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ABSTRACT
Introduction  Achieving optimal diabetes control requires 
several daily self-management behaviours, especially 
adherence to medication. Evidence supports the use of 
text messages to support adherence, but there remains 
much opportunity to improve their effectiveness. One key 
limitation is that message content has been generic. By 
contrast, reinforcement learning is a machine learning 
method that can be used to identify individuals’ patterns 
of responsiveness by observing their response to cues and 
then optimising them accordingly. Despite its demonstrated 
benefits outside of healthcare, its application to tailoring 
communication for patients has received limited attention. 
The objective of this trial is to test the impact of a 
reinforcement learning-based text messaging programme on 
adherence to medication for patients with type 2 diabetes.
Methods and analysis  In the REinforcement learning 
to Improve Non-adherence For diabetes treatments by 
Optimising Response and Customising Engagement 
(REINFORCE) trial, we are randomising 60 patients with 
suboptimal diabetes control treated with oral diabetes 
medications to receive a reinforcement learning 
intervention or control. Subjects in both arms will receive 
electronic pill bottles to use, and those in the intervention 
arm will receive up to daily text messages. The messages 
will be individually adapted using a reinforcement 
learning prediction algorithm based on daily adherence 
measurements from the pill bottles. The trial’s primary 
outcome is average adherence to medication over the 
6-month follow-up period. Secondary outcomes include 
diabetes control, measured by glycated haemoglobin A1c, 
and self-reported adherence. In sum, the REINFORCE trial 
will evaluate the effect of personalising the framing of text 
messages for patients to support medication adherence 
and provide insight into how this could be adapted at scale 
to improve other self-management interventions.
Ethics and dissemination  This study was approved 
by the Mass General Brigham Institutional Review Board 
(IRB) (USA). Findings will be disseminated through 
peer-reviewed journals, ​clinicaltrials.​gov reporting and 
conferences.

Trial registration number  ​Clinicaltrials.​gov 
(NCT04473326).

INTRODUCTION
Type 2 diabetes affects more than 34 million 
Americans and annually costs the US health-
care system an estimated US$237 billion.1 
Achieving optimal diabetes control 
requires a variety of daily self-management 
behaviours, such as physical activity and 
maintaining a healthy weight.2 3 Among 

Strengths and limitations of this study

►► REinforcement learning to Improve Non-adherence 
For diabetes treatments by Optimising Response 
and Customising Engagement is a two-arm prag-
matic randomised trial of patients with suboptimally 
controlled diabetes that is testing a highly scalable 
strategy to personalise communication using rein-
forcement learning to improve adherence to medi-
cation and diabetes control.

►► The trial is designed to maximise both internal valid-
ity and generalisability and uses routinely-collected 
data to evaluate outcomes.

►► By using a 6-month follow-up to evaluate adher-
ence outcomes, the trial will examine both long-
term medication-taking and clinical outcomes (eg, 
glycaemic control).

►► While electronic pill bottles are highly accurate at 
measuring actual pill consumption, monitoring could 
theoretically influence adherence, but these observ-
er effects typically decrease over time and would be 
similar in the control and intervention arms.

►► Secondary outcomes, including glycated haemo-
globin A1c and self-reported adherence, may be 
susceptible to missing data due to the nature of the 
pragmatic data collection, but we are using imputa-
tion methods to overcome this issue.
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these, adherence to medication is central.4–6 Many strat-
egies to improve adherence have been developed and 
tested.7–10 A growing body of evidence supports the 
use of text messages to improve health behaviours by 
offering reminders, providing education and enhancing 
motivation.11–16 In the case of diabetes, text messaging 
has been shown to improve adherence compared with 
usual care.17

Despite this evidence, there remains much opportu-
nity to optimise the effectiveness of text messaging-based 
interventions.17 One key limitation of these prior inter-
ventions is that the message content has been largely 
generic. Evidence from behavioural sciences indicates 
that personalisation of communication is an extremely 
important principle for changing behaviours.18–20 In 
contrast to customisation, which involves manually 
changing content, personalisation tailors content for indi-
viduals based on their actual, observed prior behaviours, 
which can result in greater behaviour change.21 However, 
doing so at a population scale is difficult, especially in a 
way that is integrated with patients’ regular care.

One approach to achieve both precision and scalability 
is with the use of reinforcement learning, a machine 
learning method that can be used to observe individual 
behaviours in response to cues and implement a person-
alised strategy to further optimise behaviours in response 
to these cues.21–25 Through an iterative and systematic 
trial-and-error feedback loop, reinforcement learning 
algorithms can identify which outreach, in what order, 
and what delivery frequency, maximises each patient’s 
response. In contrast to other approaches, reinforcement 
learning algorithms learn in real-time, do not rely on 
historical data from other subjects, and tailor interven-
tions for individual patients.26

In healthcare, reinforcement learning has been used 
to improve targeting of interventions for patients with 
mild depression,27 titrate antiepilepsy drugs28 and iden-
tify the best way for clinicians to manage sepsis.27 29 30 In 
the case of patient-facing healthcare, a reinforcement 
learning-based text message intervention improved phys-
ical activity and glycaemic control in patients with type 
2 diabetes.24 25 Such an approach could also personalise 
text message outreach for medication adherence about 
adherence and lifestyle but has not been evaluated for 
this purpose.

METHODS AND ANALYSIS
Overall study design
REinforcement learning to Improve Non-adherence For 
diabetes treatments by Optimising Response and Custom-
ising Engagement (REINFORCE) is a two-arm pragmatic 
randomised controlled trial designed to evaluate the 
impact of a text messaging programme tailored using 
reinforcement learning on medication adherence for 
patients with type 2 diabetes (figure 1). The trial began 
enrolment on 4 February 2021.

Study setting and subjects
The study is being conducted at Brigham and Women’s 
Hospital (BWH), an academic medical centre in Boston, 
Massachusetts, USA, part of Mass General Brigham. 
Potentially-eligible subjects are individuals 18–84 years of 
age diagnosed with type 2 diabetes who are prescribed 
1–3 daily oral diabetes medications, with their most 
recent glycated haemoglobin A1c (HbA1c) level ≥7.5% 
(ie, above guideline-based treatment targets).2 These 
criteria are being assessed using the BWH electronic 
health record (EHR).

Eligible patients must also have a smartphone with a 
data plan or Wi-Fi at home with ability to receive text 
messages regularly (ie, expected gaps in communica-
tion ≤3 days in a row), have a basic working knowledge of 
English, not be actively enrolled in another diabetes trial 
at Mass General Brigham, currently not using a pillbox 
or being willing and able to use electronic pill bottles for 
their diabetes medications for the duration of the study, 
and be independently responsible for taking their medi-
cations on a daily basis (ie, do not have daily assistance 
with medication-taking at home).

Patients using insulin are eligible to participate, and 
participants are not required to have prior evidence of 
non-adherence, as self-reported adherence is known to 
be strongly overestimated.31 These criteria were chosen 
because smartphone connectivity and willingness to use 
electronic pill bottles are essential for the daily measure-
ment of adherence from the electronic pill bottles, and 
prior literature suggests wide adoption of smartphones, 
even among patients from socioeconomically disadvan-
taged backgrounds.32–34 The text messages are only pres-
ently available in the English language.

Study procedures and randomisation
The timeline of study procedures is shown in figure  2. 
Potentially eligible subjects with recent or upcoming 

Figure 1  Overall trial design. HbA1c, haemoglobin A1c.
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virtual or in-person appointments at one of the BWH 
diabetes clinics are identified using a biweekly EHR 
screen. Patients’ endocrinologists are then provided 
with a list of their potentially eligible patients via email 
and asked to opt-out any patients they do not wish to be 
approached for participation.

Patients approved for enrolment are sent a mailed or 
electronic patient portal letter on their endocrinolo-
gist’s behalf inviting them to participate in the study and 
providing them with a contact number to enrol directly. 
Patients are then contacted by phone. Those subjects who 
provide consent to participate are sent a baseline ques-
tionnaire administered and collected through REDCap 
electronic data capture tools housed at BWH (online 
supplemental appendix table 1; written consent form) 
and mailed Pillsy electronic pill bottles for their medica-
tions. REDCap is a secure, web-based software platform 
that supports data capture for research studies.35 36 Elec-
tronic pill bottles have been widely used in prior research 
on adherence and have shown high concordance with 
other adherence measurement methods.37 38 Subjects 
are asked to use these devices in place of regular pill 
bottles or pillboxes for their eligible oral diabetes medica-
tions. Data from the bottles are transmitted through the 

patients’ smartphones via a latent downloaded app that 
has no features enabled (Android or iOS) and is used 
only for measurement purposes.

After receiving the pill bottles, patients are randomised 
in a 1:1 ratio to intervention or control arm using a 
simple random number generator. In order to improve 
baseline participant balance between the two treatment 
arms, randomisation is block-randomised based on (1) 
baseline level of self-reported adherence, specifically 
<1 dose or ≥1 doses missed in the last 30 days,31 and (2) 
baseline HbA1c of <9.0% or ≥9.0%. These adherence and 
HbA1c cutpoints are based on prior literature and clini-
cally relevant thresholds and are used to create four total 
blocks.31 39

At the end of the 6-month follow-up, patients are 
contacted by text message (and then by phone if non-
responsive) to complete a follow-up questionnaire (online 
supplemental table 2) and ensure the complete synchro-
nisation of their electronic pill bottles. The follow-up 
questionnaire includes items about self-reported adher-
ence,31 number of diabetes medications, diabetes-related 
hospitalisations and satisfaction with the text messaging 
programme. Patients in both arms receive a US$50 gift 
card for participation at the end of the study.

Figure 2  Timeline of study procedures.
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Intervention
Overview
The core component of the intervention is a reinforce-
ment learning programme that personalises daily text 
message outreach based on data from the electronic pill 
bottles (figure 3). Beginning the morning after randomi-
sation, the programme predicts which text message will 
be most likely to cause a patient to take their medications; 
the corresponding text message is then sent. The effective-
ness of each message is assessed the next morning based 
on whether the medication doses were actually taken. 
The control arm receives no text messaging programme.

Text messages and classification scheme
The text messages that are delivered to patients are 
based on existing behavioural science principles of how 
message content that influences patient behaviour and 
improves patient self-efficacy.40–42 Based on feedback 
from qualitative interviews with patients,43 we selected 
five factors to incorporate into the messages: (1) framing, 
classified as neutral, positive or negative, (2) observed 
feedback, whereby the text message included the number 
of days in the previous week that patients had evidence 
of medication-taking (ie, 0–7), (3) social reinforcement 
(ie, mentioning loved ones in the text), (4) the nature of 
content, either providing a medication reminder or infor-
mation about medications or lifestyle and (5) reflection, 
where the texts were designed to invoke introspection, 
such as including a reflective question.7 18 19 25 44 45

Informed by prior trials led by the study team, evidence-
based texts in publicly-available materials, and the patient 
qualitative interviews, we designed text messages incor-
porating varying components of the five selected factors 
(table 1).25 46–48 For instance, a text message containing 

positive framing, observed feedback, social reinforce-
ment, reminder content and without reflection would 
comprise one set of factors (eg, table  1, text 8). Each 
factor set in the trial had at least two text messages that 
corresponded with that set. Altogether, we developed and 
included 128 messages containing 47 unique combina-
tions of factors.

Reinforcement learning text messaging program
The reinforcement learning algorithm is hosted on a 
Health Insurance Portability and Accountability Act 
(HIPAA)-compliant Microsoft Azure server and inte-
grates three components: (1) electronic pill bottle data 
obtained on a daily basis from the Pillsy server, (2) patient 
data from REDCap updated on a daily basis, including 
age, sex, number of medications, baseline HbA1c and 
patient activation, used as fixed predictors in the algo-
rithm and (3) the reinforcement learning prediction 
model algorithm itself housed by Microsoft Personaliser, 
a publicly-available platform.49 Even though they are 
‘fixed predictors’, the patient data are updated on a daily 
basis to incorporate new patients as they are enrolled and 
to update the number of medications for the adherence 
calculations, for example, if a diabetes medication for 
which a given patient is using an electronic pill bottle is 
discontinued or a new one is added.

Each day, adherence from the prior day is calculated 
by dividing the number of times a patient opened the pill 
bottle by the number of doses prescribed (ie, once or two 
times per day as assessed during REDCap data collection 
at baseline). Adherence values, ranging from 0 to 1, are 
the ‘reward’ events sent to Microsoft Personaliser that 
train the algorithm to achieve the highest possible sum of 
these adherence rewards over time. For patients on more 

Figure 3  Reinforcement learning platform.
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than one medication, the values for each are averaged. 
To avoid erroneously classifying repeated bottle open-
ings for a single dose as representing multiple doses, we 
only count a maximum of 1 opening event per ~3 hour 
period. To reduce the chance of training the model on 
incorrect data, reward events for the prior day are not 
sent to Personaliser if the electronic pill bottles appear to 
be disconnected that day. Once the pill bottles are recon-
nected, the feedback loop is complete, and the model is 
updated. If no reward value is sent to Personaliser after 
2 days, a default reward value of 0 is assigned to that 
training event.

The reinforcement learning initially suggests random 
text message factors and observes individual feedback 
and subsequent adherence to medication.29 Over time, 
the algorithm begins to predict which factors should be 
included in the message that a patient receives. In addi-
tion to the adherence reward, the algorithm also incorpo-
rates other predictors including baseline characteristics, 
the number of days since each factor of text message was 
sent (to avoid sending similar messages many times in a 
row), and an indicator of whether a patient took their 
medication ‘early’ (ie, in the same calendar day but prior 

to the text message prediction of that morning). The 
most appropriate message for each day is determined 
by computing the predicted responses and Boltzmann 
sampling,50 sometimes referred to as a ‘contextual bandit’ 
method.26 51 52 When no adherence reward is received 
(because no data have been received from a patient’s pill 
bottle), text messages are predicted and based on adher-
ence rewards available to date. Throughout the trial, 10% 
of the daily predictions are randomly chosen in order to 
continue to train the model. As in prior work, the algo-
rithm can decide that no text message be sent to a specific 
patient on a given day.25

The text messages are sent up to daily using Micro-
soft Dynamics 365 SMS Texting, a HIPAA-compliant 
third-party platform managed through BWH. While the 
platform allows for two-way communication for patients 
in the intervention arm to stop the daily text message 
reminders, patients are not specifically encouraged to 
respond in order to enhance the potential for scalability 
to other settings. The overall programme was pilot tested 
among non-participant volunteers for 3 weeks before the 
start of the study in order to address operational issues; 
these data were not used to train the algorithm.

Table 1  Example text messages and factor classifications

No. Text message

Framing 
(neutral=0; 
positive=1; 
negative=2)

Observed 
feedback 
(yes=1; 
no=0)

Social 
(yes=1; 
no=0)

Content 
(information=1; 
reminder=0)

Reflection 
(yes=1; 
no=0)

1 Did you remember to take your medicine at your usual time 
today? If not, please take it now.

0 0 0 0 1

2 Following a healthy lifestyle can help you live your life the way 
you want to. The American Diabetes Association has some great 
tips at https://bitly/3nRQtuE.

0 0 0 1 0

3 Your loved ones are counting on you to take your medicine—here 
is a reminder to take your medicine.

0 0 1 0 0

4 You took your medicine prescribed by your doctor X of the last 7 
days. Are you on track for today?

0 1 0 0 1

5 Managing your health can be difficult—exercising three times 
a week for 30 min and taking your medicine can make you feel 
good. Stick to it!

1 0 0 1 0

6 Do you want to get the most out of quality time with your loved 
ones? Taking your medicine daily can help you feel better.

1 0 1 0 1

7 You took your medicine X out of the last 7 days. It’s important 
that you take your medicines as prescribed. Doing so might help 
you live longer.

1 1 0 1 0

8 In the last week, you took your medicine X days. Please 
remember to take your medicine to feel good and get more 
quality time with loved ones! You got this!

1 1 1 0 0

9 When you get busy, do you forget to take your medicine? Missing 
doses can make you feel worse, so remember to take it today.

2 0 0 0 1

10 Taking your medicine prescribed by your doctor can keep you 
from feeling unwell when you're with your loved ones.

2 0 1 1 0

11 You took your medicine X days in the last week. Taking medicine 
gets easier with time and could help keep your health costs from 
going up—don't forget today.

2 1 0 0 0

12 Please take your medicine, you took it X days out of the last 7. 
Taking it can be hard but you're not alone. It can keep you from 
feeling bad over the long run.

2 1 1 0 0
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In addition to the reinforcement learning specified 
messages, intervention subjects also receive an introduc-
tory text on the day of randomisation, a simple reminder 
text to synchronise their electronic pill bottles if they have 
not been connected for more than seven days (sent every 
3 days until connected or until 30 days has elapsed), and 
a final text at the end of follow-up with a link to the final 
questionnaire (Appendix Table 2). If the pill bottles have 
still not been synchronised for >14 days and >28 days, 
subjects will also receive one call from study staff on these 
days to inquire about any synching issues.

Control arm
The control arm receives the same simple introductory, 
synchronisation and end of study text messages as sent 
to the intervention arm in the same sequence (Appendix 
Table 3). As in the intervention arm, if the pill bottles 
have still not been synced for >14 days and >28 days, 
subjects will receive one call from study staff on these 
days to inquire about any synching issues. Patients in the 
control arm do not receive any other intervention.

Outcomes
The trial’s primary outcome is medication adherence 
assessed in the 6 months after randomisation (table 2). 
Medication adherence will be measured by averaging 
daily adherence (as described above) for each medica-
tion across each patient beginning the day after randomi-
sation until 183 days after randomisation.

Secondary outcomes include change in glycaemic 
control as assessed using HbA1c, and self-reported adher-
ence at the end of follow-up. HbA1c values will be collected 
from routine measurements recorded in the EHR system; 
we will use the value closest to each patient’s 6-month 
end of follow-up, up to 1 month after randomisation. In 
routine care, HbA1cs are measured approximately every 
3–6 months, so we expect only modest missingness, as we 
have observed also in prior work.46

Self-reported adherence will be assessed as the propor-
tion of patients who are adherent according to a vali-
dated three-item self-report measure and prior literature 
from the follow-up questionnaire.31 We will also descrip-
tively measure implementation outcomes informed 
by the Reach, Effectiveness, Adoption, Implementa-
tion, Maintenance (RE-AIM) framework,53 including 

representativeness of patients in the study, text messaging 
opt-out rates, any feedback from patients and rates of 
pill bottle disconnectedness, which will inform consider-
ations for how to scale the intervention to other settings.

Analytic plan and sample size
We will report means and frequencies of prerandomisa-
tion variables separately by intervention and control arm, 
comparing these values using absolute standardised differ-
ences. The outcomes will be evaluated using intention-to-
treat principles among all randomised participants.

In the primary analysis, we will evaluate adherence and 
glycaemic control using generalised estimating equations 
with an identity link function and normally distributed 
errors. We will also adjust for the block randomised 
design. We do not expect any missing data for the primary 
outcome, but may have up to 25% missingness for the 
glycaemic control outcome.46 54 If >10% of participants 
have missing HbA1c data, we will repeat our analyses 
using multiple imputation.54 55 A similar approach will be 
taken for self-reported adherence, except using a log link 
function and Poisson distributed errors to generate rela-
tive risks of the proportion of adherent patients in the 
intervention versus control arms.56 In secondary analyses, 
we will control for any differences in baseline variables 
between the arms despite randomisation.

As a sensitivity analysis, we will censor patients in the 
analysis when they have stopped using the electronic 
pill bottle for >30 days. We will also evaluate the change 
in HbA1c from baseline until the end of follow-up and 
differences in self-reported adherence separately for the 
three items that make up the self-reported scale we are 
using. For glycaemic control (HbA1c) and self-reported 
adherence, we will also conduct complete case analyses. 
Similarly, subgroup analyses will include stratification by 
age, sex, race/ethnicity, baseline HbA1c, baseline self-
reported adherence and number of study medications.

Our study should be sufficiently powered to detect clin-
ically meaningful differences in the primary outcome. 
With 60 subjects, we estimated that we would have the 
power to detect a 10% difference in average adherence 
over the 6-month follow-up period between the two arms, 
assuming an SD=12.5%, power=0.8 and α=0.05. With this 
sample size, we would also be able to detect an HbA1c 

Table 2  Study outcomes

Outcome Measurement Assessment

Primary Medication adherence: mean proportion of 
days covered

Proportion of days the electronic pill bottle was opened in the 
6-month follow-up period, averaged across study medications69

Secondary Glycaemic control: HbA1c in follow-up Value closest to 6-month visit, supplemented by laboratory values 
in the EHR

Secondary Self-reported adherence 12-month visit, using validated adherence score by Wilson et al70

Secondary Glycaemic control: change in HbA1c from 
baseline to follow-up

Change between Baseline and 6-month visit, in values collected 
by EHR

EHR, electronic health record; HbA1c, haemoglobin A1c.
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difference of 1.0% between arms (assuming SD=1.3) and 
50% relative difference in self-reported adherence.54

On trial completion, we will cluster intervention 
patients by their response to different text message factors 
and evaluate the ability to predict these cluster pheno-
types using baseline information before randomization. 
Based on prior work and the general 1:10 rule of thumb 
for predictor parameters, we expect to elucidate at least 
two unique patient characteristics for the clusters.25 57 
We have further classified each text message as quantita-
tive (ie, containing numbers), social reinforcement with 
specific reference to their doctor, or containing lifestyle 
information, which we will also incorporate as post-hoc 
prediction factors to evaluate responsiveness to individual 
texts; in total, there will be at least 5000 individual text 
messages sent. This exploratory prediction modelling on 
trial completion could provide a more accurate ‘starting 
point’ on which future programmes could begin to adapt 
to further personalise message content.

Patient and public involvement
We conducted 20 qualitative interviews with patients 
with type 2 diabetes at the outset of designing the trial.43 
These experiences and their preferences were used to 
help design and inform the text messaging programme, 
refine the research question and outcome measures, and 
recruitment mechanisms. We also plan to involve patients 
in the dissemination plans and distribute the study results 
to participants in the study.

DISCUSSION
Interventions for health behaviour change appear to be 
most effective when tailored to the needs and behavioural 
tendencies of individuals. Reinforcement learning is a 
machine learning method that can be used to discover 
individuals’ patterns of responsiveness and then personal-
ising cues accordingly. Despite its promise for improving 
the tailoring of communication, reinforcement learning 
has not yet been used to support medication-taking 
behaviours. Accordingly, we launched the REINFORCE 
trial to test the impact of a reinforcement learning-based 
text messaging programme on medication adherence for 
patients with type 2 diabetes.

Prior work using reinforcement learning indicates its 
early promise to improve health outcomes. For instance, 
in a three-arm trial testing the impact on exercise of 
different text messaging approaches for individuals with 
type 2 diabetes, reinforcement learning resulted in signifi-
cantly larger improvements in daily activity and glycaemic 
control than non-personalised weekly or daily texting 
strategies. Other trials of reinforcement learning-based 
interventions have shown similar successes, increasing, 
for example, physical activity by more than 20% versus 
non-adaptive approaches (p<0.001).58 59 We hypothesise 
that ‘reinforcement learning’ has transdiagnostic impli-
cations and thus could apply to other health behaviours, 
such as weight loss, diet, exercise, self-monitoring and 

medication use for patients with diabetes, the latter of 
which we are testing here.

Randomised trials have demonstrated the effective-
ness of text messaging to support adherence to medica-
tion.11 12 14 15 60–66 However, these approaches have only 
been modestly successful, possibly because they have not 
personalised the content and presentation (ie, framing) 
of the messages that patients receive.60 Text messages can 
be delivered at low cost and are widely available—even 
for patients who have difficulty accessing care—adding to 
their promise for improving population health, particu-
larly if sufficiently optimised.12

There are several limitations to this study that should 
be acknowledged. First, while electronic pill bottles allow 
for a highly accurate measure of actual pill consump-
tion,38 67 monitoring could theoretically influence adher-
ence. While these observer effects decrease over time,37 68 
to further minimise this bias, we are using electronic pill 
bottles in both arms. Patients may also not have an HbA1c 
lab value during follow-up for the secondary outcome, 
but we are using commonly used multiple imputation 
methods to address this. These findings may also not 
generalise to patients with prediabetes or gestational 
diabetes or to those without reliable access to a smart-
phone and/or wireless internet. The post-hoc predic-
tion analyses may also be limited by small sample size 
and are exploratory. Finally, this trial does not include a 
‘generic’ text messaging arm. Within pragmatic funding 
constraints, this design choice was motivated by our 
goal of testing the potential efficacy of a reinforcement 
learning text messaging intervention. If our trial were to 
find no beneficial effect compared with control, then it 
is highly unlikely that there would be benefit compared 
with generic text messaging either. Conversely, if the 
intervention is shown to be successful, a large trial would 
be required for validation, and this study would include 
other types of text messaging programmes.

In conclusion, the REINFORCE trial will evaluate the 
effect of personalising text message content to support 
medication adherence in type 2 diabetes using a machine 
learning method for patients. If the intervention is effec-
tive, this approach is expected to be tested and repro-
ducible in other clinical environments and for a broader 
set of health behaviours. Regardless of outcome, the 
trial will also provide insight into how reinforcement 
learning could be adapted at scale to improve other self-
management interventions.

ETHICS AND DISSEMINATION
The trial is approved by the institutional review board 
of Mass General Brigham and registered with ​clinical-
trials.​gov (NCT04473326) (see Trial Protocol attach-
ment). The authors will be responsible for performing 
the study analyses, writing the first draft of the manu-
script, substantive edits and submitting its final contents 
for publication. Data analysts at the end of the study will 
be blinded to arm assignment; patients are not blinded 
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due to the nature of the interventions. No data moni-
toring committee was deemed necessary by the human 
subjects’ oversight boards. Findings will be dissemi-
nated through peer-reviewed journals, reports to the 
funding organisation and ​clinicaltrials.​gov and scientific 
conferences. Study data will be made available pending 
appropriate agreements given the nature of the human 
subjects’ data.
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