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ABSTRACT 

In this work we study the existence and uniqueness of solutions and decay rates 

to the total energy and the L2-norm of solution for a semilinear second order 

evolution equation with fractional damping term and under effects of a 

generalized rotational inertia term in the case of plate equation. This system 

also includes equations of Boussinesq type that model hydrodynamic problems. 

We show decay rates depend- ing on the fractional powers of the operators and 

using an asymptotic expansion of the solution to the linear problem, we prove 

for some cases depending on the exponents of the operators, the optimality of 

the decay rates. 

Keywords: Plate/Boussinesq type equation; Fractional Laplacians; Generalized 

rotational inertia; Fractional dissipation; Existence and uniqueness; Decay 

rates. 
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 1 INTRODUCTION 

We consider in this work the following Cauchy problem associated 

to plate/Boussinesq type equations with a fractional damping and a 

generalized fractional rotational inertia term in Rn 

 

(1) 

with u = u(t, x), (t, x) ∈ (0, ∞) × R n , α > 0, β ∈ R, p > 1 integers and 

u0, u1 are the initial date. The Laplacian power δ, θ and γ are such that 0 ≤ δ 

≤ 2, 0 ≤ θ ≤ 2 and 0 ≤ γ ≤ 1. 

The function u = u(x, t), for example e, in the case δ = 1 and β = 0, 

describes the transverse displacement of a plate without non-linear effects, but 

subject to effects of rotational inertia and a fractional dissipation represented 

by the term (−∆)θut . In the case δ = 0 and β = 0 the linear equation in (1) 

models the plate displacement without rotational inertial effects. 

In the case δ = 2, β 6= 0 and γ = 1 the equation in (1) is a Boussinesq 

equation of sixth order under dissipative effects to model hydrodynamic 

problems (see [16], [6]). If δ = α = 0, γ = 1, β 6= 0 and without the 

dissipative term the equation in (1) is a generalized Boussinesq equation. If 

the nonlinearity has the form ∆(u 2 ) the equation is called the Boussinesq 

equation (Bq). With this type of nonlinearity and δ = 1, α = 0 and without the 

dissipative term, the equation in (1) is called the improved Boussinesq 

equation (IBq). This same equation with more general linearity as it appears 

above in (1) is called the IMBq equation (Modified IBq) (see [15]). All these 

variants of Boussinesq have many physical applications, such as the 

propagation of longitudinal waves of deformation in an elastic rod in the case 

of the dimension n = 1, propagation of shallow-water waves. Six-order 

Boussinesq equation was derived in the study of surface layers of nonlinear 

plasmas and non-linear chains (see [1], [5]). In Maugin [12], Maugin proposed 

such a Boussinesq model to model the dynamics of nonlinear networks in 

elastic crystals. 
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 In the article by Charão-Horbach-Ikehata [7] the authors studied the 

equation in (1) for the linear case β = 0. In that paper they studied decay 

rates for the linear problem and showed that the rates are optimal under the 

conditions 1 2 < θ < min{ 3 2 , δ + 1 2 } and 0 < δ < θ. 

In this paper our aim is to show the existence and uniqueness of solution 

for both the linear problem and the semilinear problem and to get decay rates 

for the semilinear problem under suitable conditions on the initial data and the 

fractional exponents of the Laplacian operator. Our results improve several 

previous works (see [2], [3], [8], [9] [11], [13], [14], [15], [16]). 

 

1.1 Basic Results 

In this section we introduce some results and technical lemmas that 

will be used in this paper. Part of these results are known and standard and 

the proof is not necessary. 

The method to prove our results such as properties of the Cauchy 

Problem (1) includes to apply the Fourier transform to get an equivalent 

Cauchy problem in Fourier space associated with the problem (1). Thus, we 

need to define the Fourier Transform of a function as usual. 

Definition 1.1: If u ∈ L2(Rn) then we denote for Fu the Fourier Transform 

of u given by 

 

In addition, we denote by F −1û the inverse Fourier Transform of û given 

by 

 

For u ∈ Hα (Rn) the operator (−∆)α is defined via Fourier transform by 
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 Theorem 1.1 (Plancherel Identity) For all function u ∈ L2(Rn) it holds that 

||u|| =||Fu||. 

In this work we use the space Hs(Rn) for s ∈ R. The following 

definition is the equivalent to the usual definition of Hs(Rn). 

Definition 1.2: For s ∈ R we define the space 

 

In the case Hs(Rn) with s > 0 we use the following equivalent norm and 

inner product 

 

In the case H−s(Rn) with s > 0 we use the norm and inner product given 

by 

 

Remark 1.1: When s = 2 we consider the following norm and inner 

product equivalent to usual 

 

Let consider the space of functions where we only take in account the 

derivative of greater order, that is, the space Ẇ  m,p(Rn), is defined for m, p 

∈ Z, p≥1 by 

 

We may represent this space by 
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 The norm in this space is defined by 

 

Using the inner product and norm defined above, we can show some 

properties involving the spaces Hs(Rn). These properties have fundamental 

importance to show existence and uniqueness of solution for both linear 

and semilinear case. 

 

 

Lemma 1.1: Let u ∈ Hs(Rn). If  then exist a constant C > 0 such 

that 

 

That is, when  we have Hs(Rn) continuously imbedding in L∞(Rn). 

Lemma 1.2: (Hs(Rn) is an algebra, s > n/2) Let u, w ∈ Hs(Rn). If   

then exist a constant C > 0 such that 

 

This Lemma is proved in the article of Kato-Ponce and Wang-Chen. 

Lemma 1.3: Let u ∈ Hs(Rn). If and p ≥ 1 integer then there exist a 

constant C > 0 such that 

 

Proof: For p = 1 the lemma is trivial. For p > 1 integer applying Lemma 

1.2 p -1 times we get the result. 

Lemma 1.4: Let u ∈ Hs(Rn). If  and p > 1 integer then exist a 

constant C > 0 such that  
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Proof: definition of norm L1(Rn) we have 

 

Using Hölder’s inequality with  we have 

 

The proof follows from the fact that p > 1 is integer and Hs(Rn) is an 

algebra for  

Lemma 1.5: Let u, w ∈ Hs(Rn),  and p > 1 integer. Then there 

exist a constant C > 0 such that 

 

Proof: Define h(λ) = λp then hI(λ) = p λp−1. By the Mean Value Theorem we 

have 

 

where 

 

for some 0 < ∈ < 1. 

Therefore, using Lemma 1.1 and the fact that p is integer, we have 
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 1.1.1 Abstract Linear Problem: Existence of Solution 

Let X be a Banach space and B a linear operator on X. Considering the 

abstract Cauchy problem 

 

(2) 

the following result holds. 

Theorem 1.2: If B is the infinitesimal generator of a C0-semigroup 

on X then, for each U0 ∈ D(B) the problem (2) admits a unique strong 

solution 

 

where S(t) is the semigroup generated by the operator B. 

If U0 ∈ X then we say that U(t) = S(t)U0 ∈ C(R+, X) is a weak solution 

for (2). 

Theorem 1.3: If B is the infinitesimal generator of a C0-semigroup 

contractions on a Banach space X and J is a linear and bounded operator 

on X, then B+J is a infinitesimal generator of C0-semigroup on X. 

 

1.1.2 Abstract Semilinear Problem: Existence of Solution 

Let X be a Banach space and B a linear operator on X. Consider 

the abstract Cauchy problem 

 

(3) 

where U0 ∈ X, t > 0 and F is a nonlinear operator. 

Definition 1.3: An operator F: D(B) → D(B) is continuous Lipschitz on 

bounded sets of D(B) ⊂ X if given a constant M > 0 there exist a constant LM > 

0 such that 
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for all U and W in D(B) such that 

 

The next result is well known. 

Theorem 1.4: Let F: D(B) → D(B) a continuous Lipschitz operator on 

bounded sets of D(B) ⊂ X. Then, for each U0 ∈ D(B), there exist a unique 

strong solution U = U (t) of the Cauchy Problem (3) defined in a maximal 

interval [0, Tm) such that only one of the following conditions is true 

 

The solution U = U(t) of Cauchy Problem (3) belongs to the following 

class 

 

 

1.1.3 Tecnical Lemmas 

In this section we present some lemmas that we use to prove the 

existence and uniqueness of solution as well as some lemmas used toget decay 

rates in time of the solution. Some of those lemmas have already been proved 

in HORBACH, J. L., IKEHATA, R. e CHARÃO, R. C. 

Lemma 1.6: Let c and r be positive numbers and a ∈ R. Then, there 

exists a constant C > 0 such that 

 

Lemma 1.7:  Let k > -n, ϑ > 0 and C > 0. Then there existe a 

constant K > 0 depending on n such that 
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Lemma 1.8: Let k > -n, ϑ > 0 and C > 0. Then there exist a 

constant K > 0 depending on n such that 

 

Lemma 1.9: Let n ≥ 1, a > 1 and p > 1 integer. Then, there exist 

a constant C = C(a, p) > 0 such that 

 

Proof: To estimate the above integral, we separate it into two integrals, 

that is, an integral over the interval  and the other over . 

First, we observe that, if 0 ≤ τ ≤  t we have 1+t ≤ 1+2t−t ≤ 

2+2t−2τ ≤ 2(1+t−τ ) and this implies (1 + t − τ )−a ≤ 2a(1 + t)−a, for a > 

1. Then, for ap > 1, we get 

 

Finally, we define  

 

to get the proof of lemma for all t > 0. 
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 2 EXISTENCE AND UNIQUENESS: LINEAR PROBLEM 

In this section using the the semigroup theory we show the 

existence and uniqueness of solution to the following Cauchy problem 

associated with an equation of Boussines/plate type with a structural 

rotational inertia (to the case of plates) and a fractional dissipation in Rn 

with n ≥ 1. 

 

(4) 

where u = u(t, x), (t, x) ∈ (0,)Rn, α > 0 is a constant. The exponents 

of the Laplacian operators δ and θ are such that 0 ≤ δ ≤ 2 and 0 ≤ θ ≤ 

. 

Formally, the inner product in L2(Rn) between the differential equation 

in (4) with ut is given by 

 

(5) 

where the total energy E(t)) of system (4) is given by 

 

(6) 

Then, isnatural to define the energy space as 

 
(7) 

Note that in case δ > 2 we have H2(Rn) ⊂ Hδ(Rn) and this is unnatural 

because in this case ut would be more regular than u. Another relationship 

we need to take care is the relationship between δ and θ because in the 

energy identity appears (−∆)θ/2ut and in the case δ ≤ θ we have Hθ(Rn) ⊂ 

Hδ(Rn). Also it is necessary to consider the relationship that comes from 
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Luz-Ikehata-Charão (see [4]) where the condition of θ ≤  appears. To 

show the existence and uniqueness of solution we need consider two case 

between δ and θ and we rewrite the Problem (4) in a problem of first order 

on X as follows 

 

where U = (u, ut), U (0) = (u0, u1) and the operators B and J 

depends on the cases θ < δ and θ ≥ δ. 

Before we show the existence and uniqueness we need the definition 

of two important operators, the operators A2 and Aθ. These operators are 

essential for the definition of the operator B. For the case 0 ≤ θ < δ we use 

the operator A2 to define B, while in the case 0 ≤ δ ≤ θ we use the two 

operators, A2 and Aθ to define the operator B. 

 

2.1 The operator Aj 

To define the operator Aj we need to consider j ≥ δ. We define the 

domain of Aj as the subspace of Hj(Rn) given by2 

 

Following the definition of D(Aj) the operator Aj, it shall be defined 

as 

 

(8) 

Formally we have that the operator Aj is given by 
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 Lemma 2.1: For all v ∈ Hj(Rn) exist at most one y = yv ∈ Hδ (Rn) 

such that 

 (9) 

Proof: If y1, y2 ∈ Hδ(Rn) satisfy the relation (9) and because  (Rn) is 

dense in Hj(Rn) we have 

 
(10) 

Consider   y := y1 − y2 , by the density of   (Rn)  in  Hδ(Rn), there 

exist {ψν}ν∈N ∈  (Rn) such that 

 

therefore, 

 

or yet 

 (11) 

Due to  

 

we conclude that 

 
(12) 

Using (11) and (12) we conclude that 

 

From (10) and the definition of inner product in Hδ(Rn) we have 
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Thus, from (11) and (12) we have 

 

Therefore, we conclude thar y1 = y2. 

Remark 2.1: Due to v ≡ 0 ∈ D(Aj) and Lemma 2.1 it follows that Aj 

is well defined. 

Lemma 2.2: For j ≥ δ ≥ 0 it holds that D(Aj)H2j−δ(Rn) and there 

exist a constant C > 0 such that 

 

Proof: Let v ∈ D(Aj) for definition of D(Aj), there exist y = yv ∈ Hδ(Rn) 

such that 

 
(13) 

We now define the functional F1 : Hδ(Rn) −→ R by 

 

It is easy to see that F1 is well define and linear. Moreover, using 

Plancherel theorem 1.1 and the norm define in Hδ(Rn) we proof that F1 is 

a bounded operator. In fact 

 

Using the density of S(Rn) in Hj(Rn) , the varational problem (13) 

takes the following form 
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 Thus we conclude that (−∆)jv + v = F1 in SI(Rn). Applying the 

Fourier Transform, where z = Ajv, we conclude 

 

(14) 

Calculating the L2(Rn) norm for each term in the identity (14) we 

obtain 

 

From the fact that (1 + |ξ|2δ )−1(1 + |ξ|2j )2 is equivalent to 1 + 

|ξ|2(2j−δ), we conclude that 

 

(15) 

Following (15) we have that 

 

for all v ∈ D(Aj). 

Note that the condition of δ ≤  j is required, since H2j−δ(Rn) must 

be contained in Hj(Rn). 

Lemma 2.3: Let 0 ≤ δ ≤ j then H2j−δ(Rn) ⊆ D(Aj), that is, Let v ∈ 

H2j−δ(Rn) then there exist y ∈ Hδ(Rn) such that 

 
(16) 

Proof: Let v ∈ H2j−δ (Rn) and G1 : Hδ(Rn) −→ R given by 
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 Thus G1 is well define and linear. Similarly to the proof that F1 is 

continuous we may prove that G1 is continuous (|G1| ≤ 2\v\H2j−δ ). 

Let a1 : Hδ(Rn) × Hδ(Rn) −→ R, such that a1(ϕ, ψ) = (ϕ, ψ) + 

((−∆)δ/2ϕ, (−∆)δ/2ψ) for all ψ, ϕ ∈ Hδ (Rn). 

We have that a1(·, ·) is well defined and bilinear. Moreover a1(·, ·) is 

continuous and coercive for all ϕ, ψ ∈ Hδ(Rn), because 

 

and 

 

Therefore, the variational problem can be rewrite as 

 

(17) 

From the Lax-Milgram Lemma the problem (17) admits unique 

solution y = yv ∈ Hδ(Rn). 

In particular (17) is valid for each ψ ∈ (Rn), there exists only one y 

∈ Hδ(Rn) such that 

 

Using the density of D(Rn) in Hj(Rn), by definition it follows that v 

∈ D(Aj). 

Remark 2.2: The Lemmas 2.2 and 2.3 they says D(Aj) = H2j−δ 

(Rn). When 0 ≤ δ ≤ θ we have δ ≤ θ ≤ 2θ − δ then H2θ−δ (Rn) ⊂ Hθ(Rn) ⊂ 

Hδ(Rn). When j = 2 we consider A2 given by 
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 The assumption 0 ≤ δ ≤ 2 implies that δ ≤ 2 ≤ 4−δ then H4−δ(Rn) ⊂ 

H2(Rn) ⊂ Hδ(Rn). 

Then, similar to the case j ≥ δ, we can see that D(A2) = 

H4−δ(Rn). 

 

2.2 Case 0 ≤ θ < δ and 0 ≤ δ ≤ 2 

We rewrite the system (4) in matrix form, with U = (u, v) ∈ X, U0 

= (u0, u1) ∈ X, 

 

(18) 

where the operator B1 : H4−δ (Rn) × H2(Rn) → X and J1 : X → X are 

given by 

 

Lemma 2.4: The operator B1 is infinitesimal generator of contraction 

semigroup of class C0 in X. 

Proof: We proof that B1 satisfies the hypotheses of Lumer-Phillips 

Theorem from semi-groups theory. 

Let (u, v) ∈ D(B1) = H4−δ (Rn) × H2(Rn). 

To proof that B1 is dissipative we calculate the inner product 

 

because, 
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According to the definition A2. Here Img(v̂ , ū̂ ) represents the 

imaginary part of v̂ ū̂  and i = √−1. Taking the real part of B1(u, v), (u, v) 

H2×Hδ we get that B1 is dissipative. 

Now we show that Im(I − B1) = H2(Rn) × Hδ(Rn). It easy to prove that Im(I − B1) ⊂ 

H2(Rn) × Hδ (Rn). We need to see that H2(Rn) × Hδ(Rn) ⊂ Im(I − B1). Let (f, g) ∈ 

H2(Rn) × Hδ(Rn), then we prove that there exist (u, v) ∈ D(B1) such that (I − B1)(u, v) = 

(f, g). Equivalently, by the definition of B1, we need to prove that there exist (u, v) ∈ D(B1) 

such that (u − v, v + A2u) = (f, g) 

 

Thus, it is sufficient to show that there is (u, v) ∈ D(B1) that satisfies 

 

Substituting the first equality v = u − f in the second one, we have 

 

By using the Lax-Milgran lemma we can prove that there exist u ∈ 

H2(Rn) satisfying the identity above. In particular we can obtain A2u + 

u = g + f in DI(Rn) where u ∈ H2(Rn), g ∈ Hδ (Rn) and f  ∈ H2(Rn). Then 

applying the Fourier transform we can rewrite the identity above as 

follows 

 

Calculating the L2-norm on each side of the above identity we have 
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Therefore A2u ∈ Hδ(Rn). Using the definition of A2 and Lemma 2.2 we 

conclude u ∈ H4−δ(Rn). Now, due to v = u − f ∈ H2(Rn) it follows that v + 

A2u = g is true.  We conclude that B1 is maximal. But H4−δ(Rn) × H2(Rn) is 

dense in the energy space X. Then by by Lumer-Phillips theorem, we obtain 

that B1 is infinitesimal generator of a contraction semigroup of class C0 in 

X. 

Lemma 2.5: The operator J1 : X → X is a bounded linear operator. 

Proof: The fact that J1 is linear is obvious. The prove that J1 is 

bounded on X follows from the estimate 

 

which holds because 

 

when 0 ≤  θ < δ. 

The fact that B1 is infinitesimal generator of a contraction 

semigroup of class C0 in X and J1 is a bounded linear operator on X we 

conclude by theorem 1.3 that B1 + J1 is infinitesimal generator of a 

semigroup of class C0. Let S1 : [0, ∞) → L(X) be the semigroup of class 

C0 in X generated by B1 + J1 then U (t) = S1(t)U0 is the solution of the 

Cauchy Problem (18). 

For initial data U0 = (u0, u1) ∈ X then the first component u = u(t) 

of U (t) = (u, ut) is the unique weak solution of the system (4) in the 

class. 
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If the initial data U0 = (u0, u1) ∈ D(B1) = H4−δ(Rn)H2(Rn) then u = u(t) 

is the unique strong solution of the system (4) and satisfies 

 

 

2.3 Case 0 ≤ δ ≤ θ and 0 ≤ θ ≤ 2 

We first observe the conditions on fractional powers, 0 ≤ δ ≤ θ and 0 

≤ θ ≤ 2, implies 0 ≤ δ ≤ 2 and because that H2(Rn) ⊂ Hδ(Rn). So, for the 

case in consideration. we can also consider again the energy space as X = 

H2(Rn) × Hδ(Rn). 

Similarly to the previous section, we can consider operators B2 and 

J2. For v = ut we have 

 

Now, considering the operators A2 and Aθ, we can rewrite the Cauchy 

Problem (4) in matrix form as follows 

 

where U = U(t) = (u, v), U0 = (u0, u1), and the operators B2: 

H4−δ(Rn) × H2(Rn) → X and J2: X → X are given by 

 

Similarly to the previous subsection, we may prove that B2 is 

infinitesimal generator of a contraction semigroup of class C0 in X and J2 

is linear and bounded on X. Then, by Theorem 1.3 we conclude B2 + J2 is 
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 infinitesimal generator of a semigroup of class C0. Let S2: [0, ∞) → L(X) 

the semigroup generated by B2 + J2. Then U(t) = S2(t)U0 is the unique 

solution of the Cauchy Problem (18) for the case on δ and θ in this 

subsection. 

Then, for initial data U0 = (u0, u1) ∈ X the first component u(t) of U(t) 

= S2(t)U0 ∈ C [0, ∞), X is the unique weak solution of the linear problem 

(4) and satisfies 

 

If the initial data U0 = (u0, u1) ∈ D(B2) = H4−δ(Rn)H2(Rn) then u(t) is 

the unique strong solution of (4) in the class 

 

 

 

3 DECAY RATES: LINEAR PROBLEM 

The following theorems are proved in Charão-Horbach-Ikehata. These 

results show almost optimal decay rates to the norm of energy and L2-

norm of the solution to the linear Cauchy problem (4). 

Theorem 3.1:  Let 0 ≤ θ < δ. Then, the following decay rates are valid 

for the energy norm of the solution u(t, x) of (4). 
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Theorem 3.2: Let 0 ≤ θ < δ. Then, the following decay rates are 

valid for the L2-norm of solution u(t, x) of Problem (4). 

 

Theorem 3.3:  Let 0 ≤  δ ≤ θ and u0 ∈ H2(Rn) ∩ L1(Rn) and u1 ∈ Hδ(Rn) 

∩ L1(Rn). Then, the following decay rates are valid for the energy norm of the 

solution u(t, x) of (4). 
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Theorem 3.4: Let 0 ≤ δ ≤ θ. Then the following decay rates are valid 

for the L2-norm of the solution u(t, x) of Problem (4). 
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 4 EXISTENCE AND UNIQUENESS: SEMILINEAR PROBLEM 

In this section we consider the Cauchy problem associated to a 

semilinear equation in Rn of Boussineq/plate type with fractional damping 

given by 

 

(19) 

where u = u(t, x), (t, x) ∈ (0, ∞) × Rn, α > 0, β /= 0 and p > 1 

integer. The fractional powers of the Laplacian operator are considered as 

follows 0 ≤ δ ≤ 2, 0 ≤ θ ≤  and  ≤ γ ≤ . 

In case δ = 2, γ = 1, p = 2 and θ = 1 we have a sixth order 

Boussinesq equation under the effects of a hydrodynamic dissipation (see 

WAANG, S. e XUE, H., 2008; DARIPA, P. e HUA, W., 2012). If θ = 0, δ = 1, 

γ = 1/2, β = 0 and n = 2 we have a semilinear plate equation under the 

effects of a frictional dissipation (see CHARÃO, R. C., DA LUZ, C. R. e 

IKEHATA, R, 2013; DA LUZ, C. R. e CHARAO, R. C, 2009; and SUGITANI, Y. e 

KAWASHIMA, S, 2013). 

Similar to the linear case, to study the existence of solutions we need 

to consider two cases. 

 

We reduce the order of the Cauchy Problem (19) and rewrite it in the 

following matrix form 

 

where U = (u, ut), U0 = (u0, u1) and the operator B is define in the 

Section 3 according to the both cases above mentioned. So, in both 

cases B is the infinitesimal generator of a contraction semigroup of C0-
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 class in X. The operator F is the operator that contains the non-linear 

term. 

 

4.1 Local Existence 

To prove the local existence, since B generate a semigroup, we need 

only to show that the operator F is well defined as an operator F : D(B) → 

D(B) and it is Lipschitz continuous on bounded sets of D(B) . After prove 

this property of F we can take U0 ∈ D(B) and using Theorem 1.4 one can 

conclude that there exist a unique solution U = U(t) in a maximal interval 

[0, Tm) such that one and only one of the following conditions is true. 

 

In addition, we have U ∈ C1
 
[0, Tm), X

 
∩ C

 
[0, Tm), D(B). 

 

4.1.1 Case 0 ≤ θ < δ and 0 ≤ δ ≤ 2 

To show the local existence for this case, we should consider the 

fractional power γ in the interval 0 ≤ γ ≤  . As in the linear case we 

consider the usual energy space X and we rewrite the system (19) in the 

matrix form 

 

where U = (u, v) ∈ X, U0 = (u0, u1) ∈ X and the operators B1 : 

H4−δ(Rn)×H2(Rn) → X and F1 : D(B1) → D(B1) are given by 

 

Lemma 4.1: The operator F1 : D(B1) → D(B1) is well define for 0 ≤ γ 

≤  and n < 8 − 2δ. 
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 Proof: We consider U = (u, v) ∈ D(B1) and we show that F1(u, v) ∈ 

D(B1). By definition of F1 and norm in H2 we have 

 

due to the assumptions 2 − 2δ ≤ 4 − δ, 2 + 2θ − 2δ < 2 and 2 + 2γ 

− 2δ ≤ 4 − δ. 

Thus, from the definition of norm in Hs(Rn) and the natural 

embedding of Hs(Rn) in Hr(Rn) for s ≥ r, we get the following estimate 

 

Now using Lemma 1.3 with s = 4 − δ, we obtain for n < 8 − 2δ 

 

Lemma 4.2: Let 1 ≤ n < 8 − 2δ, 0 ≤ θ < δ, 0 ≤ δ ≤ 2, 0 ≤ γ ≤  and p 

> 1 integer. let U = (u, v) and W = (w, z) such that U, W ∈ D(B1) = H4−δ 

(Rn) × H2(Rn). Then 

 

Proof: For U = (u, v) and W = (w, z) in H4−δ(Rn) × H2(Rn) we have 
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because 2θ − δ < 2 and 2γ − δ ≤ 4 − δ. 

Now, using Lemma 1.5 with s = 4 − δ, for n < 8 − 2δ we have 

 

The estimate (see lemma 2.2) ||u||H4−δ ≤ C||A2u||Hδ for all u ∈ D(A2) 

and the defini- tion of operator B1 imply that 

 

Lemma 4.3: Let 1 ≤ n < 8 − 2δ, 0 ≤ θ < δ, 0 ≤ δ ≤ 2, 0 ≤ γ ≤  and p > 

1 integer. Let U = (u, v) and W = (w, z) such that U, W ∈ D(B1) = H4−δ(Rn) × 

H2(Rn). Then there exist a constant C > 0 such that 

 

Proof: For U = (u, v) and W = (w, z) in H4−δ(Rn) × H2(Rn) we have 



Charão, R.C.; Horbac, J.L. 27 

 

Ci. e Nat., Santa Maria, v. 42, e37, p. 1-44, 2020 

   

 

 

since we have assumed 2 − 2δ ≤ 4 − δ, 2 + 2θ − 2δ < 2 and 2 + 2γ 

− 2δ ≤ 4 − δ. 

The above estimate combined with lemma 1.5 imply for n < 8 − 2δ 

the estimate of lemma. 

 

Finally, combining the Lemmas 4.2 and 4.3 we conclude that 

 

Therefore, given a constant M > 0 and considering U, W ∈ H4−δ (Rn)

H2(Rn) such that 

 

we have, for LM = 1 + 2Mp−1, the following estimate 
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 Thus, we conclude that F1 is Lipschitz continuous on bounded sets of 

D(B1). Then, the fact that B1 is infinitesimal generator of a contraction 

semigroup of C0-class in X, using the Theorem 1.4 we have the following 

theorem of local existence and uniqueness. 

Theorem 4.1: Let 0 ≤ θ < δ, 0 ≤ δ ≤ 2, 0 ≤ γ ≤ , p > 1 integer and 

0 < n < 8 − 2δ. Then, for initial data (u0, u1) ∈ H4−δ(Rn) × H2(Rn) there 

exist unique solution to the semilinear Cauchy Problem (19) defined in a 

maximal interval [0, Tm) in the class 

 

satisfying one and only one of the following conditions 

 

 

4.1.2 Case 0 ≤ δ ≤ θ and 0 ≤ θ ≤  

We write the system (19) in the standard matrix form as in previous 

section 

 

where the operators B2 : H4−δ(Rn) × H2(Rn) → X and F2 : D(B2) → 

D(B2) are given by  

 

Similar to the previous section we prove, also in this case, that F2 is 

well defined and is Lipschitz continuous on bounded sets of D(B2).  In 

section 2 we proved that B2 is infinitesimal generator ofa contraction 

semigroup of C0-class in X. Then, using the Theorem 1.4 we obtain the 

local of existence and uniqueness as follows. 
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 Theorem 4.2: Let 0 ≤ δ ≤ θ, 0 ≤ θ ≤ , 0 ≤ γ ≤ , p > 1 integer 

and 0 < n < 8 − 2δ. Then, for initial data (u0, u1) ∈ H4−δ(Rn) × H2(Rn) there 

exist a unique solution to the semilinear Cauchy Problem (19) in a maximal 

interval [0, Tm) in the class 

 

such that one and only one of following conditions is true 

 

 

4.2 Global Existence 

In this section we show that the maximal interval  of existence in the 

two previous cases  is [0, ∞). To do that, we assume Tm < ∞ and we claim 

that ||U ||X + ||BU ||X < +∞. In such case we get Tm = ∞ and the global 

existence follows. 

Taking the Fourier Transform in spatial variable x on the Cauchy 

problem (19) we get the equivalent Cauchy problem in Fourier space 

 

(20) 

Using the Duhamel principle the solution of the Cauchy Problem 20 can 

be write as 

 

(21) 

Then, the derivative in time is given by 

 

(22) 

where the fundamental solutions to the linear problem are 
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and the associated characteristics roots are 

 

In the HORBACH, J. L., IKEHATA, R. e CHARÃO, R. C., 2016 is calculated 

in Lemma 3.6 the following estimate to solutions of the linear problem. 

 
(23) 

 

We use the estimate (23) to prove the next lemma. 

Lemma 4.4:  Let Ĝ(t, ξ)  and  Ĥ(t, ξ)  fundamental  solutions  of  linear  

problem  associated to Problem (20). Then we have the following 

estimates: 

 

Proof: To show items (i) and (ii) we consider the solution of the 

homogeneous problem (20) with û0 = 0. Then, we have û(t, ξ) = Ĝ (t, 

ξ)û 1 and ût(t, ξ) = Ĝt (t, ξ)û1. 

Substituting these expressions on the left hand side of the 

estimate (23) the result for (i) and (ii) follows. The proof of item (iii) and 

(iv) is similar.  
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 Now, to prove the claim that || U||X +   ||BU||X < + ∞ we need 

consider again the two cases on δ and θ. 

 

4.2.1 Case 0 ≤ θ < δ and 0 ≤ δ ≤ 2 

We need in this case to show that the norm ||U(t) ||X + ||B1U(t) 

||X is bounded for all t ∈ [0, Tm) by assuming that Tm < +∞. 

By definition of B (u, ut) = (ut, −A2u), where A2 = (I + (−∆)δ)
 

−1
(α∆2−∆ +I), we have 

 

We note that 

 

and 

(2 + |ξ|2δ + |ξ|2 + α|ξ|4 ) ≤ C
 
1 + |ξ|4 

for all ξ ∈ Rn, Then, we obtain 

 

Substituting û and ût, given by (21) and (22) respectively, in the 

above inequality we have 
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Now, using the estimates in Lemma 4.4 and the fact that  

≤ 1 we obtain 

 

(24) 

We observe that in the second integral at the right hand side of (24) û1 

appears a singularity given by |ξ|−2. So, this term is a little delicate to deal 

with in the zone of low frequency, that is, ξ near zero. To do that we 

assume additional regularity on the initial data u1. In the third integral we 

have the same singularity but it is controlled by the term |ξ|4y from the 

nonlinearity because γ ≥ 1/2. 

Note that, for |ξ| ≥ 1 we have 

 

and for 0 < |ξ| ≤ 1 we have 

 

Using these estimates, we estimate the integral where appears the 

initial data  û1 em (24)  working at  the zones of low and high frequency. 

The integral on high frequency is estimate by  and the integral on 

the low frequency  is  estimate  by  the  norm  of  u1  in  Ẇ  −1,1(Rn).  The 

other integrals at the right hand side of (24) can be estimate in 

standard way. Therefore, we conclude that 
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Using the Lemma 1.3 with 0 < n < 8 − 2δ we have for p > 1 integer 

 

(25) 

for all t ∈ [0, Tm) with the maximum time of existence Tm is assumed to 

be finite. 

Now, we define the function  

 

From the previous inequality we get that M1(t) satisfies 

 

(26) 

In order to show that the solution obtained to the Cauchy Problem 

(19) is global, that is Tm = +∞, we need the next elementary lemma of 

calculus. 

Lemma 4.5: Let p > 1 and F (M) = aI0 + bT Mp − M a continuous 

positive function on M ≥ 0, with a, b, I0, T positive constants. Then, there 

exist a unique M0 > 0 absolute minimum point of F (M) in [0, ∞). In 

addition, there exist ε > 0 such that F (M0) < 0 if 0 < I0 ≤ ε. 
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 We note that the function M1(t) is not negative and satisfy F 

(M1(t)) ≥ 0 for all t ∈ [0, Tm) due to inequality (26) with F(M) the 

function given in Lemma 4.5 with 

 

Therefore, if 0 < I0 ≤ ε, ε > 0 given by Lemma 4.5, due to the 

continuity of the function M1(t), there are only two possibilities: 

 

However, we note that  

 

Then, assuming another condition on the initial data  that  M1(0)  <  

M0 (M0 the  global  minimum point  in  Lemma 4.5)  it follows that M1(t) ≤ 

M0 for all t ∈ [0, Tm). Them the condition that holds is (i). Therefore, if Tm is 

finite, we have proved that  

 

is bounded for all t ∈ [0, Tm). This contradicts the condition of 

Theorem 4.1. Then, we must have Tm = ∞ and the solution is global for 

the case in consideration. The result is 

Theorem 4.3: Let 0 ≤ θ < δ, 0 ≤ δ ≤ 2, 1 ≤ γ ≤ , p > 1 integer and 1 

≤ n < 8 − 2δ. Consider  the  initial  data  u0 ∈ H4−δ(Rn) and  u1 ∈ H2(Rn) ∩ Ẇ  

−1,1(Rn) satisfying  0  < I0 ≤ ε and M1(0) < M0 with ε, I0, M0, M1(0) given 

above and in Lemma 4.5. 

Then, there exist a unique global solution u = u(t, x) to the Cauchy 

Problem (19) such that 
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4.2.2 Case 0 ≤ δ ≤ θ and 0 ≤ θ ≤  

To this case, we need to find a upper bound for the norm ||U ||X +||B2U 

||X for all t ∈ [0, Tm), with U = (u, ut) where u is the solution of (19) given 

by Theorem 4.2. Analogously to the previous section we may obtain such 

estimate. This fact proves that the solution is global and the following 

result holds. 

Theorem 4.4:  Let  0 ≤ δ  ≤ θ, 0 ≤ θ ≤ ,  ≤ γ ≤ , p > 1 integer 

and 1 ≤ n < 8 − 2δ. Consider the initial data u0 ∈ H4−δ(Rn) and u1 ∈ H2(Rn) ∩ 

Ẇ  −1,1(Rn) satisfying 0 < I0 ≤ ε and M2(0) < M0 with ε, I0, M0, M2(0) given 

in a similar way as in previous case. Then, for this case on δ and θ, 

there exist unique global solution u = u(t, x) to the Cauchy Problem (19) 

such that 

 

 

 

5 DECAY RATES: SEMILINEAR PROBLEMA 

From Theorems 4.3 and 4.4 the semilinear Problem (19) has a unique 

global solution in the class 

 

for all 0 ≤ δ ≤ 2, 0 ≤ θ ≤ ,  ≤ γ ≤ , p > 1 integer and 1 ≤ n < 

8 − 2δ. Consider the initial data u0 ∈ H4−δ(Rn) and u1 ∈ H2(Rn) ∩ Ẇ  −1,1(Rn) 

small enough. 

In this section we show decay rates to the energy and L2(Rn) norm of 

the solution to the semilinear problem (19) by using estimates similar to 

the estimates in previous sections. 
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 We note that is sufficient to get estimates for the norm || (u, ut) || 

H4−δ ×H2 to obtain decay rates to the energy norm and L2(Rn)-norm. In 

fact, it holds that 

 

(27) 

Let us now find an estimate for || (u, ut) || H4−δ×H2. In section 4.2 we 

have expressions for the solution û and its derivative ût (see (21) and 

(22)). Then, using such expressions and the definition of norm H4−δ × H2 

we obtain 

 

Now, by considering the estimates in Lemma 4.4 we arrive at the 

estimate 

 

(28) 

We note here that the terms that appear in the above inequality can be 

estimated for, 0 ≤ δ ≤ 2, 0 ≤ θ ≤  and  ≤ γ ≤ , for all ε ∈ Rn, as follows 
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As in (24) we can observe that in the estimate (ii) above appears 

the singularity  |ξ|−2 for ξ  near zero which is controlled by the term |ξ|4γ 

since we have assumed γ ≥ 1/2  On the second integral at the right hand 

side of the last estimate, as in (24), we do not have the term |ξ|4γ  because 

that we assume the additional hypotheses u1 ∈ Ẇ  −1,1(Rn) . The problem 

with such singularity is at the zones of low frequency. The integral on high 

frequency can be estimate in standard way. 

In fact, to estimate the coefficient of |û1|2, we see that for |ξ| ≥1 

 

because |ξ|2(1 + α|ξ|2) ≥ (1 + α|ξ|4 ). 

 

tghuis, using the above estimates, we may conclude that || (u, ut) 

|| H4−δ×H2 is bounded by the four integrals as shown below 

 

At this point, we define the following integrals, dependent on t, which 

appear in the above estimate 
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The function ρθ define in section 3 depends on θ, then we separated 

the problem into four cases: 

 

In the next subsections we show decay estimates to the energy and 

for the L2-norm of the solution in cases (i) and (ii). These estimates refer to 

the case 0 ≤ δ ≤ θ where we do not need to impose more regularity on the 

initial data compared to the decay rates was already obtained to the liner 

problem. The cases (iii) and (iv) can be estimated in the same way but 

assuming regularity on the initial data. 

 

5.1 Case 0 ≤ δ ≤ θ and 0 ≤ θ ≤  

In this subsection we find decay rates to the L2-norm and to the 

energy for the semilinear problem. 

 

Since ρθ = ρθ (ξ) also depends on ξ, we estimate in the low and 

high frequency in the following way 
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Lemma 5.1: Let p > 1 integer and 1 ≤ n < 8 − 2δ. Let θ, δ and γ  such 

that 0 ≤ δ ≤  θ, 0  ≤  θ   ≤ ,   ≤  γ   ≤ .  Then, for all initial data u0 ∈ 

H4−δ(Rn) ∩ L1(Rn) and u1 ∈ H2(Rn) ∩ L1(Rn) ∩ Ẇ  −1,1(Rn) we have 

 

Proof: We start estimating L1 defined above. First we separated the 

integral into two integrals, at the low frequency (|ξ| ≤ 1) and another at the 

high frequency (|ξ| ≥ 1). Then we get 

 

We use the Lemma 1.8 to estimate the integral at the low frequency and 

the definition of norm in Hs(Rn) to estimate the integral at the high frequency. 

Thus we obtain 

 

In the same way we can easily estimate L2 to get 
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 The estimate for L3 follows from the definition of the Sobolev space  Ẇ  

−1,1(Rn) and from Lemma 1.8. Then we have for t > 0 

To get an estimate to N1 we again estimate the associated integral 

into low frequency and high frequency as follows 

 

On the low frequency zone we use the Lemmas 1.8 and 1.1 and on high 

frequency we use the Lemma 1.3 with n < 8 − 2δ. Then, since 2 + 2γ − 2δ ≤ 

4 − δ  and the condition that γ ≤  we arrive at the estimate 

 

Now, using the Lemmas 1.3 and 1.4 with n < 8 −  2δ and p > 1 

integer, we have estimates to L1-norm and H4−δ-norm of up. Thus the 

estimate for N1 is obtained as 

 

Therefore, combining the above estimates, we conclude for p > 1 

integer and n < 8−2δ 
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and the lemma is proved. 

Finally we multiply the inequality in previous lemma by  in order 

to get the following inequality which holds for t > 0. 

 

Now, for t ≥ 0 we define the function 

 

(29) 

From the above inequality we have 

 

for all t > 0. By Lemma 1.9 we have 

 

when , that is, 2−2θ < n with C(n, p, θ) a positive constant. 

Therefore, we have arrived at the following main inequality with 

holds for t > 0. 
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(30) 

Finally, to find the desired decay rates to the Cauchy Problem (19) we 

need an elementary lemma of calculus, analogous to Lemma 4.5. 

Lemma 5.2: Let p > 1 and F (M) = aI0 + bM p − M, a continuous and 

positive function for M ≥ 0, and a, b, I0 positive constants. Then, there 

exist only one M0 > 0 absolute minimum point of F(M) in [0, ∞). In 

addition, there exist ε > 0 such that if 0 < I0 ≤ ε then F(M0) < 0. 

Combining (30), the above lemma and work as in subsection 4.2 we 

can prove the following theorem. 

 

Theorem 5.1: Let 0 ≤ δ ≤ θ, 0 ≤ θ ≤ ,   ≤  γ   ≤ , p > 1 integer and 

2 − 2θ < n < 8 − 2δ. Consider  the initial data u0 ∈ H4−δ(Rn)  ∩ L1(Rn) and 

u1 ∈ H2(Rn) ∩ L1(Rn) ∩ Ẇ  −1,1(Rn) satisfying 0 < I0ε and M1(0) < M0 with ε, I0, 

M0, M1(0) given by Lemma 5.2. Then the following estimate for the energy 

norm plus the L2 standard of the solution is true 

 

We note here that the rate found above is the same rate found for 

the energy norm of Linear Problem 4 as we see in Theorem 3.3 item (i). 

 

5.2 Case 0 ≤ δ ≤ θ and  < θ   ≤  

As in the previous section we prove decay rates to the energy and L2-

norm for this case. The result is the following. 

Theorem 5.2: Let 0 ≤ δ ≤ θ,  < θ ≤ ,  ≤ y ≤ , p > 1 integer and 2θ 

< n <8 − 2δ. Consider  the initial data u0 ∈ H4−δ(Rn) ∩ L1(Rn) and u1 ∈ H2(Rn)  

∩ L1(Rn) ∩ Ẇ  −1,1(Rn) satisfying  0  <  I0ε  and  M2(0)  <  M0 with  ε,  I0,  M0,  M2(0)  

define  above. Then the following estimate for the energy norm plus the L2 

standard of the solution is true 
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Remark 5.1: We observe that we can remove the hypotheses γ ≥ 1/2 in 

Theorems 4.3, 5.1, 5.2 and assume the condition γ ≥ max {0, ½ − n/4} by 

performing a simple estimate. In fact such condition was imposed when was 

estimated the integral corresponding to the semilinear term in (24) and in (28) 

on the zone of low frequency. Indeed, we can estimate the integral with a 

singularity in ξ = 0 that appears in (24). 

 

due to Lemma 1.4 for 4 − δ > n/2 and the assumption γ > 1/2 − n/4 

with γ > 0. 
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