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ABSTRACT
Heart rate control using first- and second-order models was compared using a novel control design
strategy which shapes the input sensitivity function. Ten participants performed two feedback con-
trol test series on a treadmill with square wave and constant references. Using a repeatedmeasures,
counterbalanced study design, each series compared controllers C1 and C2 based on first- and
second-order models, respectively. In the first series, tracking accuracy root-mean-square tracking
error (RMSE) was not significantly lower for C2: 2.59 bpm vs. 2.69 bpm (mean, C1 vs. C2), p = 0.79.
But average control signal power was significantly higher for C2: 11.29 × 10−4 m2/s2 vs. 27.91 ×
10−4 m2/s2, p = 3.1 × 10−10. In the second series, RMSE was also not significantly lower for C2:
1.99 bpm vs. 1.94 bpm, p = 0.39; but average control signal power was again significantly higher
for C2: 2.20 × 10−4 m2/s2 vs. 2.78 × 10−4 m2/s2, p = 0.045. The results provide no evidence that
controllers based on second-order models lead to better tracking accuracy, despite the finding that
they are significantly more dynamic. Further investigation using a substantially larger sample size is
warranted.
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1. Background

Heart rate (HR) is widely used to characterize exercise
intensity. Many training protocols to enhance and sus-
tain cardiorespiratory fitness are designed based on HR
(Riebe et al., 2018). Heart rate is used in this way in
healthy individuals (Garber et al., 2011) and also in dif-
ferent patient populations (Mezzani et al., 2013; Riebe
et al., 2018). To achieve a better cardiorespiratory training
effect, high-intensity interval training (HIIT),which applies
a changing target HR, shows advantages compared to
training with a constant exercise intensity (systematic
reviews: Ramos et al., 2015;Weston et al., 2014). Thismoti-
vates the need to design feedback systems for robust
and accurate control of HR to follow arbitrary reference
profiles.

The fundamental challenges of HR control are to
model the dynamics of HR response to changes in exer-
cise intensity to a sufficient level of accuracy, and also
to deal appropriately with disturbance effects caused by
heart rate variability (HRV) (Hunt & Fankhauser, 2016).
Different HR control approaches based on either linear
time-invariant models or nonlinear models have been
proposed. Using thenonlinearmodel proposedbyCheng
et al. (2008), several controllers have been developed:

CONTACT Hanjie Wang hanjie.wang@bfh.ch

Asheghan and Míguez (2016) analyzed the stability of
the nonlinear model, designed a nonlinear control sys-
tem and tested its robustness by simulating the sys-
tem response with perturbations on model parameters
and model inputs; Ibeas et al. (2016) designed a lin-
ear state feedback controller and simulations indicated
the system was stable but robustness was not good
enough; Esmaeili et al. (2019) proposed a feedback lin-
earization control method, and simulation showed the
system to be stable despite some states being incor-
rectly identified; Girard et al. (2016) proposed a PID
controller based on a linear model located in the mid-
dle of the bounds of the nonlinear model, and per-
formed a series of simulations to tune the param-
eters of the controller; Nguyen and Yagoubi (2018)
designed a nonlinear static output feedback controller,
they studied performance and robustness by simula-
tion, and tested the controller with one participant; Du
and Du (2018) presented a probabilistic model-based
control strategy.

These studies have several important limitations: there
is a general absence of quantitative evaluation out-
comes for assessment of controller performance, and
they are mainly simulation based. But due to substantial
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human-to-human differences in physiological response,
proper evaluation requires systematic empirical study
with appropriate sample sizes, i.e. number of participants
(Hunt & Maurer, 2016); furthermore, these works focus
on uncertainty in model structure and parameters, while
neglecting the key issue of disturbances caused by heart
rate variability.

Compared to the existing results on modelling and
control of heart rate reviewed above, our own work has
focussed on the problem of rejection of disturbances
attributable to heart rate variability, by utilizing novel lin-
ear time-invariant designs that make key closed-loop fre-
quency response characteristics transparent. To address
the research question of the present study, an impor-
tant theoretical extension of our existing approach was
required, viz. derivation of the control design equations
for the case of a second-order plant model.

In principle, nonlinear models have an advantage in
modelling accuracy due to better representation of the
nonlinear characteristics of HR response, which mainly
consist of slowly drifting dynamics caused by physiologi-
cal changes, and also due to the dependence of dynamics
on the operating point. But from the perspective of feed-
back controller design, slowly changingdynamics, or vari-
ations dependent on operating point, can be effectively
compensated by integral action and by the fundamental
ability of feedback to reduce uncertainty. Hence, appro-
priatemodelling of relativelymore rapid andmore signif-
icant dynamic components of HR response might have
more influence on closed-loop control accuracy than
modelling of nonlinear phenomena: a previous study
showed that a certain nonlinear control strategy did not
lead to any improvement in control accuracy when com-
pared to a simple linear time-invariant controller (Hunt
& Maurer, 2016).

Consistent with these observations, linear time-invar-
iant approaches have been shown to provide accurate
and robust HR control using studies with quantitative
outcomes and substantial numbers of participants, e.g.
Hunt and Gerber (2017) and Hunt et al. (2019). Further-
more, it has been suggested that the issue of rejection of
HRV-related disturbances (see Hunt & Saengsuwan, 2018)
is more important than parametric model uncertainty,
thus leading to the proposal for a linear control design
approach based on shaping of the closed-loop input sen-
sitivity function (Hunt & Fankhauser, 2016).

In a previous study (Wang & Hunt, 2021), two kinds
of linear time-invariant transfer function were employed
to model the HR response to treadmill speed changes:
a second-order case that separately modelled Phase I
(fast) and Phase II (slower) HR dynamics, and a first-
order model that combined both phases into a single
exponential response. Statistical analysis showed that

the second-order transfer functions achieved significant
improvement in goodness-of-fit. Hence, it was hypoth-
esized that controllers based on second-order models
couldbemoredynamic, and thereforegivemoreaccurate
heart rate control, than controllers based on first-order
models.

This study aimed to investigate whether heart rate
control design based on second-order models can
achieve better tracking accuracy as a consequence of a
more dynamic control signal when compared to con-
trollers designed from first-order models. To meaning-
fully address this question, both theoretical and experi-
mental contributions were required. Firstly, to make this
investigation possible, an important theoretical contribu-
tion was derived: a novel control design strategy which
shapes the input sensitivity gain to be a monotonically
decreasing function of frequency based on first-order
models, (Hunt & Fankhauser, 2016), was extended to
encompass second-order models. Secondly, the exper-
imental contribution was that a formal test series was
carried out using a cohort of 10 human participants.

2. Materials andmethods

2.1. Controller design

2.1.1. Control structure and nominal plantmodel
This study employed an output feedback control struc-
ture (Figure 1) consisting of a feedback compensator C
that adjusts treadmill speedusing thedifferencebetween
the filtered reference signal and themeasuredHR, a nom-
inal plant model Po that describes the response of HR
to changes in treadmill speed, and a reference prefilter
Cpf that shapes the overall closed-loop reference tracking
response.

The plant Po is represented by the strictly proper
transfer function

Po(s) = B(s)

A(s)
: u �→ y (1)

where A and B are polynomials in s, with A monic and
nb < na.

The compensator C is constrained at the outset to be a
strictly proper transfer function and is written as

C(s) = G(s)

H(s)
: e �→ u (2)

with H monic. The strictly proper requirement, viz. ng <

nh, is imposed to ensure that the compensator gain rolls
off to 0 at high frequency, i.e. limω→∞ |C(jω)| = 0.

In the present work, and in the preceding system iden-
tification study (Wang & Hunt, 2021), two forms for the
nominal plant model Po are considered: first order and
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Figure 1. Block diagram of control structure for this study. Po(s) is the plant model, C(s) is the feedback compensator, and Cpf(s) is a
reference prefilter. The controlled variable (HR) is y, u is the control signal (treadmill speed target), d is a disturbance term than mainly
comprises heart rate variability, and nmodels measurement noise. r is the reference/target HR signal and r′ is the filtered HR reference.

second order, described respectively as

P1(s) = k1
τ1s + 1

, (3)

where Phase I and Phase II HR dynamics are combined
into a single time constant τ1, and

P2(s) = k2
(τ21s + 1)(τ22s + 1)

(4)

with Phase I and Phase II HR dynamics represented using
separate time constants τ21 and τ22. In Equations (3)
and (4), k1 and k2 are steady-state gains.

The polynomials A and B in the general plant transfer
function description Equation (1), where A is required to
be monic, can be identified for P1 and P2 as follows:

P1: B(s) = b0 = k1
τ1

, A(s) = s + a0 = s + 1
τ1

(5)

P2: B(s) = b0 = k2
τ21τ22

,

A(s) = s2 + a1s + a0 =
(
s + 1

τ21

) (
s + 1

τ22

)
(6)

Corresponding to the twoplantmodels, the transfer func-
tion of feedback compensator C also has two forms: one
calculated from P1 (denoted C1), and one calculated from
P2 (denoted C2), as described in the sequel.

2.1.2. Controller derivation: input-sensitivity shaping
Derivation of the controller structure and parameters is
based upon the input sensitivity approach proposed by
Hunt and Fankhauser (2016). That publication considered
only the first-ordermodel Equation (3), therefore it will be
extended here to the second-order case, Equation (4).

The three principal closed-loop sensitivity functions
for the feedback structure under consideration (Figure 1)
are the input-sensitivity function Uo, the sensitivity func-
tion So, and the complementary sensitivity function To
(Åström &Murray, 2008):

n, r′, d �→ u: Uo(s) = C(s)

1 + C(s)Po(s)
, (7)

d �→ y: So(s) = 1
1 + C(s)Po(s)

, (8)

n, r′ �→ y: To(s) = C(s)Po(s)

1 + C(s)Po(s)
. (9)

The derivation process for the transfer function of com-
pensator C is based on the requirement that the input-
sensitivity function gain |Uo| be amonotonically decreas-
ing function of frequency, so that peaking is avoided.
A special case of this requirement is when Uo is forced
(shaped) to be a first-order transfer function (Hunt
& Fankhauser, 2016).

Focusingnowon the input-sensitivity function, emplo-
yment of the polynomial forms for Po and C, viz. Equa-
tions (1) and (2), leads to

Uo(s) = AG

AH + BG
= AG

�
(10)

where the closed-loopcharacteristic polynomial hasbeen
introduced as � = AH + BG.

The compensator is nowconstrained in twoways: inte-
gral action is includedby settingH = sH′, andaplant-pole
cancellation strategy is employedby settingG = AG′. This
results in

C(s) = AG′

sH′ (11)

and

� = AsH′ + BAG′ = A�′ ⇒ �′ = sH′ + BG′. (12)

Following algebraic reasoning detailed in Hunt and
Fankhauser (2016) that requires a unique solution to
Equation (12) with C strictly proper, the degrees of poly-
nomialsG′,H′ and�′ areng′ = 0,nh′ = na andn�′ = na +
1, respectively, therefore G′ = g′

0 (a constant).
It follows from Equation (10) that

Uo = A2G′

A�′ = Ag′
0

�′ . (13)

To achieve further simplification, �′ is set to include the
factor A; but because n�′ = na + 1, �′ under this con-
straint can contain just one further pole and itmust there-
fore have the form �′ = A(s + p) where p is considered
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a feedback design parameter. Developing Equation (13),
the final form of the input-sensitivity function is then

Uo = g′
0

(s + p)
(14)

which, as required at the outset, is a first-order transfer
function: as such, |Uo(jω)| must monotonically decrease
with frequency towards the limit limω→∞ |Uo(jω)| = 0
and cannot have any peaking (in fact, this is a conse-
quence of the strictly-proper constraint set on the com-
pensator C). The design parameter p is seen to be the
bandwidth of Uo.

Thus far, no constraint has been placed on the degree
of the plant pole polynomial A, so that the above deriva-
tion is generic. But now the special cases of first- and
second-order plants, na = 1 and na = 2, are considered:
this amounts to finding the unique solution of the poly-
nomial equation �′ = sH′ + BG′, Equation (12), for each
case.

The solution for a first-order plant was derived pre-
viously (Hunt & Fankhauser, 2016) and is merely sum-
marized here. With na = 1, nh′ = na = 1 ⇒ H′ = s + h′

0;
and, in general, G′ = g′

0. The unique solution for the
unknown controller parameters is g′

0 = p/k1, h′
0 = p +

1/τ1. Using Equations (5) and (11), the compensator for
the first-order case is then

C1(s) = AG′

sH′ =
p
k1

(
s + 1

τ1

)

s
(
s + p + 1

τ1

) . (15)

Moving now to the second-order case, where na = 2,
the structure of H′ is seen to be nh′ = na = 2 ⇒ H′ =
s2 + h′

1s + h′
0. As before, G′ = g′

0. Furthermore, n�′ =
na + 1 = 3. The polynomial equation from Equation (12),
viz. sH′ + BG′ = �′ = A(s + p), can now be solved by
equating terms of like power on both sides to obtain the
unique solution g′

0 = pa0/b0 (from Equation (6), a0/b0 =
1/k2 ⇒ g′

0 = p/k2), h′
0 = pa1 + a0, h′

1 = p + a1. Finally,
using the definitions of a0 and a1 from Equation (6),
the compensator for the second-order case can be
expressed as

C2(s) = AG′

sH′ =
p
k2

(
s2 +

(
1

τ21
+ 1

τ22

)
s + 1

τ21τ22

)

s
(
s2 +

(
p + 1

τ21
+ 1

τ22

)
s

+ p
(

1
τ21

+ 1
τ22

)
+ 1

τ21τ22

)
. (16)

2.1.3. Nominal models and controller calculation
The nominal model parameters for P1 and P2 were
obtained from a previous identification study involving
11 participants (Wang & Hunt, 2021): 10 of these par-
ticipants were included in the first test series described

below (Section 2.2.2), and eight took part in the second
series.

For the first test series,whichuseda square-wave refer-
ence profile, the nominal first- and second-order models
for calculation of C1 and C2 were taken as the average of
the 11 identified models in each case, so that a single C1
compensator and a singleC2 compensatorwas applied to
all 10 participants. The nominal P1 and P2 models were

P1: k1 = 28.57, τ1 = 70.56,

P2: k2 = 24.70, τ21 = 18.60, τ22 = 37.95. (17)

The compensators C1 and C2 were calculated using Equa-
tions (15) and (16), and the sensitivity functions accord-
ing to Equations (7), (8) and (9). The Bode magnitude
plots of the resulting sensitivity functions are illustrated
in Figure 2.

In the second test series, which involved eight partici-
pants, the compensators were calculated using each par-
ticipant’s individually identified first- and second-order
models. The model parameters of P1 and P2 for each
participant are listed in Table 1.

The reference prefilter Cpf was employed in the first
test series to obtain a common overall closed-loop trans-
fer function Tcl from reference signal r to controlled vari-
able y (Figure 1), independent of the compensator and
plant transfer functions. Following a procedure detailed
elsewhere (Hunt & Fankhauser, 2016), Tcl was specified
to be a standard second-order transfer function with crit-
ical damping and rise time of 150 s; the prefilter was
then calculated as Cpf = T−1

o Tcl, where To is the comple-
mentary sensitivity function, Equation (9). (Note: for the
second test series, Section 2.2.2 below, the HR reference
was constant, therefore the prefilter played no role in the
outcomes.)

2.2. Experimental design

2.2.1. Participants
Ten healthy participants (8 males, 2 females) were
recruited for this study, with age 30.1 years ± 9.9 years,
body mass 77.4 ± 13.5 kg, and height 180.0 ± 11.4 cm
(means ± standard deviations). The recruitment criteria
were: regular exercisers (30 minutes each time, 3 times
each week), nonsmokers, and free from cardiovascular
disease or musculoskeletal complaints.

2.2.2. Test protocol
Two test series were performed: in the first, the heart
rate reference was a square wave, while in the second
it was constant. In each test series, each participant was
tested once with compensator C1 and once with C2. To
prevent order-of-presentation effects, theorder of testing
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Figure 2. Closed-loop frequency responses for the first test series: input-sensitivity function (Uo), sensitivity function (So) and com-
plementary sensitivity function (To); each function is plotted for compensators C1 and C2. Red dots mark the −3 dB cutoff frequency
(bandwidth) for each transfer function. Vertical dashed lines distinguish four frequency bands of HRV (Shaffer & Ginsberg, 2017): ultra-
low frequency (ULF, ≤0.003̄ Hz), very-low frequency (VLF, 0.003̄–0.04 Hz), low frequency (LF, 0.04–0.15 Hz) and high frequency (HF,
0.15–0.4 Hz).

with C1 and C2 was reversed for each participant based
on the recruitment identification number, i.e. participant
P01 was tested first with C1, participant P02 with C2, par-
ticipant P03 with C1, and so on. There was an interval of
at least 48 hours between each test for each participant.
Before each test, participants were instructed not to take
intensive exercise for 24 hours, to avoid caffeine for 12
hours and not to have a large meal for 3 hours.

Each feedback test consisted of four phases: a 10-
minute warm up, 10-minutes of rest, a 30-minute formal

Table 1. Individual model parameters used in the second test
series.

P1 P2

ID k1 τ1 k2 τ21 τ22

P01 24.73 53.98 21.40 12.13 29.16
P02 31.49 67.16 26.70 27.80 27.80
P03 25.72 65.08 21.01 24.15 26.63
P04 19.73 65.87 17.77 9.68 45.82
P05 28.85 106.50 24.71 22.06 60.51
P08 36.61 69.64 33.33 10.71 49.45
P09 22.52 71.95 20.11 11.71 47.34
P10 30.67 66.18 25.28 20.24 25.44

Note: n = 8.
ID: participant identification number.
P1: first-order model.
P2: second-order model.

measurement phase and a 10-minute cool down
(Figure 3).

In the warm up phase, the speed of the treadmill was
computed using the same compensator as for the for-
mal measurement phase; the reference HR, denoted HR∗,
was set to a constant value HRm corresponding to a HR
between the ranges for moderate and vigorous exercise
intensity (Riebe et al., 2018), calculated individually as
HRm = 0.765 × (220−age) (except that, for participant
P03, the factor was set to 0.7 to maintain an exercise
intensity perceived as moderate).

In the formal measurement phase, the speed of the
treadmill was continuously adjusted by the compensator
(C1 or C2). The profiles for the reference heart rate signal
HR∗ were defined as follows:

• The first series implemented a square-wave reference
signal with mean HRm, amplitude 10 bpm, and period
10min (Figure 3(a)), i.e. HR∗ = HRm ± 10 bpm. The
time interval between 295 s and 1795 s (totally 1500 s,
25min) was used for calculation of the quantitative
outcomes (below). The first five minutes of the formal
evaluation phase allowed theHR of each participant to
reach an initial steady state and hence were excluded
from the evaluation period.
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Figure 3. Test protocol with HR-reference profiles (HR∗). Upper plot: profile of reference HR signal for the first test series (square wave).
Lower plot: heart rate target for the second test series (constant). (a) Reference HR signal for first test series and (b) Reference HR signal
for second test series.

• The second series applied a constant target HR equal
to HRm (Figure 3(b)). The start time of the evalua-
tion period was the time when the measured HR first
reached the target HR and was individually set. All the
start times were in the range from 295 s to 495 s. The
end time of the evaluation period was 1795 s for all
participants.

In the cool down phase, the reference HR was kept
constant for 10min.

2.2.3. Equipment
All tests were carried out on a PC-controlled treadmill
(model Venus, h/p/cosmos Sports & Medical GmbH, Ger-
many; Figure 4). The control algorithm was implemented
using real-time Simulink (The MathWorks, Inc., USA) run-
ning on the PC. Heart rate was measured by a chest
strap (H10, Polar Electro Oy, Finland) and transferred to
the PC through a wireless receiver module (Heart Rate
Monitor Interface, Sparkfun Electronics, USA) at a rate
of 1 Hz. The control algorithm ran at a sample rate of
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0.2 Hz (sample interval 5 s) hence the HR measurement
was downsampled by averaging every five consecutive
values.

2.2.4. Evaluation outcomemeasures
The performance of compensators C1 and C2 was quan-
titatively evaluated by a tracking accuracy outcome and
a control-signal intensity outcome. Tracking accuracy
was evaluated by the root-mean-square error (RMSE,
Equation (18)) between the HR measurement and the
nominal (simulated) closed-loop HR response. The inten-
sity of the control signal was assessed by the average
power of changes in the treadmill speed (denoted P∇u,
Equation (19)):

RMSE =
√√√√ 1

N

N∑
i=1

(HRnom(i) − HR(i))2, (18)

P∇u = 1
N − 1

N∑
i=2

(u(i) − u(i − 1))2. (19)

Here, HRnom is the simulated closed-loop HR response
and HR is the measured HR. u is the treadmill speed and

N is the number of discrete sample instants over the
evaluation period.

2.2.5. Statistics
Formal statistical analysis was carried out to test the
hypotheses of this study, viz. that heart rate control
design based on second-ordermodels can achieve better
tracking accuracy (RMSE for C2 lower than C1) as a conse-
quence of a more dynamic control signal (P∇u higher for
C2 than for C1) when compared to controllers designed
from first-order models.

Prior to hypothesis testing, normality of differences
between evaluation outcomes forC1 and C2 was assessed
by a Kolmogorov-Smirnov test with Lilliefors correction.
As all the differences were found not to significantly devi-
ate from normality, paired one-sided t-tests were used
with a significance level of 5% (α = 0.05). Statistical ana-
lyzes were implemented using the Matlab Statistics and
Machine Learning Toolbox (The Mathworks, Inc., USA).

3. Results

Ten participants completed the first test series, but, due
to non-availability of twoparticipants, only eight of the 10

Figure 4. The computer-controlled treadmill used in this study.
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Figure 5. Measurements with RMSE closest to themean in the two test series for the two compensator types. For each figure, the upper
plot shows the reference heart rate signal (HR∗, black dashed line), the measured heart rate (HR, red line) and the nominal (simulated)
heart rate response (HRnom, black line); the lower plots show the control signal, i.e. treadmill speed. The evaluation period for each mea-
surement is denoted by a red horizontal bar. Participant number is denoted as P03, etc. (a) First test series, C1, P08. (b) First test series, C2,
P09. (c) Second test series, C1, P03 and (d) Second test series, C2, P03.

Table 2. Sample properties for outcomes from C1 and C2 in the first test series
and p-values for comparison of means (see also Figure 6(a,b)).

mean± SD MD (95% CI)

C1 C2 C2–C1 p-value

RMSE/bpm 2.59 ± 0.50 2.69 ± 0.34 0.10 (−∞, 0.32) 0.79
P∇u/(10−4 m2/s2) 11.29 ± 1.65 27.91 ± 0.95 16.62 (15.49,∞) 3.1 × 10−10

Note: n = 10.
C1: compensator C1.
C2: compensator C2.
SD: standard deviation.
MD: mean difference of C2–C1.
95% CI: confidence interval for the mean difference.
p-values: paired one-sided t-tests.
RMSE: root-mean-square error.
P∇u : average control signal power.
bpm: beats per minute
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completed the second series. Thus, a total of 36 datasets
were available for analysis: 10 pairs of datasets (C1 and
C2) for the first test series and eight pairs (C1 and C2) for
the second series. To illustrate typical test results, the four
measurements which had outcomes closest to the mean
RMSE in each series and for each compensator type are
provided (Figure 5).

In the first test series (n = 10), the tracking accu-
racy, as quantified by the root-mean-square tracking
error (RMSE), was not significantly lower for C2 than for

C1: RMSE was 2.59 ± 0.50 bpm (mean ± standard devi-
ation) vs. 2.69 ± 0.34 bpm, C1 vs. C2, p = 0.79 (Table 2,
Figure 6(a)). On the other hand, average control sig-
nal power P∇u was found to be significantly higher for
C2: P∇u was 11.29 × 10−4 m2/s2 ± 1.65 × 10−4 m2/s2 vs.
27.91 × 10−4 m2/s2 ± 0.95 × 10−4 m2/s2, C1 vs. C2, p =
3.1 × 10−10 (Table 2, Figure 6(b)).

In the second test series (n = 8), RMSE for C2 was
also found not to be significantly lower than for C1:
RMSEwas 1.99 ± 0.45 bpmvs. 1.94 ± 0.50 bpm, C1 vs. C2,

Figure 6. Dispersion of samples for RMSE and P∇u from the two test series, with 10 sample pairs from the first test series (Figure 6(a,b))
and eight sample pairs from the second series (Figure 6(c,d)). In each figure, blue and red dots are the outcomes with compensators C1
and C2, respectively, green lines connect sample pairs for each participant, and red bars mark the sample means (given numerically in
Tables 2 and 3). D denotes the difference between paired samples (C2–C1) and MD (red horizontal bar) the mean difference. The 95%
confidence intervals (CIs) are marked in blue. For P∇u, the value 0 is outwith the 95% CI in both cases, indicating a significantly higher
value for C2 (the notation ∗ signifies p< 0.05 and ∗∗∗∗ means p< 0.0001). For RMSE, the value 0 is inside the 95% CI in both cases,
indicating that the values for C2 are not significantly lower (p> 0.05). (a) RMSE for first test series. (b) P∇u for first test series. (c) RMSE for
second test series and (d) P∇u for second test series.
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Table 3. Sample properties for outcomes from C1 and C2 in the
second test series and p-values for comparison of means (see also
Figure 6(c,d)).

mean± SD MD (95% CI)

C1 C2 C2–C1 p-value

RMSE/bpm 1.99 ± 0.45 1.94 ± 0.50 −0.05 (−∞, 0.27) 0.39
P∇u/(10−4 m2/s2) 2.20 ± 0.93 2.78 ± 1.30 0.58 (0.02,∞) 0.045

Note: n = 8.
C1: compensator C1.
C2: compensator C2.
SD: standard deviation.
MD: mean difference of C2–C1.
95% CI: confidence interval for the mean difference.
p-values: paired one-sided t-tests.
RMSE: root-mean-square error.
P∇u : average control signal power.
bpm: beats per minute.

p = 0.39 (Table 3, Figure 6(c)); but P∇u was again sig-
nificantly higher for C2, viz. 2.20 × 10−4 m2/s2 ± 0.93 ×
10−4 m2/s2 vs. 2.78 × 10−4 m2/s2 ± 1.30 × 10−4 m2/s2,
C1 vs. C2, p = 0.045 (Table 3, Figure 6(d)).

To graphically illustrate dispersion of the samples for
both outcomes and for the two test series, sample pairs,
their differences and the corresponding 95% confidence
intervals (CIs) are provided (Figure 6). These plots allow
the visual verification of the existence (or otherwise) of
significant differences between the means: if the value
0 lies outwith the respective CI, a significant difference
exists.

4. Discussion

This studyaimed to investigatewhether heart rate control
design based on second-order models (C2) can achieve
better tracking accuracy – lower RMSE – as a conse-
quenceof amoredynamic control signal – higher average
control signal power – when compared to controllers
designed from first-order models (C1). To facilitate this
investigation, the input-sensitivity-shaping approach to
feedback design was theoretically extended to cover
second-order models.

Amotivating factor for this hypothesis was the finding
that second-order linear models, theoretically valid close
to somenominal operatingpoint, give significantly better
goodness-of-fit (model fit and model RMSE) than first-
order models in the approximation of heart rate dynam-
ics (Wang & Hunt, 2021): with the inclusion of a faster
response mode, controllers based on second-order mod-
els might be more dynamic and therefore more accurate.

It was found that C2 controllers were indeed more
dynamic, with significantly higher average control sig-
nal power P∇u, but that this did not lead to significant
improvements in tracking accuracy (RMSE was not lower

for C2). This finding can in part be explained by the funda-
mental ability of feedback to reduce plant-model uncer-
tainty (Åström & Murray, 2008), so that differences in
closed-loop control performance are likely to bemore dif-
ficult to detect empirically than differences in open-loop
model fidelity.

Insight into the observed closed-loop outcomes can
be obtained by examining the frequency responses of
the various closed-loop sensitivity functions (Figure 2).
The input sensitivity function Uo, which is the transfer
function from the HRV disturbance term d to the con-
trol signal u, has a higher gain for C2 than for C1 across
the whole frequency range, consistent with the more
dynamic behaviour and significantly higher control signal
power P∇u for C2 that was observed.

The sensitivity function So, which is the transfer func-
tion between d and the controlled output y (HR), displays
more nuanced behaviour: the gain of So is lower for C2
over most of the ULF range but then becomes higher for
C2 at the higher end of the ULF band and over about
half of the VLF range. Most significantly, the gain of So
has a much higher peak for C2 than for C1. Thus, C2 will
better attenuate ultra-low-frequency disturbances, but it
will more strongly amplify disturbances in the VLF band
where |So| > 1. Further work on comparing C1 and C2
controllers should strive to balance these potentially con-
founding frequency response characteristics.

A further factor to be considered regarding the con-
trol structure, and which is relevant to the first test series,
relates to design of the reference prefilter Cpf. It tran-
spired that, for C2, the prefilter transfer function was
non-proper, thus leading to instantaneous increases in
the control signal u in response to step changes in the
reference r: see Figure 5(b), lower plot. In contrast, Cpf
for the C1 case was proper, giving smooth changes in u
(Figure5(a), lowerplot). In the first seriesof tests, thesedif-
ferences inCpf designmayhave tended to exaggerate the
higher mean P∇u observed with C2. Since the reference
signal r was constant during the second test series, the
designofCpf did not influence the outcomes in this series,
where significantly higher control signal powerwas again
observed.

A limitation of the present study, and a further con-
tributing factor in regard to the inconclusive RMSE out-
come,was the lownumber of participants included. Here,
there were 10 participants in the first series and eight of
those completed the second series, whereas the open-
loop modelling comparison (Wang & Hunt, 2021) had
22 pairs of goodness-of-fit outcomes and was strongly
statistically powered (there were large effect sizes and p-
values on the order of 10−10). These considerations, in
particular the relative difficulty of detecting differences
in RMSE in closed-loop vs. open-loop scenarios, point
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to the need for further investigation using substantially
larger sample sizes.

5. Conclusions

The results provide no evidence that controllers based
on second-order models lead to better tracking accu-
racy, despite the finding that they are significantly more
dynamic. To explore this outcome in more detail, fur-
ther investigationusing amore carefully balanced control
designanda substantially larger sample size iswarranted.
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