound state is separated from (the band of) extended states by a finite energy gap. The latter
feature is a genuine lattice effect [26, 27]. The ground state energies for different Ω displays specific
degeneracies with a periodicity, fixed by an elementary flux quantum Ωp, that depends on the number of
particles and on the interaction [28]. This feature provides a generalization of the Byers–Yang pairing states
[36] and the Leggett theorem [37].

In the dilute limit of small filling fractions N/Ns � 1, the BHM is equivalent to the Lieb–Liniger model
of bosons with a delta localized barrier. The Lieb Liniger model (with no barrier) is exactly solvable by
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Figure 1. The persistent current. Current as a function of Ω/Ω0 for different values of the barrier strength. (a) Currents show
the smoothening of the sawtooth behavior at U = 0 as the barrier, λ, increases. (b) and (c) shows the transition from the single
periodicity of the current to an N-times periodicity. Strong barriers can remove the sawtooth spikes of the current. (d) Full
N-times increase of the periodicity of the current. Strong barriers smoothen the current, but the periodicity is preserved. The
results are obtained with exact diagonalization with N = 4 and Ns = 11.

Bethe ansatz. In particular, the dispersion relation for the low lying excitations is quadratic in the wave
vector: ω = �k2/mN and becomes flat in the limit of a large number of particles [33]. The character of the
field theory that can describe the low-energy excitations on top of the ground state remains unclear
[34, 35]. The super-Tonks regime was proved to be obtained as a highly excited state of the Lieb–Liniger
model [35]; excitations on top of such a state can be described with a Luttinger liquid theory. Similarly to
the BHM (1), the ground state of the Lieb–Liniger model is characterized by 1/N-fractionalization of Ω0.

In this paper, we monitor the ground state persistent current I(Ω) = −∂E0/∂Ω where E0 is the ground
state energy. For the model (1), I(Ω) is given by

I(Ω) = −iJ
∑

j

〈e−i Ω̃a†j aj+1 − e+iΩ̃ a†j+1aj〉0, (2)

where 〈•〉0 is the groundstate expectation value. For a quantum system in a ring, the angular momentum is
quantized (see [7, 38] for recent experiments). Accordingly, I(Ω) displays a characteristic sawtooth behavior,
with a periodicity that Leggett proved to be fixed by the elementary flux quantum of the system [36, 37, 39].
For repelling bosons the latter quantity is Ω0; for attractive interactions instead the elementary flux
quantum can get fractional values Ω0/N—see figure 1. In other words, the ground state of attracting
bosons will present current states at fractional values of Ω0, i.e. states with non-vanishing persistent current.

3. Interplay between barrier and interaction

Below, we study the configuration of energy levels and persistent currents as function of interaction and
barrier strength. In the absence of impurity, the ground state results to be degenerate at specific values of Ω.
For λ �= 0, the degeneracies are lifted—see figure 3(b) with hybridized ground and low lying scattering
states. For large λ/|U|, the state is characterized by a substantial overlap with the scattering states and
therefore, the physics is expected to be governed by latter ones. On the other hand, for small λ/|U|, the state
is nearly localized with a small weight of the scattering states. In this regime, the solitonic nature of the
matter-wave plays a significant role. The persistent current is affected dramatically by the interplay
described above—figure 1. For small λ/|U|, the weak link is not able to break the bound state and the
resulting solitonic nature of the current suppresses the transmission through the barrier; accordingly, the
persistent current displays oscillations with a reduced period reflecting the fractionalization of Ω0. For
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Figure 2. Universal behavior of the persistent current. (a) Maximum of persistent current as a function of the interactions U.
Inset shows max{I} versus the barrier strength λ. (b) Maximum of the persistent current as a function of rescaled interactions for
the different barrier strengths λ: max{I} = g

(
(U − Uc) × λβ

)
. (c) Collapse of the behavior of the maximum of the persistent

current: (max{I} − Ic) × λγ = g
(

(U − Uc) × λβ
)

. Parameter values are: β = −0.4, Uc = 0.633, γ = −0.35 and Ic = 0.9025.
Particle number and number of sites are as in figure 1.

larger λ/|U|, instead, the matter wave can be split in transmitted/reflected amplitudes and therefore the
current is not fractionalized, displaying the same periodicity Ω0 as the repulsive bosons cases.

We analyse the interplay between the barrier and interactions by monitoring the persistent current
amplitude i.e. max{I(Ω)}—see figure 2. We identify the emergence of two regimes, separated by the
transition of the current from a single sawtooth to the N-times periodicity. At increasing interactions, the
maximum of the current decreases and smaller sawtooths start to appear in the interval Ω/Ω0 = [0, 1/2]. In
this regime the current is found to be a function of λ/|U|, with a clear data collapse shown in figure 2(c),
indicating a non-trivial interplay between interaction and barrier strengths [40]. We note that for
N = {5, 6} the collapse occurs with unaltered exponents β and γ; while Ic and Uc display a weak
N-dependence [see supplemental (https://stacks.iop.org/QST/7/015015/mmedia)]. On the other hand, for
large enough interactions an N-times periodicity is reached and the persistent current amplitude depends
on U and λ separately, marking the break-down of the collapse. Finally, we also observe that at large
barriers the energy band dispersion flattens and the gaps between energy bands increase, yielding again a
breakdown of the collapse.

4. Rabi oscillations

To probe entangled current states, we adopt a specific quench protocol providing the atomtronic
counterpart of Rabi spectroscopy [41]: we start the system in a state with zero persistent current
|ψ0〉

.
= |ψ(Ωi = 0)〉 and perform a quench on the effective magnetic flux to the final value Ωf :

|ψ(t)〉 = exp[−i�Ĥ(Ωf)t]|ψ0 )〉. This way, the |ψ(t)〉-expectation value of the current I(Ωf ) will display
characteristic oscillations in time, corresponding to superposition of different current states (see figures 3(c)
and (d)).

In figure 3(a), we systematically study how the projection and the amplitude of each eigenstate after the
quench depends on interaction and barrier strength. Note that, although the projection between the initial
state and the ground state plus first excited states of the post-quenched system is always large, only for a
specific parameter regime ideal TLS dynamics arises, with equal projection into each states (solid lines in
figure 3(a) with values (0.5, 0.5) indicating a balanced population of the two states after quenching). Our
TLS is of the form 1

2

(
|GS〉+ eiθ|E1〉

)
, θ being an initial relative phase, describing coupled solitonic

currents. The quench induces Rabi oscillations in the current with frequency pattern reflecting the actual
many-body spectrum of the system. While oscillations with multiple frequencies occur for generic values of
the parameters, figure 3 (green/blue-triangles), we observe that suitable combinations of U, λ and Ω lead to
Rabi oscillations with a single frequency corresponding to transitions between just two energy levels: the

4
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Figure 3. Rabi measurement protocol of the S-AQUID. (a) Projection, |〈ψ0|GS〉|2 + |〈ψ0|E1〉|2, after quenching Ω/Ω0 from 0 to
0.125 with |GS〉 being the ground state and |E1〉 the first excited states. The solid lines indicate ‘equipotential lines’ of constant
|〈ψ0|GS〉|2 (black-solid lines) and |〈ψ0|E1〉|2 (green-solid lines). The actual constant values are indicated in the white boxes, with
red text corresponding to green curves and black text to black lines. (b) shows the energy spectrum of the model equation (1) as a
function of flux without barrier (dashed lines) and for barrier λ = 0.01. Oscillations of the persistent current I, panels (c) and
(e), in the laboratory frame and width of the momentum distribution σ, panels (d) and (f), as a function of time. The two states
are obtained by quenching the value of the flux to the two corresponding crossing points, marked in the panel (b) in red and
yellow respectively. In (c) and (d) the good TLS is created by quenching from Ωi/Ω0 = 0 to Ωf/Ω0 = 0.125 while the bad one is
created by quenching to Ωf/Ω0 = 0.175. In (e) and (f) the good TLS is created by quenching from Ωi/Ω0 = 0 to Ωf/Ω0 = 0.25
while the bad one is created quenching to Ωf/Ω0 = 0.3. Interaction and barrier are fixed to λ = 0.01 and U = −1.5. Number of
particles and lattices sites are as in figures 1 and 2. All numerical results are obtained through exact diagonalization (see
supplemental).

TLS dynamics. We note that, because of the specific features of the attractive boson interaction, the protocol
allows us creating TLS at fractional values of Ω0Ω = Ω0/2N—figure 3 (red circles); this feature should be
contrasted with the standard AQUID (repulsive bosons) in which the degeneracy points occur at
odd-integer multiples of Ω0/2. Therefore, following the same protocol in the regime where the S-AQUID
presents N-times periodicity of the current, our protocol can entangle current states with distant angular
momenta. That is, by quenching from the ground state at Ωi = 0 to, for instance, a rotation of
Ωf = 2 × Ω0/2N we can create a TLS of the form 1

2

(
|E1〉+ eiθ|E2〉

)
—see figures 3(e) and (f).

5. Readout

Despite the peculiar coherence properties of the solitonic ground state, the momentum distribution can
characterize the pattern of currents flowing in the system. Specifically, non vanishing and quantized
currents are detected by the width σ of momentum distribution [28]. Here we demonstrate that the time
evolution of σ after the quench can be used to monitor the quantum dynamics of the system. Specifically,
the width σ(t) of the momentum distribution is

σ(t) =

√∫
dk k2 n(k, t);

where n(k, t) =
∑

i,j eik·(Ri−Rj) Ci,j(t), with Ci,j(t) = 〈ψ(t)|a†i aj|ψ(t)〉. The results are shown in figures 3(d)
and (f). We note that, while in the TLS regime σ(t) displays Rabi oscillations with the current periodicity,
multiple frequencies emerge in its dynamics for the physical regimes in which many states contribute in the
current superposition.

6. Conclusions

We have studied an electrically neutral quantum fluid of attracting bosons confined in a ring-shape
potential of mesoscopic size, interrupted by a localized tunnel barrier and pierced by an effective magnetic
field. We point out that the peculiar interplay between number of particles and interaction characterizing
our system [26, 33], makes our approach (small N and finite U) especially relevant.
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Because of the quantum solitonic nature of the ground state and its mesoscopic size the system defines a
quantum fluid with unique features. Indeed, the transmission through the barrier is dramatically affected
by the interaction (see figure 1). The physics departs from the Luttinger liquid paradigm for which an
arbitrary small impurity should be able to pin the soliton. Indeed, the specific pinning features of the
quantum soliton imply that the persistent current is characterized by an interplay between the impurity
strength and interaction that is found to display universal features only in specific regimes (see figure 2).

Our system provides a matter-wave circuit that is the solitonic counterpart of the atomic SQUID: the
S-AQUID. Due to the peculiar coherence of the quantum fluid hardware, the S-AQUID is characterized by
specific physical properties, implying, in turn, unique features. In particular, we point out that, in contrast
with the standard implementations exploiting repulsive bosons, the TLS dynamics emerge at fractional
values of the elementary flux quantum Ω0. In analogy with SQUIDs, such TLS, macroscopic superposition
of quantum solitons, can be relevant for quantum sensing [28]. To address the quantum-coherent
dynamics, we devised the atomtronic counterpart of the Rabi measurement protocol. We demonstrated that
the quench dynamics of the system can be read-out by a specific analysis of the momentum
distribution—figure 3. Most of our results are within the current know-how in cold atoms quantum
technology, and are particularly relevant on ring geometries [42–45].

We point out that in the lab frame, figure 1 produces a staircase dependence of the current, with each
plateau corresponding to a quantized value, on the scale Ωp = Ω0/N (see for instance [28]). Being then the
effective magnetic field related to a specific current quantum number, our system can perform an absolute
measurement (after calibration), with resolution fixed by the fractional magnetic flux. This should be
contrasted with the standard SQUIDs or single electron transistors protocols performing differential
measurements at fixed quantized value of the current [46, 47]. By realizing the magnetic field by a rotation
[6], the S-AQUIDs open the way to a rotation sensing device with enhanced (1/N) sensitivity, approaching
the Heisenberg limit in atomic interferometry [28].
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