
  

 

Abstract―Since the 19th century, the use of electric motors 

continues to grow. Nowadays electric motors have been widely 

used in various fields of industry. One type of electric motor that 

is often used is an induction motor. Induction motors work in 

the presence of induced currents due to the relative difference in 

rotor rotation with rotating magnetic fields. Induction motors 

are preferred for industrial purposes because of low cost, easy 

to maintain, and high efficiency. Induction motors that are used 

continuously can experience several types of fault. The existence 

of fault can affect the performance of the induction motor. One 

of the fault that often occurs in induction motor is the result of 

stator inter-turn fault. This fault is caused by the gradual 

deterioration of insulation in the stator winding which cause a 

short-circuit. Sooner or later, this fault can cause damage to the 

induction motor in a short time if left unchecked.  So, it is very 

important to monitor the fault in real-time. Therefore, this 

research proposes a fault estimation method on induction 

motor. The design of fault estimation based on particle filtering 

and extended state space equations is used to estimate the stator 

inter-turn fault. The effectiveness of this approach is validated 

by use of a computer simulation with using two fault signal 

represented by 𝛈𝐜𝐜 ramp and step signal. The performances of 

this fault estimation are measured by RMSE and with using 500 

particles has smallest RMSE value, which are 0.0112 and 0.0124 

for dq current fault when using 𝛈𝐜𝐜 ramp signal and 0.2373 and 

0.2367 for dq current fault when using 𝛈𝐜𝐜 step signal. 

 

Keywords―Induction Motor, Particle Filtering, Stator Inter-

Turn Fault. 

I. INTRODUCTION 

INCE the 19th century, the use of electric motors 

continues to grow. Nowadays electric motors have been 

widely used in various fields of industry. One type of electric 

motor that is often used is an induction motor. Induction 

motor is a device that is able to convert electrical energy into 

mechanical energy. Induction motors work in the presence of 

induced currents due to the relative difference in rotor 

rotation with rotating magnetic fields. Induction motors are 

preferred for industrial purposes because of low cost, easy to 

maintain, and high efficiency. Induction motors that are used 

continuously can experience several types of fault. The 

existence of fault can affect the performance of the induction 

motor. 

Faults that occur in induction motors can be categorized 

into mechanical and electrical faults [1]. Mechanical faults 

can be bearing damage or defects in the shaft. While electrical 

faults can be categorized again into stator and rotor faults. 

The rotor fault can be in the form of demagnetization from 

permanent magnets to damage to the rotor bar. Stator faults 

can be defects in the stator windings or defects in the stator 

core. Based on Kliman, et.al (2002) [2], about 35% of the 

most common fault are faults on the stator winding. 

One type of fault in the stator winding is due to a stator 

inter-turn winding fault. This fault is caused by the gradual 

deterioration of insulation in the stator winding which results 

in short-circuit [3]. If this happens, it causes a high load 

current and increases the workload of the induction motor. In 

the end, this fault will cause damage to the induction motor 

in a short time if left unchecked [4]. 

For avoiding damage by this possible fault on system, the 

technique of fault detection has been continuously developed 

to improving safety and reliability of the system. One of the 

technique of fault detection is particle filtering (PF). PF is a 

nonlinier filtering alghorithm that widely used for nonlinier 

dynamic system’s state estimation in control and signal 

processing areas [5]. Because induction motor is a nonlinier 

dynamic system, PF is suitable to used for this research. 

Hence, this research use PF to estimate the fault on induction 

motor based on stator inter-turn winding fault. 

II. RESEARCH METHOD 

A. Stator Inter-Turn Fault Modelling on Induction Motor 

Stator inter-turn fault modelling is done by modifying 

induction motor model in healthy condition proposed in Chan 

and Shin (2011) [6] with the short-circuit equation proposed 

in Schaeffer and Bachir (2013) [7]. The electrical diagram of 

faulty induction motor can be seen in Figure 1.  

It is noticed that from the electrical diagram before that the 

fault is similar to a simple error on the current measurement 

in healthy induction motor model. The state space 

representation of this faulty model is 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                     (1) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                                     (2) 

where 
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Figure 1. Electrical diagram of faulty induction motor.  
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and 

𝑖𝑑𝑠 , 𝑖𝑞𝑠 : dq stator current 

𝜆𝑟𝑑 , 𝜆𝑟𝑞 : dq rotor flux 

𝑉𝑠𝑑 , 𝑉𝑠𝑞  : dq stator voltage 

𝛾 : electrical angle 

𝜔𝑟 , 𝜔𝑠 : rotor and electrical speed angle 

𝑅𝑠, 𝑅𝑟, 𝐿𝑠, 𝐿𝑟, 𝐿𝑚, 𝑝, and 𝐽 are stator resistance, rotor 

resistance, stator inductance, rotor inductance, mutual 

inductance, pole, and intertia respectively. 

The model of faulty condition introduces two parameters 

to define the stator inter-turn faults. 

1. Localitation parameter, 𝛾𝑐𝑐, is the real angle between the 

stator inter-turn winding and the first stator-phase axis 

(phase a). This parameter can take only three values 0, 

2π/3, or 4π/3, corresponding, respectively, to a short 

circuit on stator phase a, b, or c. 

2. Detection parameter, 𝜂𝑐𝑐, is ratio between number of 

stator inter-turn winding fault and total number of stator 

inter-turn in one healty phase. 

B. Extended State Observer 

In particle filtering, an extended state is used to estimate 

the state of the unmeasured variable based on the 

mathematical model of the system, so that the observer can 

also be used to estimate the error that occurs in a system if the 

fault is included in the modeling. A system is generally 

modeled in the form of state space, which can be generally 

defined as the system equation below [8]: 

�̇� = 𝐴𝑥 + 𝐵𝑢                                                                    (3) 

𝑦 = 𝐶𝑥 + 𝐷𝑢                                                                    (4) 

with 

A : state matrix 

B : control matrix 

C : output matrix 

D : noise matrix 

x : state vector 

u : control signal 

y : output vector 

The mathematical model of the observer is the same as the 

mathematical model of the system so that the observer can 

estimate the state of the system in the form of a state space 

equation. To compensate for the effect of stator inter-turn 

fault that occur on the induction motor at the same time it 

requires modification of a new observer algorithm, the 

algorithm is provided by Indriawati, et.al [9]. The effect of 

adding stator inter-turn fault is represented by the addition of 

unknown vector inputs (7) and (8), where the matrix acts on 

a dynamic system and measurements as represented in the 

equation (3) and (4) [9]. 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)                                          (5) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝐹𝑠𝑓𝑠(𝑘)                                    (6) 

with:   

𝐹𝑠= fault matrix 

Then a new state is added to move the stator inter-turn fault 

as follows, 

𝑧(𝑘 + 1) = 𝐴𝑧𝑇𝑠(𝑦(𝑘) − 𝑧(𝑘)) + 𝑧(𝑘)  (7) 

𝑧(𝑘 + 1) = −𝐴𝑧𝑇𝑠𝑧(𝑘) + 𝐴𝑧𝑇𝑠(𝐶𝑥(𝑘) + 𝐹𝑠𝑓𝑠(𝑘)) + 𝑧(𝑘)  (8) 

For 𝐴𝑧 is identity matrix (I) for 𝐴𝑧𝜖𝐼
𝑞, whereas the matrix 

of the effect of stator inter-turn fault is defined as 𝑓 = 𝑓𝑠. 

From equation (3) it can be defined a matrix that will be used 

to get the extended matrix shown in the following equation 

[
𝑥(𝑘 + 1)
𝑧(𝑘 + 1)

] = [
𝐴 0

𝐴𝑧𝑇𝑠𝐶 −𝐴𝑧𝑇𝑠 + 𝐼
] [

𝑥(𝑘)
𝑧(𝑘)

] + [
𝐵
0
] 𝑢 + [

0
𝐴𝑧𝑇𝑠𝐹𝑠

] [𝑓𝑠(𝑘)]  (9) 

𝑦(𝑘) = [0 𝐼] [
𝑥(𝑘)
𝑧(𝑘)

]                                                       (10) 

So equations (9) and (10) can be converted into state space 

equation form, 

�̅�(𝑘 + 1) = �̅��̅�(𝑘) + �̅�𝑢(𝑘) + �̅�𝑓𝑠(𝑘)                            (11) 

𝑧(𝑘) = �̅�(𝑘) = 𝐶̅�̅�(𝑘)                                                      (12) 



  

 

Next, a new state containing sensor fault is added to design 

the observer equation written in the following equation 

[
�̅�(𝑘 + 1)
𝑓(𝑘 + 1)

] = [�̅� �̅�
0 𝐼

] [
�̅�(𝑘)
𝑓(𝑘)

] + [�̅�
0
] 𝑢                            (13) 

�̂�(𝑘) = [𝐶̅ 0] [
�̅�(𝑘)
𝑓(𝑘)

]                                                    (14) 

C. Particle Filtering 

Particle filtering (PF) is an algorithm for estimating the 

state of a system for non-linear, non-Gaussian systems [5]. 

As one of the best filtering algorithms, particle filtering has 

been widely used for estimating the state of dynamic systems 

that are non-linear in the fields of control and signal 

processing [5]. 

Particle filtering is one part of Bayesian filtering whose 

estimation value is based on the Monte Carlo method. The 

main idea is to approximate the posterior probability 

distribution. Sample �̃�𝑡
𝑖 is called a particle. So the particle 

shows the possible value of �̃�𝑡
𝑖. Each particle represents a 

hypothetical state of the object, with discrete sampling 

corresponding to probability. Several samples (particles) 

from the resulting state, each associated with a weight that 

characterizes the quality of a particular particle. Estimated 

variables are obtained by adding up all the particles. The main 

key of particle filtering is to represent the posterior density 

function of random particles to calculate the weight value 

which will determine the value of the mean position [10]. 

There are several particle filtering algorithms and one of 

them that are often used are Sequential Importance 

Resampling (SIR). This algorithm can be done recursively 

and will provide an optimal estimate of the current state in 

sequence. The SIR filter will be adopted as a basic algorithm 

for nonlinear filtering [11]. In detail, one can estimate the 

state vector system using this algorithm at 𝑛𝑇 time. The steps 

in particle filtering are as follows [12]: 

1) Initialization 

At this stage the initialization of particle filtering 

parameters is carried out. In addition, at the beginning of the 

iteration there is a group of samples (particles) that will be 

distributed randomly and their weights are determined based 

on certain distributions. Where it is assumed there are random 

particles {𝑥𝑝0
𝑖 }

𝑖=1

𝑁
~ 𝑝(𝑥0) , 𝑖 = 1, … . . , 𝑁, where N indicates 

the number of particles with 𝑡: = 1. 

2) Particle Updates 

Particle updates are performed to create new transition 

particle sets. The next particle value is obtained by 

distributing each particle based on the previous particle value. 

A number of N new particles are generated by the following 

equation: 

𝑥𝑝𝑡
𝑖~𝑝(𝑥𝑡|𝑥𝑡−1

𝑖 ),         𝑖 = 1, … . . , 𝑁                                  (15) 

Then for 𝑖 = 1,… . . , 𝑁, the evaluation of particle weights 

is based on the following equation: 

�̃�𝑡
𝑖 = 𝑝 (𝑦𝑡|𝑥𝑝𝑡

𝑖)                                                              (16) 

Furthermore, the new weight value is normalized based on 

the total current weight. Weights are normalized by the 

following equation: 

𝓌𝑡
𝑖 =

�̃�𝑡
𝑖

∑ �̃�𝑡
𝑖𝑁

𝑖=1

,       𝑖 = 1, … . . , 𝑁                                        (17) 

3) Particle Resampling 

After weighting, resampling is done to avoid degeneration 

of unused particles. Resampling is done by generating a new 

set of particles based on their weight. In the resampling 

process, particles with large weights may be selected several 

times so that there are several different particles occupying 

the same position. Meanwhile, particles which have relatively 

low weights will disappear by themselves. For each 𝑖 =

1,… . . , 𝑁, the new particle resampling 𝑥𝑡
𝑖 corresponds to the 

weight of the particle, where: 

Table 1.  

The value of parameters 

Variable Value 

Mutual Inductance (𝐿𝑚) 0,258 H 

Stator Inductance (𝐿𝑠) 0,274 H 

Rotor Inductance (𝐿𝑟) 0,274 H 

Stator Resistance (𝑅𝑠) 4,85 Ω 

Rotor Resistance (𝑅𝑟) 3,805 Ω 

Inertia (𝐽) 0,031 

Pole (𝑝) 2 

Electrical angular speed (𝜔𝑠) 100π 

Time Sampling (𝑇𝑠) 10-6 s 

 
Table 2.  

RMSE value 

Number 

of 
Particles 

𝜂𝑐𝑐 ramp signal 𝜂𝑐𝑐 step signal 

d-current 
fault 

q-current 
fault 

d-current 
fault 

q-current 
fault 

100 0.0128 0.0144 0.2807 0.2698 

250 0.0123 0.0121 0.2606 0.2498 

500 0.0112 0.0124 0.2373 0.2367 

 

 
(a) 

 
(b) 

Figure 2. The effects of stator inter-turn fault on induction motor with: 

(a) 𝜂𝑐𝑐 ramp signal (b) 𝜂𝑐𝑐 step signal.  

 



  

 

𝑃 = (𝑥𝑡
𝑖 = 𝑥𝑡

𝑘) = 𝓌𝑡 
𝑘 ,       𝑘 = 1,… . . , 𝑁                         (18) 

Then return to step 2. 

III. RESULTS AND DISCUSSION 

In this paper, an induction motor with 2 pole 1.5kW was 

used to illustrate the effectiveness of the proposed approach 

for this research. The value of this induction motor 

parameters are listed in Table 1, which was adopted from the 

work of Allaoui et al [13]. 

To evaluate the performance of fault estimation using PF, 

two sets of signal is used to represent the stator inter-turn fault 

on induction motor. This two sets of signal is represented by 

ramp and step signal for detection parameter 𝜂𝑐𝑐 with values 

are 

𝜂𝑐𝑐,1(𝑡) = 𝜂𝑐𝑐,1(𝑡 − 1) + 0.02𝑡 + 𝜀𝑛                                (19) 

and 

𝜂𝑐𝑐,2(𝑡) = {
0 + 𝜀𝑛  𝑖𝑓 𝑡 < 2𝑠 
0.1 + 𝜀𝑛 𝑖𝑓 𝑡 ≥ 2𝑠

                                         (20) 

where 𝜂𝑐𝑐,1(0) = 0, 𝜀𝑛 is random error values with means 0 

and the variances 1 × 10−8. 

The effect of this two signal faults on induction motor dq 

current are provided in Figure 2. It can be seen that at first the 

current changes in value (transient condition) first before 

reaching steady state condition. The change in value occurs 

at 0 to 0.4 seconds, after that its starts to reach steady state 

condition. It can be seen in the Figure 2, that the 𝑖𝑑𝑠 current 

increases from -20 A to -3.5 A in 0.4 seconds, then the 

response is steady at a value of -3.59 A. While the 𝑖𝑑𝑠 current 

go through transient condition from -20.5 A to 0.2 A in 0.4 

seconds and then the response is steady at a peak value of -

0.2 A. When faults is given in phase a, the value of both dq 

current will decreases. This is due to the short-circuit current 

that occurs, so the stator current will decrease. 

Fault estimation is done by using particle filtering with 

using 𝜂𝑐𝑐 ramp and step signal to represent the stator inter-

turn fault. Variations given by the number of particles used 

for PF are 100, 250, and 500 particles. Then, the RMSE value 

is used to measuring the performance of PF for those 

particles. The results of fault estimation using 100, 250, and 

 
(a) 

 
(b) 

 
(c) 

Figure 3. The fault estimation results using 𝜂𝑐𝑐 ramp signal with: (a)100 

particles, (b)250 particles, (c)500 particles. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. The fault estimation results using 𝜂𝑐𝑐 step signal with: (a)100 

particles, (b)250 particles, (c)500 particles.  



  

 

500 particles when using 𝜂𝑐𝑐 ramp signal from equation (19) 

are provided in Figure 3.  

Figure 3 shows the comparison between the response of the 

plant output fault with the response of fault estimation using 

100, 250, and 500 particles when using 𝜂𝑐𝑐 ramp signal. The 

blue and red line show the results of dq plant output fault and 

the green and purple line show the results of dq fault 

estimation respectively. From Figure 3, it is known that the 

dq current fault estimation response results are able to 

approach the results of fault in real plant on both dq axes for 

all the three particles variations. It can be seen at Figure 3 that 

the more particles used, the error between PF results and real 

plant fault is smaller. 

The results of fault estimation using 100, 250, and 500 

particles when using 𝜂𝑐𝑐 step signal from equation (20) are 

provided in Figure 3.  

Figure 4 shows the comparison between the response of the 

plant output fault with the response of fault estimation using 

100, 250, and 500 particles when using 𝜂𝑐𝑐 step signal. The 

blue and red line show the results of dq plant output fault and 

the green and purple line show the results of dq fault 

estimation respectively. From Figure 4, it is known that the 

dq current fault estimation response results are able to 

approach the results of plant modeling on both dq axes at the 

steady state. When 𝜂𝑐𝑐 value is dropped from 0 to -2.2 

instantly, fault estimation response seem difficult to 

approaching the plant output fault and require a certain 

amount of time to approach it. It can be seen from Figure 4 

that the more particles used, the noise that produced by PF is 

smaller and the time needed to approach the plant output fault 

when in the transient condition is faster. 

RMSE is used to measure the performance of the fault 

estimation result. The RMSE results of all three particle 

variations when using 𝜂𝑐𝑐 ramp and step signal are provided 

in Table 2 below. It can be seen that when using 500 number 

of particles, the RMSE value is smaller compared to 100 and 

250 partciles used. The RMSE can be seen in Table 2.  

IV.CONCLUSION 

This paper has proposed a fault estimation on induction 

motor based on stator inter-turn fault. Based on induction 

motor plant modelling, this approach connects particle 

filtering with extended state observer equations to provide 

fault estimation results. The effectiveness of the whole 

approach is validated by use of a computer simulation about 

an induction motor system with using two fault signal 

represented by 𝜂𝑐𝑐 ramp and step signal. The performances of 

this fault estimation are measured by RMSE and with using 

500 particles has smallest RMSE value, which are 0.0112 and 

0.0124 for dq current fault when using 𝜂𝑐𝑐 ramp signal and 

0.2373 and 0.2367 for dq current fault when using 𝜂𝑐𝑐 step 

signal 

This paper has just provided primary discussions about 

fault estimation based on on stator inter-turn fault, and many 

issues are to be further addressed. For example, in the case 

that the fault acts as a multiplicative input of the dynamic 

system more elaborate approaches are expected to be 

proposed.  
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