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Generalization by learning is an essential cognitive competency for hu-
mans. For example, we can manipulate even unfamiliar objects and can
generate mental images before enacting a preplan. How is this possible?
Our study investigated this problem by revisiting our previous study
(Jung, Matsumoto, & Tani, 2019), which examined the problem of vision-
based, goal-directed planning by robots performing a task of block
stacking. By extending the previous study, our work introduces a large
network comprising dynamically interacting submodules, including vi-
sual working memory (VWMs), a visual attention module, and an ex-
ecutive network. The executive network predicts motor signals, visual
images, and various controls for attention, as well as masking of visual
information. The most significant difference from the previous study is
that our current model contains an additional VWM. The entire network
is trained by using predictive coding and an optimal visuomotor plan to
achieve a given goal state is inferred using active inference. Results indi-
cate that our current model performs significantly better than that used in
Jung et al. (2019), especially when manipulating blocks with unlearned
colors and textures. Simulation results revealed that the observed gener-
alization was achieved because content-agnostic information processing
developed through synergistic interaction between the second VWM and
other modules during the course of learning, in which memorizing im-
age contents and transforming them are dissociated. This letter verifies
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this claim by conducting both qualitative and quantitative analysis of
simulation results.

1 Introduction

How can artificial agents, as well as humans, acquire knowledge and skills
necessary to generate goal-directed action using complex sensory streams
such as vision, with generalization? Specifically, how can they deal with
unlearned situations as humans do? If complex, goal-directed action gen-
eration requires adequate communication and arbitration among different
higher cognitive processes, such as plan generation, attention, and working
memory, how can they develop autonomously? This study examines these
questions by conducting a synthetic modeling study using a robotic exper-
imental platform. First, we consider what sorts of higher cognitive compe-
tencies in robots would be crucial for reconstruction of human cognitive
behaviors.

1.1 Higher Cognitive Competencies. One of the most essential higher
cognitive competencies for humans is the ability to learn to develop in-
ternal models of the world through iterative interactions with it (Wolpert,
Miall, & Kawato, 1998). Learning of the internal model must involve ex-
tracting latent structure from partially observed sensory streams that could
involve uncertainty and require probabilistic representations, as required
in many real-world situations. Acquired internal models can be used for
various types of cognitive processes, such as imaging possible future out-
comes (Jeannerod, 1994) or rehearsing sensory-motor events experienced
in the past (Epstein, 1980). In addition, internal models can be used for var-
ious inferences, such as the current state, from sensory inputs or optimal
action plans to achieve desired goals by incorporating the noted mental pro-
cesses (Friston, 2013). Related to this, it has been suggested that humans are
capable of extracting causal rules from repeated observations of physical
phenomena. Developmental psychologists have shown that human infants
acquire basic physical causal rules in early development (Reddy, 2008). For
example, they learn that when they act on an object, the appearance of the
object could change or that it will remain the same if untouched, an attribute
known as object permanency (Baillargeon, Spelke, & Wasserman, 1985).

Another essential higher cognitive competency is compositionality, by
which the whole can be composed or decomposed into reusable parts
(Evans, 1982). Although the idea of compositionality comes originally from
language, this also accounts for other modalities such as those involving
vision or proprioception. Visual systems in humans and other animals de-
velop compositional representation for complex visual objects in hierar-
chically organized visual pathways (Van Essen & Maunsell, 1983; Tanaka,
1996). Likewise, it has been widely assumed that various complex actions
can be flexibly generated by adequate recomposition with a set of behavior
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Development of Content-Agnostic Information Processing in a Robot 2355

primitives (Arbib, 1981) using hierarchical information processing (Rosen-
baum, 1991; Fuster, 2004). Here, it is crucial to consider that the objective of
learning is not just to remember exact experiences of the past in the manner
of a video recorder, but to extract essential compositional structures along
with hierarchical organization. This is the way to gain generalization in
representing skills and knowledge acquired through limited sensory-motor
experience. Various related computational models have been proposed for
vision (Fukushima & Miyake, 1982; Weng, Ahuja, & Huang, 1993) and ac-
tion (Kuniyoshi, Inaba, & Inoue, 1994; Yamashita & Jun, 2008).

The competency for attention and effective use of working memory is
also crucial. Humans can attend to an important part of bulk information
flow and can segment it from the background using top-down prior knowl-
edge (Posner, 1995). Then, segmented information is often saved in working
memory for further manipulation using other information (Luck & Vogel,
1997; Downing, 2000). The information to be attended and manipulated us-
ing working memory may be abstracted at a higher level, such as in the pre-
frontal cortex (Fuster, 2015; Goldman-Rakic, 1995) as well as lower sensory
signals, such as from vision and audition (Harrison & Tong, 2009; Nyberg,
Habib, McIntosh, & Tulving, 2000; Kumar et al., 2016).

Furthermore, humans have cognitive competency by which they can
generalize experiences in familiar situations to those in unfamiliar situa-
tions (Saffran, Aslin, & Newport, 1996; McClelland & Plaut, 1999). As an
example, humans can physically and mentally manipulate not only familiar
objects but also those having novel features, such as shape, size, and color.
We can grasp and lift a novel mug and can also image this action without
much difficulty. Surprisingly, humans can achieve this sort of generalization
with only limited experience. How is this possible? This letter focuses espe-
cially on this question, as we will detail. Although there are undoubtedly
other higher cognitive competencies essential to human cognition, such as
social cognitive capability, this study focuses on those mentioned above.

1.2 Development of Cognitive Competencies via Synergy. Higher
cognitive competencies required for different aspects of human-like cog-
nitive processes raise interesting questions. How do they develop, and
how can each of them be adequately coordinated with others to maximize
performance of the whole in solving various cognitive tasks? It would be
reasonable to presume that a single neural network cannot produce such
a coordinated assembly of cognitive competencies, but it could conceiv-
ably develop in a dynamic network allowing synergistic interactions among
interconnected submodules. Furthermore, the function of individual sub-
module networks may not be programmed by evolution, but instead may
be self-organized through synaptic plasticity in the course of learning to
interact with other submodules, as neurodevelopmental studies (Sur &
Rubenstein, 2005; Rakic, 2009; Li, Liu, & Tsien, 2016) suggest.

There have been numerous studies to build an integrative brain
model consisting of mutually interacting submodule networks. Since the

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2356 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

mid-1990s, O’Reilly and colleagues (O’Reilly, 2006; O’Reilly & Frank, 2006)
developed the so-called Leabra cognitive architecture to simulate an
integrative brain model using a connectionist approach. The integrative
brain model consists of sensory and motor inputs and outputs, the pre-
frontal cortex (PFC), the posterior cortex, the basal ganglia (BG), and the
thalamus. The model explains well a mechanism for higher cognitive func-
tion assumed in the PFC in terms of dynamic gating of working memory in
the PFC by the basal ganglia. However, their models involve neither pre-
dictive internal models nor temporal processes.

For more than two decades, Edelman and colleagues (Edelman, 1993)
have developed integrative brain models based on the theory of neural
Darwinism using a series of DARWIN robots. This theory postulates that
variation and selection within neural populations drive development and
function of the brain. The latest version, DARWIN X (Krichmar, Nitz, Gally,
& Edelman, 2005), was developed to investigate the problem of spatial
memory development in rodents. The simulated neural network model
consisted of 90,000 neural units in 50 brain areas, including a visual system,
a head direction system, a hippocampal formation, a basal forebrain, a value
or reward system, and an action selection system. The navigation learn-
ing experiment using the model showed a nontrivial result that placed cell-
like structures developed in the CA1 region in the model network just by
providing biologically plausible connectivity with other regions. This em-
bodied integrative brain model study postulates that brain function in each
brain region can develop through postnatal sensory-motor experiences by
utilizing anatomical connectivity between brain regions. This model, how-
ever, does not deal with human-level higher cognitive competency, such as
goal-directed planning using learned internal models.

Eliasmith and colleagues (Eliasmith et al., 2012; Eliasmith, 2013) devel-
oped the so-called neural engineering framework, which can generate neu-
ral systems consisting of millions of spiking neurons allocated to more than
20 different brain regions, including both cortical and subcortical areas. The
neural system demonstrates a set of impressive higher cognitive tasks, in-
cluding serial working memory tasks, questions and answers, and fluid
reasoning between inputs/outputs relation. However, the mechanism is de-
vised in a purely engineering way, using a sort of neural compiler with a
powerful parameter-setting mechanism for determining optimal synaptic
weights. Therefore, it would be difficult for the model to acquire organiz-
ing principles to develop higher cognitive mechanisms based on learning
of sensory-motor experience.

1.3 Our Prior Study and New Trials in the Current Study. Although
these other studies have many interesting features, they cannot provide
exact answers for our current question: How can cognitive competencies
required for goal-directed planning using visual attention and visual
working memory develop through dynamic interactions among a set of
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Development of Content-Agnostic Information Processing in a Robot 2357

different cognitive processes? Here, visual working memory has been
known in neuroscience studies as active maintenance of visual information
to serve the needs of ongoing cognitive tasks (Vogel & Machizawa, 2004;
Fuster & Jervey, 1982). Our research group investigated this question in a
previous study (Jung, Matsumoto, & Tani, 2019) and in this study. The pre-
vious study investigated (1) how an arm robot with vision can learn a pre-
dictive model of the world by acting, using visual attention and working
memory effectively, and (2) how goal-directed plans can be generated ro-
bustly using the acquired predictive model with generalization. This study
extended the previous one to address the question of how the robot can gen-
eralize in learning to deal with unlearned situations, such as manipulating
unlearned objects. Let us consider previous findings first.

In the previous study (Jung et al., 2019), a network consisting of sub-
module neural networks was assumed. More specifically, the whole net-
work consisted of a visual working memory (VWM), a visual attention
module, and an RNN module for predicting/generating various types of
dynamically changing variables. Those variables include parameters for
executive control, such as for visual attention control as well as visual
masking control, and parameters related to visuomotor pattern, including
motor outputs, peripheral visual images, and focused visual images in an
attended area. Here, masking control of visual images means that each pixel
value in a certain region is filtered with a specific parameter. Each modu-
lar network is designed to be differentiable, and macroscopic connectivities
among these modules are given.

Whole-network dynamics were modeled by following a framework of
predictive coding (Mesulam, 1998; Rao & Ballard, 1999) and active infer-
ence (Friston, Kilner, & Harrison, 2006) based on free-energy-minimization
(FEP; Friston, 2005). Note that in predictive coding and active inference,
attention is usually cast in terms of negentropy or precision of various
likelihood probability distributions. Here, this is implemented in terms
of selection or masking by effectively assigning zero precision to certain
(nonattended) sources of sensory input.

This approach was taken because the FEP is considered one of the most
influential theories that accounts for the underlying principle of cognitive
brains using a generic Bayesian formula. Predictive coding accounts for
perception of sensation in which perception is regarded as having been
achieved when the error between sensory inputs and those regenerated by
the generative model is minimized by inferring an optimal value of the la-
tent state. On the other hand, active inference accounts for action genera-
tion wherein action on the environment minimizes the error between the
desired sensation and the actual sensation. In Jung et al. (2019) learning is
conducted by following a predictive coding framework. More specifically,
the whole network is trained to predict or reconstruct exemplar visuomotor
sequences to minimize the reconstruction error by modifying connectivity
weights of the whole network. This learning process also involves inferring
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optimal values of latent states of the whole network, which represent in-
tention or belief for generating the exemplar sequences. Consequently, these
latent variables also determine the temporal development of control pa-
rameters for visual attention, as well as visual masking. After learning con-
verged, the active inference framework was used to generate goal-directed
action plans to achieve given goal states. Optimal sequences of motor and
control parameters for visual attention and visual masking are obtained by
inferring latent variables of the whole network so as to minimize free en-
ergy while the connectivity weights are fixed.

In the current experiment, blocks of different colors were initially placed
at random positions in the workspace, and an arm robot with a video
camera was required to stack those blocks in an arbitrary configuration
specified by the visual goal. Test trials for goal-directed planning were con-
ducted with all connectivity weights of the network fixed after the robot
was trained in various stacking tasks using the same blocks during tutoring
by the experimenters. Separation of the training phase and the test phase
was introduced for simplicity. Experimental results showed that the robot
could achieve goal-directed action planning tasks successfully, showing a
good generalization for novel situations. A particularly interesting finding
was that whenever the robot grasped a block to move it, its visual atten-
tion went to the block autonomously, while the static background image
behind the block was saved in the VWM. This strategy emerged as a result
of learning because it is beneficial for the network to allocate cognitive re-
sources mainly for prediction of the visually focused area, that is, an image
of the block to be moved while the visual image of the remainder is saved in
the VWM. This implies that the network may acquire a concept analogous
to object permanency (Baillargeon et al., 1985) during the course of learning
the exemplar.

However, this network cannot generalize well for certain situations, such
as when novel blocks are introduced. More specifically, when blocks with
unfamiliar colors are introduced, visuomotor patterns of transferring such
blocks from their grasped locations to a preselected location could not
be generated in goal-directed planning, even though other features of the
blocks, such as size and shape, were the same as those of the learned ones.
Why did this happen?

This is because two mechanisms, learning to predict possible transfor-
mation of visual images associated with hand movement and memorizing
contents of the transformation, are not dissociated. Therefore, the network
is capable of imaging the visual transformation only for prior learned
objects. In this situation, we added another VWM to support predictive
generation of transformed images of given objects corresponding to their
manipulation. We consider a new VWM wherein stored pixel patterns can
be transformed for arbitrary rotation and translation by applying param-
eterized affine transformations. The parameter for transformation is pro-
vided from the predictive RNN module at every time step. By using such
a VWM with the affine transformation mechanism, in order to generate
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Development of Content-Agnostic Information Processing in a Robot 2359

desired transformations of visual images, the RNN module is just required
to learn how images in the VWM can be manipulated, that is, it must learn
to predict where the content at each pixel position in the current time step is
mapped in the next time step, depending on the parameters provided to the
affine transformation, but regardless of the content saved at each pixel in
the VWM. Dissociation of learning about parameterized image transforma-
tions and memorizing image content should enhance generalization in im-
age transformations, especially in cases of dealing with unlearned images,
because the image transformations can be performed in a content-agnostic
way, that is, independent of image and content. Some cognitive neuro-
science studies (Wilson, Scalaidhe, & Goldman-Rakic, 1993; Ungerleider,
Courtney, & Haxby, 1998) have suggested that humans may use multiple
VWMs separately, such as for preserving object images and for spatial or
scenery images. Furthermore, from their neurophysiological experiments,
Pailian, Störmer, and Alvarez (2017) suggest that storage and manipulation
are separable cognitive and neural mechanisms. These empirical studies
may support the aforementioned modeling ideas at least partially.

Our study hypothesizes that addition of another VWM would improve
generalization capability significantly by developing adequate information
flows between the newly added VWM and other module networks through
learning. Particularly, we speculated that this newly added VWM might
contribute to dynamic transformation of visual images of blocks, including
novel ones, whereas the original VWM would store the static background
image in the same way as in the original study. The current study evalu-
ates this hypothesis by comparing performance in goal-directed action plan
generation between cases with and without the second VWM and also by
comparing dynamic mechanisms developed in these two cases.

The remainder of the letter is structured as follows. Section 2 intro-
duces related studies and describes what novelties the current study inher-
its from them. Thereafter, we present an overview and introduce details of
our model in section 3. Section 4 briefly describes data set acquisition, fol-
lowed by a presentation of experiments and their results. In section 5, we
provide a summary of this study and discuss limitations of the model, as
well as possible future studies.

2 Related Work

Our proposed model uses predictive coding and active inference based on
the free-energy-minimization principle that incorporate a set of cognitive
mechanisms, including goal-directed planning, visual working memory,
and visual attention. We explain these ideas by referring to related studies.

2.1 Free Energy Minimization. In the following, we appeal to many
standard optimization procedures, ranging from backpropagation of
errors, through long short-term memory to variational RNNs. Although
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these schemes may appear bespoke and unconnected, they can all be un-
derstood as minimizing variational free energy. Optimization can be cast as
a gradient descent on variational free energy (Isomura, Shimazaki, & Fris-
ton, 2020). Crucially, free energy gradients can, under simplifying (usually
gaussian) assumptions be cast as prediction errors. This means that mini-
mizing prediction errors destroys free energy gradients until a minimum is
found. This general theme emerges in several forms, ranging from predic-
tive coding formulations of prediction error minimization, to PID schemes
for minimizing proprioceptive error (Baltieri & Buckley, 2017), to backprop-
agation of errors in machine learning (Bengio & Fischer, 2015).

Negative free energy is known as an evidence lower bound in machine
learning (Bishop, 2006). This means that minimising free energy is equiv-
alent to maximising the evidence or marginal likelihood for a generative
model of sensory data. The form of this model is our key focus here. In
particular, its factorial structure produces a set of modules, each concerned
with a particular domain of inference and learning. This characterisation
corresponds to functional specialisation in the human brain. We leverage
this by talking about working memory, attention, and other cognitive pro-
cesses associated with sentient behavior in humans.

2.1.1 Predictive Coding. Predictive coding presumes that perception can
be achieved by minimizing possible discrepancies between top-down pre-
diction and bottom-up sensory reality (Mesulam, 1998; Rao & Ballard,
1999). Predictive coding allows inference of hidden causes of sensation in
the environment by comparison of sensory expectation and observed re-
ality. Predictive coding rests on a hierarchical model in which prediction
errors are propagated bottom-up through the hierarchy to optimize high-
level representations that provide top-down predictions to guide succes-
sive predictions. It is assumed that the best explanation for sensory input is
found when the top-down projection can explain as much of the bottom-up
signal (at each hierarchical level) as possible (Brown, Friston, & Bestmann,
2011).

2.1.2 Free Energy Principle. Based on the concept of Helmholtz and the
view of the brain as a Bayesian inference machine, the free energy principle
(FEP; Friston, 2005) introduces the concept of free energy as a tractable mea-
sure of the discrepancy between observed features of the world and repre-
sentations of those features captured by generative models. More precisely,
free energy exceeds the model’s negative log-evidence or surprise in sensory
data, considering a model of how they were generated. The evidence free
energy F for observed sensation can be written with decomposition into
two terms as

F = − Eqϕ (z)[lnpθ (X|z)]︸ ︷︷ ︸
a) Accuracy

+ DKL[qϕ(z)||p(z)]︸ ︷︷ ︸
b) Complexity

, (2.1)
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Development of Content-Agnostic Information Processing in a Robot 2361

with hidden cause z, observation X, and model parameters ϕ and θ. Here,
it is essential to note that p(z)/qϕ(z) is an estimated prior/posterior proba-
bility distribution of the hidden cause z before/after the observation of X.
The accuracy term includes a likelihood that relates sensory observations
X to hidden causes Z and ensures that observations X have the same prob-
ability distribution as reconstructed by the approximate posterior qϕ(z) of
latent variable z. The complexity term facilitates regularization of the model
by minimization of the divergence between the approximate posterior qϕ(z)
and prior p(z). The evidence-free energy F can be minimized with respect
to the posterior distribution qϕ(z) as

qϕ(z) = argmin F . (2.2)

Friston (2005) argues that problems of perceptual inference, such as infer-
ring the causes of sensory input, and perceptual learning, or learning a map-
ping of the cause to sensory inputs, can be resolved using exactly the same
principle. Specifically, both inference and learning rest on minimizing the
model’s free energy.

However, predictive coding accounts only for perception, not for action
generation. In this regard, active inference developed recently by Friston
and colleagues (Friston et al., 2006; Friston, 2010) proposes that action gen-
eration is a way to minimize prediction error by changing sensory inputs
via adequately acting on the environment.

2.1.3 Active Inference. The expected free energyG is defined for the future
as it considers possible effects of actions a applied to the environment. It can
be represented with decomposition into two terms as

G = − Eqϕ (z)[lnpθ (X(a)|z)]︸ ︷︷ ︸
a) Accuracy in future

+ DKL[qϕ(z)||p(z)]︸ ︷︷ ︸
b) Complexity

, (2.3)

where the first term represents the likelihood of experiencing a preferred
sensation that is given extrinsically wherein sensation is a function of ac-
tion a. The second term represents the same complexity term as the one in
evidence free energy in equation 2.1. In active inference, action a is opti-
mized such that the expected free energy can be minimized as:

a = argmin G. (2.4)

Finally, by minimizing both the evidence of free energy for the past ac-
cording to equation 2.2 and the expected free energy for the future accord-
ing to equation 2.4, perception and action generation can be carried out
simultaneously by closing the loop between action and sensation (Baltieri &
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Figure 1: Illustration of closing action and perception by integrating predictive
coding implemented in a hierarchical network and active inference in a PID
controller demonstrated in Tani (2003), Murata et al. (2017), and Ohata and Tani
(2020).

Buckley, 2017). For practical applications, like control of a robot, optimiza-
tion of action at each time step to minimize the expected free energy by
active inference can be facilitated by a lower-level controller, such as a PID
controller. In this case, the PID controller receives the preferred propriocep-
tion of the next time step predicted by the network model, which is set as a
target joint configuration of the robot at the next time step (Tani, 2003; Mu-
rata et al., 2017; Ohata & Tani, 2020). The PID controller computes necessary
motor torques to minimize the error between the preferred sensation (i.e.,
the target joint configuration) and the actual one. This process is considered
equivalent to equation 2.4. By this means, active inference can account for
reflex arcs, which can be mechanized by a PID controller (Baltieri & Buckley,
2019).

Figure 1 outlines this concept of closing the loop of action generation
and perception through environments by showing the relationship between
predictive coding implemented by a hierarchical network model and active
inference by a PID controller (Tani, 2003; Murata et al., 2017; Ohata & Tani,
2020). The hierarchical network predicts both exteroception and proprio-
ception in the next time step, based on the current latent state. The PID
controller receives the predicted proprioception as a target joint configura-
tion and generates the corresponding movement of the robot. Accordingly,
the environmental state changes, and the hierarchical network senses the re-
sultant exteroception and proprioception. Errors between the predicted and
the observed sensation in both channels propagate from the lower level to
the higher level, by which latent states in the network are updated toward
minimizing the error.
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Although the this process of action generation and perception is based
on only one-step-ahead prediction, the scheme can be extended to goal-
directed planning to achieve a preferred state several steps ahead, as de-
scribed next.

2.2 Goal-Directed Planning Using Active Inference. Early work on
motor planning (Wolpert & Miall, 1996; Harris & Wolpert, 1998) proposes
inference of optimal motor trajectories based on specific cost functions that
include minimization of the discrepancy to a desired goal state added with
regulation terms such as jerk minimization, position variance minimization
against biological noise, and motor torque minimization, using acquired
forward models. Such models have been developed as inspired by neuro-
biological evidence (Ito, 1970; Miall, Weir, Wolpert, & Stein, 1993; Wolpert
et al., 1998). However, combinatorial growth of complexity of the world
poses challenges to scaling such models by employing hierarchical organi-
zation and multimodal sensory association with effective development of
latent state trajectories (Finn & Levine, 2017; Nair et al., 2018; Jung et al.,
2019).

Jung et al. (2019) recently developed a goal-directed planning scheme
analogous to the framework of predictive coding and active inference. In
their model, the hidden state of a recurrent neural network (RNN) at the
initial step plays the role of the latent state that is assumed to have a gaus-
sian distribution with adaptive mean and standard deviation. Since this
latent state, in terms of the initial state of the RNN, determines the suc-
ceeding visuo-proprioceptive sequence of all future time steps due to the
initial sensitivity characteristics of an RNN as a deterministic dynamic sys-
tem, this latent state can be interpreted as an intention or plan of the model
to perform future actions.

For a given visuo-proprioceptive sequence, a posterior of the latent state
to reconstruct the sequence can be inferred under the constraint of its
prior as unit gaussian. This is sometimes known as planning as inference
(Kaplan & Friston, 2018). This idea of the posterior inference of the latent
state using the initial hidden state of the RNN can be used in both learn-
ing and planning processes, as detailed below. It has been shown that this
sort of probabilistic representation of the latent state is beneficial for gain-
ing both generalization and robustness in learning, as well as goal-directed
planning (Jung et al., 2019). The following describes how training, plan-
ning, and action execution can be elaborated by following the framework of
predictive coding and active inference mentioned previously in Jung et al.
(2019).

In this study, training of the network by optimizing the connectivity
weights is conducted first. More specifically, during training, the posterior
of the latent state of the network qϕ(z) for each training sequence, as well
as connectivity weights θ, are inferred to minimize the evidence-free en-
ergy shown in equation 2.1. After training, while connectivity weights of the
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Figure 2: An illustration of goal-directed planning in Jung et al. (2019). Se-
quences of proprioception p̃, vision ṽ, and hidden states s that most likely attain
a desired goal g are generated from the current posterior estimate (μg

0 and σ
g
0 )

of the initial state sg
0. Backpropagation of the error between the desired visual

outcomes v̂ and the generated one allows inference of an optimal posterior dis-
tribution of the latent state sg

0.

network are kept unchanged, tests to generate action plans to achieve given
goals are conducted. Goals are specified in terms of visual pixel patterns
that the robot can perceive by looking at the goal state of the block layout in
the workspace. For this purpose, the posterior latent state of the network is
inferred to minimize the expected free energy shown in equation 2.3. Fig-
ure 2 illustrates the mechanism. The posterior latent state sg

0 for a given goal
g is inferred to minimize the error between the preferred visual state (i.e.,
the goal state) v̂

g
t=N and the predicted state ṽ

g
t=N at the distal step N and

also the one between the visual state observed in the initial step v̂
g
1 and the

predicted state ṽ
g
1, while the KL divergence between the posterior distribu-

tion sg
0 and the prior unit gaussian distribution is minimized. Consequently,

with respect to inference of the latent state of the network, given a goal to
be achieved, the planning process inquires what visuo-proprioceptive se-
quence would most probably have been experienced.

Finally, when the robot is activated in the workspace using the inferred
plan, the PID controller generates adequate motor torques to minimize the
discrepancy between proprioception predicted by the network during plan-
ning and the actual proprioception in terms of measured joint positions at
each time step, as described previously. Hereafter, for simplicity, we use
the term motor sequence to refer to an inferred or predicted proprioceptive
sequence.

Although the RNN models used in Jung et al. (2019) are powerful
in learning, generating, and inferring complex visuo-proprioceptive se-
quences, their capabilities are still limited, especially in dealing with
high-dimensional visual image streams. Recently it has been suggested
that adequate uses of visual attention and visual working memory could
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improve model performance significantly. Related studies that explore such
possibilities are reviewed next.

2.3 Visual Working Memory and Attention. Recently, challenges of
learning long-term dependencies with RNN models have motivated ex-
ploration of ways to incorporate working memory into RNN architectures.
Methods that extended the idea of simple attention mechanisms with that
of general memory structures for storage of more abstract representations
are subsumed under the term memory-augmented neural networks, like neu-
ral Turing machine (NTM; Graves, Wayne, & Danihelka, 2014; Faradonbeh
& Esfahani, 2019) and differentiable neural computer (DNC; Graves et al.,
2016), both inspired by the Von Neumann architecture. Further, recent work
inspired by the concepts of the DNC addresses sequence-to-sequence trans-
lation and speech processing by allowing access to the network’s memo-
rized hidden states of all past time steps (Collier & Beel, 2019; Chien & Tsou,
2018; Le, Tran, Nguyen, & Venkatesh, 2018).

In the following, we review related studies that introduce visual working
memory (VWM) and corresponding visual attention mechanisms. In com-
parison to previous approaches on visual long-term memory, which mainly
operate in higher-level feature spaces or on the level of symbolic representa-
tions (e.g., Wersing et al., 2007), the deep recurrent attentive writer (DRAW)
network (Gregor, Danihelka, Graves, & Wierstra, 2015) introduces a VWM
that is utilized as a sketch pad for writing, saving, and reading pixel im-
ages. The VWM is sequentially manipulated by an attention operation that
focuses on a specific region of the visual sketch pad and an update of the
attended visual information. The attention shifts at each time step are com-
puted autonomously by means of mapping from the latent variable of the
RNN wherein the mapping is developed during the training phase. As a re-
sult, attention shifts facilitate segmentation of complex patterns into a set of
smaller subpatterns and reuse of learned visual features at different spatial
locations.

It has been shown that the DRAW architecture can be effective for gen-
erating complex images with repetitive subpatterns, for example, gener-
ation of multidigit number plates. Nevertheless, practical applications of
attention mechanisms and working memory have proven to be difficult, as
attention mechanisms lead to instability and local minimum traps during
training with the error backpropagation scheme (Tai, Bailis, & Valiant, 2019;
Finnveden, Jansson, & Lindeberg, 2020).

Jung et al. (2019) investigated advantages of using VWM associated
with RNNs for generating goal-directed action planning in a robotics
task of vision-based object manipulation. In their model, possible visuo-
proprioceptive sequences reaching desired visual goal images are gener-
ated based on predictive learning of exemplar sequences provided in the
tutoring phase. In generating a goal-directed visuo-proprioceptive se-
quence, RNNs associated with a VWM predict the visual image and
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proprioception of the next time step from the initial step to the distal time
step.

More specifically, RNNs composed of stacks of LSTMs (Hochreiter &
Schmidhuber, 1997) and convolutionary LSTMs (Shi et al., 2015) predict a
set of variables at the next time step, including proprioception, peripheral
visual image, attended visual image and its attention parameters, and two
types of pixel-wise masks. Each pixel-wise mask contains a weighting pa-
rameter at each pixel that is multiplied by RGB values at the pixel, wherein
the weighting parameter at each pixel is generated by the convolutionary
LSTM. Prediction of the visual pattern of the next time step is computed by
going through multiple paths using these predicted variables. First, the pre-
dicted peripheral visual pattern and the attended visual pattern are merged
into a visual image panel using predicted attention parameters, including
the position of the attention center in the pixel coordinate and the zoom-
ing ratio. Second, the content of the VWM is updated by interpolating the
visual image in the panel and the currently preserved image in the VWM
using one of the predicted pixel-wise masks for VWM. The ratio of preserv-
ing the current RGB values at each pixel in the VWM depends on the value
of the predicted VWM pixel-wise mask for the pixel. The final prediction
outputs of the visual image are generated by interpolating the visual pat-
tern in the panel and that in the VWM using a further predicted pixel-wise
mask. In this operation, the ratio of memory retrieval from the VWM at each
pixel depends on the value of the predicted output pixel-wise mask for the
pixel.

Introduction of the VWM system can greatly improve generalization and
action planning performance of the whole system by effectively storing vi-
sual images occluded by movements of the robot in the VWM. Interestingly,
the experimental results reveal that the VWM represents not continuous
movement of the blocks but sequences of a snapshot image of the block
layout resulting from each block-stacking action. This represents succeed-
ing subgoals corresponding to the outcome of each block stacking action,
as will be detailed later.

3 Proposed Model

Our proposed model design, as illustrated in Figure 3, is an extension and
modification of Jung et al. (2019). In this design, we sought to introduce
as few structural constraints as possible in order to allow the system to de-
velop necessary functions by itself in the course of end-to-end learning. The
architectural design of the model elaborates especially on (1) a specific con-
nectivity among different submodules; (2) newly considered parameterized
attention mechanisms; and (3) fusion operations that allow it to merge vi-
sual predictions of RNNs with content of the VWMs.

The whole system consists of blocks of RNN-based generative models,
an attention module, and two visual working memory modules. The RNN
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Figure 3: Schematic overview of the architecture of the proposed model, includ-
ing the top-down and lateral pathways involved in generation of visuomotor
predictions. The connectivity of the model facilitates development of two dis-
tinct mechanisms using visual working memory during training (M1,M2). Ad-
ditionally generated low-dimensional parameterizations (blue) and pixel-wise
masks (lilac) modulate the information flow of the system.

blocks consist of the associative LSTM (Hochreiter & Schmidhuber, 1997), a
multilayer LSTM, and multilayer convolutionary LSTM cells (convLSTM;
Shi et al., 2015). The associative LSTM (see Figure 3i) located in the highest
level of the whole network generates a sequence of top-down signals based
on its initial latent state value (Figure 3ii) and sends it to both the multilayer
LSTM (Figure 3iii), and multilayer convLSTM (Figure 3iv). The multilayer
LSTM predicts sequences of motor joint angles in terms of proprioception
(i.e., motor sequence with simplicity) and multiple low-dimensional con-
trol signals. Proprioception is represented as sparse activation patterns of
basis functions of a softmax encoding, as indicated in Figure 3v. Predicted
control signals modulate the information flow in the system by parameteri-
zation of visual attention and visual image transformation (see Figure 3vi).
Visual attention results in a dynamic adjustment of the pixel density of dif-
ferent regions in images that are generated by the RNN. As explained in
section 3.2, visual attention allows the model to focus on and predict the vi-
sual appearance of manipulated objects in greater detail, while static parts
of the generated images can be retrieved from the VWM. To overcome the
restriction of representations in the VWMs to static content, we propose
additional parameterized visual image transformations. The visual image
transformation performs a pixel-wise transformation of images stored in a
second VWM. As the result, the model becomes able to generate the visual

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2368 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

image of object manipulation by means of adequate parameterization for
the transformation applied to the visual image saved in this second VWM.
For simplification, we restrict the model to affine image transformations,
such as expected for our depicted pick-and-place scenario.

Predictions of the multilayer LSTM are based on top-down signals re-
ceived from the associative LSTM, lateral connections to the multilayer con-
vLSTM, and the initial latent state values (see Figure 3ii).

On the other hand, the multilayer convLSTM predicts visual pixel im-
ages of the currently attended region and a set of masks (see Figure 3vii).
The masks are then used for mixing the predicted image by the convLSTM
with those saved in each visual working memory. Again, this generation is
based on the top-down signal received from the associative LSTM, lateral
connections to the multilayer LSTM, and the initial latent state values (see
Figure 3ii).

By receiving the top-down prediction of visual image-related signals
from the multilayer convLSTM, two VWMs, VWM-1 (see Figure 3viii) and
VWM-2 (see Figure 3ix), contribute to the final visual image prediction
through their mutual interaction, as incorporated into a set of parame-
terized visual image operations, attention, inverse attention, fusion, and
transformation. Attention (see Figure 3x) is performed by application of the
current attention filter, of which parameters are predicted by the multilayer
LSTM on the plain visual image for generating an attended image, and in-
verse attention is just an inverse transformation of it. Attention and inverse
attention correspond to bottom-up and top-down projections, respectively,
between neural representations of primary visual cues and the abstracted
visual representation in the convLSTM. Crucially, such bidirectional con-
nections are required for inference of hidden states of the model within the
predictive coding framework, although its biological plausibility has not
been identified yet.

The fusion operations (denoted by symbol ) are to fuse two sources
of visual streams with a pixel-wise mixing ratio represented by the corre-
sponding mask generated from the multilayer convLSTM. Fusion opera-
tions are utilized for the composition of the final prediction as well as for
the update of the VWMs. A further affine image transformation (see Figure
3xi) is applied to the visual image stored in VWM-2 wherein the transfor-
mation is parameterized by the prediction output of the multilayer LSTM.
Details of the top-down information flow of each block are described in
section 3.1.

In the learning process, updating the initial latent states and connectiv-
ity weights of the RNN blocks is performed with respect to minimization
of the reconstruction error of the visual and proprioceptive target sequence
(see Figure 3xii). To this end, backpropagation of the error (BP; Rumelhart,
Hinton, & Williams, 1988) between the current prediction and the target is
performed through the top-down pathways inversely for updating values
of the initial latent states. Connectivity weights of the whole network are
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optimized simultaneously. Thereby, the inference process consequently de-
termines all parameters for the operations of attention, inverse attention,
fusion, and transformation at each time step, since these parameters are
generated by the RNN blocks as sensitive to their initial latent states as
well. In goal-directed planning, the error in the form of a gap between
the specified distal goal state and the mentally projected one is backprop-
agated through time (BPTT; Werbos, 1990). Backpropagation is performed
for inferring the initial latent states in the RNN blocks (while the connec-
tivity weights of the whole network are fixed) by which plans, in terms
of visuo-proprioceptive sequences for reaching the goal state, are gener-
ated. Inference mechanisms described here using bottom-up error signals
for both end-to-end learning and targeted planning become possible be-
cause the entire network is designed to be differentiable. It is expected that
adequate cognitive processes for determining when and what to attend, as
well as when and what to store or retrieve from the VWMs is fully devel-
oped through end-to-end learning during error minimization. In the fol-
lowing, details of each computational module, along with its connectivity
with other modules, are described. Furthermore, procedures for training, as
well as for planning and evaluating simulation experiments are explained
in detail.

3.1 Visuomotor Stream Prediction. The visuomotor stream network
consists of visual (see Figure 3iv) and proprioceptive pathways (see Fig-
ure 3iii). Three layers of stacked LSTM (for proprioception) and convLSTM
(for vision) modules are utilized. Each layer receives contextual information
from neighboring layers, as listed in the following:

Top-down connectivity provides feedback from the next higher-level
layer or the associative layer of the model. Top-down computations
propagate the prediction or belief of the network down to the sensori-
motor level. Adeconvolution operation is applied for expansion of the
dimensionality of the neural activation of each layer to the increasing
dimensionality of the next lower layer.

Lateral connectivity shares neural activation between visual and pro-
prioceptive LSTM cells that are on the same layer of the model. Like
calculations required for top-down processing, a deconvolution op-
eration is applied to expand the lower-dimensional space of motor
representations to fit the dimensionality of the feature maps of the
visual convLSTMs.

Bottom-up connectivity projects the neural activation of a lower layer of
the model or the current sensory input (i.e., vision or proprioception)
into the subsequent layer. The plain visual input image of the low-
est layer of the model is transformed by the attention module, and
projection into the next higher layer is performed by a convolution
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operation with a stride to reduce the sizes of feature maps and to fa-
cilitate spatiotemporal integration into higher layers.

Neural activation of the RNNs in the visual vnet
l,t and motor mnet

l,t path-
ways in the lth layer at time step t are computed as described below.

The lowest layers receive visual input vt and the softmax representation
of the current joint angle configuration mt ,

vnet
l=0,t = ATT(vt,α

att
t ) and (3.1)

mnet
l=0,t = SoftMax(mt ), (3.2)

with visual attention transformation ATT(vt,α
att
t ) and its parameterization

αatt
t , as defined in section 3.2. The input of the lowest layer of the network,

vt and mt , depends on the execution mode of the network. It is either a one-
step-ahead prediction ṽt−1 and m̃t−1 of the model, or the respective target v̂t

and m̂t of the training data, as explained in more detail in sections 3.5 and
3.5.1. Neural activation in the visual pathway (convLSTM block) for layer
l = 1 to l = L is defined as

vnet
l,t =

⎧⎪⎨⎪⎩
ConvLSTM

(
vnet

l−1,t, mnet
l,t−1, anet

t−1

)
, if l = L

ConvLSTM
(

vnet
l−1,t, mnet

l,t−1, vnet
l+1,t−1

)
, otherwise.

(3.3)

Neural activation in the proprioceptive pathway (LSTM block) is defined
analogously as

mnet
l,t =

⎧⎪⎨⎪⎩
LSTM

(
mnet

l−1,t, vnet
l,t−1, anet

t−1

)
, if l = L

LSTM
(

mnet
l−1,t, vnet

l,t−1, mnet
l+1,t−1

)
, otherwise.

(3.4)

In addition to an association of the visual and proprioceptive pathways by
lateral connections in each layer of the RNN blocks, the model includes an
associative LSTM for a combined representation of both pathways in the
highest layer (see Figure 3i). The associative LSTM is implemented as a
standard LSTM and receives projections from the highest layers of the vi-
sual and proprioceptive RNN stacks. Its neural activation anet

t is computed
as

anet
t = LSTM(vnet

l=L,t, mnet
l=L,t ). (3.5)
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The output of the convLSTM block is the prediction of the attended vi-
sual image vnet

t and a set of masks, calculated as

vnet
t = tanh(Deconv(vnet

l=1,t )), (3.6)[
gM1

t

gpred
t

]
= ATT−1(σ (Deconv(vnet

l=1,t )),αatt
t ) and (3.7)

[
gM2

t

gnet
t

]
= σ (Deconv(vnet

l=1,t )), (3.8)

with sigmoidal activation function σ . The masks gM1
t and gM2

t modulate the
pixel-wise update of the VWMs. Further, the masks gpred

t and gnet
t specify

to what extent the final prediction of the plain visual image is based on the
VWMs or the prediction vnet

t of the convLSTM block, as detailed in section
3.3. The proprioceptive prediction mnet

t , as well as the low-dimensional pa-
rameterizations αatt

t and αM2
t , which modulate the attention and transforma-

tion of VWM-2, are computed from the hidden states of the proprioceptive
pathway as

mnet
t = MLP(mnet

l=1,t ), (3.9)

αatt
t = MLP(mnet

l=1,t ) and (3.10)

αM2
t = MLP(mnet

l=1,t ), (3.11)

with MLP denoting a fully connected feedforward network with one hid-
den layer of NMLP = 256 nodes, layer normalization, and rectified linear
activation functions. The final proprioceptive prediction is generated by a
decoding of the softmax encoded predictions of the RNN:

mt = SoftMax−1(mnet
t ). (3.12)

3.2 Attention. Visual attention is performed by means of parameteriza-
tion of scaling and focal position of the attention transformation. These pa-
rameters are generated by the multilayer LSTM, which receives top-down
signals from the associative LSTM located in the higher level, as described
previously. Therefore, these parameters are actually determined by the ini-
tial states of these LSTMs in all levels through the top-down causality chain.
This means that optimal parameters for visual attention during training and
goal-directed planning are determined by means of the inference of opti-
mal initial state values for the reconstruction error minimization. No ex-
plicit target values for the parameterization of the attention transformer are
provided.
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Jung et al. (2019) proposed distinct visual information processing with
dorsal and ventral pathways, as described in section 2.3. The dorsal stream
processes a downscaled, low-resolution, peripheral visual input image,
whereas the ventral stream utilizes a spatial transformer network to pro-
cess only an attended region of the visual input image by cropping and
zooming. We presume that although this idea of two visual pathways is
biologically plausible (two-streams hypothesis; Goodale & Milner, 1992),
implementation of this concept in a synthetic model may not be always
necessary, depending on the given tasks. Our preliminary studies showed
that visual image transformations by attention and inverse attention are
among the most important elements for successful development of visual
working memory function during end-to-end learning (a comparison is
presented in appendix F). We propose a modified spatial transformer net-
work (STN; Jaderberg, Simonyan, Zisserman, & Kavukcuoglu, 2015) that
performs a nonlinear transformation of the input image such that a specific
region of the image can be focused with a high pixel density, while the unfo-
cused regions of the image can be represented with a lower pixel density as
well.

Following the preliminary study, which showed that the novel atten-
tion scheme using the modified transfer network provides a better perfor-
mance, we employed a spatial transformer network ATT,U ∈ RNinxNin �→
V ∈ RNnet xNnet , for generating a composite representation of the peripheral
and focal visual image, each with a different pixel density ratio. The pixel-
wise transformation of a visual image from input location U to output lo-
cation V is defined by a modified grid generator (Jaderberg et al., 2015),
parameterized by αatt

t . Further implementation-specific details are listed in
appendix A.

3.3 Network-Wise Processing of Vision. The multilayer convLSTM
outputs predictions of attended visual images along with a set of masks
used for fusion of the visual images. The final prediction of the plain visual
image in the next time step is generated by performing further network-
wise operations on this vision-related information, including forward and
inverse attention shifts, affine transformation, fusion, and buffering us-
ing two visual memory buffers, one in the unattended (VWM-1) and the
other in the attended (VWM-2) visual feature space of the model. Details of
network-wise operations can be described by the following equations:

vwmM1
t+1 = (1 − ATT−1(gM1

t ,αatt
t )) � vwmM1

t

+ ATT−1(gM1
t � vatt

t ,αatt
t ). (3.13)

Equation 3.13 describes how the contents of VWM-1, vwmM1
t+1, can be up-

dated, where gM1
t denotes a pixel-wise mask and ATT−1 performs inverse

attention with arguments of the predicted attended visual image vatt
t and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



Development of Content-Agnostic Information Processing in a Robot 2373

Figure 4: Detailed view of network connectivity related to visual working
memory VWM-1 (A) and visual working memory integration of VWM-2 (B).
This figure depicts detailed views of the system diagram in Figure 3.

attention parameter αatt
t . Masking of the visual streams is performed by the

element-wise multiplication operator denoted by symbol �. Avisualization
of the network connectivity related to VWM-1 is depicted in Figure 4A.

vwmM2
t+1 = gM2

t � TRAN(vwmM2
t ,αM2

t )

+ (1 − gM2
t ) � ATT(vwmM1

t−�tvwm
,αatt

t ) � σ
(
gM1

t

)
. (3.14)

Equation 3.14 describes how VWM-2, vwmM2 can be updated, as
outlined in Figure 4B. The variable gM2

t denotes a pixel-wise mask
that defines the fusion of transformed contents TRAN(vwmM2

t ,αM2
t ) of

VWM-2 with time-delayed (t − �tvwm) contents of VWM-1, denoted as
ATT(vwmM1

t−�tvwm
,αatt

t ) � σ
(
gM1

t

)
. The update of vwmM2 is restricted to

recently modified contents of VWM-1 by masking of vwmM1
t−�tvwm

with
σ

(
gM1

t

)
.

3.3.1 Notes on the Biological Plausibility of the Implementation of VWMs.
For the proposed computational model, we refer to a simplified implemen-
tation of the VWMs as plain buffers. Abstraction of underlying neurological
details of memory formation is a common design choice to reduce computa-
tional efforts in cognitive modeling of complex learning systems (Hochre-
iter & Schmidhuber, 1997; Gregor et al., 2015; Jung et al., 2019). Further,
underlying neurological principles of memory formation and maintenance
are still very much under discussion and unknown to a large extent. But we
hope that future empirical neuroscience studies can evaluate predictions
made from studies in cognitive modeling. Maintenance, update, and read-
out operations of the content of the VWMs are based on primitive network
operations such as gating, time delays, normalization, and nonnegative fu-
sion of pathways. Further, the fusion operations, as required for the mem-
ory read-out, relate in their functionality to the competitive-layer model

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2374 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

(Wersing, Steil, & Ritter, 1997, CLM), as they perform pixel-wise winner-
take-all operations between two sources of input features. As a result of
our experiments, segmentation of different objects in the visual image sim-
ilar to segmentation by the CLM can be observed, as discussed in section
4.3.3.

The transformation TRAN(vwmM2
t ,αM2

t ) performs an affine projection of
the input image vwmM2

t by applying a spatial transformer network (STN;
Jaderberg et al., 2015) with parameterization αM2

t ∈ R4 covering indepen-
dent scaling and shift factors for both image dimensions.

Our preliminary studies showed that the introduced delay �tvwm is cru-
cial for development of content transfer from VWM-1 to VWM-2 during
training. A short delay �tvwm overcomes the transition phase between ap-
proaching an object (predictions of the object’s appearance are based on
VWM-1) and moving the object (predictions are based on the RNN and
VWM-2), in which representations of manipulated objects in VWM-1 al-
ready start to fade, as discussed in more detail in section 4.3. If not otherwise
noted, we refer to a delay of �tvwm = 5 in our work.

Prediction vnet
t of visual images in the attended visual feature space is

performed by a fusion of the predictions made by the convLSTM and the
contents of VWM-2, defined as

vatt
t = gnet

t � vnet
t + (1 − gnet

t ) � TRAN(vwmM2
t ,αM2

t ). (3.15)

By applying the inverse of the attention transformation ATT−1 to the pre-
dicted attended image vatt

t , fusion with this transformed image and the
image saved in VWM-1 becomes possible, generating the final predic-
tion output for the plain visual image at the next time step ṽt , computed
as

ṽt = gpred
t � ATT−1(vatt

t ,αatt
t ) + (1 − gpred

t ) � vwmM1
t . (3.16)

3.4 Inference and Sampling of Initial States. As discussed in section
2, we utilize the initial state sensitivity characteristic of dynamic systems
for sequence generation in RNNs in order to represent task variability. This
means that variation in the initial states of RNNs accounts for variation in
sequences generated by the RNNs. The proposed model is trained with a
set of successful visuomotor sequences (i.e. sequences that achieve a given
goal). Training involves inference of connectivity weights as well as initial
states of the network. Connectivity of the network is assumed to be fixed
after training, and the same assumption applies to generation of all train-
ing sequences. Two types of initial states are inferred during training, as
outlined in Figure 3ii: a common prior initial state that represents the dis-
tribution of all training sequences and each different posterior initial state
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for representation of each training sequence. After successful training, the
model is capable of regenerating all training sequences by setting the ini-
tial states with those posteriors inferred in the training phase. In case of
planning for novel goals, corresponding initial states need to be inferred
for generating corresponding visuo-proprioceptive (i.e., visuomotor) se-
quences for execution of goal-directed actions. Preparation of motor plans
by inferring appropriate initial states can be seen as analogous to motor
planning in the brain, as discussed in Shima, Isoda, Mushiake, and Tanji
(2007).

For implementation, we refer to a variational Bayes approach for prob-
abilistic representations of latent states, as formulated for the variational
autoencoder (VAE; Kingma & Welling, 2014) and its extension to continu-
ous RNN models (Murata, Namikawa, Arie, Sugano, & Tani, 2013; Murata
et al., 2017). The initial state sg

0 is encoded as a probability distribution and
is sampled using the reparameterization trick (Kingma & Welling, 2014) to
allow backpropagation of reconstruction errors:

sg
0 = μ

g
0 + ε � σ

g
0 with (3.17)

ε ∼ N (0, I). (3.18)

The initial state sg
0 for generation of optimal goal-directed actions for goal g

is defined by its mean μ
g
0 and standard deviation σ

g
0, with auxiliary noise ε

sampled from a normal distribution. The probabilistic representation of the
initial latent state allows computation of a belief or an estimate of precision
in learning, as well as generation of each sequence. This can provide signif-
icantly greater robustness in model behavior. Such benefits can be observed
especially in dealing with noisy or stochastic situations (Murata et al., 2013)
and in comparison to previous models that refer to deterministic represen-
tations of the initial latent state (Arie et al., 2009; Choi, Matsumoto, Jung, &
Tani, 2018).

3.5 Training. The proposed model is trained in order to generate mul-
tiple visuomotor sequences in relation to their corresponding initial states.
During the training process, the prior initial state common to all training
sequences and the posterior initial states for each of them are inferred. Each
initial state is parameterized with a mean and a standard deviation, which
are updated during the training procedure (i.e., the prior and the posterior
initial states are updated simultaneously as in Denton & Fergus, 2018). The
weights, biases, and initial states of the model are updated to minimize the
evidence-free energy, as discussed in section 2.2, including the visuomotor
reconstruction error as well as the Kullback-Leibler divergence between the
prior and the posterior initial states.
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Our model is fully differentiable and can be trained by state-of-the-art
gradient descent methods, like the ADAM optimization technique (Kingma
& Welling, 2014).

The loss Lg for the gth goal of the training data is calculated as

Lg = Lg
v + Lg

m + βDKL(qφg (sg
0)||pθ (s0)) + Ln

|·|, (3.19)

with parameterization of the posterior and prior initial states, φg and θ ,
respectively. The function DKL(·) denotes the Kullback-Leibler divergence,
and the hyperparameter β adjusts the balance between the minimization
of the prediction error and the divergence between prior and posterior, as
previously proposed in Denton and Fergus (2018). Note the formal similar-
ity between equation 3.19 and equations 2.1 (and 2.3) where the accuracy
corresponds to the various components of negative loss, Lg.

The functions of the visual Lg
v and proprioceptive Lg

m reconstruction loss
are defined as follows:

Lg
v =

Tg∑
t=1

Lg
v,t =

Tg∑
t=1

satt
t � (̂vg

t+1 − ṽg
t )2 and (3.20)

Lg
m =

Tg∑
t=1

Lg
m,t =

Tg∑
t=1

DKL(SoftMax(m̂g
t+1)||m̃net,tg ). (3.21)

Lengths of trajectories are denoted by Tg, the proprioceptive targets for time
step t in softmax encoding by m̂g

net,t , and visual targets by v̂g
t . Additionally,

we introduce satt
t to balance contributions of the focal and peripheral regions

of the visual error signal to impede an overrepresentation of backpropa-
gated gradients of the focal area, caused by the attention transformation, as
detailed in appendix B. The regularization term of the loss function includes
the �1-Norm of the masking operator gnet,t to prefer predictions based on
VWM-2 over predictions of the RNN blocks, even though pixel-wise predic-
tions from RNN blocks may achieve a smaller prediction error on the train-
ing data. The regularization loss is defined as Lg

|·| = 1
T

∑Tg

t=1(λ|·|,t|gnet,t |1). The
magnitude of the regularization factor λ|·|,t is calculated by application of a
sigmoidally shaped function on the current training epoch. A low regular-
ization λ|·|,t at the onset of learning supports development of VWM-1, and
an increasing and bounded regularization factor toward the final learning
phase results in a preference of contributions of VWM-2 over predictions
from RNN blocks, if applicable. If not otherwise noted, we apply �1 regu-
larization, and scaling factor λ|·|,e is defined in relation to the current epoch
e as

λ|·|,e =
{

0, if e < 3750

4.0 · min
(
1,

(e−3750)
1250

)
, otherwise.

(3.22)
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The proposed loss Lg is defined for a single training sample but can be
trivially extended for a mini-batch learning configuration. An overview
of implementation of the training process is depicted in algorithm 1 in
appendix C. The training phase follows the closed-loop training scheme
(Yamashita & Jun, 2008) to minimize the prediction error and thereby im-
prove he mental simulation capabilities of the model. For closed-loop train-
ing, predictions of the model are fed back to the model as inputs for the
next time step. However, as a sole closed-loop optimization of the model
can lead to a strong divergence of network states (instability in training in
particular is critical for early phases of the training process), a mixture of
model predictions and training targets is used as a feedback signal for the
next time step. Therefore, the feedback signal of the network is calculated
as

vl=0
t = 0.9̃vt−1 + 0.1̂vt and (3.23)

ml=0
t = 0.9m̃t−1 + 0.1m̂t . (3.24)

3.5.1 Planning. As discussed in section 2.2, planning for an action given a
novel goal is conducted by minimizing the expected free energy and search-
ing an optimal posterior of the initial state of the model. In our work, the
goal is specified in terms of desired visual sensation at the end of the pre-
dicted sequence.

The optimal posterior is found if a few steps of the initial visuomotor
sequence, as well as the visual sensation at the goal step, both generated by
the network, match those specified for each task trial with minimal error,
while the KL divergence between the posterior and the prior can be mini-
mized as well. In the beginning of the iterative search of the posterior initial
state, its value is initialized to the prior estimate as inferred during training
through equation 3.19.

Consequently, the loss function for plan generation is defined as

Lg
p =

Tg∑
t=1

(Lg
v,t + Lg

m,t ) + βDKL(qφg (sg
0)||pθ (s0)) + Lg

v,Te
, (3.25)

with parameters for the initial state denoted as φg for the gth goal of the test
cases. The length of the initial sequence is denoted as Tg, and Te specifies
the time step in which the desired visual image for the goal configuration
should appear. Further details for implementation of the planning process
are depicted in algorithm 2 in appendix C. Note that in this case, the func-
tion of the generative model is fixed by fixing its weights. Then, updates
of the initial state of the model in order to minimize the loss Lg

p result in
trajectories that reach a specified goal, as they minimize the visual discrep-
ancy between a desired goal state and the predicted state at the final time
step.
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4 Experiments

The current experiments introduce a block-stacking scenario in which the
task is to arrange three blocks in a tower configuration. Successful stacking
operations of a robotic actuator have been recorded in a real-world setup, as
presented in Figure 9. During training, only three blocks of different colors
(red, green and blue) are introduced, and the model evaluation assesses the
generalization to new block positions and stacking orders. In addition to the
recorded data set that includes three block colors, we prepare an additional
augmented version of the data set in which colors of the objects are replaced
by one randomly permuted in the color plane (see the details in Figure 10).
The augmented data set allows an evaluation of the generalization capa-
bility of the models in dealing with objects having unfamiliar appearances,
such as a new color. A discussion on further conditions, including experi-
ments that explore generalization to more complex visual appearances such
as textures, is shown in appendix G.

We conduct two types of experimental evaluations. First, we perform
a descriptive evaluation of system performance. The purpose of the de-
scriptive evaluation is to explore possible developments of cognitive mech-
anisms in the network, including a scheme developed to manipulate visual
images using visual working memory. Second, a quantitative evaluation is
conducted wherein comparative analysis of performance in goal-directed
planning is carried out under various conditions. Performance is measured
by computing errors generated between the ground truth and the visuo-
motor sequences inferred for a set of goal-directed planning cases. Note
that the terms motor sequences and proprioception are used interchangeably
in our work, as the inferred proprioceptive sequences are used as targets
for the feedback controller of the robot’s actuators and low-level control
is neglected, as previously discussed in section 2.1.3. In order to evalu-
ate the generalization capability of the trained network, which is required
especially for content-agnostic information processing, we conduct goal-
directed action planning experiments under novel task configurations by
introducing objects with novel colors, as described previously. These eval-
uations are conducted with comparisons among three different models: the
current model, the previous model with one visual working memory, as
proposed by Jung et al. (2019), and one without any visual working mem-
ory. It is expected that our proposed model using two visual working mem-
ory modules should show significantly better generalization performance
compared to those with only a single memory module for the following
reasons: first, the neuroscience literature suggests the human uses multi-
ple specialized VWMs rather a single one (Wilson et al., 1993; Ungerleider
et al., 1998); and second, the implementation of a second VWM and its trans-
formation in the attended visual feature space of the model allows a dis-
sociation of learning about the parameterized image transformations and
memorizing the image content, as discussed in section 1.3.
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4.1 Data Set Acquisition and Experimental Setup. For evaluation, the
system is confronted with a complex multimodal sensorimotor task. As
the task design in Figure 9 shows, a robotic actuator (Torobo Arm; Tokyo
Robotics Inc., 2020) is mounted in front of a table, on which three box objects
are placed at random positions. The actuator is commanded in joint-space
position control in order to perform two successive stacking operations of
the randomly placed objects, each of which results in a tower of those ob-
jects. For these experiments, we utilize 6 of the 7 degrees of freedom of the
robot, since an additional rotation of the end effector is not required for ob-
ject manipulations of the task.

Test and training trajectories for pick-and-place manipulation for the
block stacking task are generated based on kinesthetic teaching of the robot.
Recording is performed at 20 Hz and downsampled seven times to reduce
computational and memory costs. Automated generation of trajectories re-
sults in variation of ≈10% of their lengths. Note that the proposed model
is based on an RNN and allows representation of sequences with variable
lengths. The final preprocessing results in visuomotor sequences with a
length of Te = 100 ± 5 steps for training and test evaluation of the models.
Permutation of the stacking order of three colored blocks—red (r), green
(g), and blue (b)—of size 5 cm3 resulted in six possible tower configura-
tions. Training is performed for four tower configurations (RGB, RBG, GBR,
GRB) and excluded the configurations (BGR and BRG), which are included
only in the test data set. Block positions are sampled from 10 × 10 and 8 × 8
grids for training and testing, respectively, in order to test generalization
for previously unseen spatial location distributions of objects.

In addition to joint trajectories, the visual frame sequence of an external
camera that shows the objects and the robot actuator interacting with them
is stored in a data set. The recorded data set contains 300 task configurations
with randomly placed objects and randomly selected tower configuration
as goals for training, and 45 task configurations used for evaluation that are
distinct from the training set. The augmented test data set is generated by
a random selection of one of five permutations of the color planes of visual
sequences for all 45 sequences of the test data set. During training, tempo-
ral sequences of successful sensorimotor signals that fulfill the task goals
are presented. The trained network was evaluated for its ability to generate
plans using the schemes described in section 3.5.1 to achieve novel goal con-
figurations, starting from novel object arrangements, including cases using
novel object colors. Quantitative evaluation was made based on the mea-
sured error between the generated plan of action and the ground truth.

4.2 Implementation Details.

4.2.1 Network Parameterization. The associative LSTM at the top of the
RNN module, which integrates the visual and proprioceptive streams, con-
tains a single LSTM layer with 512 neurons. The proprioceptive and visual
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pathways of the recurrent neural network are based on three layers of mul-
tilayer LSTM cells and multilayer convLSTM cells, respectively. The multi-
layer convLSTM includes 16, 32, and 64 feature maps from the sensory to
the highest layer. To project features to the next higher layer, convolutional
kernel size, stride, and padding sizes were set to 5 × 5, 2 × 2, and 2 × 2,
respectively. Deconvolutional kernel size stride and padding to project fea-
tures to the next lower layer were set to 6 × 6, 2 × 2, and 2 × 2, respectively.
For lateral connections from hidden states of the motor pathway to the vi-
sual pathway and the projection from the associative LSTM, convolutional
kernel sizes are selected in such way as to match the feature dimensional-
ity of the respective layer of the visual pathway. Forward transformation
of the attention transformer downscales the resolution by a factor of 0.75
(32 × 32 to 24 × 24 pixels), or 0.625 (64 × 64 to 40 × 40 pixels) to fit the
size of prerecorded data sets. The proprioceptive pathway is based on a
multilayer LSTM with 512, 256, and 128 neurons from the lowest to the
highest layer. For prediction of proprioception and parameterization of the
attention modules, a multilayer perceptron (MLP) with one hidden layer
of 256 neurons, layer normalization (LN; Ba, Kiros, & Hinton, 2016), and
rectified linear unit (ReLU) activation functions is utilized. We observed
that an underrepresentation (low dimensionality of convolutional hidden
layers) results in a colorless representation of the scene, but we have not
systematically analyzed this effect.

4.2.2 Training of the Network. Training of the model by minimizing the
loss function of equation 3.19 was performed using the ADAM optimizer
(Kingma & Welling, 2014). Optimization of initial states, weights, and bi-
ases was performed for over 4500 epochs, until convergence of learning.
The learning rate was set to 5 × 10−4, and the hyperparameter β was set
to 1 × 10−5. To prevent instability during training (i.e., exploding gradi-
ent problem) we performed gradient clipping (Pascanu, Mikolov, & Bengio,
2013), which re-scales gradients based on the �2-norm in case the norm of
the gradients exceeds 0.2. The mean and standard deviation of the prior and
posterior initial states were set to 0 and 1, respectively.

4.2.3 Planning and Evaluation for Unseen Situations. Planning of actions
for a previously unseen goal is conducted using the loss Lp, as defined by
equation 3.25. The posterior initial state of the model is optimized for the
best match of the visual images of the first Tg = 5 time steps (the state of the
world before a goal-directed action was executed) and a desired visual goal
image at the end of the sequence at the final time step Te. An initial tenta-
tive value of the posterior is set with the value of the prior that was acquired
as a common value for all sequences of the training set and represents the
distribution of all training sequences, as described in section 3.5. The suc-
cessive update of the posterior performed for the planning process is ex-
plained in detail in section 3.5.1. In order to update the initial state estimate
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at each epoch, the visuomotor sequence is generated 16 times by repeated
stochastic sampling of the posterior initial state, the mean and variance of
which were inferred. One of the sampled initial states that results in the
lowest planning error after 50 epochs of inference is selected as the final re-
sult of the planning process for the given goal. The visuomotor sequence
generated from the final initial state obtained is considered the final visuo-
motor sequence plan. Note that even though the loss function Lp inhibits
deviations only in the visual modality for the final configuration, reason-
able generation of motor/proprioceptive sequences can be expected since
training was performed using an association of vision and proprioceptive
sequences.

4.3 Descriptive Evaluation of Results. In this section, we first discuss
a qualitative analysis of the neural mechanisms self-organized in the model
after successful training. Then we show the results of a comparison to previ-
ous models and discuss the importance of VWM-2, the second visual work-
ing memory that is introduced in our study with the aim of improving the
generalization capabilities of the model.

4.3.1 Self-Organized Neural Mechanisms. To assess the properties of our
proposed system, we analyze the internal states of the visual pathway and
the output of the model during execution of inferred plans for previously
unseen tasks. Due to the task nature, involving two consecutive stack-
ing actions, the objects switch their ongoing roles from being part of the
background to being manipulated objects in the visuo-proprioceptive se-
quences, generated as plans.

One exemplary evaluation is shown in Figure 5, which displays the inter-
nal states of the visual pathway, the prediction of the proprioceptive path-
way, and the error between the generated plan and the ground truth. The
evaluation visualizes the mental simulation of the generated plan and the
respective expected visual perception for a previously unseen arrangement
of objects and unknown colors, for example, the newly introduced orange
block. Figure 5i allows a comparison of the ground-truth joint-angle tra-
jectories of the augmented test data set with the inferred trajectories of the
planning process that is shown in Figure 5ii. Trajectories #0-4 (blue, orange,
green, red, purple) represent joint angles of all five active rotary joints of
the robot arm and joint angle #5 (brown color) refers to the one of the linear
actuators of the robot gripper. A visualization of the mismatch between the
ground truth of the visual stream of the augmented test data set (see Figure
5iv) and the inferred visual perception during plan execution (see Figure
5v) is shown in Figure 5iii. The visual stream shows every eighth time step
of the generated sequence of the model. Figure 5v marks the current focal
area in terms of size and position of the attention transformation, indicated
by a red square. Parameterization of the attention transformer is generated
as an additional output of the multilayer LSTM, as outlined in Figure 3vi.
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Figure 5: Results of successful planning in a case with objects having learned
colors (green and blue) and a novel color (orange) with the goal of building a
stack of blocks, green on blue and orange on green. Visualization of the internal
states of the proposed model and the discrepancy between the inferred plan
and the ground truth. An animation of the internal states is available online at
https://youtu.be/pZBMEIjjh6Q.

Figure 5vi shows the content of the visual buffer of VWM-1. Figure 5viii,
5ix, and 5x show dynamics of the visual buffer of VWM-2, including the
update and readout pathways. At each time step, the visual buffer of VWM-
2 (see Figure 5ix) can be updated with a transformation of its own content
or the time-delayed and masked content of VWM-1, as indicated by Figure
5vii.i. The readout of the visual buffer of VWM-2 developed through the
self-organized masking operation is shown in Figure 5viii. Figures 5x.i and
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5x.ii detail a higher temporal resolution (�t = 1) of the time window from
time steps 24 to 48 and from time steps 72 to 96, respectively, in which the
transformation of images stored in VWM-2 during the object manipulation
can be seen.

Let us next examine in more detail what sorts of internal representations
have emerged through the development of internal mechanisms as a result
of end-to-end learning of visuomotor samples. We can observe the same
types of developments in visual attention as well as in the use of VWM-1
with those observed in the previous study (Jung et al., 2019). Parameteriza-
tion of the attention transformer, generated by the RNN, results in behavior
in which the focal area follows the end-effector, and thereby the manip-
ulated object, as shown by the red annotations in Figure 5v. Keeping the
currently manipulated (i.e., moving) object in the attended region of the vi-
sual stream is beneficial to minimize the prediction error, as it cannot be
represented by the static visual buffer of VWM-1. A further interpretation
of the behavior of the attention transformer is that it contributes to mini-
mization of the retinal slip (de Brouwer, Missal, & Lefèvre, 2001), by track-
ing predicted future target motion. Spatial transformer networks, such as
those used for implementation of the attention transformation are difficult
to train, in particular as calculations of error gradients with respect to their
parameterization are based on local (i.e., bilinear) interpolation of nearest
pixels. Therefore, a sufficiently high frame rate of the sequences is required
to avoid sudden and noncontinuous movements of objects in visual images,
which cannot be tracked by optimization of the model though backpropa-
gation learning.

The presented results, as well as previous work by Jung et al. (2019),
show that the content of VWM-1 represents static parts of the visual scene.
For example, when the robot picks up the green object to manipulate its
position—around time step 16 in the ground truth shown in Figure 5iv—the
image of this manipulated object disappears from VWM-1, seen between
time steps 16 and 40 in Figure 5vi. However, after placement of this green
object around time step 40, the image of this placed object reappears in
VWM-1 as a static image, as shown around time step 40 in Figure 5vi. There-
fore, it is presumed that successive updates of the visual buffer of VWM-1
represent sequences of changes in the static layout of objects by capturing
a meaningful structure of subgoals in the semantics of the pick-and-place
behavior.

Due to differences in basic connectivities given and information flow be-
tween VWM-1 and VWM-2, the ways of using buffers in these two memory
systems were developed very differently. At the onset of a pick-and-place
action of the green block (time step 24) toward a new position, the content
of VWM-1 that represents the green block is copied into the visual buffer of
VWM-2 of the network, for example, Figure 5vii.i. During the mental sim-
ulation of manipulating the object, VWM-2 and other connected modules
retain the basic shape of the object while they transform the visual buffer
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image in VWM-2 to reflect expected position and size changes in the visual
appearance of the object in the mental plane.

Visualization with a higher temporal resolution from around time steps
24 to 40, as shown in Figure 5x.i, reveals that transformations of the con-
tent of VWM-2 represent visual imagery for manipulating the green object,
in which position, as well as size changes, can be observed while mentally
moving the object closer to or farther away from the installed camera. Simi-
lar behavior of the network can be observed for the second block (the orange
block), from around time steps 72 to 88, as shown in Figure 5x.ii. Although
this orange block is actually a block with a novel color, information flow for
manipulating this novel block is exactly the same as with the known one,
for example, the green block shown in Figure 5x.i.

Moreover, it can be observed, at time step 40, that placing the green object
in its final position occurs contemporaneously with a sudden update of the
visual buffer of VWM-1, using the content of VWM-2, indicated by the red
arrow in Figure 5vii.ii where we can see that the green block shown until
time step 40 in viii, is copied back to VWM-1. The same can be observed
when placing the orange block at around time step 88, as indicated by the
downward arrow shown at the right side.

These observations indicate that a mental image of a continuous visual
pattern for pick-and-place actions of an object on top of other objects was
developed through iterative information exchanges between VWM-1 and
VWM-2. In particular, it can be seen in VWM-1 that each such routine for
stacking one object on another is concatenated with abstractions wherein
only a static image of the three-block layout, the result of each block manip-
ulation, can be seen as described previously. Also, the image of the robot
gripper cannot be seen in VWM-1, which is analogous to a phenomenon
known in cognitive neuroscience as sensory attenuation for self-generated
action (Blakemore, Wolpert, & Frith, 1998, 2000). Furthermore, it can be
seen that even when some objects are occluded by the robot gripper in the
ground-truth visual sequence, they are represented in VWM-1. This phe-
nomenon is analogous to object permanency studied in developmental psy-
chology (Piaget & Cook, 1952; Baillargeon, Spelke, & Wasserman, 1985).
Related to this, Lang, Schillaci, and Hafner (2018) showed in a synthetic
robotic study that sensory inputs generated by one’s own movements can
be diminished for the purpose of reducing possible occlusion generated by
the robot’s own body because sensory inputs can be mentally imaged by
means of prediction, using the motor efference copy. Also, Bechtle, Schillaci,
and Hafner (2016) showed that object constancy can be developed by learn-
ing forward relationships between movements of robots and their sensory
consequences, perceived from visual input. By looking at neural activity in
VWM-2, it can be seen that detailed visual spatiotemporal patterns for each
block stacking routine are generated after receiving the initial image of the
object to be manipulated as copied from buffer VWM-1 with adequate atten-
tion. It should be interesting to observe that such cognitive mechanisms of

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



Development of Content-Agnostic Information Processing in a Robot 2385

chunking and abstraction can emerge through dynamic interactions among
multiple submodules in the network as the result of iterative end-to-end
learning.

4.3.2 Comparison with Previous Models. The previous model by Jung et al.
(2019) is limited to using one type of memory, which is represented by
VWM-1 in the current model, by which background information, such as
an image of a static object layout, is preserved. A set of plan generation
experiments was conducted using the current model, but excluding VMW-
2 so as to demonstrate the benefits of the current model, which integrates
VWM-1 and VWM-2. An analysis of the resulting visuomotor plans for new
situations reveals that as expected, the model lacking VWM-2 is unable to
cope with objects having novel colors in all situations. When a block with
a novel color is introduced, it is treated as background and is represented
correctly in VWM-1 as long as the block is not manipulated. However, as
soon as this block is grasped, the RNN module, instead of VWM-1, starts
to generate sequences for transforming the image of the block, wherein the
color of the block gradually shifts to a known color. Generated actions are
not necessarily affected by this failure in generating the correct visual ap-
pearance of the blocks; therefore, reasonable motor plans can sometimes
be generated. However, in such situations, the likelihood of confusing the
order of block stacking increases. Further details on these experiments are
discussed in appendix E.

We conducted further experiments that highlight differences in repre-
sentations of the task in the attended visual channel between the previous
model (Jung et al., 2019) and our proposed model architecture. These results
are presented in appendix F in detail and show that unification of the dor-
sal and ventral visual streams and the additional VWM-2 results in a more
abstract representation of the task in which unimportant details of the task
are attenuated.

4.3.3 Generalization Capabilities and Content-Agnostic Information Process-
ing. Results in Figure 5 indicate that the model is able to generate adequate
plans to achieve specified goal states even when manipulating objects with
unrecognized colors by achieving generalization in learning. In particular,
emergence of meaningful information flow was detected where visual im-
agery for manipulating unseen objects is generated by network-wise visual
image processing using two visual working memory modules. More specif-
ically, when an unseen object is grasped for manipulation, its appearance is
copied from VWM-1 into VWM-2. Then an image of its being moved and
placed on a specific block is generated by iterative application of an affine
transformation to the copied image wherein parameters for the transfor-
mation are adequately controlled by the RNN module. In these processes,
skills for transforming a given image are acquired independent of the image
itself, that is, the color of objects.
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Figure 6: Illustration of observed pixel-wise image manipulation in VWM-2.
The content of VWM-2 is updated by a pixel-wise copy from VWM-1 (red) or
a pixel-wise transformation of its content (black) as shown in panel A. Content
is updated by the parameterization of an affine transformation, generated by
the RNN (black; dashed line). Illustration of the sequential transformation of
VWM-2 is depicted in panel B.

What we see here is dissociation of content from information processing,
since the image of the objects and its transformation is represented in dif-
ferent submodules of the network. Figure 6A illustrates the self-organized
mechanism for manipulation of VWM-2 of the model. The content of VWM-
2 can be updated by a memory transfer from VWM-1 (shown in red)
or transformation of its own content (shown in black). Transformation of
memory content is performed by an affine transformation, parameterized
with low-dimensional parameters that are dynamically controlled by the
RNN (dashed, black). This transformation is not performed directly on the
content of VWM-2 but by temporal mapping of each pixel position in the
retinotopic visual coordinate in VWM-2 in the current time step to one in
the next time step. This means that gray-scale RGB information stored at
each pixel position at a current time step is copied to a new pixel position
as computed by the parameterized affine transformation for the next time
step. This might be analogous to the difference between mapping of con-
tent and mapping of its address indicated by the pointer where the con-
tent is stored. Readout and update of memory content are performed by
pixel-wise masks, also generated by the RNN (dashed, red). As a result,
the visual image is not predicted by the RNN directly. The RNN only de-
termines from where and how memory content is processed. The resulting
content-agnostic information processing is illustrated in Figure 6B. It shows
that the focused region of the visual image includes important elements of
the current subtask (a gripper and a manipulated block) and that its pixel-
wise image content is transformed over multiple time steps in VWM-2. This
is different from the case in which an RNN generates spatiotemporal pat-
terns of visual imagery directly, as in a case without using VWM-2, since the
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RNN learns to generate image contents and their transformation in a mutu-
ally dependent manner, as embedded in the distributed synaptic weights.
Therefore, an RNN by itself cannot transform unlearned image contents ad-
equately.

Heuristically, the observed content-agnostic information processing,
such as separation of context (i.e., motion) from content (i.e., the content
of pixels), can be regarded as a generic form of factorization of a generative
model. This canonical factorization is seen in terms of the what and where
pathways in the brain and may reflect the fact that knowing what something
is does not tell you where it is or how it is moving. This means that one can
assume conditional independence, thereby greatly increasing the efficiency
of inference. This is a key aspect of variational free energy minimization,
that is defined by the factorizations (he mean field approximations) implicit
in generative models.

This study shows that content-agnostic information processing, as de-
scribed, is crucial to achieve generalization that allows handling of previ-
ously unseen content. Next, we provide quantitative evidence to support
this hypothesis.

4.4 Quantitative Evaluation. In the following section, we present re-
sults of a quantitative evaluation of three different models: those with no
visual working memory, those with one visual working memory (VWM-1),
and those with two visual working memory modules (VWM-1 and VWM-
2) on goal-directed planning in the block stacking scenario, as described in
section 4.1. In this evaluation, errors between the ground-truth trajectory
and that generated by goal-directed planning are examined separately un-
der two conditions: (1) evaluation of a test set using only three objects with
learned colors and (2) evaluation on a test set using only objects with un-
learned colors. In the first case, test trials for goal-directed planning were
conducted with objects having only known colors. The test was conducted
for novel initial object arrangements as well as goal arrangements using
only objects of the three learned colors. In the second case, the same test tri-
als, but using only objects with novel colors (using augmented data), were
evaluated. We expect that only the model with two VWMs is capable of
handling the second test case successfully, as we have explored previously
in the descriptive evaluation.

The conducted evaluations confirmed our expectations, as can be seen
in Figure 7. Each panel in this figure shows how the mean square error in
test trials changes as the training epoch increases for each test condition.

Figures 7A and 7B show the results in the vision channel for three models
in the case of using objects with the three learned colors and the one using
objects with novel colors, respectively. Figures 7D and 7E show the same
for the proprioception channel for cases with three learned colors and with
novel colors, respectively. It can be seen that the error decreased during the
training epochs, except for the vision channel computed in cases using no
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Figure 7: Discrepancy error between the inferred plan and the ground truth in
two cases: dealing with objects with learned colors and one with novel colors.
The visual channel (A–C) and proprioceptive channel (D–F) are evaluated sep-
arately. Evaluation in the test with learned objects and novel objects is shown
in addition to the pairwise evaluation of the significance at the end of training
(4500 epochs). Models without visual working memory, with one visual work-
ing memory module (VWM-1), and with two visual working memory modules
(VWM-1 and VWM-2) memory are compared.

visual working memory model and one visual working memory model in
the period from epoch 2500 to epoch 4500. Comparison of the performance
of the models on the test set that includes only learned colors (see Figures
7A and 7D) shows that the models incorporating at least one VWM show
similar performance in case a moderate generalization is required. Further,
this shows that the generalization performance of the proposed extended
model is not hindered by its increased complexity. Most important, at the
end of training at epoch 4500, both errors in the vision and proprioceptive
channels in the model with two visual working memory modules and in
cases in which strong generalization is required (see Figures 7B and 7E) are
significantly smaller than in the model using one visual working memory
module. Comparison of the performance in Figures 7C and 7F show a pair-
wise significance analysis of the reconstruction error of the visual channel
and the proprioceptive channel, respectively, on the test data set. It can also
be seen that test errors at the end of training for the case using no visual
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working memory model are significantly larger than those observed with
the other two models.

These results confirm that models using visual working memory outper-
form the one with no visual working memory whenever strong generaliza-
tion is required. A the same time, the results show that the generalization
performance dos not suffer from an increased model complexity in case
only moderate generalization is required. Moreover, the model with two
visual working memory modules, VWM-1 and VWM-2, outperforms the
one using only VWM-1 in the goal-directed planning task, which requires
generalization for novel situations dealing with objects with novel colors.

5 Discussion

This study investigated a certain class of generalization problems involving
context-agnostic information processing, which both humans and artificial
agents encounter in routine action generation, by conducting synthetic neu-
rorobotic experiments in simulation. More specifically, we examined how
robots are able to generate goal-directed action plans in object manipula-
tion by learning even with unfamiliar objects having novel features such as
color, by adequately generating sequential mental images for manipulating
them.

For this purpose, we revisited our previous study (Jung et al., 2019)
and conducted extended simulation experiments. The current study used
a complex network with synergy between a set of submodule neural net-
works, including multiple visual working memory modules (VWMs), a vi-
sual attention module, an executive network for prediction of motor and
visual images, and controls for visual attention and masking of the visual
images in the VWMs. One essential update from the previous model (Jung
et al., 2019) is that the current model employs an additional VWM and con-
siders further connectivity between this module and others. This is to eval-
uate our main hypothesis that generalization required for content-agnostic
information processing can be achieved if the whole network can ade-
quately incorporate this additional VWM via interactions through learning
from experience. Learning of the whole network is accomplished by means
of free energy minimization (Friston, 2005) by following the predictive cod-
ing formula (Mesulam, 1998; Rao & Ballard, 1999) in end-to-end learning of
sampled visuo-proprioceptive trajectories.

After learning, we evaluated the performance of the model network in
generating goal-directed action plans using active inference (Friston et al.,
2006) in cases that involved manipulating blocks with novel colors. The re-
sults showed a significant improvement in performance when using an ad-
ditional VWM compared to a case using only a single VWM. A detailed
analysis of whole network activity first revealed that when the robot grasps
a block to move it, visual attention follows the block autonomously, while

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2390 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

static blocks behind a manipulated block are retained in the first VWM.
This is the same as observations in Jung et al. (2019). More interesting,
the attended visual image of the grasped object was copied into the newly
introduced VWM, and it was spatially transformed to generate image se-
quences of stacking objects by following the generated visual plan. This
phenomenon was observed during manipulation not only for blocks with
learned colors but also for blocks with previously unseen colors.

The analytical result reveals how content-agnostic information process-
ing was developed in the course of learning while dealing with general-
ization for mental simulation of objects with novel colors. The essential as-
pect of the mechanism acquired through learning is dissociation of visual
image contents from the mechanism for their manipulation. In the model
after learning, an image of the object to be manipulated is saved once in
VWM-2. Then, to achieve a specified goal, the image is transformed by
means of temporal mapping of each pixel position in the visual coordinate
of VWM-2 as controlled by RNNs in the executive network. By this means,
an image once saved in VWM-2 can be transformed regardless of its content
because transformation is conducted with the position of each pixel, inde-
pendent of the content (RGB information) saved at each pixel. However,
without VWM-2, this sort of dissociation cannot be achieved and general-
ization for unlearned object images cannot be expected, since RNNs alone
cannot generate transformation of novel object images in a content-agnostic
way.

The experimental design as presented in section 4 aims at specific cases
of the generalization problem that involve noisy real-world data, manip-
ulating objects with unlearned locational distributions, compositionality
through planning for unlearned tower configurations, and representation
of objects with unlearned colors.

These experiments show that strong generalization can be achieved and
that content-agnostic information processing of color information is de-
veloped in the model during training. To further support our hypothesis
of content-agnostic information processing through utilization of an addi-
tional VWM (VWM-2), as illustrated in Figure 6, we conducted additional
experiments involving more complex visual representations. In appendix
G, results of additional experiments that require content-agnostic process-
ing of objects with unlearned textures are shown. For these experiments,
we rearranged the task scenario as described in section 4 and restricted task
complexity to maximize the size of objects in relation to image resolution.
Further details of experimental conditions are listed in appendix G. A modi-
fication of the task scenario was necessary to reduce computational resource
requirements by limiting the number of training samples and reducing the
sequence lengths.

The quantitative and qualitative analysis of the additional experimental
results supports our previously stated hypothesis of content-agnostic visual
processing and shows that our newly proposed model with two VWMs
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achieves superior generalization in generating goal-directed visuo-motor
plans dealing with objects with previously unseen textures. As shown in
the example visualizing internal neural activities of the model (see Figure
14A), it turned out that the ways of using two VWMs are compatible to
those shown in the main experiment described in section 4.

A future study should examine how the current scheme of content-
agnostic information processing using an additional VWM (VWM-2) can
be applied to generalization in learning with more complex situations, such
as manipulating objects with novel shapes and sizes. Generalization with
different shapes and sizes of the objects is expected to be more challenging
because such situations obviously will involve adaptation of motor con-
trols if those variations affect the means of manipulating those objects. This
is not only a problem of context-agnostic information processing in the
visual pathway, but should involve generalization problems in the motor
pathway. This issue will be examined with deliberative experiments in the
future.

Problems involving moving objects and dynamically changing environ-
ments are not addressed in this study, which assumed that goal-directed
plan generation is performed only in a static environment. If distractor ob-
jects move, such situations can be resolved if the model network can learn
to ignore them. This could be achieved even with the current model if the
visual attention module functions adequately. If objects to be manipulated
move, this situation can also be resolved if the model network can learn
to predict how the objects move. These examinations are left for future
studies.

Although this study showed that the proposed neural network architec-
ture using two VWMs exhibited competitive performance in terms of the
discrepancy between inferred plan trajectories and ground-truth trajecto-
ries, our preliminary study showed that the success rate of each task by
executing the inferred motor plans with a real robot could not exceed 50%.
The resultant low performance is due to the fact that relatively low pixel
resolution (64 × 64) in the video image was used in the current experiment
because of the excessive computational cost for inference through video
frames. A one-pixel prediction error in the size of an object image could
result in up to a 5 cm position error of the robot gripper when grasping ob-
jects, a huge error considering the 5 cm block size. Future studies introduc-
ing depth information, as well as larger image resolution, such as 256 × 256
in the video, along with development of an effective parallelization scheme
in inference of plan generation through the video frames, should improve
the success rate greatly.

Furthermore, extended studies should investigate how the model could
deal with the problem of online planning in a physical setting. This should
require the model to adapt to dynamically changing environments in real
time. For this purpose, the model should be extended such that it can cope
with the following three issues. First, the robot should be able to recognize
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Figure 8: Visualization of the spatial transformer for fovea-like visual attention.
The grid transformer Tαatt

t
(G) and its inverse are based on (A) the transformation

f (θ). (B) An illustration of the pixel wise mapping (i) between output and input
image panels and the successive sampling (ii) of pixel data. An example result
of the described image transformation is shown in panel C.

the current situation by maximizing the evidence lower bound. Second, it
should be able to update current goal-directed plans based on its currently
recognized situation by maximizing the estimated lower bound. Third, it
should be able to act on the environment by executing a plan to be car-
ried out in real time. The retrospective and prospective inference scheme
(REPRISE) proposed and investigated by Butz, Bilkey, Humaidan, Knott,
and Otte (2019) represents a good starting point to consider this problem.

Appendix A: Implementation Details of Attention Transformer

Implementation of the attention transformer ATT is based on a spatial trans-
former network (STN; Jaderberg et al., 2015). The STN performs a pixel-wise
spatial transformation of an input image with the same transformation per-
formed for each color channel. The transformation is defined by a grid gen-

erator Tαatt
t

(Gi) =
[

f (xi, [αatt
t,3,α

att
t,2,α

att
t,1])

f (yi, [αatt
t,4,α

att
t,2,α

att
t,1]))

]
, defining a vector field that maps

transformed image coordinates Gi = (xi, yi) of a regular grid G = {Gi} to
the input space. A regular grid of 2D pixel positions in the output image
is mapped by application of Tαatt

t
to its corresponding input positions be-

fore a bilinear differentiable sampling kernel, as in Jaderberg et al. (2015),
is applied. The inverse transformation ATT−1 is performed by application
of T −1

αatt
t

, and simultaneous rescaling is achieved by adapting the dimension-
ality of the regular grid that is used for the sampling process accordingly.
Mapping of pixel coordinates is performed in such a way that a combined
representation of dorsal and ventral image information is possible, as il-
lustrated in Figure 8. Independent projections of pixel coordinates for each
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image dimension are based on a mixture of linear transformations l1 to l3,
as described by

f (x, θ) = σA(x, θ)l1 + σB(x, θ)l2 + (1 − σA(x, θ) − σB(x, θ))l3 (A.1)

The interpolation by σ1 and σ2 between the focal and peripheral magnifica-
tion levels is defined as

σA(x, θ) = σ ((1 − θ2)θ1 − x) and (A.2)

σB(x, θ) = σ (x − (θ1 + θ2 − θ1θ2)), (A.3)

with θ ∈ R3 defining the transformation along each image dimension inde-
pendently: θ1 defines the center of the focal area, θ2 defines the relative size
of the focal area, and 1

θ3
determines the zoom factor inside the focal area.

The interpolation can be based on a sigmoidal or a Heaviside step function.
The linear transformations l1 to l3 are defined as

l1 = x(θ1 − (θ1θ2θ3))
θ1 − (θ1θ2)

, (A.4)

l2 = (1 − θ1 − (1 − θ1)θ2θ3)
x − θ1 − (1 − θ1)θ2

1 − θ1 − (1 − θ1)θ2
+ θ1 + (1 − θ1)θ2θ3 and

(A.5)

l3 = (x − θ1)θ3 + θ1. (A.6)

In applying the Heaviside step function, the back transformation T −1
αatt

t
can

be estimated trivially by the partial inverse of the linear functions. In ap-
plying a sigmoidal transition between the linear functions, we refer to an
approximate inverse function estimation if an analytical solution cannot be
found. In this case, the inverse transformation is described by

f −1(θ) = σ−1
A (θ)l−1

1 + σ−1
B (θ)l−1

2 + (1 − σ−1
A (θ) − σ−1

B (θ))l−1
3 , (A.7)

with

σ−1
A (θ) = σ ((1 − θ2θ3)θ1 − x) and (A.8)

σ−1
B (θ) = σ (x − (θ1 + θ2θ3 − θ1θ2θ3)). (A.9)
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Appendix B: Implementation Details of Visual Loss Function

Our previous studies showed that backpropagated visual error signals suf-
fer from overrepresentation of the focal area caused by the variable pixel
densities of the attention transformation. To balance the contribution of the
visual errors that originate in the focused and unfocused regions of the gen-
erated visual output of the model, satt

t was introduced to perform a scaling
of the error signal with respect to the distance to the center of the focal area.
The estimation of satt

t is performed by the following calculations:

satt
t,i j = αs

⎛⎝[
αatt

t,3

αatt
t,4

]
−

⎡⎣ i
Nin

j
Nin

⎤⎦⎞⎠2

, (B.1)

for image resolution (Nin, Nin) in order to scale the visual error signal in
relation to the distance to the center of the focal region.

Appendix C: Training and Planning Procedure

Training and planning are performed according to the pseudocode in
algorithms 1 and 2, respectively.
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Appendix D: Example Sequences of Robotic Data Sets

Figure 9: Example sequences of the robotic data set. Three colored cubes (red,
green and blue) are in the recorded data set. Positioning of the blocks in the
workspace is based on a 10 × 10 grid for training and an 8 × 8 grid for testing.
Permutation of the stacking order results in six final tower configurations (RGB,
RBG, GBR, GRB, BGR and BRG), whereas the last two configurations (BGR and
BRG) are excluded from the training set.

Figure 10: Example sequences of the augmented robotic data set. Random per-
mutations in the color planes of the original data set (see Figure 9) result in
block colors not present in the training set. The data set used to evaluate model
performance in cases of strong generalization is required, since typically, repre-
sentation of previously unseen objects is challenging for RNNs.

Appendix E: Comparison with Previous Models

Figure 11 shows two examples in which the current model without VWM-
2 fails to generate correct visuomotor plans as the color information was
lost. In the first example, Figure 11A, the color information of the blocks is
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Figure 11: Visualization of failed planning attempts, as observed in a model
with only one visual working memory VWM-1. The two panels show such two
examples. The RNN is not able to generalize to new colors and loses color infor-
mation during manipulation of the blocks. The loss in color information results
in confusion of the stacking order, as evidenced by a high prediction error of the
proprioceptive modality.

lost and block colors converge, that is, the orange color of the manipulated
object is replaced by red. Nevertheless, the generated trajectory still
achieves reasonable accuracy as block positions are approached in the cor-
rect order.

The second example shows an inferred plan that loses the correct color
information: a peach-colored manipulated block becomes green, as shown
in time steps 8 to 48 of Figure 11Biv. The lost color information results in
confusion of the order of the stacking operations and a large discrepancy
in vision and proprioception channels between the inferred plan and the
ground truth. As shown in Figure 11Bi, the discrepancy in the propriocep-
tive channel is high when an object is picked from the table (around time
steps 16 and 64) and is low (neglecting variability in the timing of actuation
of the gripper) while placing the objects in a tower configuration (around
time steps 40 and 88). The fluctuation of the discrepancy between the
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inferred plan and the ground truth is caused by a plan that still succeeds
in building a tower configuration at the position specified by the current
goal but confuses the color information and the order of two consecutively
manipulated blocks.

Appendix F: Explicitly Decomposed Representation

This section presents an evaluation of our current approach versus previ-
ous models that utilize dorsal and ventral visual streams (Jung et al., 2019).
Figure 12 depicts a comparison of the internal visual representations in the
convolutional RNN blocks and the final visual prediction for one success-
ful goal-directed action plan. Three model architectures are compared: the
previous model with two visual streams (see Figure 12A), our newly pro-
posed model that utilizes only one visual stream and one VWM (see Fig-
ure 12B), and our proposed model including two VWMs (see Figure 12C).
When two visual streams are utilized, as shown in Figure 12A, the color
information of all blocks is represented simultaneously in the generated
output of the convolutional RNN blocks of the peripheral and ventral path-
ways of the model. This means that not only the currently modified ob-
ject can be identified, but also the other objects that are not relevant to the
currently ongoing subtask. This indicates that RNN blocks represent the
complete task configuration throughout all layers. In comparison, the orga-
nization of the model architecture into one unified visual stream, shown in
Figure 12B, results in a more explicitly decomposed representation. In this
case, the background and the unmodified objects are represented in VWM-
1, and the higher-level vision network represents only images related to the
currently ongoing subtask. Figure 12Bii.i depicts the visual representation
of the scene after placing the blue block on the green block. In this case,
predictions in the attended visual image are solely based on generated im-
ages of the RNN, as VWM-2 is not available in this experiment. Only color
information of the currently manipulated blue block is represented in the
visual predictions of the convolutional RNN block. Moreover, the model
retains an abstracted representation of the remaining blocks in the form of
an uncolored image. The results indicate that the current model is able to
learn a more abstracted and compositional representation of the training
data by restriction of representations to subtask-specific information. In
this case, the model represents the action of stacking a specific block (color
information available) on top of an arbitrary block (no color information
available).

The whole image is decomposed into the representation of the currently
manipulated and other objects as background by using only the architecture
of the unified visual stream shown in Figure 12B. This is more successfully
performed by adding VWM-2 into the unified visual stream architec-
ture, shown in Figure 12C, in which color information of the currently
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Figure 12: Comparison of visual representations in RNN blocks for a success-
fully inferred plan in three different models. (A) Predictions of the previous
model (Jung et al., 2019) that are limited to use of one type of memory and pro-
poses two visual channels, peripheral (ii) and central (iii) vision. (B) Predictions
of the current model without VWM-2. (C) Predictions of the current model in-
cluding both VWM-1 and VWM-2. Unification of the visual stream leads to an
explicit representation of the manipulated object by the recurrent neural net-
work, as other objects in the scene are not represented by color.

manipulated object is more explicitly extracted by the RNN as compared
to the experiment shown in Figure 12B.

Appendix G: Experiment: Content-Agnostic Information Processing
for Generalization for Unlearned Textures

The purpose of an additional experiment shown in this section is to examine
whether content-agnostic information processing developed in the model
could account for generalization with a different novel situation: objects
with unlearned texture patterns.

For this experiment, a modified task scenario has been designed. In com-
parison with experiments presented in section 4, the scenario has been re-
designed such that the camera is positioned closer to the workspace of the
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robot in order to maximize the numbers of pixels of the visual sensation that
are occupied by objects in the scene. The enlarged appearance of the objects
in the visual image (approximately 12 × 12 pixels) allows the representa-
tion of complex patterns (textures) that are mapped on the objects in the
lower-dimensional image computed through the attention transformation,
that is, the visual feature space of VWM-2 and convLSTM. In the following,
the experiment design and the experimental result are described.

G.1 Task Design and Generation of Training Data. These experiments
have been performed in simulation of the Torobo robot. As in the previous
experiments, sequences of object manipulations are recorded. Given an ini-
tial posture of the robot, the robot is commanded to generate the following
sequence of movements: (1) it reaches a specific target object; (2) grasps the
object; (3) moves the object to a specific target location; (4) releases the ob-
ject; and (5) moves back to the final posture. The design of the task is de-
picted in Figure 13A. Recording of the sequences has been automated and
trajectory generation ensures that the final length of the sequence is 33 time
steps in every case. In total, 250 training sequences and 80 sequences for
testing have been recorded. Four example sequences used for training are
visualized in Figure 13F. As for our previously discussed experiment, ini-
tial object locations are sampled from two different distributions, one for
training and one for planning. The desired placement position of the target
object, as indicated by a black square, was moved along its y-coordinate on
the table and kept inside the workspace of the robot. In addition to the colors
red (r), green (g), and blue (b), two texture patterns have been mapped onto
the objects in the scene during generation of the training data set. The possi-
ble appearances of the objects in the training set are listed in Figure 13B. For
generation of the test data set, the colors cyan (c), yellow (y), and pink (p),
as well as textures showing cross and triangle patterns, have been mapped
onto the objects. The unlearned colors and textures in the test data set are
depicted in Figure 13C. In both cases, up to two randomly selected distrac-
tor objects have been placed at randomly selected positions, such that they
do not interfere with movements of the robot. In addition to cubes, we in-
troduced two additional object shapes (a cylinder and a triangular bar) as
distractor objects, as shown in Figures 13D and 13E.

G.2 Experiment. Training is conducted analogous to the previous ex-
periment described in section 4. After minimizing the loss function Lg (see
section 3.5) for all training sequences for 4000 epochs, generalization in ac-
tion plan generation to achieve novel goal states specified by the visual im-
ages is evaluated. Action plan generation to achieve novel goals dealing
with variable positions for both the initial and the final object positions is
performed using the same planning scheme described in section 3.5.1. The
inference for the goal-directed planning is iterated for 100 epochs.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2400 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

Figure 13: Task design (A). the robot moves a block (with previously unseen
color, texture and position) onto a desired target plane (indicated by black
square). Visualization of the variability of the appearance of the objects is shown
in panels B–E: training set (B); new appearances during planning (C); distur-
bance objects for training (D) and planning (E) include further object shapes for
assessment of generalization capabilities for previously unseen backgrounds.
Example visual sequences of the training set are shown in panel C.

From repeated simulation results, we found that performance of goal-
directed plan generation using novel texture objects is significantly better
when using two VWMS compared to the case with one VWM. The model
with two VWMs results in significantly lower planning loss Lg

p over all test
sequences g, Its mean is 0.0174 ± 0.0010, in comparison to 0.0244 ± 0.0018
for the model with only one VWM (p > 0.95). As expected, the difference
in the mean squared error between both models is significant (p > 0.95)
as well, with error 0.0040 ± 0.0002 for the model with two VWMs and
0.0048 ± 0.0003 when only one VWM is utilized. The mean squared error in
proprioception is slightly lower (not statistically significant) in the model
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Figure 14: Planning results for previously unseen object positions, colors, and
textures. (A) Visualization of the internal states of the newly proposed model
(two VWMs). (B) Further exemplary visual predictions. (C) Failed planning at-
tempts of the model limited to only one VWM. An empty red square depicts
the focus area of the attention transformer, as predicted by the model and an
empty black square depicts the goal position where the object should be moved.
An animation of the internal states is available online at https://youtu.be/
frp1Utxx-XA.

with two VWMs, 0.84 ± 0.07 [deg2], in comparison with the model with
only one VWM, 0.95 ± 0.10 [deg2].

Figure 14 shows some example results of goal-directed planning using
objects with novel texture patterns in cases involving the model with two
VWMs and that with one VWM. Figure 14A shows an example of success-
ful goal-directed plan generation using the model with two VWMs wherein
the contents of masked VWM-2, VWM-1, the inferred visual plan, and its
grand truth are shown. We can see content-agnostic (pixel-wise) transfer
of the visual appearance of objects analogous to that described in section
4.3.3. In this figure, an empty red square denotes the focus area of the
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attention transformer, and an empty black square denotes the goal posi-
tion to which the object should be moved. Figure 14B shows three other
representative examples of inferred visual plans generated by the current
model using two VWMs. It shows that the model can deal with different
types of novel texture objects. Figure 14C shows two representative exam-
ples of inferred plans generated by the model using only one VWM. Objects
with novel textures cannot be manipulated well in the generated visual pan
image. Both cases show that texture patterns of the objects are changed in-
correctly during manipulation of those objects in the inferred plans.

In summary, only the model with two VWMs is capable of representing
manipulation of objects with previously unseen textures by copying their
visual images into VWM-2 and by pixel-wise transformations of this mem-
ory. These results support our claim that content-agnostic information pro-
cessing developed in the model can enhance generalization in dealing with
novel situations, including cases of manipulating objects with novel tex-
tures as well as with novel colors.
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A., . . . Hassabis, D. (2016). Hybrid computing using a neural network with dy-
namic external memory. Nature, 538(7626), 471–476.

Gregor, K., Danihelka, I., Graves, A., & Wierstra, D. (2015). DRAW: A recurrent neural
network for image generation. arXiv:abs/1502.04623.

Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor
planning. Nature, 394(6695), 780–784.

Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working
memory in early visual areas. Nature, 458(7238), 632–635.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computa-
tion, 9(8), 1735–1780.

Isomura, T., Shimazaki, H., & Friston, K. (2020). Canonical neural networks perform
active inference. bioRxiv.

Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system.
International Journal of Neurology, 7(2), 162–176.

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial Trans-
former Networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Gar-
nett (Eds.), Advances in neural information processing systems, 28 (pp. 2017–2025).
Red Hook, NY: Curran.

Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention
and imagery. Behavioral and Brain Sciences, 17(2), 187–202.

Jung, M., Matsumoto, T., & Tani, J. (2019). Goal-directed behavior under variational
predictive coding: Dynamic organization of visual attention and working mem-
ory. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robot and
Systems (pp. 1040–1047). Piscataway, NJ: IEEE.

Kaplan, R., & Friston, K. J. (2018). Planning and navigation as active inference. Bio-
logical Cybernetics, 112(4), 323–343.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



Development of Content-Agnostic Information Processing in a Robot 2405

Kingma, D. P. & Welling, M. (2014). Auto-encoding variational Bayes. In Y. Bengio
& Y. LeCun (Eds.), Proceedings of the 2nd International Conference on Learning Rep-
resentations. arXiv.

Krichmar, J. L., Nitz, D. A., Gally, J. A., & Edelman, G. M. (2005). Characterizing
functional hippocampal pathways in a brain-based device as it solves a spatial
memory task. In Proceedings of the National Academy of Sciences, 102(6), 2111–2116.

Kumar, S., Joseph, S., Gander, P. E., Barascud, N., Halpern, A. R., & Griffiths, T.
D. (2016). A brain system for auditory working memory. Journal of Neuroscience,
36(16), 4492–4505.

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watching: Extracting
reusable task knowledge from visual observation of human performance. IEEE
Transactions on Robotics and Automation, 10(6), 799–822.

Lang, C., Schillaci, G., & Hafner, V. V. (2018). A deep convolutional neural network
model for sense of agency and object permanence in robots. In Proceedings of the
Joint IEEE 8th International Conference on Development and Learning and Epigenetic
Robotics (pp. 257–262). Piscataway, NJ: IEEE.

Le, H., Tran, T., Nguyen, T., & Venkatesh, S. (2018). Variational memory encoder-
decoder. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
& R. Garnett (Eds.), Advances in neural information processing systems, 31 (pp. 1508–
1518). Red Hook, NY: Curran.

Li, M., Liu, J., & Tsien, J. Z. (2016). Theory of connectivity: Nature and nurture of cell
assemblies and cognitive computation. Frontiers in Neural Circuits, 10, 34.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features
and conjunctions. Nature, 390(6657), 279–281.

McClelland, J. L., & Plaut, D. C. (1999). Does generalization in infant learning impli-
cate abstract algebra-like rules? Trends in Cognitive Sciences, 3(5), 166–168.

Mesulam, M. M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052.
Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith

Predictor? Journal of Motor Behavior, 25(3), 203–216.
Murata, S., Namikawa, J., Arie, H., Sugano, S., & Tani, J. (2013). Learning to repro-

duce fluctuating time series by inferring their time-dependent stochastic proper-
ties: Application in robot learning via tutoring. IEEE Transactions on Cognitive and
Developmental Systems, 5(4), 298–310.

Murata, S., Yamashita, Y., Arie, H., Ogata, T., Sugano, S., & Tani, J. (2017). Learning
to perceive the world as probabilistic or deterministic via interaction with others:
A neuro-robotics experiment. IEEE Trans. Neural Netw. Learn. Syst., 28(4), 830–
848.

Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., & Levine, S. (2018). Visual reinforce-
ment learning with imagined goals. In S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information
processing systems, 31 (pp. 9209–9220). Red Hook, NY: Curran.

Nyberg, L., Habib, R., McIntosh, A., & Tulving, E. (2000). Reactivation of encoding-
related brain activity during memory retrieval. In Proceedings of the National
Academy of Sciences of the United States of America, 97, 11120–4.

Ohata, W., & Tani, J. (2020). Investigation of the sense of agency in social cognition,
based on frameworks of predictive coding and active inference: A simulation
study on multimodal imitative interaction. Frontiers in Neurorobotics, 14, 61.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021



2406 J. Queißer, M. Jung, T. Matsumoto, and J. Tani

O’Reilly, R. C. (2006). Biologically based computational models of high-level cogni-
tion. Science, 314(5796), 91–94.

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computa-
tional model of learning in the prefrontal cortex and basal ganglia. Neural Com-
putation, 18(2), 283–328.

Pailian, H., Störmer, V., & Alvarez, G. (2017). Neurophysiological marker of visual
working memory manipulation. Journal of Vision, 17, 1116.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recur-
rent neural networks. In Proceedings of the 30th International Conference on Machine
Learning (pp. 1310–1318).

Piaget, J., & Cook, M. (Eds.). (1952). The origins of intelligence in children. New York:
Norton.

Posner, M. I. (1995). Attention in cognitive neuroscience: An overview (pp. 615–624).
Cambridge, MA: MIT Press.

Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biol-
ogy. Nature Reviews. Neuroscience, 10(10), 724–735.

Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: A functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience,
2, 79–87.

Reddy, V. (2008). How infants know minds. Cambridge, MA: Harvard University
Press.

Rosenbaum, D. A. (1991). Human motor control. Orlando, FL: Academic Press.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by

back-propagating errors. Cambridge, MA: MIT Press.
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old

infants. Science, 274(5294), 1926–1928.
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., & WOO, W.-c. (2015). Convo-

lutional LSTM network: A machine learning approach for precipitation nowcast-
ing. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.),
Advances in neural information processing systems, 28 (pp. 802–810). Red Hook, NY:
Curran.

Shima, K., Isoda, M., Mushiake, H., & Tanji, J. (2007). Categorization of behavioral
sequences in the prefrontal cortex. Nature, 445, 315–318.

Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex.
Science, 310(5749), 805–810.

Tai, K. S., Bailis, P., & Valiant, G. (2019). Equivariant transformer networks. In Pro-
ceedings of the International Conference on Machine Learning.

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuro-
science, 19(1), 109–139.

Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and
the top-down interaction processes. Neural Networks, 16(1), 11–23.

Tokyo Robotics. (2020). Torobo Arm: Accelerate your research. https://robotics.tokyo/
products/torobo_arm.

Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human
visual working memory. In Proc. Natl. Acad. Sci. USA, 95(3), 883–890.

Van Essen, D. C., & Maunsell, J. H. (1983). Hierarchical organization and functional
streams in the visual cortex. Trends in Neurosciences, 6, 370–375.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021

https://robotics.tokyo/products/torobo_arm


Development of Content-Agnostic Information Processing in a Robot 2407

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differ-
ences in visual working memory capacity. Nature, 428(6984), 748–751.

Weng, J. J., Ahuja, N., & Huang, T. S. (1993). Learning recognition and segmentation
of 3-d objects from 2-d images. In Proceedings of the Fourth International Conference
on Computer Vision (pp. 121–128). Washington, DC: IEEE Computer Society.

Werbos, P. J. (1990). Backpropagation through time: What it does and how to do it.
In Proceedings of the IEEE, 78(10), 1550–1560.

Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., . . . Körner,
E. (2007). Online learning of objects in a biologically motivated visual architec-
ture. International Journal of Neural Systems, 17, 219–30.

Wersing, H., Steil, J. J., & Ritter, H. (1997). A layered recurrent neural network for
feature grouping. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicoud (Eds.),
Artificial neural networks (pp. 439–444). Berlin: Springer.

Wilson, F. A., Scalaidhe, S. P., & Goldman-Rakic, P. S. (1993). Dissociation of object
and spatial processing domains in primate prefrontal cortex. Science, 260(5116),
1955–1958.

Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor con-
trol. Neural Networks, 9(8), 1265–1279.

Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum.
Trends in Cognitive Science, 2(9), 338–347.

Yamashita, Y., & Jun, T. (2008). Emergence of functional hierarchy in a multiple
timescale neural network model: A humanoid robot experiment. PLOS Compu-
tational Biology, 4(11), 1–18.

Received October 31, 2020; accepted March 18, 2021.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/9/2353/1958033/neco_a_01412.pdf by O
IST LIBR

AR
Y user on 01 Septem

ber 2021


